

The HOMONIM project to support the flood forecasts

Denis Paradis, Audrey Pasquet, Alice Dalphinet, Komlan Kpogo-Nuwoklo, Heloise Michaud, Remy Baraille, Didier Jourdan, Patrick Ohl, Roman Le Belleguic, David Ayache, et al.

▶ To cite this version:

Denis Paradis, Audrey Pasquet, Alice Dalphinet, Komlan K
pogo-Nuwoklo, Heloise Michaud, et al.. The HOMONIM project to support the flood forecasts. LHB, 2024, 10.1080/27678490.2024.2332256. hal-04720408

HAL Id: hal-04720408 https://hal.science/hal-04720408v1

Submitted on 4 Oct 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tlhb21

Le projet HOMONIM, en soutien des prévisions d'inondation côtière

Denis Paradis, Audrey Pasquet, Alice Dalphinet, Komlan Kpogo-Nuwoklo, Héloïse Michaud, Rémy Baraille, Didier Jourdan, Patrick Ohl, Roman Le Belleguic, David Ayache, Christophe Bataille, Maya Ciavaldini, Fabien Brosse & Yann Krien

To cite this article: Denis Paradis, Audrey Pasquet, Alice Dalphinet, Komlan Kpogo-Nuwoklo, Héloïse Michaud, Rémy Baraille, Didier Jourdan, Patrick Ohl, Roman Le Belleguic, David Ayache, Christophe Bataille, Maya Ciavaldini, Fabien Brosse & Yann Krien (09 Apr 2024): Le projet HOMONIM, en soutien des prévisions d'inondation côtière, LHB, DOI: 10.1080/27678490.2024.2332256

To link to this article: https://doi.org/10.1080/27678490.2024.2332256

© 2024 Météo France. Published by Informa UK Limited, trading as Taylor & Francis Group.

0	h

Published online: 09 Apr 2024.

🕼 Submit your article to this journal 🗗

Article views: 237

\mathbf{O}

View related articles 🖸

) Taylor & Francis Taylor & Francis Group

OPEN ACCESS OPEN ACCESS

Le projet HOMONIM, en soutien des prévisions d'inondation côtière

Denis Paradis^a, Audrey Pasquet^b, Alice Dalphinet^a, Komlan Kpogo-Nuwoklo^a, Héloïse Michaud^b, Rémy Baraille^b, Didier Jourdan^b, Patrick Ohl^a, Roman Le Belleguic^b, David Ayache^a, Christophe Bataille^a, Maya Ciavaldini^b, Fabien Brosse^b and Yann Krien^c

^aMétéo France DirOP/MAR, Toulouse, France ; ^bShomDOPS/HOM/REC, Toulouse, France ; ^cLEGOS (Observatoire Midi-Pyrénées), Toulouse, France

RÉSUMÉ

Le projet HOMONIM phase 3 est mené par MétéoFrance et le Shom sous la maîtrise d'ouvrage de la Direction Générale de la Prévention des Risques (DGPR). Il vise à améliorer les capacités opérationnelles de modélisation des niveaux marins et des vagues à la côte pour aider la gestion du risque de submersion marine. Les principaux travaux de R&D en cours et à venir dans le projet HOMONIM3 sont abordés dans cet article : configuration de façade Manche – Atlantique du nouveau modèle de niveau marin TOLOSASW, calibration de la prévision d'ensemble (PE) de surcotes, mise en place d'une PE des vagues en côtier, modélisation couplée vagues/niveaux/courants à très haute résolution, pour le littoral Nord-Aquitain, et la modélisation non hydrostatique. Ces résultats sont susceptibles de servir aux modèles de prévision des inondations à proximité des estuaires ou des fleuves près de leur embouchure, en leur fournissant, sur leur frontière maritime, une condition limite plus réaliste, et cohérente avec les prévisions utilisées pour le dispositif de la Vigilance Vagues-Submersion (VVS), ainsi qu'une information, pour un jour donné, sur la prévisibilité des modèles ou sur l'existence de scénarios océaniques alternatifs.

The HOMONIM project to support the flood forecasts

ABSTRACT

The HOMONIM-3 project is driven by Météo-France and Shom under the project management of the DGPR (Direction Générale de la Prévention des Risques) and is aiming at improving the operational capacity to model the coastal sea level and waves to help the crisis management of the marine flooding. The main project developments will be presented, concerning the new coastal atlantic configuration of the TOLOSA-SW sea level model, the calibration of the storm surges ensemble forecast, the implementation of a waves ensemble forecasting system for the coasts, the coupled modelisation of the waves and the ocean at a very high resolution for the North Aquitaine shore, and the non-hydrostatic modelisation. All these results may be useful for the flood forecasting models, near the estuaries or the river mouths, by providing more realistic maritime boundary conditions that will be consistent with the forecasts used by the national VVS (early warning for waves and marine flooding) system, as well as an information on the previsibility of the models for a given day or on the existence of alternative maritime scenarios for the same day.

1. Introduction

HOMONIM (Historique, Observation et MOdélisation du Niveau Marin) est un projet national mené par Météo-France et le Shom, sous maîtrise d'ouvrage du ministère de la transition écologique par l'intermédiaire de la Direction Générale de la Prévention des Risques. Il a contribué, à son début, à l'action de l'Etat dans le cadre du plan interministériel "Submersions Rapides".

L'objectif est d'améliorer les capacités opérationnelles de prévision du risque de submersion marine. La troisième phase de HOMONIM comporte deux axes d'amélioration : continuer à faire progresser le système opérationnel national de référence de la Vigilance Vagues-Submersion (VVS) de Météo-France, et préparer la transition vers la prévision des zones de submersions potentielles.

