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A B S T R A C T

Lake Tanganyika in East Africa contains 17% of the free freshwater on the Earth's surface and
provides important ecosystem services to ∼13 million people in the region. It is one of the great
lakes in East Africa for which a significant rise in water level between 2019 and 2020 led to flood-
ing, with major environmental consequences and social impacts. This study focused on the Lake
Tanganyika basin water balance between 2003 and 2021 to assess the influence of recent climate
variability on lake water level variations (due in particular to the floods of 2020 and 2021) and to
explore early warnings of flooding in the lake's surrounding lowlands. This process is performed
using remote sensing data. For the computation of the basin's water balance, we compared varia-
tions in the watershed total water storage (TWS) with the basin water flux calculated using rain-
fall, evaporation (E), evapotranspiration (ET) and discharges data. The space–time variations in
rainfall, E and ET were analyzed by decomposing their time series into trend and seasonal signals
and applying (only for rainfall) multivariate statistical analysis to the decomposed signals. For
flood mapping, we calculated the MNDWI spectral water index from Sentinel–2 images acquired
between 2017 and 2022. Our study showed that the basin water balance is closed when rainfall
from Era5 is combined with E and ET from GLEV and MOD16A2, respectively. During the
2003–2021 period, over the entire watershed, water losses of ∼70 km³ due to lake E were offset
by an increase in water inflows of ∼100 km³ in the rest of the watershed. During the period from
2003 to 2021, the E rate from the lake was stable overall, while the ET and rainfall mainly in the
Malagarasi basin increased significantly. The surface water storage (SWS), which represents the
variation in lake water volume derived from altimetry measurements, corresponds to 41.8% of
the TWS, groundwater storage corresponds to 57.7% of the TWS, and the soil moisture is less than
0.5%. The TWS strongly correlated with the SWS (∼91%), with a one-month lag in the SWS varia-
tions in response to the TWS fluctuations. Therefore, the SWS in May, when the flood risk is the
highest, was estimated using TWS in February, March and April with accuracies of 85%, 94% and
95%, respectively. This valuable information could be integrated into flood management tools,
particularly for areas such as Gatumba city and the Ruzizi Delta Nature Reserve, which were
heavily affected by the May 2021 floods.
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1. Introduction
Lakes and their associated ecosystems are valuable physical environments for understanding the planet response to climate

change (Pan and Yang, 2021; Torabi Haghighi and Kløve, 2015; VanDeWeghe et al., 2022; Wang et al., 2023). They contain 87% of
the Earth's liquid surface freshwater (Carrea et al., 2023; Woolway et al., 2020). In addition, variables such as lake surface water tem-
perature, water level and extent, ice cover and lake color are now listed as essential climate variables (ECVs) and are used as key fac-
tors in studies describing the Earth's climate (Carrea et al., 2023; Woolway et al., 2020). For example, Yao et al. (2023) studied the
lake water storage (LWS) of the 1972 largest lakes in the world over the period 1992–2020 and found that 53% of them experienced
significant volume declines. These authors attributed these volume losses to climate warming, increased E and human needs in the
case of natural lakes and to sedimentation in the case of reservoirs. Woolway et al. (2020) noted that, in some regions of the world,
the lake surface water temperature (LSWT), responded to climate change faster than the overlying air temperature did. For example,
Dokulil et al. (2021) observed an increase in the maximum lake surface temperature of ∼ +0.6 °C/decade for ten lakes in Europe be-
tween 1966 and 2015. They found that this trend was coupled with an increase in the maximum annual air temperature of ∼
+0.42 °C/decade over the same period. Xie et al. (2022) reported an average increase of 0.26 °C/decade in the LSWT of 169 large
lakes across China during 2001–2016 and observed a positive correlation between the LSWT and air temperature trends over this pe-
riod. Therefore, they stated according to their results that lake temperature variations can be linked to geographical location and
topography. Lakes are also sensitive indicators of climate change at the regional scale. For example, in the Eurasian Endorheic Lakes,
monitoring of the surface water level (SWL) and LWS during 1990–2020 indicated a decreasing trend in lake levels in Central Asia
and the Mongolian Plateau (Huang et al., 2022; Zhang et al., 2021). On the entire Tibetan Plateau, the overall LWS increased by
∼110 Gt from the 1970s to 2015 (Zhang et al., 2020). In addition, other regional studies have shown a reduction in the water level
and volume of Lake Egirdir over the period 1988–2019 (Yücel et al., 2022), a decreasing trend in the water level of Lake Urmia for the
period 1966–2012 (Fathian et al., 2014), or an increasing trend in the water levels of the Great Lakes in the 2013–2020 period
(Kayastha et al., 2022).

In the East African Great Lakes region, Khaki and Awange (2021) observed a significant increase of ∼1.4 m in Lake Victoria's SWL
during 2019–2020 compared with its mean level during 2002–2018. This resulted in a significant increase in the estimated water
storage of the lake. Moreover, a significant increase in SWL was also reported in this region during the 2019–2020 interval for Lake
Turkana (Salza, 2023; Zen et al., 2023); Lakes Albert, Rukwa, Kyoga, and Tanganyika (Papa et al., 2023); and Lake Victoria (Pavur
and Lakshmi, 2023). The same increasing SWL trends were also recorded over the 2010–2020 period for the lakes of Kenya's Central
Rift Valley (Lakes Baringo, Bogoria, Elementaita, Nakuru, Naivasha, and Solai), with peaks recorded in 2020 (Herrnegger et al., 2021;
Muita et al., 2021). In most of these cases, precipitation was identified as the main factor driving ground and surface water variations.
This finding supports the results of previous studies carried out in this region (Conway, 2002; Kimaru et al., 2019). In addition,
Gbetkom et al. (2023), Mahamat Nour et al. (2021), Nicholson and Yin (2001), Scholz et al. (2011), and Stager et al. (1997) showed
that SWL fluctuations in African lakes are associated with geological, climatic and other environmental factors. However, Ndichu et
al. (2022) argued that climatic drivers should be coupled with astronomical influences to explain extreme climate events and SWL
fluctuations in the East African region.

Floods or droughts in East African lakes are primarily major environmental and socioeconomic challenges in these subregions. For
instance, within their different basins, Lake Victoria, Lake Tanganyika, and the two lakes Malawi and Malombe provide important
ecosystem services to ∼42, 13, and 10 million people, respectively (Awange et al., 2019; Makwinja et al., 2021). Lakes in this region
also host important biodiversity (Darwall et al., 2005; Hongo and Mulaku, 2021; Odada et al., 2003; Stoyneva-Gärtner et al., 2020).
For example, the rising level of Lake Victoria in 2020 led to the flooding of 8389 ha of land and 6399 ha of cropland in Kisumu
County (Kenya), the inundation of the surrounding areas, the displacement of local populations, and the blackout of regional electric-
ity in Uganda (GEOGLAM, 2020). In addition, other negative effects of rising lake levels in Kenya's Great Rift Valley for local commu-
nities include the flooding of hospitals, roads, homes, schools and other socioeconomic infrastructure, such as hotels and other tourist
facilities (Herrnegger et al., 2021; Victor et al., 2023). Torrential rains and rising waters on Lake Tanganyika in 2021 affected approx-
imately 281,180 people in the Tanganyika Province of the Democratic Republic of the Congo (DRC) (Unicef, 2021). On the Burundian
side of the Lake Tanganyika basin, the rising waters of the lake have affected ∼50,000 people and displaced more than 20,000 people
in Gatumba and Rukaramu, where essential field crops have flooded. Additionally, the inhabitants, mostly farmers or fishers, have
lost their yearly food stocks (IOM, 2021, 2020). In Burundi's Rumonge Province, 1666 people out of 2217 households affected by
floods were displaced (OCHA, 2021).

