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Abstract – Perception algorithms based on LiDAR sensors are more and more widely used in intelligent transport 
systems, such as ADAS and autonomous vehicles. As new technological advancements evolve, industrial LiDAR 
sensors are becoming much more affordable and equipped on modern vehicles. Despite their accuracy for 
mapping the environment and estimating precise distances, the operation of LiDAR is known to be affected by 
adverse weather conditions, thus reducing the operational design domain of vehicles equipped with this type of 
sensor. Tests in simulation of intelligent transport systems have been widely used in the industry throughout the 
whole cycle of development, to accelerate R&D and reduce time to market costs. It is thus important to improve 
the virtual models of LiDAR sensors to ensure the reproduction of realistic and adverse weather conditions in 
simulation test. This is the aim of project CVH (Tool-based chain for the validation and certification of the 
connected automated vehicle). This paper introduces a methodology of acquiring real world data and through 
data analysing and processing be able to create and improve the current model of perfect sensors by 
implementing the effects of perturbations, whether it be hardware or weather caused. 
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Introduction 

LiDAR (Laser Imaging Detection And Ranging) 
technology is well known as a perception technology 
which is essential for vehicles automatization. Even 
though this sensor is considered to be more accurate 
and robust than other sensors such as radars and 
cameras, LiDAR sensors also have limitations 
caused by the complexity of the environment they 
are working in. That is why there is a need to validate 
the sensors. Simulation is known to be a reliable 
solution in order to validate the future autonomous 
vehicles and therefore, LiDAR sensors technology 
must too be modelled in simulation.  

Several ray tracing models exist for the virtual model 
of LiDARs, however perturbation effects on these 
models have yet to be well implemented in order to 
have a realistic enough simulation. This is the aim of 
the research project CVH (in French: Chaîne outillée 
pour la Validation et l’Homologation des véhicules 
automatisés) at IRT SystemX. Amongst the goal of 
this project is the modelling of the behaviours of 
sensors when confronted with perturbations. Several 
tools and sensor models exist and are already well 
known in the automotive simulation industry but most 
of them are modelled as perfect sensors without 
taking into account error and disturbances due to 
perturbation.  

The aim of this paper is to present a model that has 
been developed and used with AVSimulation’s 
SCANeR Studio software, with the use of a specific 
semi-rotative LiDAR. 

This overall methodology has been applied and 
implemented as a Proof of Concept for fog 
simulations. This paper summarizes the scientific 
reasoning which has been made in order then to 
generalize it for other use cases of modelling 
automotive sensors, as well as other types of 
adverse weather conditions. 

Overview of LiDAR sensor 
modeling 

LiDAR Technology in the Automotive 
Industry 
LiDAR is a sensor that is used to measure distance 
of points in the environment. In the automotive field, 
it is used as a 3D Cartography sensor that can detect 
any object in the environment with an accurate 
estimation of the distance. By sending laser rays in 
several directions, a LiDAR is able to output a 3D 
point cloud representing the environment around the 
vehicle. 
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Types of LiDARs  

Different technologies are used depending on the 
sensor, but they all rely on having laser ray emitter, 
a directing device (mostly mirrors that can aim at 
given angles) and receivers that receive the emitted 
rays that have been reflected by the environment. By 
computing the delay between the emission and the 
reception, LiDAR is able to estimate the distance.  

The main types of LiDARs that are used in the 
automotive industry are: 

- Rotative LiDAR: A motor is used in order to 
mechanically rotate the laser emission beam to 
scan with a specific pattern in every direction. 

- Semi-rotative LiDAR: Electro-mechanical parts 
(such as mirrors or MEMS) are used in order to 
scan the environment in different directions. 
Usually, the field of view of this LiDAR is 
restricted to specific angles. 

- Solid-state LiDAR: A laser beam is sent with 
specific phases and patterns in order to 
broadcast rays in a given direction. 

Sensor outputs 

Outputs of LiDAR sensors can be described as two 
layers.  