Il s'agit d'une part d'améliorer les capacités de prévision des niveaux marins, surcotes et vagues à proximité de la côte ainsi que pour les territoires à enjeux ou complexes (estuaires, zones semi-fermées), et de mieux évaluer et exploiter les incertitudes sur la prévision. D'autre part, ce projet vise à fournir un « écosystème de modélisation » adapté à l'alimentation de systèmes de prévision plus locaux, et ainsi préparer les

CONTACT Denis Paradis 🖾 denis.paradis@meteo.fr

© 2024 Météo France. Published by Informa UK Limited, trading as Taylor & Francis Group.

MOTS-CLÉS

prévision numérique ; états de mer ; vagues en côtier ; niveau marin sur le littoral ; vigilance vagues submersion

KEYWORDS

Numerical forecast; coastal waves; sea level at coast; early warning for waves and marine flooding

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

futurs outils de prévision numérique aptes à décrire les processus littoraux et compatibles avec une mise en œuvre opérationnelle.

Les orientations techniques choisies dans HOMO-NIM-3 (Jourdan et al., 2020) visent à augmenter le réalisme des modèles et à développer la prévision d'ensemble (PE), tout en conservant le caractère opérationnel des systèmes de prévision (simplicité, robustesse, performance), ce qui se traduit par :

- le développement de la plateforme multimodèles TOLOSA permettant de modéliser la dynamique barotrope de l'océan à l'aide de grilles non-structurées,
- (2) le développement de fonctionnalités de descente d'échelle et de couplage (vagues/niveau marin et courant) garantissant une simplicité de mise en œuvre opérationnelle,
- (3) la calibration de la PE de surcote et la mise en place d'une PE de vagues en côtier, pour estimer l'incertitude des prévisions.

Nous allons décrire dans cet article les principales actions en cours sur la modélisation océanique dans le cadre de HOMONIM-3 et en donner les premiers résultats : la modélisation régionale de façade des niveaux d'eau (configuration TOLOSA-ATL), la calibration de la PE de surcotes, la PE de vagues en côtier, la modélisation couplée vagues/océan à Très Haute Résolution (THR, 20 à 50 m), et la représentation des effets non hydrostatiques locaux.

2. TOLOSA-ATL : une configuration régionale Atlantique-Manche améliorée, un nouveau modèle Shallow Water

2.1. Description, mise au point

La modélisation régionale des niveaux d'eau utilise le modèle TOLOSA-SW, qui est un module (SW = Shallow Water) de la boîte à outils TOLOSA (Tools Library for unstructured Ocean Models and Surge Applications, https://tolosa-project.com/), développée essentiellement par l'IMT (Institut de Mathématiques de Toulouse) et le Shom, pour modéliser les écoulements à surface libre (Couderc et al., 2017).

Le modèle TOLOSA-SW résout les équations shallow-water non linéaires. Il permet, comme HYCOM qu'il doit remplacer dans le dispositif VVS, une modélisation régionale opérationnelle des niveaux d'eau à l'échelle d'une façade maritime complète (exemple : ATL, pour la façade Atlantique-Manche), mais avec une résolution plus fine à la côte grâce aux grilles non structurées. TOLOSA-SW hérite des schémas numériques peu dissipatifs, stables et performants de type "bas Froude" (Duran et al., 2017, 2020) qui ont été testés de façon préliminaire dans HYCOM, et qui ont depuis bénéficié d'améliorations continues (critères de dissipation et de stabilité, montées en ordre . . .) ; ils constituent désormais le cœur numérique de la toolbox TOLOSA. Ces schémas sont performants pour le calcul de flux nonlinéaires aux régimes typiques de nos applications ; le schéma "bas Froude" explicite du premier ordre utilisé dans TOLOSA-SW présente un comportement énergétique d'un schéma du second ordre, ce qui le rend particulièrement efficace et peu coûteux.

Le maillage de la configuration TOLOSA-ATL a une résolution de l'ordre de 100–200 m au niveau du trait de côte métropolitain et atteint jusqu'à 10–20 km au large des côtes norvégiennes. Sa bathymétrie a été construite à partir du MNT à 100 m de résolution issue du projet HOMONIM (Biscara, 2015).

Le modèle est forcé, à ses frontières ouvertes, par la marée issue de l'atlas FES2014b. La surcote due au baromètre inverse est ajoutée au niveau de marée en prenant en compte une pression atmosphérique moyenne issue d'une climatologie (ERA-5 de 2010 à 2019) comme pression de référence (au lieu de 1013,25 hPa). Enfin, le potentiel de marée est lui aussi inclus dans toutes les simulations. La friction de fond est semi-quadratique, temporellement et spatialement variable, et calculée à partir d'une longueur de rugosité obtenue par la méthode d'optimisation stochastique déjà utilisée pour HYCOM (Boutet 2015 ; Krien et al., 2022 ; Pasquet 2016) en utilisant les prédictions de marée du réseau marégraphique REFMAR.

2.2. Résultats

En comparant sur un an le rejeu de la marée pure (sans forçage météo) par TOLOSA-ATL avec la marée extraite des observations du réseau de marégraphes RONIM, le module des erreurs complexes sur la marée est réduit d'un facteur 2.5 en moyenne et TOLOSA-ATL montre des performances plus homogènes que l'ancienne configuration HYCOM-ATL ; on note en particulier une amélioration significative de la prédiction de marée en Manche.