Furthermore, in addition to flooding, the current and expected effects of climate change on the Lake Tanganyika watershed in-
clude increased air temperature and ET, food security due to declining crop yields, reduced water availability, and soil erosion
(Ministry of Foreign Affairs of the Netherlands, 2018). Using a high-emission scenario (RCP 8.5) projected over the Lake Tanganyika
basin, Sterckx et al. (2023) reported a surface water warming of 3 °C and increased stratification in the upper 150 m of the water col-
umn at the end of the century.

Therefore, the interactions of Lake Tanganyika and its watershed with climate change have already been well documented. How-
ever, much remains to be done to understand the watershed water balance at the monthly time scale. In addition, we explored the link
between total water storage (TWS) variation at the basin scale with the SWL. We investigated the possibility of anticipating major
variations in the SWL of Lake Tanganyika leading to flooding. Finally, we provide a description of how the lowlands surrounding the
lake were exposed to flooding. Indeed, studying flood exposure is potentially vital, at least in terms of limiting loss of life and massive
displacement during major floods and for other societal and disaster purposes in the region. Therefore, the aims of this study are to (1)
analyze the variations in the water balance of Lake Tanganyika under recent climatic conditions (2003–2021), (2) map the risk of ex-
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posure to flooding on the northern shores of the lake (among the most urbanized shores), and (3) explore early warning flood indica-
tors. To this end, remote sensing or/and reanalysis data of rainfall, E and ET, soil moisture, and TWS were combined with the Lake
Water Level (LWL) database (derived from altimetry measurements) to correlate the spatiotemporal dynamics of climate variables in
the watershed with changes in the lake water balance. Sentinel–2 data are used to map flooding on the shores of Lake Tanganyika.

In Section 2, bellow, we describe the data used and methodology adopted to perform our main objective; in Section 3, the major
results obtained are analyzed; and in Section 4, before the conclusion, we discuss the implications, limits, and perspectives for this re-
search.

2. Study area, datasets and methodology
2.1. The study region

Lake Tanganyika is located in the western branch of the East African Rift Valley (Fig. 1). This lake is documented as the longest
(673 km) and second deepest (1470 m) freshwater lake in the world, with an average depth of 570 m, an average width of 50 km and
a surface area of 32,900 km2 (Ivory et al., 2021; Verburga and Hecky, 2009). It is the largest freshwater reservoir in Africa, at
18,900 km3 (Ivory and Russell, 2016; Sterckx et al., 2023), and contains 17% of the free freshwater on the Earth's surface (Plisnier et
al., 2018). The Lake Tanganyika watershed covers an area of more than 220,000 km2 (Fig. 1). The watershed's climate is divided be-
tween the dry season (June to September or October) and the rainy season (October or November to May of the following year)
(Niyoyitungiye, 2019). The onset, duration and intensity of the rainy season are governed by the north‒south shift in the intertropical
convergence zone (ITCZ) associated with the El Niño‒Southern Oscillation (ENSO) (Sterckx et al., 2023). Warm ENSO events lead to
increased rainfall in East Africa, while colder ENSO events result in below-average rainfall (Conway, 2002). Thus, from north to
south, rainfall shows a gradient in terms of amount and timing across the watershed, with ∼1600 mm/year recorded in the north and
∼870 mm/year in the south (Ivory et al., 2021). The temperature depends on the altitude and varies during the year between 22.8
and 24.8 °C at 900 m of altitude and between 15.8 and 20.4 °C at 1500 m of altitude (Ivory and Russell, 2016).

2.2. Data description
2.2.1. The HYDROWEB water level data

The Hydroweb database (https://hydroweb.theia-land.fr/) was used to obtain Lake Tanganyika surface water storage (SWS) fluc-
tuations. This database contains and delivers the time series of water levels of great lakes, reservoirs, and rivers produced by LEGOS
(Laboratoire d'Etudes en Géophysique et Océanographie Spatiales) and CLS (Collecte Localisation par Satellite) (Crétaux et al., 2011).

Fig. 1. The Lake Tanganyika watershed location (country borders are outlined in black, and the Malagarasi watershed is delineated in red). In the yellow box, the most
urbanized northern shores of the lake are within the city of Uvira in the DRC (to the west) and Bujumbura, Gatumba, and the Ruzizi Delta Nature Reserve in Burundi (to
the center and the east). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

https://hydroweb.theia-land.fr/
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Times series are obtained after corrections (geophysical, environmental, and instrumental) of the altimetry measurements recorded
by radar sensors (Topex/Poseidon, ERS-2, GFO, Jason-1, Envisat, Jason-2, Jason-3, CryoSat-2, Saral/Altika, Sentinelle-3A and Sen-
tinelle-3B satellites) (Crétaux and Birkett, 2006). The orbital cycles of each mission vary from 10 to 35 days and drive the timporal
resolution of the measurements over a given lake or river (Crétaux and Birkett, 2006). Using the SWL variations since 1992 over Lake
Tanganyika and its average water extent allows us to determine the SWS fluctuations over the period of study (2003–2021) (Crétaux
et al., 2016). The accuracy of altimetry over such large lakes is assumed to be subdecimeter according to several studies that aimed to
evaluate the performances of satellite altimetry over lakes (Nielsen et al., 2015; Ričko et al., 2012; Vuglinsky et al., 2023). More de-
tails on the error budget of satellite altimetry and the different sources of uncertainties, namely, tropospheric and ionospheric correc-
tion, tracking and retracking systems, mode of range measurements, low-resolution mode (LRM) and synthetic radar aperture (SAR),
are given in Crétaux et al. (2009) and Taburet et al. (2020).

2.2.2. Rainfall products
We used various rainfall products to calculate the generic water balance equation and quantify flow variations in the lake from

flow variations in the rest of the basin. Since precipitation datasets may present differences depending on the studied region, the aim
is to identify the most appropriate rainfall dataset for our study location. We selected 5 precipitation datasets that are used in the cur-
rent literature to understand the role of precipitation in the water balance of the Tanganyika basin.

2.2.2.1. Integrated Multi-satellitE retrievals for the GPM (global precipitation measurement) (IMERG). These data are satellite-based
gridded datasets of rainfall amounts at half-hourly time intervals with a spatial resolution of 0.1° × 0.1°, and temporal coverage
starting at 2000-06-01 over the majority of the Earth's surface (Tan et al., 2019). IMERG combines passive-microwave (PMW) sen-
sors from the entire GPM constellation (more than 10 satellites) and infrared (IR) sensors from geostationary satellites. All satellite
microwave precipitation estimates are intercalibrated, merged, and interpolated with microwave-calibrated infrared (IR) satellite
estimates and precipitation gauge analyses. IMERG products available on the National Aeronautics and Space Administration
(NASA) website (https://gpm.nasa.gov/data) are organized into IMERG-E (Early), IMERG-L (Late) and IMERG-F (Final). The early
and late products are generated in near real time with 4 h and 12 h time lag respectively, and the final product takes two months.
For this study, we worked with the most recent product (version 6) of the IMERG-F product, as it is calibrated with ground rainfall
stations to increase accuracy (Ma et al., 2020). Daily data from 2003-01-01 to 2021-09-30 were downloaded and subsequently
summed across the Lake Tanganyika watershed at the monthly timescale.