The first layer is a raw data represented as a three-
dimensional point cloud. Whatever the type of 
technology that is used in the LiDAR, the sensor is 
able to output a 3D point cloud of the environment. 
For each specific direction of a laser ray, there will 
be one or several points (in the case of multi echo) 
that will be added to the point cloud. The receivers 
will quantify the attenuation of the ray between the 
emission and the reception of the laser ray, this 
measurement leads to an intensity value for each 
point of the point cloud. This intensity depends on the 
reflectivity of the target’s material, but also on the 
incident angle of the ray, the distance, etc. This 
intensity data gives more information on the type of 
detection for the software to recognize the object in 
the environment. 

The second layer is optional but for some LiDARs, a 
detection software layer can be added, for object 
detection and classification. That is why modeling 
the perturbation in simulation can also be done 
directly in this second layer of outputs which is the 
detections. 

Simulation tools 

The need for simulation tools 

Simulating LiDARs in an automotive environment 
relies on using tools that reproduce three 
characteristics: 

- The environment in which the vehicle is driving: 
the terrain comprising the road, the 
infrastructures and its condition has to be 
modelled. 

- The actors such as the ego vehicle, the 
surrounding cars and pedestrians: they must be 
described including their geometry, materials 
and positions during the scenario. 

- The sensors: The sensor model, in our case the 
LiDAR, is implemented regarding its position in 
reference to the vehicle, and its defining 
parameters (laser emission patterns, rotation 
frequency, field of views, power, etc.) 

Existing tools for Lidar modelling 

Most sensor simulation tools use ray-casting/ray-
tracing techniques or projection methods such as “Z-
buffer” to create synthetic point clouds. These works 
have been previously described and compared in 
(Rosenberger, 2019) . Virtual rays are drawn 
between the emitter location and the open space of 
the geometrically represented virtual environment. If 
an intersection with any surface is detected, a point 
is created and reflected intensity associated to it will 
be related to the range, the incidence angle and to 
surface characteristics, described by their 
bidirectional reflectance distribution function 
(BRDF). 

Among the simulation tools used to simulate LiDARs 
are for example: Unity, Unreal, IPG Carmaker, 
Gazebo, Pro-SiVIC, SCANeR Studio 

In this work, SCANeR Studio is used for LiDAR 
modelling. This is executed using an integrated 
module called LASERMETER that will be described 
after. 

Perturbations 
Numerous noise factors can affect the operation of a 
LiDAR sensor. (Chan, Dhadyalla, & Donzella, 2020) 
proposes a list of 16 factors, grouped in 5 categories. 
They can be related to interactions with others 
systems (coexistence with other lidars, malicious 
attacks), to degradation over time of electronic or 
mechanical components, among many factors. 
Particularly, adverse weather conditions, such as 
rain, snow, and fog, have a pronounced impact on 
point clouds. The presence of airborne particles (e.g. 
snow flake or rain drop) may impact the way LiDAR 
signal propagates on the atmosphere, due to 
absorption, reflection and scattering phenomena. 
Likewise, dry and wet surfaces interact differently to 
incident lidar rays. As a result, when operating in 
adverse weather conditions, such as rain, snow or 
fog, lidar point clouds are disturbed on the number of 
detected points, their intensity, as well as on the 
appearance of noisy points (Zhang, Ang, & Rus, 
2018) 

Several research groups have studied adverse 
weather effects on lidar sensors. (Filgueira, 
Gonzales-Jorge, Lagüela, Diaz-Vilariño, & Arias, 
2017) conducted outdoors experiments with a 360°, 
16-layers lidar and were able to collect data for 
different rain intensities. Through the analysis of 
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segmented portions of point clouds, they concluded 
that rainy conditions cause losses in the number of 
points and the attenuation of the returning signal.  
(Kutila, Pyykönen, Holzhüter, Colomb, & Duthon, 
2018) collected data in a controlled environment, 
able to produce artificial rain and fog. In particular 
they compared two distinct wavelengths (905nm and 
1550nm). They observed that lidar signal intensity 
decreases lightly in the presence of rain and strongly 
in the presence of intense fog (< 40 meters of 
visibility). 