Un panel de 17 événements remarquables ainsi qu'un rejeu de l'hiver 2013–2014, particulièrement agité, ont été utilisés pour valider la modélisation des niveaux d'eau (utilisation d'analyses de modèles atmosphériques (ARPEGE ou AROME selon l'événement) complétées par des prévisions horaires jusqu'à 5 h quand cela était possible). La Tableau 1 indique quelques scores obtenus pour les surcotes modélisées (les scores sur les pics de surcotes ne sont pas évalués pour l'hiver 2013–2014). On note une **réduction de 5 % à 10 % des** écarts **type** et erreurs quadratiques moyennes, et une correction partielle de ~25 % des **biais pendant quelques heures à quelques jours pour certains événements du panel**, via la prise en compte d'une pression de référence plus précise.

Tableau 1. Tableau de scores obtenus pour les surcotes modélisées sur 2 rejeux (panel de 17 tempêtes et hiver 2013–2014) et pour les 2 modèles (Hycom et TOLOSA) de la façade atlantique. Les scores sont calculés avec les surcotes produites toutes les 10 minutes, pour tous les sites marégraphiques concernés par chaque tempête.

	Panel de 17 tempêtes		Hiver 2013-2014	
Score des surcotes (cm)	Hycom-ATL	Tolosa-ATL	Hycom-ATL	Tolosa-ATL
Biais arithmétique (cm)	-4	-4	-4	-3
Biais en valeurs absolues (cm)	9	9	5	4
Ecart quadratique moyen (cm)	17	16	13	12
Ecart type moyen (cm)	12	11	12	11
Erreur absolue de l'écart aux pics de surcote (cm)	17	17	-	-
Erreur aux pics de surcote (cm)	-10	-11	-	-
Déphasage aux pics de surcotes (mn)	43	41	-	-

La légère amélioration des scores pour la configuration TOLOSA-ATL est corroborée par l'évaluation subjective des prévisionnistes de Météo-France en charge de la VVS, qui ont comparé les 2 configurations en mars et avril 2023. Ils ont conclu à un comportement de TOLOSA-ATL similaire à HYCOM-ATL renforcé de quelques points positifs pour TOLOSA-ATL : correction (jusqu'à 5 cm) de biais persistants, amélioration de la gestion des bancs découvrants, sur-réactivité moindre rendant TOLOSA-ATL plus facile à utiliser.

Pour illustrer cette comparaison, la Figure 1 suivante reproduit les simulations sur 4 jours de la surcote à Dunkerque faites le 01 janvier 2018 à 0UTC, avec HYCOM-ATL et avec TOLOSA-ATL, en superposant les observations du marégraphe (tempête Eleanor).

Sur cet événement, on retrouve un comportement similaire entre les deux modèles : pic de surcote observé de 1.15 m bien simulé par TOLOSA-ATL (1.2 m), légèrement plus sur-estimé par HYCOM-ATL (1.3 m), et meilleur réalisme de TOLOSA-ATL durant les presque 4 jours.

TOLOSA-ATL se montre ainsi au moins aussi bon que HYCOM-ATL pour simuler les surcotes et se distingue par ses meilleures performances numériques, avec un temps calcul multiplié par seulement 2 pour une résolution spatiale entre 5 et 10 fois plus raffinée, selon la zone.

2.3. Perspectives opérationnelles

Une chaîne pré-opérationnelle produit actuellement en temps réel les prévisions basées sur la configuration

TOLOSA-ATL forcée par Arpège au réseau 0 UTC. Elle permet aux prévisionnistes de poursuivre leur appropriation et leur évaluation de cette nouvelle configuration, en attendant une bascule opérationnelle qui aura lieu en 2024 normalement.

3. Calibration de la prevision d'ensemble de surcote

3.1. Description, mise au point

La Prévision d'Ensemble (PE) est une technique qui permet de représenter les états possibles des paramètres prévus (vent, surcote, état de mer ...) par un ensemble d'états équiprobables (les membres). La PE Arpège (PEARP) a 35 membres et prend en compte l'incertitude sur l'état initial (ensemble d'assimilation Arpège) et sur le modèle Arpège (activation de plusieurs physiques alternatives réparties aléatoirement sur les 35 membres).

Une chaîne de PE de surcotes a été mise en place en juillet 2016 à Météo-France, pour deux domaines : Atlantique et Méditerranée. Elle utilise les forçages atmosphériques (vent à 10 m et pression au niveau de la mer) issus de la PEARP comme forçage du modèle Hycom 2D (résolution spatiale de 500 m à 1,5 km sur les côtes françaises) et produit des prévisions jusqu'à 102 h maximum, 2 fois par jour (séries temporelles toutes les 10 minutes). L'incertitude décrite dans cet ensemble de surcotes, représente uniquement l'incertitude du forçage atmosphérique (état initial et modèle), l'une des principales sources d'incertitudes.

Figure 1. Surcote (m) observée à Dunkerque du 01/01/2018 au 06/01/2018 (ligne bleue), et celles simulées par TOLOSA-ATL (trait Orange) et HYCOM-ATL (trait rouge) avec le forçage atmosphérique de ARPEGE à 10 km de résolution (analyses toutes les 6 h et prévisions horaires jusqu'à 5 h).

Les scores de la PE surcotes (comparaison avec les observations marégraphiques du réseau RONIM du Shom) ont montré que les prévisions sont sousdispersives et souvent biaisées, conséquences de plusieurs sources d'erreurs parmi lesquelles la sousdispersion des forçages PEARP, la dynamique 3D manquante dans le modèle Hycom 2D, la pression de référence supposée constante ou encore la non prise en compte de l'effet des vagues (via le wave setup ou la rugosité de surface liée aux vagues par exemple).