2.2.2.2. Global satellite mapping for precipitation (GSMAP). As for IMERG, this rainfall product combines multi-satellites data from
the PMW and IR images. The Japan Aerospace Exploration Agency (JAXA) implemented this project in 2002, using a constellation
of 20 satellites covering the globe between latitudes 60°S and 60°N (Ramadhan et al., 2023). The products are regularly gridded
rain rates with a spatial resolution of 0.1° × 0.1° generated by the following main steps: (a) retrieval of the precipitation rate from
passive microwave data using a Kalman filter approach, (b) propagation of the estimated precipitation rates using a backward- and
forward-morphing technique, and (c) refinement of precipitation data based on the brightness temperature and surface precipita-
tion rates (Peña-Guerrero et al., 2022). GSMap data are divided into GSMaP_Now (real-time with 0 h latency), GSMaP_NRT (near-
real-time with 4 h Latency), and GSMaP_MVK (post-real-time with 3-day latency) datasets (Priyambodoho et al., 2021). Daily
GSMaP_MVK data from 2003 to 2021 were downloaded from https://sharaku.eorc.jaxa.jp/GSMaP/ and accumulated over the Lake
Tanganyika watershed on a monthly timescale.

2.2.2.3. Multi-source weighted-ensemble precipitation (MSWEP). MWSEP data provide a global rainfall estimation at a temporal reso-
lution of 3 h and a spatial resolution of 0.1° (Peña-Guerrero et al., 2022). The products include four satellite precipitation products
(TMPA 3B42RT, CMORPH, global satellite mapping of precipitation and gridded satellite (GridSat), Global Satellite Mapping of Pre-
cipitation (GSMaP)), two reanalysis precipitation datasets (ECMWF interim reanalysis and JRA-55), and observations from ∼75,000
rain gauges worldwide (Li et al., 2022). The MWSEP data merging process includes the evaluation and validation of source data, the
weight calculation and integration of satellite and reanalysis precipitation data, and finally bias correction of the merged data (Beck
et al., 2019). The second version of the MSWEP (MSWEP v2), available at the official website https://www.gloh2o.org/mswep/ was
downloaded from 2003 to 2021 and accumulated over the Lake Tanganyika watershed on a monthly timescale.

2.2.2.4. Climate Hazards Group infrared precipitation with station data (CHIRPS). CHIRPS images display daily, monthly, pentadal,
and decadal rainfall histories from 1981 to the present day at a spatial resolution of 0.05° and global coverage within 50° north
and south latitudes and 180° west and east longitudes (Sacré Regis M. et al., 2020). The U.S. Geological Survey (USGS) and the
Climate Hazards Group at the University of California, Santa Barbara, and observations from the Climate Prediction Center and
the National Climatic Data Center were involved in developing the CHIRPS dataset (Ocampo-Marulanda et al., 2022). The
CHIRPS data include quasiglobal geostationary thermal infrared satellite observations, monthly rainfall climatology CHPClim
(Climate Hazards Group Precipitation Climatology), Tropical Rainfall Measuring Mission (TRMM) 3B42 data, atmospheric model
rainfall fields from NOAA CFS (Climate Forecast System), and rainfall observations from different sources, including national or
regional meteorological services (Funk et al., 2015). The second version of the monthly CHIRPS data was downloaded at
https://data.chc.ucsb.edu/products/CHIRPS-2.0/ for the period 2003–2021.

2.2.2.5. ERA5-land (total precipitation). Within the Copernicus Climate Change Service (C3S), the European Centre for Medium-
Range Weather Forecasts (ECMWF) produces the ERA5 (ECMWF Reanalysis v5) reanalysis, which provides a detailed record of the
global atmosphere, land surface and ocean waves from 1950 onward (Hersbach et al., 2020). This ERA5 product, with a spatial res-

https://gpm.nasa.gov/data
https://sharaku.eorc.jaxa.jp/GSMaP/
https://www.gloh2o.org/mswep/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
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olution of 0.25°, is the ECMWF's fifth-generation reanalysis of global climate and weather (Muñoz-Sabater et al., 2021). The reana-
lyzed products combine several observations of wind, pressure, temperature, precipitation and humidity from several satellites and
observations near the Earth's surface and over the oceans, upper air soundings and atmospheric measurements using aircraft instru-
ments (Bathelemy et al., 2022). ERA5 is based on the Integrated Forecasting System (IFS) Cy41r2 and features year-round hourly
outputs (Hersbach et al., 2020). ERA5-Land produced at a higher spatial resolution of 0.1° is a rerun of the land component of the
ERA5 reanalysis dataset achieved by implementing a series of improvements over ERA5 to make it more accurate for all types of
land applications (Pelosi et al., 2020). Therefore, ERA5-Land has good applicability for land surface processing, and total rainfall
data (monthly averaged reanalysis) were downloaded for the 2003–2021 period at https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-land-monthly-means?tab=overview.

2.2.3. ET and E products
To identify the most appropriate ET and E products for our study area, we used two types of products for each variable (ET and E)

when calculating the generic water balance equation. These two products, covering the period 2003–2021, are freely available.

2.2.3.1. ERA5-land (total evaporation). Monthly averages of total evaporation reanalysis data at a 0.1° spatial resolution for the pe-
riod 2003–2021 were also downloaded from the above ECMWF website (ERA5-Land). As the total evaporation of ERA-Land includes
a simplified representation of vegetation transpiration (Fedotova and Gosteva, 2021; Zsoter et al., 2020), this product was used in this
study to estimate E from Lake Tanganyika and ET on watershed land.

2.2.3.2. MODIS product. The other dataset used in this study to analyze land ET in the Lake Tanganyika watershed is Version 16A2 of
the Moderate Resolution Imaging Spectroradiometer (MODIS), also known as MOD16A2. This product estimates terrestrial ET as the
sum of soil and canopy E and transpiration from plant leaves and stems (Mu et al., 2011). The MOD16A2 product estimates ET based
on the Penman–Monteith equation, with the main inputs including global daily meteorological data, surface albedo, land cover clas-
sification and remotely sensed vegetation properties such as the leaf area index/fraction of absorbed photosynthetically active radia-
tion (LAI/FPAR) (Degano et al., 2021). All the data are produced worldwide with a spatial resolution of 500 m and correspond to the
pixels least affected by clouds and other deformations over an 8-day observation period (Che et al., 2022). The MOD16A2.006 (MOD-
16A2 Collection 6) dataset for the period 2003–2021 was downloaded from the USGS website https://lpdaac.usgs.gov/products/
mod16a2v006/.

2.2.3.3. GLEV. Monthly changes in Lake Tanganyika E volume from 2003 to 2018 were analyzed through Global Lake Evapora-
tion Volume (GLEV) datasets. GLEV products are derived from satellite observations and modeling tools by Zhao et al. (2022)
to quantify the E volume of 1.42 million global lakes from January 1985 to December 2018. For a given lake, the GLEV pro-
vides monthly E volume time series data obtained by pairing monthly lake surface area measurements from the Landsat-based
global surface water dataset (GSWD) with monthly meteorological data (TerraClimate, ERA5, and the Global Land Data Assimi-
lation System (GLDAS)). For each lake, the E volume is derived as a function of the E rate for each month, the monthly surface
area, and the percentage of time per month when a lake is fully covered by ice (Zhao et al., 2022). We used GLEV products in
this study because the data are freely available at https://zeternity.users.earthengine.app/view/glev.

2.2.4. Soil moisture data (GLDAS-CLSM)
The Global Land Data Assimilation System (GLDAS) uses ground observation and satellite data as inputs in advanced land surface

modeling and data assimilation techniques to generate variables associated with the hydrological components on continents (Rodell
et al., 2004). The GLDAS database contains four land surface models (LSMs): the Noah model, the catchment land surface model
(CLSM), the community land model (CLM), and the variable infiltration capacity (VIC) (Kumar et al., 2006). GLDAS provides global
land surface information such as soil temperature, evaporation, surface soil moisture, and root-zone soil moisture (RZSM) data at 1°
and 0.25° spatial resolutions; 3-hourly, daily, and monthly temporal resolutions; and a period of simulation starting in 1948. This
study used the GLDAS-CLSM product version 2.2, which simulates RZSM (0–100 cm) at a spatiotemporal resolution of 0.25° daily.
The data covering the period from 2003 to 2021 are available on the NASA website at https://disc.gsfc.nasa.gov/
datasets?keywords=GLDAS.