Operation of perception systems based on lidar 
sensors embedded on intelligent vehicles is, as a 
consequence, hindered by adverse weather 
conditions. It is important to reproduce such 
behaviours in simulation sensors and render tests in 
virtual environments more realistic and reliable.  

Many authors have proposed models to noise factors 
related to the presence of airborne particles in the 
atmosphere. (Goodin, Carruth, Doude, & Hudson, 
2019) proposed a mathematical model that 
introduces noise in the range measurement and 
reduces the intensity of points as a function of the 
scattering coefficient and the rainfall rate. (Byeon & 
Yoon, 2021) adopted a microscopic approach and 
incorporated into their model raindrop characteristics 
specific to different regions in the globe, such as size 
and shape. (Espineira, Robinson, Groenewald, Pak, 
& Valentina, 2011) developed their lidar model using 
a ray cast method based on the Unreal Engine that 
adds false positive points to the point cloud, as a 
simulation of backscattering effects related to rain.  

 
Figure 1: A simplified view of why perturbation affect LiDAR 

sensor 

Simulation model 
improvement methodology 

The methodology that is presented in this paper 
relies on using a simulation tool with its existing 
models, and then improving it in order to consider 
lacking phenomenon, especially perturbations. The 
existing perturbations and the interferences with 
LiDAR’s outputs are obtained after performing real 
data's measurement with our LiDAR, and then by 
defining characterization metrics for data's analysis.   

Real Measurements 
In the scope of the 3SA project at IRT SystemX, the 
aim was to collect real data corresponding to our 
requirements: having disturbed sensor data with an 
accurate enough description of the perturbation and 
a controlled scenario in order to be able to simulate 

it. Therefore, an existing LiDAR has been used to 
collect the data in specific environments that are 
described in the following subchapters. 

Outdoor measurements 

The first attempt of collecting data has been done in 
an outdoor environment at IRT SystemX in 
Palaiseau (France). Measurements have been done 
in the same spot in different days in order to have 
different weather conditions. 

 
Figure 2: The environment that has been recorded with our 

LiDAR during a foggy day 

Platform of simulation of degraded 
climatic conditions 

In order to characterize the LiDAR sensor and to 
propose a realistic model of the sensor we have in 
addition to the first tests outside the IRT-SystemX 
realized other campaigns of data collection by 
integrating the LiDAR sensor in a platform of 
simulation of degraded climatic conditions based in 
Clermont Ferrand within the CEREMA laboratory. 
This simulation equipment used is referenced within 
the LABEX ImobS3 "innovative mobility: intelligent 
and sustainable solutions" among the regional 
platform "PAVIN B-P", Auvergne platform for 
intelligent vehicles Fog - Rain.  

The installation is in the form of a covered track 
about thirty meters long, specifically equipped and 
instrumented with various materials (artificial vision 
systems, transmissometers, rain and fog generators, 
photometers, granulometers, radiometers, video-
photocolorimeters, spectropluviometers), with the 
possibility of carrying out tests, day and night. 

The CEREMA laboratory linked to the platform is 
also equipped with materials allowing the 
measurement of the photometric characteristics of 
the studied objects, namely luminance and 
colorimetry. As an object we have realized some test 
scenarios by placing in the scene road signs, road 
markings. 

The PAVIN test platform consists of a tunnel section 
and a greenhouse section, the whole of which is 30 
m long and under which meteorological disturbances 
can be generated. This space constitutes the 
measurement and acquisition area for the Lidar. The 
entire platform is made up of a draining surface 
typically used on motorways. 
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Figure 3: The objects inside the PAVIN platform 

 
Figure 4: Example of rain generation inside the platform 

Metrics of characterization 
In order to compare simulated point clouds with real 
point clouds. There is a need of having metrics of 
characterization of these point clouds and the 
associated perturbation we want to simulate.  