Une calibration des PE de surcotes a été développée afin de corriger à la fois le biais et la sousdispersion des prévisions brutes par un posttraitement. Pour ce faire, deux méthodes ont été testées : EMOS (Ensemble Model Output Statistics) (Gneiting et al., 2005) et QRF (Quantile Regression Forests) (Meinshausen, 2006). Ces deux méthodes peuvent être mises en place dans un cadre opérationnel et ont démontré leur efficacité dans plusieurs études antérieures pour des paramètres comme la température, la neige ou le vent (Taillardat et al., 2016), (Evin et al., 2021), (Gneiting et al., 2005), (Baran & Lerch, 2015). De plus, ces méthodes ont l'avantage de pouvoir utiliser des prédicteurs météo-océaniques autres que les caractéristiques de la PE brute. Cela peut permettre de prendre en compte l'effet des vagues non modélisé.

Un échantillon de données couvrant une période de 6.5 ans (du 01/01/2016 au 30/06/2022) a été constitué pour :

- les observations de hauteur totale d'eau des marégraphes du réseau RONIM du Shom. La surcote observée est calculée en retranchant la marée prédite du Shom,
- (2) les prévisions d'ensemble de surcotes Hycom 2D de la production opérationnelle de Météo-France aux positions des marégraphes (35 membres, seul le réseau de 18 h est utilisé afin de réduire la dépendance entre les données, prévisions jusqu'à 108 h),
- (3) les données de vent à 10 m et de pression au niveau de la mer : analyses du modèle atmosphérique déterministe Arpège de Météo-France (point de grille le plus proche des marégraphes),
- (4) les données de hauteur significative et de période des vagues : analyses du modèle WAVEWATCH III * (WW3 dans la suite du papier, WW3DG, 2019) (configuration NORGAS-UG issue d'HO-MONIM) forcé par ARPEGE de la production opérationnelle de Météo-France (point de grille WW3 le plus proche dans la direction des vagues dominantes).

Pour la méthode EMOS, quatre distributions paramétriques ont été testées : normale, log-normale, gamma et logistique. Le critère de performance fréquemment utilisé pour retenir la meilleure distribution est le CRPS (Continuous Ranked Probability Score), représentant l'intégrale de l'écart quadratique entre la fonction de répartition des prévisions et la fonction de répartition de l'observation. Il est directement comparable avec l'erreur moyenne absolue d'un modèle déterministe. Les meilleurs scores ont été obtenus pour les lois normale et logistique, et la loi normale a été retenue (facilité d'emploi, coût calcul) comme distribution pour calibrer la PE de surcotes avec la méthode EMOS.

La méthode QRF est non paramétrique c'est-à-dire qu'elle ne nécessite pas de fixer de distribution a priori pour la variable d'intérêt. Cette méthode mise au point par Meinshausen (2006) est basée sur les forêts aléatoires. C'est une régression non-linéaire adaptée à la prévision de quantiles et a l'avantage de ne pas être dégradée par l'ajout de prédicteurs peu ou pas informatifs, au contraire de la méthode EMOS. Trois paramètres ont été optimisés par validation croisée, pour 5 sites (Dunkerque, Brest, Boulogne-sur-mer, Monaco et Sète) : le nombre d'arbres nécessaires (500), le nombre de variables tirées aléatoirement pour sélectionner la variable de segmentation de chaque nœud (5) et la taille minimale d'un nœud (20).

3.2. Résultats

Une validation croisée a été utilisée pour les deux méthodes EMOS et QRF. Elle consiste à diviser l'échantillon original en 26 trimestres (ou 26 blocs), puis à sélectionner un des blocs comme échantillon de validation pendant que les 25 autres blocs constituent l'échantillon d'apprentissage. Après apprentissage, on peut calculer une performance de validation sur le bloc restant. Puis on répète l'opération en sélectionnant un autre échantillon de validation parmi les 26 blocs...À l'issue de la procédure nous obtenons ainsi 26 scores de performances (CRPS ou diagramme de rang), un par bloc, que l'on peut fusionner.

La Figure 2 montre le CRPS obtenus pour les 3 ensembles (brut, calibré par EMOS, et calibré par QRF), sous la forme de boites à moustaches, en fonction des échéances de prévision pour les sites du domaine Atlantique (résultats équivalents pour la Méditerranée). Les deux méthodes de calibration conduisent à des CRPS plus faibles donc meilleurs que la PE brute. Entre les deux méthodes, QRF donne les meilleurs scores.

Le diagramme de rang (DR) représente la répartition des observations de surcotes vis-à-vis des N membres de l'ensemble de surcotes, rangés par valeur croissante (Hamill, 2001). Une PE devra avoir son DR uniforme (plat) pour pouvoir être fiable.

La Figure 3 montre les DR pour le site de Dunkerque. Le DR de l'ensemble sans calibration est en forme de

Figure 2. CRPS des 3 ensembles (raw = brut, calibré par EMOS et par QRF) en fonction des échéances de prévision (=lead time) pour le domaine Atlantique (18 sites utilisés). Les calculs reposent sur l'échantillon complet de 6.5 ans et sont présentés sous la forme de boites à moustaches (quantiles 10, 25, 50, 75 et 90).

Figure 3. Diagrammes de rang des PE de surcotes pour le site de Dunkerque : sans calibration « RAW » (à gauche), avec calibration par EMOS (au centre) et QRF (à droite). Rang de l'observation parmi les 35 membres de la PE en abscisse, fréquence relative de l'observation en ordonnée.

U avec plus d'occurrences pour les valeurs élevées. Cela montre que l'observation est le plus souvent supérieure à tous les membres de la PE. La PE sans calibration est donc sous-dispersive (forme de U) et sous-estime les surcotes. Après calibration (EMOS et QRF), les DR deviennent relativement uniformes avec un léger avantage pour la méthode QRF. Ces résultats sont similaires pour tous les autres sites, non présentés ici.