2.2.5. GRACE products
The Gravity Recovery and Climate Experiment (GRACE) mission, launched in 2002, allowed continuous monitoring of ocean mass

change between 2002 and 2017 (Tapley et al., 2004). GRACE was decommissioned in 2017, and its successor, GRACE Follow-On
(GRACE-FO), was launched in May 2018 (Landerer et al., 2020). In this study, we used products from GRACE and GRACE-FO for
monthly TWS monitoring in the Lake Tanganyika watershed from 2003 to 2021. These GRACE missions map monthly variations in
the Earth's gravity field, with a spatial resolution of approximately 300 km (Tapley et al., 2004). Monthly variations are corrected for
the solid Earth changes that affect gravity fields and are not related to the redistribution of water within the Earth's fluid envelope. It
allows us to estimate the sum of all water mass variations at the continental surface and in the soil, including snow water equivalent,
surface runoff, soil moisture and groundwater storage (Famiglietti et al., 2011; Tapley et al., 2019). In this study, we considered the
GRACE CNES L4 ensemble V1.5.3 (http://ftp.legos.obs-mip.fr/pub/soa/gravimetrie/grace_legos/V1.5.3), which was updated from
Blazquez et al. (2018). This GRACE product has a monthly temporal resolution and a spatial resolution of 1°, which provides maps of
the accumulation of all forms of water stored above and below the Earth's surface worldwide.

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview
https://lpdaac.usgs.gov/products/mod16a2v006/
https://lpdaac.usgs.gov/products/mod16a2v006/
https://zeternity.users.earthengine.app/view/glev
https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS
https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS
http://ftp.legos.obs-mip.fr/pub/soa/gravimetrie/grace_legos/V1.5.3
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2.2.6. Sentinel–2 data
Sentinel–2 data were used to map submerged areas on the northern shores of Lake Tanganyika. The European Space Agency (ESA)

launched the Sentinel–2 (A and B) satellite in June 2015, and the data which were collected at high spatial resolutions of spectral
bands ranging from 10 m to 60 m, have a global fine revisit frequency of 5 days (Gatti and Bertolini, 2015). The multi-spectral instru-
ment (MSI) sensors onboard Sentinel–2 satellites collect images with 13 spectral bands in the visible/near-infrared (VNIR) and short-
wave infrared (SWIR) spectra (Yu et al., 2020). In this study, we used the Sentinel–2 MSI Level-1C product hosted on the Google Earth
Engine (GEE) platform (https://developers.google.com/earth-engine/datasets/catalog/sentinel-2). For each satellite image, only
band3 (or Green, with a wavelength of 0.537–0.582 at a spatial resolution of 10 m) and band11 (or SWIR1, with a wavelength of
1.539–1.681 at a spatial resolution of 20 m) were exploited.

2.2.7. The FABDEM product for the digital elevation model (DEM)
We used the Forest And Buildings removed Copernicus DEM (FABDEM) data to determine the surface land elevations in the Lake

Tanganyika watershed (Fig. 1). These data are a global DEM map obtained after correcting artifacts from forests and buildings re-
moved from the Copernicus digital elevation model using random forest machine learning models (Hawker et al., 2022). These data
are produced at a spatial resolution of 30 m (Marsh et al., 2023) and are available at the following address https://
www.fathom.global/product/fabdem/.

2.2.8. Discharges of the malagarasi, Ruzizi and Lukuga Rivers
To compensate for the lack of in situ discharge records for the Malagarasi, Ruzizi and Lukuga Rivers during the study period, we

calculated the average daily discharge (m/s) from 2003 to 2020 using the MGB-IPH hydrological model. The MGB-IPH is a large-scale
hydrological model distributed in square grid cells that represent hydrological processes in large-scale watersheds, such as flow prop-
agation through the river network (Allasia et al., 2006). More descriptions of the MGB-IPH hydrological model are provided in
Collischonn et al. (2007). The data are provided 10 m after the lake outlet (for Lukuga, which exits the basin) and 10 m before the
lake (for Malagarasi and Ruzizi, which flow into the lake). The dataset is available at Hydrological Reanalysis for the Congo River
Basin (1983–2020) (zenodo.org) (see Wongchuig et al., 2023 for more details). These data were used to compute the basin water bal-
ance.

2.3. Methodology
2.3.1. Lake Tanganyika watershed water balance computation and water storage monitoring

A spatial mask using the Tanganyika basin limits was applied to the GRACE data to extract the raw GRACE satellite TWS values
within our area of interest. Pixels fully included in the boundaries were retained, and for partially included pixels, we weighted the
TWS by the fraction of the pixel within the basin (see Fig. 1 for the spatial distribution of the Grace grid in the study area). The raw
TWS values from the GRACE satellite already represent the total monthly variations in water at the watershed surface and can be ex-
pressed as the equivalent water height (EWH) in km3. However, in this study, we harmonized the raw variations in TWS (ΔTWS) with
those in SWS and other water inflows over the 2003–2021 period, using January 2003 as the starting date, as follows:

at i=1→n: ΔTWS(i) = TWS(i) – TWS(0) (1)

where TWS(i) is the monthly GRACE-based raw EWH value over the entire watershed at i. ΔTWS(i) is expressed in km3 and computed
for the 2003–2021 period.

The obtained ΔTWS over the entire watershed allowed us to determine the water balance for the watershed and to monitor water
volume changes in the main reservoirs. Indeed, for a given period in a closed system, ΔTWS can be equated to the difference between
the total water received and lost (Biancamaria et al., 2019; Hu et al., 2021) or can be analyzed as the total variation in water volume
in the various reservoirs of the watershed (Pham-Duc et al., 2020). The first approach is analyzed in this study using Equation (2) be-
low, and the second method is implemented with Equation (3). All the results in Equations (2) and (3) are expressed in km3.

2.3.1.1. Calculate the variations in water input and output in the watershed. The main objective here is to identify the precipitation, E
and ET datasets best suited to our case study and to compute the water balance of the Lake Tanganyika watershed. To this end,
the ΔTWS was compared to the generic water balance equation for a watershed based on Equation (2) below (see Section 1 of the
Supplementary Material for more details on how we integrated this equation for this study). We applied this equation for all possi-
ble combinations of precipitation, E and ET datasets used in this study.

at i=1→n: ΔTWS(i) = P(i) – ETR(i) – Q(i) (2)

where P is the precipitation, ETR is the sum of the E and ET, and Q is the water discharge at the outlet of the basin.
Spatial masks were applied to the P data (IMERG, GSMAP, ERA5, CHIRPS, and MSWEP), as well as the ETR data (GLEV, MODIS,

and ERA5), to extract these values within our area of interest.