In the case of the fog simulation, the focus will be on 
quantifying the fog and then quantifying the implied 
backpropagation to be able to model it. 

Fog characterization 

In the meteorology domain, the fog density is 
quantified using a value of meteorological visibility 
distance that is defined by the International 
Commission on Illumination (CIE) (Commission, 
1987) as the distance beyond which a black object 
of an appropriate dimension is visible with a specific 
contrast limit. 

The CEREMA Pavin platform contained sensors that 
is able to measure in real time the fog density by 
giving this meteorological visibility distance. In order 
to categorize the fog, the LiDAR data that was 
collected in the platform were acquired during 
scenarios that ranged from 10 to 30 minutes. In 
these scenarios, the fog density gradually changed, 
increasing in visibility, starting with a visibility of 10 
meter and gradually ended at a visibility of 1000m. 
The gradual change in the visibility of the fog is slow 
enough that we can consider it as a pseudo-static 
perturbation. 

That is why for each measured point cloud, a visibility 
distance can be associated, representing a fog 
characterization metric. 

Density distribution 

For each point cloud, there is a precise number of 
points (variations of this number of points occurs 

because of the effect of multi-echoes). These points 
can be counted to define a first metric.  

Nevertheless, there is a need of differentiating points 
that represent real targets (that will be called “hard 
target” in the following chapters) than points that are 
caused by the fog’s backpropagation (that will be 
called “soft target” in the following chapters). That is 
why a metric has been defined to count the soft 
target points density depending on the range in front 
of the LiDAR by using a ray tracing method. 

 

Figure 5: The method of measuring fog points density in the 
LiDAR point cloud  

Ray extraction 

A sub point cloud from the main point cloud is 
extracted base on a set of selected rays (noted 𝑅). 
The main reason of having ray selection is to be sure 
that only points that are characterize a single object 
are selected in order to have only representation of 
fog perturbation and the corresponding object 
visibility. Any ray that collides with the roof, the 
ground or the sides of the tunnel is then not selected. 
Usually, rays that are directed towards the object at 
the end of the tunnel are selected. 

Ray slicing 

After extracting the points included in the selected 
rays, the rays are then sliced into parts for a given 
step of range from the LiDAR. The goal of having 
these slices is to measure the quantity of points in 
each range step.  

Having such a method leads to measure the density 
for each step of range. The points that are located in 
the near range can help characterizing the 
backpropagation and the points located further can 
help characterizing the visibility of the object 
(depending on its type, its position, etc.). 

For each ray (noted 𝑖 in a direction defined by an 

elevation angle 𝜃𝑖 and an azimuthal angle 𝜑𝑖), zero 
to three echoes can be detected at different ranges 
or distance from the LiDAR, also containing the 
intensity of each echo:  

𝑒𝑐ℎ𝑜𝑒𝑠(𝜃𝑖  , 𝜑𝑖) = {

𝑒𝑐ℎ𝑜1(𝜃𝑖 , 𝜑𝑖)

𝑒𝑐ℎ𝑜2(𝜃𝑖 , 𝜑𝑖)

𝑒𝑐ℎ𝑜3(𝜃𝑖 , 𝜑𝑖)
 

With each 𝑒𝑐ℎ𝑜1(𝜃𝑖  , 𝜑𝑖) being the first echo or the 

nearest distance corresponding to the laser (𝜃𝑖  , 𝜑𝑖) 
and each 𝑒𝑐ℎ𝑜3(𝜃𝑖  , 𝜑𝑖) being the third echo or the 

farthest distance corresponding to the laser (𝜃𝑖  , 𝜑𝑖). 