Pour illustrer l'efficacité de la méthode QRF pour calibrer la PE de surcotes, les 3 ensembles de surcotes obtenus, sans calibration, avec la calibration EMOS et avec la calibration QRF, sont reproduits ci-après (Figure 4), pour une prévision jusqu'à 108 h faite le 08/01/2017 à 18 UTC au Havre. La PE calibrée avec le QRF arrive à bien prévoir le pic de surcotes autour du 12 janvier à 18 h (presque 4 jours d'échéance), ce qui n'est pas le cas de la prévision brute et de la PE calibré avec EMOS. Ce pic a été correctement reproduit par le QRF grâce à l'utilisation des prédicteurs comme la hauteur significative des vagues, la vitesse du vent à 10 m et la pression au niveau de la mer qui indiquent bien la présence d'un événement tempétueux autour de cette date.

3.3. Conclusion

A partir des scores (obtenus par validation croisée, donc avec des données de validation indépendantes de celles de l'apprentissage) comme le CRPS, le diagramme de rang, le diagramme de fiabilité ou encore la courbe ROC, il ressort que la calibration de la PE surcotes avec ces deux méthodes permet de réduire le biais et d'avoir une dispersion plus uniforme. Le QRF a donné les meilleurs résultats sur l'ensemble de ces scores aussi bien en Atlantique qu'en Méditerranée.

Il faut souligner que le QRF ne peut pas prévoir une valeur supérieure au maximum de surcotes de l'échantillon d'apprentissage. C'est la raison pour laquelle l'échantillon d'apprentissage doit être aussi large que possible. Quant à la méthode EMOS, la loi normale qui a été retenue comme distribution des surcotes, n'arrive pas à modéliser correctement la queue de la distribution. Il pourrait être intéressant de tester une distribution mixte du type Normal-Pareto afin de mieux capter aussi bien la queue que le reste de la distribution des surcotes.

Figure 4. Quantiles de la PE surcotes (Q1, Q10, Q25, Q50, Q75, Q90, Q99) au Havre, produite le 08/01/2017 à 18 UTC jusqu'à +108 h : prévisions brutes (en haut), EMOS (au milieu) et QRF (en bas), ces 2 calibrations n'ayant pas utilisé cet événement dans leur apprentissage. L'observation au marégraphe du Havre (en noir) est superposée, ainsi que la prévision déterministe (en rouge) et la marée réduite (en pointillés noirs) pour repérer les phase de PM et de BM.

4. Developpements en cours

4.1. Prévision d'ensemble de vagues

Le projet HOMONIM-3 cherche également à mettre en place une PE de vagues en côtier, basée sur le modèle WW3 pour les façades françaises Atlantique NE, Manche, Mer du Nord et Méditerranée. Pour ce faire, l'étape préalable consistait à développer une PE de vagues au large dans laquelle imbriquer le côtier. Après plusieurs tests et études de sensibilité, les caractéristiques retenues de la PE de vagues au large sont les suivantes :

- (1) modèle de vagues MFWAM, avec une grille globale de résolution horizontale de 0,2° (compromis coût/performance), forcé par la PEARP. Deux physiques de vagues alternatives sont utilisées dans l'ensemble de vagues pour introduire l'incertitude sur le modèle de vagues : l'actuelle physique du modèle MFWAM déterministe opérationnel (appliquée à 18 membres) et l'ancienne physique opérationnelle ECWAM (modèle du ECMWF), plutôt meilleure pour la mer du vent (vagues en cours de croissance sous l'effet du vent), mais moins bonne pour la houle (appliquée aux 17 autres membres),
- (2) 4 réseaux de production pour une échéance maximale de 102 h, avec des conditions initiales identiques pour les 35 membres MFWAM, correspondant à celles du modèle déterministe bénéficiant de l'assimilation des données.

L'évaluation a été faite sur une période de 4 mois (janvier à avril 2021), en utilisant les observations des bouées Brittany, Gascogne et Azur et les altimètres proches de la zone France. Les diagrammes de rang montrent une tendance à la sous-dispersion aux premières échéances, jusqu'à 48 h environ. Ce résultat était attendu car il n'y a pas d'assimilation d'ensemble MFWAM : tous les membres partent en effet du même état initial. On remarque une tendance à la surestimation sur la zone Atlantique et à la sous-estimation dans la zone Méditerranée. La possibilité de calibration en post-traitement pourra être étudiée ultérieurement.

Cette PE de vagues au large est produite en opérationnel à Météo-France depuis novembre 2022 et va permettre de développer, tester, valider une PE de vagues en côtier pour la métropole d'ici 2024. Cette dernière aura les caractéristiques suivantes :

- grille unique pour couvrir tout le littoral français de métropole (Atlantique et Méditerranée : fusion des grilles des 2 configurations WW3 déterministes actuelles), avec une résolution spatiale allant jusqu'à 200 m à la côte, imbriquée dans la grille au 1/5° de la PE MFWAM, et utilisant le modèle WAVEWATCH III,
- (2) forçage par la PE de Arpège (35 membres) ou de Arome (17 membres), selon rapport bénéfice/coût,
- (3) forçage de la partie Atlantique-Mer du Nord par les courants et les niveaux marins du modèle déterministe de surcotes HYCOM-ATL puis TOLOSA-ATL.

En parallèle, une réflexion est en cours dans un groupe de travail comportant des modélisateurs et des prévisionnistes pour utiliser au mieux la PE de vagues et de surcotes dans les productions de sécurité de Météo-France : paramètres particuliers, probabilité de dépassement de seuils, indice de dangerosité, visualisation, concept d'emploi, méthodologie ...