2.3.1.2. Water volume variations in the watershed's water reservoirs. According to Nigatu et al. (2021), Pham-Duc et al. (2020),
Springer et al. (2023), Xiang et al. (2016), and Zhang et al. (2017), the ΔTWS integrates changes in all water stored above and be-
low the Earth's surface (on a regional or global scale). ΔTWS corresponds to the sum of the water volume variations stored in four
different reservoirs: surface water storage (in rivers, lakes and wetlands; ΔSWS), RZSM storage (ΔSMS), ice and snow storage
(ΔISS), and groundwater storage (ΔGWS). ΔISS has been neglected for the Lake Tanganyika watershed. TWS and SMS were com-

https://developers.google.com/earth-engine/datasets/catalog/sentinel-2
https://www.fathom.global/product/fabdem/
https://www.fathom.global/product/fabdem/
https://zenodo.org/records/8199770
https://zenodo.org/records/8199770
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puted from GRACE and GLDAS-CLSM images, respectively (described in subsections 2.2.5 and 2.2.4, respectively), and SWS was
deduced from HYDROWEB water level data (described in subsection 2.2.1). The ΔGWS is unknown and can therefore be derived
from ΔTWS, ΔSWS and ΔSMS using Equation (3) as the difference between ΔTWS and the sum of ΔSWS and ΔSMS. Calculating
the ΔGWS allows us to determine the proportion of water contained in each reservoir at the watershed scale and to deduce the
percentage variations in water volume per reservoir (see Section 2 of the Supplementary Material for more details on ΔSWS, ΔSMS
and ΔGWS computing).

at i=1→n: ΔTWS(i) = ΔSWS(i) + ΔSMS(i) + ΔGWS(i) (3)

where ΔTWS(i) is the TWS variation at i.

2.3.2. Spatial and temporal analyses of key climate variables in the Lake Tanganyika watershed
With respect to Equation (2), time series of rainfall and E/ET were calculated for the lake and the whole watershed, to analyze the

spatial and temporal variability in these climatic variables at the watershed scale and their influence on the water balance of Lake
Tanganyika.

These time series give an average monthly value per date for the lake or watershed land (for the period 2003–2021). Each time se-
ries of the original signal is then decomposed into three independent components using the Hanning filter (Hattermann et al., 2021):
i) the trend signal representing the interannual variability, ii) the seasonal signal and iii) a residual component. Rainfall and E trends
on the lake and over the watershed land can then be analyzed.

In addition, for the selected rainfall data, the time series of monthly rainfall images for the entire watershed were decomposed into
trend, seasonal and residual signals. We then applied multivariate statistical analysis using empirical orthogonal function (EOF) to
trend and seasonal signals to highlight the spatial variability in rainfall for the period 2003–2021. The EOF method is very useful for
identifying coherent spatial and temporal variability when processing a large multispectral or time series dataset (Li et al., 2013). We
used this method to reduce the redundancy in each decomposed signal and merge the coherent variations in the initial information
into a small number of new components (independent variables) that were statistically uncorrelated. These new components project
the initial information into an orthogonal basis. This method is ideally suited to the spatial and temporal analysis of seasonal signal
and trend images, given the large number of images used to cover the period 2003–2021. The results highlight trends and seasonal
spatial patterns in rainfall across the watershed using eigenvectors (Li et al., 2013; Toumazou and Crétaux, 2001) and their evolution
over time using eigenvalues.

2.3.3. Flood mapping on lake shores and nearby lowland areas
a. Submerged soil mapping.
It is essential to map the distribution of soils that have been submerged due to the observed variations in lake water level caused

by the dynamics of climatic variables in the watershed. This allows us to study the vulnerability of lake shores and nearby lowland ar-
eas to observed SWS variations. The MNDWI spectral water index (Xu, 2006) offers this possibility, using the formula below, to distin-
guish water surfaces from the rest of the land cover on a satellite image (Herndon et al., 2020). The Sentinel–2 images acquired be-
tween 2017 and 2022 were corrected from level 1C to level 2A (atmospheric correction) and used for this mapping.

MNDWI = (ρGreen – ρSWIR1)/(ρGreen + ρSWIR1) (4)

where ρ Green is the green spectral band and ρ SWIR1 is the SWIR1 spectral band.
The obtained MNDWI values ranged from −1 (remaining land cover) to 1 (water surface). Each MNDWI image was then thresh-

olded at 0.05 (Xu, 2006) and multiplied by the spatial resolution of Sentinel–2 (20 m) to obtain water body and submerged soil areas
(Deus and Gloaguen, 2013).

3. Results
3.1. Lake Tanganyika basin water dynamics and climate variations
3.1.1. The basin's water budget

Fig. 2 illustrates the water balances obtained by combining precipitation data (PEra, PChirps, PGsmap, PImerg, and PMswep)
with E and ET data (EMod, and EEra). For example, PEra_EEra is the combination of the ERA5 total precipitation and the ERA5
total evaporation. Each water balance is overlaid with the ΔTWS to identify the sets of precipitation, E and ET data that are
able to close the Lake Tanganyika basin water budget.

The PEra_EMod balance best matches the ΔTWS. The seasonality of these two curves is well synchronized, and their time series de-
scribe the same interannual dynamics, showing a reduction in the total volume of water in the basin between 2003 and 2006 and a
progressive increase from 2007 onward. This balance is the one with the smallest deviation from ΔTWS ∼25 km3 (see Section 3 of the
Supplementary Material). For the PImerg_EMod balance, the variations are similar to those of the ΔTWS until 2009 (decrease be-
tween 2003 and 2006 and then increase beginning in 2007) but progressively decrease beginning in 2010 and remain lower than the
ΔTWS until 2018. The difference between these two balance calculations is found in the measurement of Δ_ld_flow. The three other
combinations with EMod show that Δ_lk_flow and Δ_ld_flow are always lower than 0, with water balances consequently always being
lower than TWS. An underestimation of precipitation from the corresponding datasets presumably explains these observations (the
water losses for Δ_lk_flow up to −200 km³, particularly for PChirps_EMod and PMswep_EMod).
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Fig. 2. The water balance of the Lake Tanganyika basin was calculated with different datasets. In the left column, the combinations of precipitation with EMod
(GLEV E + Modis ET) are shown; in the right column, the combinations with EEra (ERA5 total evaporation) are shown. Each plot shows the volume of Δ_lk_flow (for
lake, blue), Δ_ld_flow (for land, yellow), water balance (purple), and Δ_TWS (black). Since the GLEV E time series ends in 2018, all combinations with EMod ended
in 2018. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

None of the balances obtained with EEra match the ΔTWS. The water balances are always greater than the ΔTWS. The PEra_EEra
and PImerg_EEra balances can be explained by an underestimation of E and ET by ERA5. This underestimation combines with that of
precipitation to explain the PChirps_EEra, PGsmap_EEra, and PMswep_EEra balances.

The above results show that the accumulation of Δ_lk_flow and Δ_ld_flow volumes lead to an accumulation of error amplitudes due
to the underestimation of precipitation, E and ET values and leads, for most combinations, to an incorrect evaluation of the water bal-
ance. Ultimately, only the combination of PEra with EMod is strongly correlated with the TWS observed using the GRACE gravity
dataset and therefore allows closing the water balance.

The uncertainty in the ΔTWS was quantified using 216 GRACE solutions and described for each month as the relative bias be-
tween the standard deviation and mean values. The result is an uncertainty mean value of 5.22 km3/month (Fig. 1s, in Section 6 in the
Supplementary Material).

The uncertainty in the water budget estimate propagated from that in the rainfall, evaporation and evapotranspiration. For the
rainfall variable, the uncertainty was estimated at 13 mm/month using the mean and standard deviation of the 5 time series of total
monthly precipitation (IMERG, GSMAP, MSWEP, CHIRPS and ERA5-Land) (see Section 5 in the Supplementary Material). This value
summarizes the difference in the accumulated precipitation among all the products considered in this study, which can be attributed
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to an overall uncertainty if we consider the combination of them. Concerning E and ET, Zhao et al. (2022) published an uncertainty of
∼9.93% for GLEV products, and Yu et al. (2023) found an uncertainties of ∼9 mm/month and ∼12 mm/month for the MOD16A2 and
ERA5 products, respectively, under extreme conditions over the United States.

3.1.1.1. Comparing the TWS derivative with the total water flux variations in the watershed. To analyze the discrepancies observed in
the obtained water balances without the effects of the cumulative amplitude error, we compared the derivative of TWS (dTWS) with
the monthly difference between total water received and total water lost (Pbasin - Ebasin) in the watershed (see Section 4 in the Sup-
plementary Material for more details on how we computed dTWS and [Pbasin - Ebasin]).

The dTWS curve has an amplitude of 60 km³, with two peaks recorded in 2006–2007 (>43.7 km³) and 2009–2010 (>28.7 km³).
Minima are approximately −20 km³, and the maxima are more variable.

For the EMod combinations, the minima are consistent with those of dTWS (∼-20 km³). PEra_EMod and PImerg_EMod are the only
ones where the variations in maxima have nearly the same values as dTWS, but the PEra_EMod curve is the one that most accurately
estimates the 2006–2007 (∼40 km³) and 2009-10 (>20 km³) peaks (Fig. 3). On the three other curves of the EMod combinations, the
maxima of the two peaks are regularly lower than those of dTWS.

Fig. 3. Variations in dTWS (blue) and [Pbasin - Ebasin] (orange). In the left column are the combinations of precipitation with EMod (GLEV E + Modis ET), and in the
right column, the combinations with EEra (total evaporation from ERA5) are shown. Since the GLEV E time series ended in 2018, the combinations with EMod ended
in 2018. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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For the combinations with EEra, the minima vary around −10 km³. This confirms the low estimates of E and ET by ERA5 and justi-
fies once again the Δ_lk_flow, and Δ_ld_flow volumes obtained for the water balances with EEra (Fig. 2). The variations in the maxima
are better estimated by comparison with the combinations with EMod, but the values of the maxima of both peaks (2006–2007 and
2009–2010) remain consistently lower than those of dTWS.

These results show that the water budget is therefore only possible when precipitation inputs are balanced with E and ET losses
even during anomalies (2006–2007 and 2009–2010), as is the case for the PEra_EMod balance.

3.1.1.2. The spatial distribution of rainfall per dataset. A further explanation of the discrepancies observed in the water balances is
highlighted by analyzing the spatial distribution of precipitation per dataset, according to the topography of the Lake Tanganyika
watershed. For each dataset, an average image of rainfall estimation over the entire basin for the observed period was computed us-
ing 6940 daily images between January 2003 and December 2021 (Fig. 4).

We used the FABDEM described above (Section 2.2.7) to distribute the rainfall across the total watershed of Lake Tanganyika con-
sidering its topography, which is characterized by three distinct main entities (Fig. 1): the lake (∼770 m, dashed black in Fig. 4b–f),
the Malagarasi basin (between ∼770 m and <1400 m, dashed red in Fig. 4b–f) and the mountains around the lake in the rest of the
watershed (>1400 m). The average rainfall in the Malagarasi basin is homogeneous and constant at approximately 120 mm/day for
all the rainfall datasets. However, ERA5 and IMERG stand out because of their estimation of rainfall in the lake of ∼200 mm/day, and
only ERA5 shows rainfall average > 320 mm in the mountains. In the vicinity of the lake, all the other datasets showed rainfall
deficits, which likely explains why only ERA5 was able to close the watershed's water budget, as shown in Fig. 2.

Fig. 4. Daily rainfall means (in mm/day, computed with the PEra dataset) in the Lake Tanganyika watershed (Fig. 4a) and map of the interannual daily mean precipita-
tion (in mm/day) for each dataset.
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These differences show that the ERA5 data, which were generated from a model that accounts for the topography and movement
of cloud masses, are better suited to mountain areas than are the other observational data.

3.1.2. The basin's water storage components
To estimate the water quantities in each storage, we divided ΔGWS, ΔSWS and ΔSMS by ΔTWS. Over the observed period, the

ΔTWS was composed of 57.7% of the ΔGWS, 41.8% of the ΔSWS, while the contribution of ΔSMS was less than 0.5% (Fig. 5). During
the decreasing period, the ΔGWS represented ∼83% of the ΔTWS in 2003 and ∼60-50% between 2004 and 2006, while the ΔSWS
varied between ∼40 and 49%, except in 2003 (∼17%). In 2020 and 2021 (at the end of the increase period), the ΔSWS corresponded
to ∼59% and ∼80% of the ΔTWS respectively, and the ΔGWS was ∼40% and ∼19% of the ΔTWS respectively (Fig. 2s of Section 7 in
the Supplementary Material). This means that during the observed period, water losses in the watershed, mainly within the decreas-
ing period were greater through the groundwater, and recharging was provided by surface water.

The seasonality of ΔTWS and that of ΔGWS plot in the same pattern, with maxima observed in April and minima in September/
October. The ΔSWS climatology is shifted by one month compared to those of ΔTWS and ΔGWS (maximum in May and minimum in
November). For ΔSMS, maximum values are recorded in December. This seasonality showed that water recharge in the basin oc-
curred mainly between October and April. The rainfall data plot in the same way, revealing that precipitation is the main source of
water in the watershed.

ΔTWS was 89% correlated with ΔSWS and 90% correlated with the water balance obtained with PEra_EMod (Fig. 5). In the fol-
lowing subsection, we explain in greater depth the observed seasonality and trends in water storage components in the watershed.

For uncertainties in the data used, the value of 0.046 m3/m3 published by Liu et al. (2023) was considered for ΔSMS, and concern-
ing ΔSWS, we calculated an average uncertainty of 5.9 km3/month (see Sections 5 and 6 in the Supplementary Material).

3.1.3. Spatiotemporal dynamics of key climate variables in the watershed
We analyzed the space–time changes in the main climatic variables used for computing the water balance (precipitation, E and

ET) to deduce their influences on the different volume variations (TWS, SWS, GWS, and balance) obtained in the watershed.

3.1.3.1. Lake trends compared with those in the rest of the watershed. Fig. 6 shows that in the lake, the general trend in rainfall in-
creased (from 2003 to 2021) and that in the E was generally stable (from 2003 to 2018). However, until at least 2018, the E values re-
mained consistently higher than the rainfall values despite their increase. This explains the regression of Δ_lk_flow on the PEra_EMod
balance (Fig. 2). In the rest of the watershed, the overall trends in rainfall and ET from 2003 to 2021 are similar and positive and
show that increases in precipitation are associated with increases in ET. However, from 2003 to 2005, ET values are on average
higher than precipitation values, and the trends of both curves are slightly regressive. Water inputs by precipitation are then lower
than losses by ET, which is why, on the PEra_EMod balance, Δ_ld_flow decreased over this period (Fig. 2). This ratio reverses begin-
ning in 2006, and the Δ_ld_flow of the PEra_EMod balance increases again until 2021.

3.1.3.2. Trends and seasonality of total rainfall over the entire basin. The first mode of the interannual signal of total rainfall in the wa-
tershed (Fig. 7) explained 73% of these interannual dynamics and spatialized the observed increasing trend in rainfall. This trend was
general for the entire watershed since the variances in EOF1 of this signal were all positive. The time series reported by PC1 was more

Fig. 5. Time series of water balance components (top left) and their seasonality (top right). Correlations between GRACE-based TWS and water balance (bottom left),
and between GRACE-based TWS and SWS (bottom right).
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Fig. 6. Lake precipitation (P_lk) and E (E_lk) trends (left); watershed precipitation (P_ld) and E (E_ld) trends (right).