4.2. Modélisation couplée niveaux/courants/ vagues TOLOSA-WW3

Les courants influent sur les états de mer en modifiant la réfraction, le déferlement, et la croissance des vagues. De même, le niveau d'eau agit sur de nombreux processus liés aux vagues, notamment en eaux peu profondes et en zones tidales. Réciproquement, les vagues agissent sur les couches limites de surface et de fond via la modification de l'énergie cinétique turbulente et des rugosités de surface et de fond. La dérive de Stokes vient également s'ajouter au courant de surface, et une décote est générée peu avant le déferlement des vagues (wave setdown), tandis que le déferlement crée une surcote due aux vagues (wave setup).

Pour les prévisions de surcote, le wave setup est essentiel : dans les modèles de hauteurs d'eau simplifiés non couplés avec un modèle de vagues, sa non prise en compte induit une part importante des erreurs de prévision de surcote sur certains sites (Michaud & Pasquet, 2021; Pasquet et al., 2021). Un couplage entre les modèles de circulation et d'états de mer à une résolution de l'ordre de quelques dizaines de mètres permet d'en représenter une partie, même si l'hypothèse barotrope des modèles de circulation peut en limiter la précision (intégration sur la verticale pour aboutir à une représentation 2D). C'est pourquoi une configuration couplée THR (Très Haute Résolution, entre 20 et 30 m) entre les modèles TOLOSA-SW et WW3 sur les côtes Nord Aquitaine (NAQ), incluant le Bassin d'Arcachon et l'estuaire de la Gironde, sera développée dans le cadre HOMONIM-3. Cette configuration permettra d'évaluer l'apport du couplage, sur le plan scientifique (réalisme des prévisions) et opérationnel (amélioration de la VVS). Elle fournira également une preuve de faisabilité pour mettre en œuvre un tel système, plus coûteux, à l'échelle d'une façade de plusieurs centaines voire milliers de kilomètres, en routine pré-opérationnelle (i.e. comme base à l'ensemble de la production, y compris la PE). Elle profitera à la VVS infra-départementale (plus précise) et aux services avals (alimentation ou intégration dans des systèmes d'alerte de submersion marine à l'échelle locale).

La réduction des coûts de calcul nécessaire à l'emploi opérationnel de modèles couplés THR est possible grâce à une refonte par le Shom de ses outils numériques (modèles numériques, outils de descente d'échelle), financée par la Direction Générale de l'Armement dans le cadre de l'amélioration des outils de prévision pour les besoins de Défense. Ces outils sont ensuite transférés au programme HOMONIM et bénéficient in fine au dispositif de la VVS. Dans cette approche duale, la validation de ces développements est assurée par et pour les objectifs HOMONIM-3. TOLOSA a ainsi été pensé dans l'objectif de faciliter la descente d'échelle sur zones complexes à moindre coût de calcul avec, en plus de la performance intrinsèque des schémas numériques nouvellement développés (schémas "Bas Froude"), une parallélisation optimisée sous CPU (Central Processing Unit) et structurée pour faciliter son évolution vers du calcul sous GPU (Graphics Processing Unit). Des fonctionnalités de calcul asynchrone (par utilisation de pas de temps locaux dans le modèle) sont aussi en cours de développement, afin de diminuer le coût calcul très contraint par le respect de conditions CFL (Courant-Friedrichs-Lewy) très locales. Le couplage entre les modèles TOLOSA et WW3 est assuré par le coupleur OASIS (Valcke et al., 2015) qui intègre par ailleurs la descente d'échelle. Enfin, l'adaptation des schémas numériques aux régimes dynamiques propres aux zones fluviales ou lagonaires, (i.e. écoulements avec nombre de Froude élevé) permettra d'étendre leur utilisation de façon pertinente dans les estuaires et les lagons (dont Mayotte, par exemple).

Le modèle spectral WW3 opérationnel de la VVS devrait également migrer vers une mise à jour majeure, basée sur la dernière version communautaire adoptant un schéma numérique implicite et une parallélisation nettement améliorée (WW3DG, 2019, Abdolali et al., 2020). Une réduction en temps de calcul d'un facteur 5 à 10 selon la configuration a ainsi pu être obtenue. À cette version s'ajoutent des développements importants relatifs à la modélisation des vagues en zone côtière et macro-tidale :

- les méthodes d'intégration, le wave setup et le limiteur numérique ont été reformulés selon la méthode de (Hersbach & Janssen, 1999),
- (2) la réflexion à la côte a été introduite et homogénéisée avec un nouveau schéma pour les bancs découvrants, permettant un meilleur couplage avec les modèles de circulation,
- (3) une sous-relaxation (e.g. Moukalled et al., 2016) pour les termes forts et non-linéaires décrivant les interactions de triplets quasi-résonnants et le déferlement des vagues en eaux peu profondes ont été introduits,
- (4) enfin, les modules OASIS ont été réadaptés et réinstallés dans cette future version WW3.

4.3. Modélisation non-hydrostatique

Les modèles shallow water (de type Saint-Venant, hydrostatique) comme TOLOSA-SW propagent le

signal de marée et les ondes de tempête de grande échelle du large vers les côtes. Ils suffisent aussi à décrire l'évolution des masses d'eau après la zone de déferlement. Ils répondent ainsi aux besoins de prévision à l'échelle nationale et peuvent répondre à certaines problématiques d'inondation par débordement. En revanche, ces systèmes ne permettent pas de représenter les transformations des vagues dans la zone de levage (shoaling) avant le déferlement, processus fondamental qui conditionne la dynamique au-delà de cette zone. Ces modèles ne permettent donc pas une modélisation unique du large jusqu'au trait de côte et aux zones d'inondation potentielles.