Fig. 7. The first modes of the spatiotemporal variability in the seasonal (top left) and interannual (top right) rainfall signals in the lake watershed. For each mode, the
EOF (map) corresponds to the weight of the PC (curve), and both components represent the variance. For the top left panel, PC1, which represents the seasonal mean
rainfall variance, was obtained by averaging the monthly values between 2003 and 2021. The bottom panel shows the raw values (left) and the anomalies (right) for
total monthly rainfall in the watershed.

or less uniform with P_lk and P_ld trends. However, the spatial distribution of variances in EOF1 showed that the increase in rainfall
was more pronounced in the Malagarasi basin and in the mountains in the southern half of the lake shores (EOF1 > 0.8).

These trends indicate the least rainy years (2003 and 2005) and the wettest years (2006, 2015, 2017, 2019, and 2020). For this ob-
servation period, the rainfall anomalies and their seasonality explained at 93% by the first mode of the seasonal signal allowed us to
understand these differences. Indeed, in a given year, ∼97% of the annual sum of precipitation was recorded from January to May and
October to December, with maxima registered in December (Fig. 7). Since all the variances explained by the EOF1 of the seasonal and
intraseasonal variabilities were positive, this seasonality of the rainfall plotted by the PC1 was common throughout the watershed.

Therefore, the least rainy years are those with significant negative rainfall anomalies during the rainy season, such as Febru-
ary–April and November–December in 2003 or January–February and November–December in 2005. On the other hand, in 2006,
2010 and 2020, for example, the positive anomalies recorded during the rainy season between November and December, between
January and March, and between January and May, respectively, increased the annual sum of rainfall in these years (in Fig. 2 the PEr-
a_EMod balance differs from that of PImerg_EMod according to the estimates of rainfall in 2006–2007 and 2009–2010). This suggests
that, for these years, the excess precipitation corresponds to an increase in the total rainfall during the rainy season and not to an ex-
tension of the rainy season.

The above results showed that rainfall from ERA5 combined with E and ET from GLEV and MOD16A2, respectively, corresponded
to Lake Tanganyika TWS variations and closed the basin water balance. Groundwater stored 57.7% of the basin's total water. For the
2003–2021 period, increased rainfall and ET influenced the water balance. Rainfall increases were greatest in the Malagarasi water-
shed. The strong variability in the water balance of the Lake Tanganyika basin, with high episodes of rainfall in the watershed leading
to a high rise in the lake level in a region with a dense population along the lake shores, has potentially disastrous consequences, as
analyzed in the following section.
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3.2. Consequences of lake water level variations on lake shores and the surrounding land
The Ruzizi Delta Nature Reserve and the Ruzizi River mouth, which drains water from Lake Kivu into Lake Tanganyika, are lo-

cated on the northern shores of Lake Tanganyika. These shores are also among the most urbanized boundaries of Lake Tanganyika. In-
deed, there are cities such as Bujumbura (Burundi's capital) or Gatumba on the Burundi side and Uvira in the DRC. This area, there-
fore, provides the necessary assets to study the vulnerability of lake shores and nearby lowland areas to observed variations in lake
water levels.

Over a year, soils are more flooded in May (the maximum ΔSWS also occurs in May), and according to their time series, their pro-
portion increases significantly from 2020 onward (Fig. 8). These interannual dynamics, comparable to those of the TWS and SWS
(Fig. 5), showed that increases in TWS are followed by rising water levels in the lake shores and the surrounding land.

Fig. 8 illustrates these changes, through the MNDWI's May maps for each year (for years when May satellite images were avail-
able) when soil immersion was highest. It was clear based on these maps that flooding of wetlands, flooding of the urban areas sur-
rounding the lake hinterland, and the recession of the coastline are the two major phenomena resulting from the increase in the lake
water level in this specific area.

3.2.1. Flooding of the urban areas
At the boundary between southern Gatumba and northern Ruzizi Delta Nature Reserve, on the left bank of the Ruzizi River, soil

immersion started to occur in 2018. This immersion became significant beginning in 2020, the maximum occurred in 2021, and then
the immersion regressed slightly in 2022, though remained high. The right bank was also subject to the same changes, particularly in
2020 and 2021, with a maximum water level increase occurring in 2021.

3.2.2. Flooding of wetlands and recession of the coastline
In the Ruzizi Delta Nature Reserve, the consequences of the increases in the lake's level were mainly materialized by the gradual

increase in the water surfaces in its central region beginning in 2017. The maps in Fig. 8 also show gradual shoreline loss along the en-
tire width of the northern shores of the lake. This phenomenon intensified from 2020 onward and manifested itself, especially in the
progressive flooding of the southern border of the Ruzizi Delta Nature Reserve.

4. Discussion
4.1. Comparison of space–time water dynamics
4.1.1. Differences between the obtained water balance and the previous hydrological budget

The monthly level variations in Lake Tanganyika from 1845 to 1995 were compiled with multiyear data on lake E, precipitation,
tributaries and outlet flow by Branchu and Bergonzini (2004) to compute the lake's annual hydrological budget (Table 1). In this
table, we compare these earlier results with the lake direct rainfall (P_lk) and E (E_lk) data we found from 2003 to 2021, as well as the
runoff data we used (2003–2020). This comparison highlighted that PChirps and PMswep rainfalls were lower than previously re-
ported, while PEra, PImerg and PGsmap were at least ∼4 km3/year greater. E values were lower since GLEV E, the closest to the previ-

Fig. 8. Flooded area time series and seasonality (top left) and their spatial distribution (2017, 2018, 2020, 2021, 2022). The time series is incomplete, and there is no
image for May 2019, because only satellite images with cloud cover <20% were selected for this calculation.
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Table 1
Comparison of the annual hydrological budget of Lake Tanganyika.

Branchu and Bergonzini (2004) Our study

Precipitation (km3/year) 35.5 PEra PChirps PGsmap PImerg PMswep
41.3 29.42 39.1 42.24 25.53

E (km3/year) 55.3 GLEV (2003–2018) EEra
51.55 40.37

Tributaries (km3/year) 29.5 9.97 (only Ruzizi + Malagarasi)
Outlet (km3/year) 9.7 2.45

ous one, was ∼3.7 km3/year lower and ERA5 was ∼15 km3/year lower. The annual sum of Ruzizi and Malagarasi discharge over the
2003–2020 period (which does not include runoff from the surrounding mountains along the lake) used in this study to estimate total
runoff in the watershed is ∼20 km3/year lower than previously reported tributary values. Concerning the outlet, the difference be-
tween the two was ∼7 km3/year. These comparisons revealed significant differences between the hydrological budget inputs for the
two periods (1845–1995 and 2003–2020), but these differences had no influence on the TWS study. First, discharge values have a
lower order of magnitude than the other components of the hydrological budget; second, only the TWS variations internal to the basin
are considered in this study.

For the Branchu and Bergonzini (2004) hydrological budget, the lake water input from precipitation was equal to the watershed
runoff, with E accounting for 85% of the total water loss. We found that with the PEra_EMod combination, which closed the hydrolog-
ical balance, rainfall represented 80.55% of the total water input to the lake, and E represented 95.45% of the water output, which is
similar to the results of Branchu and Bergonzini (2004).

On the interannual time scale, lake E has remained stable, but rainfall has increased significantly. These dynamics, combined with
upward trends in ET and rainfall over the rest of the watershed after a slight drop between 2003 and 2006, resulted in a water balance
for the basin (also corresponding to basin ΔTWS), which decreased between 2003 and 2006 and increased from 2007 onward. The
temporal variations in TWS GRACE-based data in the Lake Tanganyika basin highlighted by this study are consistent with the findings
of Seka et al. (2022), who studied TWS variation in the East African region and showed an overall increase in TWS GRACE-based data
in the Victoria, Tanganyika, Turkana, Abaya-Chamo and Tana basins by applying a Mann–Kendall correlation to annual TWS values
in these basins. The same GRACE-derived TWS trends were found by Seka et al. (2022) in this region.

4.1.2. Influence of rainfall and other climate variables on ΔTWS
Becker et al. (2010) and Forootan et al. (2019) showed that rainfall is one of the main factors affecting the observed dynamics of

TWS. Hassan and Jin (2014) supported this observation by showing lags of approximately 2.21, 2.25, and 2.3 months in TWS
GRACE-based variations in response to TRMM rainfall changes in the Lakes Victoria, Tanganyika and Malawi basins, respectively. In
this region, rainfall and GRACE-based TWSs share common interannual dynamics and are strongly controlled by the Indian Ocean
Dipole and the El Nino-Southern Oscillation cycle (Becker et al., 2010; Scanlon et al., 2022). Seka et al. (2022) added runoff, ET, and
temperature as other climate drivers of TWS changes at the East African region scale and demonstrated that, in contrast to precipita-
tion, increasing ET and temperature lead to reduced TWS. Our study showed increasing trends in rainfall in the Lake Tanganyika
basin, mainly in the Malagarasi catchment, and Fig. 6 shows that in 2020, the rainfall was probably greater than that in lake E, which
probably contributed to flooding.

4.2. Early warning of floods
Early flood warning systems can be very useful in flood-prone areas to reduce risk by providing early and accurate warnings of

flood hazards to a variety of users. This approach helps public actors, humanitarians organizations and other organizations rapidly
evacuate goods and people and reduce loss of life and property destruction. In this study, the one-month delay in the ΔSWS response
to the ΔTWS, shown in the previous sections, was investigated for this purpose. The ΔTWS reaches its maximum in April, whereas the
ΔSWS reaches its maximum in May when flooding is at its worst (Fig. 5). As the ΔSWS is strongly and positively correlated with the
ΔTWS, with a correlation coefficient of 0.91, we then calculated the linear regression between these two variables to estimate the
May ΔSWS variation as a function of the observed April ΔTWS.

However, with April's ΔTWS and May's ΔSWS, the early warning period was only one month. We then extended this period by an
additional two months, correlating the February and March ΔTWSs with the May ΔSWS. The aim is to warn various stakeholders
(planners and victims) as early as possible. For these correlations, the ΔTWS results from Equation (1) and the ΔSWS from Equation
(3) were used as observed values. The three regressions were calibrated between 2003 and 2020 so that they could be tested to esti-
mate the strong variations in 2021 and 2022. In 2021 and 2022, the observed May ΔSWS values were 60.7 km3 and 54.06 km3, re-
spectively.

4.2.1. Estimated values of ΔSWS
The regression with April's ΔTWS is the most correlated with May's ΔSWS with an R2 of 0.95, followed by the regression with

March's ΔTWS with an R2 of 0.94 and the regression with February's ΔTWS with an R2 of 0.85 (Fig. 9). Concerning the estimated
ΔSWS in May 2021, the forecast with the ΔTWS in April resulted in 46.8 km3, which was closest to the observed ΔSWS in May, fol-
lowed by the forecast with the February ΔTWS (46.5 km3) and the forecast with the March ΔTWS (43.9 km3). However, in 2022, the
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Fig. 9. ΔSWS estimations in May. The three panels on the left represent the correlations between the ΔSWS observed in May and the ΔTWS in April, March and Feb-
ruary from top to bottom. The top right panel shows the time series of ΔSWS in May and the observed ΔTWS values (April, March, and February). The bottom right
panel shows the time series of the predicted May ΔSWS.

estimation with ΔTWS in March (42.2 km3) was closest to the observed values of the May ΔSWS, followed by the estimation with
ΔTWS in April (36.6 km3) and the estimation with ΔTWS in February (36.09 km3).

4.2.2. Correlation assessments and findings
The RMSEs between the ΔSWS observed in May and the values estimated from the ΔTWS in April, March and February were

6.9 km3, 6.5 km3, and 9.08 km3, respectively. The estimates of ΔSWS in May are within the deviation (Fig. 9), and the differences
from the observed values in 2021 and 2022 are ∼14 and 18 km3 for the estimation with ΔTWS in February, 17 and 12 km3 for the es-
timation with March, and 14 and 18 km3 for the estimation with April.

These results, which show significant variations in TWS, are early warnings of flooding. This approach can help to develop a mas-
sive flood management policy that anticipates floods approximately 3 months in advance to limit the loss of property and human life.
However, these results can be improved with a larger number of observations. Indeed, the observed time series of ΔTWS were incom-
plete, particularly between 2011 and 2019. Over the calibration period from 2003 to 2020, there were only two extremes (2006 and
2019), and the observed ΔTWS amplitude was 60 km3. The analysis does not allow us to establish a flood forecasting system, but it al-
lows us to understand the linkage between the ΔSWS at different seasons of the year and the resulting flood along the lake's shoreline.

5. Conclusion
This study computed the Lake Tanganyika basin water budget for the period 2003–2021. The basin water flux calculated by com-

bining five different rainfall datasets (IMERG, GSMAP, ERA5, CHIRPS, and MSWEP) with E and ET datasets (GLEV, MODIS, and
ERA5) was compared to the variations in the watershed TWS derived from GRACE data. The combination of rainfall from ERA5 with
E and ET from GLEV and MOD16A2, respectively, was the most strongly correlated (0.89) with GRACE-based TWS variations and
therefore closed the basin water balance. Over the Lake Tanganyika basin, during the 2003–2018 period, water losses of ∼70 km³ due
to lake E were offset by an increase in water inflows of ∼100 km³ in the rest of the watershed. The temporal variability in GRACE-
based TWS as well as the basin water budget highlighted a decreasing trend during the 2003–2005 period when ET was greater than
rainfall and an increasing trend from 2006 onward when rainfall exceeded ET. The change in water volume in the basin's main reser-
voirs was also investigated. Over the observed period (2003–2021), groundwater storage corresponds to ∼57.7% of the GRACE-based
TWS and SWS to 41.8%, whereas SMS corresponds to less than 0.5% of the GRACE-based TWS. Investigating land use and land cover
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changes in watershed (e.g., vegetation cover, agricultural spread, etc.) can also provide further explanations for these observed dy-
namics. For example, changes in the land surface as a result of reduced vegetation cover or intensification of agricultural activity can
affect soil moisture by increasing soil evaporation and reducing water infiltration (Liao et al., 2021; Regüés et al., 2017).

To describe the exposure of surrounding lowlands to flooding on the northern shores of the lake, the MNDWI was calculated from
Sentinel–2 images acquired in May (between 2017 and 2022) when soil immersion was highest, allowing us to map the distribution of
soils submerged by the observed variations in lake water level. The results revealed the recession of the coastline and the flooding of
urban areas surrounding the lake hinterland, as well as wetlands, particularly in the Ruzizi Delta Nature Reserve. The impact of these
changes on wildlife, particularly in the Ruzizi Delta Nature Reserve, also needs to be explored.

Correlating GRACE-based TWS variations with SWS variations highlights that, significant variations in TWS are an early warning
of flooding. This correlation allowed us to estimate the SWS in May when the flood risk was the highest, using TWSs in February,
March and April with accuracies of 85%, 94% and 95%, respectively. These results provide valuable information for investigating the
potential of TWS variations for flood modeling and may also help improve flood prediction models elsewhere in the world where ris-
ing lake levels are the cause of flooding leading to significant damage. For flood early warning systems, we chose not to interpolate
the data to fill in missing values in order to work with the raw values. This is why we have few variations, mainly for the 2011 to 2019
period. For the study of different lakes around the world, it would be interesting to test the approach based on TWS variations using
GRACE data to determine whether additional variations can improve flood forecasts.
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