La modélisation non hydrostatique à phase résolue permet en revanche de représenter de façon explicite à la fois la circulation (niveaux, courants) et les vagues. Il résout des processus littoraux essentiels mais négligés ou mal représentés dans les modèles spectraux comme WW3 et les modèles hydrostatiques comme TOLOSA-SW : le déferlement, les transferts d'énergie entre les bandes fréquentielles, les interactions air/eau/ fond, le franchissement d'obstacles par paquet de mer, le jet de rive, etc. Ce type de modélisation prometteuse est encore trop coûteux pour l'opérationnel sur de larges bandes littorales. Il reste limité à des systèmes de prévision très locaux (de un à quelques dizaines de kilomètres de côte) ou à de l'étude de processus. L'objectif d'HOMONIM-3 est d'étendre l'expertise scientifique spécifique à la prévision opérationnelle des submersions marines, de l'échelle côtière à l'échelle littorale, afin de faciliter la cohérence technique, scientifique et stratégique nécessaire à l'articulation entre le système de prévision national et les systèmes locaux finement résolus.

Pour ce faire, le modèle TOLOSA-LCT a été développé ; c'est un modèle non hydrostatique moyenné sur la verticale, et bénéficiant de la puissance des schémas numériques de la suite TOLOSA avec une technique numérique efficace consistant à séparer les modes hydrostatiques et non hydrostatiques. Ce code discrétise les équations du modèle théorique Leucothéa (Richard, 2021). Il a une structure mathématique relativement simple (conservation de l'hyperbolicité du système), comparativement à des approches plus conventionnelles comme le modèle de Serre-Green-Naghdi (SGN). Le coût de calcul de TOLOSA-LCT est estimé à seulement 5 à 6 fois le coût du TOLOSA-SW. Il présente également la particularité de dégénérer vers TOLOSA-SW lorsque les effets non hydrostatiques deviennent faibles, garantissant une modélisation "sans couture" du large au littoral. La paramétrisation du déferlement devrait être significativement améliorée en introduisant une nouvelle quantité, l'enstrophie, qui mesure le niveau d'énergie turbulente dans l'écoulement.

La validation de ces développements est en cours sur des cas académiques. En parallèle, les données de la campagne de mesures RiCoRé, menée durant l'hiver 2020–2021 sur la façade Ouest de l'île de Ré par le Shom dans le cadre d'HOMONIM-3, en collaboration avec les laboratoires universitaires LIENSs et GLA-DYS, ont été traitées et analysées. Elles font déjà l'objet d'études visant à mieux comprendre et modéliser la transformation des vagues et l'évolution des niveaux d'eau au-dessus d'un fond rocheux (Le Goff Le Gourrierec et al., 2022). Ces données permettront de valider le modèle TOLOSA-LCT, et de le comparer à d'autres modèles non hydrostatiques et éventuellement 3D tels que Symphonie (Marsaleix et al., 2019).

5. Conclusion

Les principales actions du projet HOMONIM-3, en cours et à venir, ont été présentées :

- description et résultats de la configuration de façade "ATL" du modèle de niveau marin TOLOSA-SW,
- (2) calibration de la prévision d'ensemble de surcotes,
- (3) mise en place de la prévision d'ensemble des vagues en côtier,
- (4) modélisation couplée vagues/niveaux/courants à très haute résolution, pour le littoral Nord-Aquitain (NAQ) et pour l'estuaire girondin,
- (5) modélisation vague à vague non hydrostatique.

Ces travaux contribuent à améliorer le réalisme des prévisions du niveau marin au travers de nouvelles capacités de prévision (voir la validation des simulations de la marée et des surcotes avec la configuration TOLOSA-ATL, l'implémentation pré-opérationnelle d'une configuration couplée TOLOSA/WW3 pour la zone à enjeux Nord AQuitaine, NAQ), à simplifier les chaînes de production opérationnelles de Météo-France (grille non-structurée et performance calculatoire de TOLOSA, descente d'échelle et couplage TOLOSA/WW3), à évaluer l'incertitude des prévisions de surcotes et de vagues (connaissance de la prévisibilité de l'événement en cours, et de l'existence de scénarios alternatifs) et à préparer la prévision des submersions marines.

La Vigilance Vagues-Submersion (VVS) pourra ainsi bénéficier d'une information plus précise avec l'augmentation de la résolution spatiale (TOLOSA-ATL), la prise en compte du wave-setup (TOLOSA/WW3-NAQ) et disposer d'une information sur la confiance à apporter aux prévisions. De même, les usagers de la VVS (mission RDI-L, services en charge de la gestion de crise des agglomérations, des collectivités locales) pourront s'appuyer sur des données de prévision déterministe et ensembliste (météo, niveau marin, vagues) à la fois plus réalistes et à très haute résolution localement (inférieure à 50 m), pour mieux alimenter leurs applications aval en charge d'évaluer la submersion marine (outils d'aide à la décision). En outre, l'accès à l'expertise du prévisionniste de Météo-France sur les modèles météorologiques permettra aux usagers autorisés de sélectionner les bons forçages et d'être plus cohérents avec les prévisions du dispositif VVS.

Disponibilite des donnees

Les données qui étayent les résultats de cette étude sont disponibles auprès de l'auteur correspondant, sur demande raisonnable.

All data used during the study are available from the corresponding author upon reasonable request.

Références

- Abdolali, A., Roland, A., Van Der Westhuysen, A., Meixner, J., Chawla, A., Hesser, T., Smith, J. M., & Dutour Sikiric, M. (2020). Large-scale hurricane modeling using domain decomposition parallelization and implicit scheme implemented in WAVEWATCH III wave model. *Coastal Engineering*, *157*, 103656. https:// doi.org/10.1016/j.coastaleng.2020.103656
- Baran, S., & Lerch, S. (2015). Log-normal distribution based ensemble model output statistics models for probabilistic wind-speed forecasting. *Quarterly Journal of the Royal Meteorological Society*, 141(691), 2289–2299. https://doi. org/10.1002/qj.2521
- Biscara, L. (2015). MNT bathymétrique de façade Atlantique (Projet Homonim). *Nature Communications*, 6. https://doi. org/10.17183/MNT_ATL100m_HOMONIM_WGS84
- Boutet, M. (2015). Bottom friction estimation for barotropic tide modelling [PhD Thesis]. Université de Bretagne Occidentale. https://doi.org/10.13140/RG.2.1.1105.0488
- Couderc, F., Duran, A., & Vila, J.-P. (2017). An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification. *Journal of Computational Physics*, 343, 235–270. https:// doi.org/10.1016/j.jcp.2017.04.018
- Duran, A., Vila, J.-P., & Baraille, R. (2017). Semi-implicit staggered mesh scheme for the multi-layer Shallow Water system. *Comptes Rendus Mathématique*, 355(12), 1298–1306. https://doi.org/10.1016/j.crma.2017.09.011
- Duran, A., Vila, J. P., & Baraille, R. (2020). Energy-stable staggered schemes for the shallow water equations. *Journal of Computational Physics*, 401, 109051. https://doi.org/10.1016/j.jcp.2019.109051
- Evin, G., Lafaysse, M., Taillardat, M., & Zamo, M. (2021). Calibrated ensemble forecasts of the height of new snow using quantile regression forests and ensemble model output statistics. *Nonlinear Processes in Geophysics*, 28 (3), 467–480. https://doi.org/10.5194/npg-28-467-2021
- Gneiting, T., Raftery, A. E., Westveld, A. H., & Goldman, T. (2005). Calibrated probabilistic forecasting using ensemble model output statistics and minimum crps estimation. *Monthly Weather Review*, 133(5), 1098-1118. https://doi.org/10.1175/MWR2904.1
- Hamill, T. M. (2001). Interpretation of rank histograms for verifying ensemble forecasts. *Monthly Weather Review*,

129(3), 550–560. https://doi.org/10.1175/1520-04932001129<0550:IORHFV>2.0.CO;2

- Hersbach, H., & Janssen, P. A. E. M. (1999). Improvement of the short-fetch behavior in the wave ocean model (WAM). *Journal of Atmospheric and Oceanic Technology*, *16*(7), 884–892. https://doi.org/10.1175/1520-0426(1999) 016<0884:IOTSFB>2.0.CO;2
- Jourdan, D., Paradis, D., Pasquet, A., Michaud, H., Baraille, R., Biscara, L., Dalphinet, A., & Ohl, P. (2020). La phase-3 du projet HOMONIM : Définition et contenu. XVI^{èmes} Journées Nationales Génie Côtier – Génie Civil, Le Havre, du 9 au 11 juin 2020, pp. 779–788, https://doi.org/ 10.5150/jngcgc.2020.087
- Krien, Y., Pasquet, A., LeBelleguic, R., Ciavaldini, M., & Jourdan, D. (2022). HOMONIM Phase III Système de prévision des surcotes Configuration TOLOSA ATL. Rapport SHOM.
- Le Goff Le Gourrierec, L., Michaud, H., Sous, D., Dealbera, S., Bouchette, F., Bertin, X., Marsaleix, P., Seyfried, L., Leballeur, L., Krien, Y., Meulé, S., Lavaud, L., Pasquet, A., Biscara, L., Brosse, F., & SHOM, T. (2022). Transformation des vagues et processus de dissipation sur une côte rocheuse : Premiers résultats issus de la campagne de terrain RiCoRé. *Editions Paralia CFL*. 95-104. https://doi.org/10.5150/jngcgc. 2022.011
- Marsaleix, P., Michaud, H., & Estournel, C. (2019). 3D phase-resolved wave modelling with a nonhydrostatic ocean circulation model. *Ocean Modelling*, *136*, 28–50. https://doi.org/10.1016/j.ocemod.2019.02.002
- Meinshausen, N. (2006). Quantile regression forests. *Journal* of Machine Learning Research, 7(35), 983–999.
- Michaud, H., & Pasquet, A. (2021). Modélisation couplée états de mer – surcote dans le prototype très haute résolution Charentes. *Rapport Shom*, 87.
- Moukalled, F., Mangani, L., & Darwish, M. (2016). The finite volume method in computational fluid dynamics. https://doi.org/10.1007/978-3-319-16874-6
- Pasquet, A. (2016). HOMONIM Phase II Version V4 du système de prévision des surcotes Configuration ATL. *Rapport SHOM*, 52.
- Pasquet, A., Michaud, H., Seyfried, L., Biscara, L., Krien, Y., Baraille, R., & Jourdan, D. (2021). Improving storm surge and wave forecasts from regional to nearshore scales. *9th EuroGOOS Conference*, *3–5 mai 2021*
- Richard, G. L. (2021). An extension of the Boussinesq-type models to weakly compressible flows. *European Journal of Mechanics – B/Fluids*, 2021, 217–240. https://doi.org/10. 1016/j.euromechflu.2021.05.011
- Taillardat, M., Mestre, O., Zamo, M., & Naveau, P. (2016). Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics. *Monthly Weather Review*, 144(6), 2375–2393.s. https://doi.org/10. 1175/MWR-D-15-0260.1
- Valcke, S., Craig, T., & Coquart, L. (2015). OASIS3-MCT User Guide, OASIS3-MCT 3.0, Technical Report TR/ CMGC/15/38, CERFACS, Toulouse, France, May 2015.
- WW3DG (WAVEWATCH III[®] Development Group). (2019). + Appendices. User manual and system documentation of WAVEWATCH III[®] version 6.07. Tech. Note 333. NOAA/NWS/NCEP/MMAB.