Density repartition representation 
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For each point cloud, for the set of selected rays 𝑅, 
we can then define 3 cumulative distribution 
functions corresponding to each echo (first, second 
and third) that are defined as follow: 

∀𝑗 ∈ {1,2,3}, 𝐹𝑗(𝑥) =
1

|𝑅|
∑[𝑒𝑐ℎ𝑜𝑗(𝜃𝑖  , 𝜑𝑖) < 𝑥]

𝑖𝜖𝑅

 

For a given fog visibility, these 3 cumulative 
distribution functions can be computed and even a 
mean value can be computed for a set of several 
point clouds (to get smooth curves). This work has 
been done with the points clouds of CEREMA.  

 
Figure 6: Example of measured point cloud with the 

selected rays oriented towards the target car 

Figure 7 shows the 3 echoes mean cumulative 
distribution functions are given for 3 levels of visibility 
(296 point-clouds corresponding to 20m visibility, 56 
point-clouds corresponding to 100m visibility, and 15 
point-clouds corresponding to 1000m visibility).  

Intensity Scaling 

Similar to the distribution of the density of the points 
from the distance of the lidar, we can also extract the 
intensity of the lidar points due to the fog noise.  

For each point cloud, and every occurrence of the 
selected rays with a hit (points that for a given ray in 
a given time stamp exist) Roccurance, we can also 
define the 3 cumulative intensity functions for each 
echo. 

∀𝑗 ∈ {1,2,3},   

𝐹𝑗(𝑥) =
1

|𝑅𝑜𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑒|
∑[𝑒𝑐ℎ𝑜𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑗(𝜃𝑖  , 𝜑𝑖) < 𝑥]

𝑖𝜖𝑅

 

Figure 8 shows the 3 echoes mean intensity function 
for each given echo, at 3 levels of visibility. 

Perturbation model 
construction 

After having analysed real data, the goal of the study 
is to create from it a model simulating fog 
backpropagation phenomenon (soft target). 

The LASERMETER model 

The simulation tool software that is used is 
AVSimulation’s SCANeR Studio software. This 
software relies on a modular architecture with each 
module assuring a task of the simulation (one for the 
vehicle dynamics, one for the traffic management, 
one for the pedestrians, one for the sensors, etc.). 

One of the modules, LASERMETER oversees 
LiDAR modelling, relying on ray tracing. The ray 
tracing pattern is configured depending on the laser 
emitting patterns of the LiDAR that can be 
parametrized in the model. 

The actual version of LASERMETER models is a 
perfect LiDAR model that is not affected by 
surrounding anomalies. Any target in the field of view 
of the simulated laser beam would be detected 
regardless of weather conditions. The aim of the 
study is to improve the current LiDAR model to take 
into account these perturbations, as shown in the 
following proof of concept implementing fog effects 
in simulation. 
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Figure 7: Mean cumulative distribution function for 
each echo and each fog visibility

Figure 8: Mean intensity functions for each echo and 
each fog visibility 

Perturbation generation 
The improvement of the LASERMETER model is 
done via a Plugin as a layer on the current model. 
This include correcting the obtained point cloud to 
create the effect of the fog perturbation. 

 
First step: Getting LASERMETER output: The 
output is a point cloud with one, two or three points 
for each laser beam. The points coordinates are 
generated in reference to the sensor frame. 

Second step: Adding precision noise: The 
distance for each point can be changed with an error 
defined by a probability distribution. An example of a 
simple model is using gaussian error to add a 
percentage of error in the distance estimation.  

Third step: Adding soft target (point of 
backpropagation): The backpropagation effect is 
happening when points are generated between the 
LiDAR and the target. The same effect can be 
applied by generating point for each laser beam. The 
backpropagation points position is defined regarding 
a probability distribution. If this random position is 
further than the target object, then no modification is 
done. If this random position is between the LiDAR 
and the object, then this position is defined as the 
new point for the corresponding laser beam and the 
target point is ceases to exist.  

The different steps are illustrated in figure 9 

 

Figure 9: Different steps from the LASERMETER output (1) 
to add precision noise (2) and then backpropagation due to 

fog (3) 

Distribution of backpropagation 
The third step presented in the previous subchapter 
must be parametrized through a probability 
distribution. Indeed, the backpropagation occurrence 
is determined by a randomly picked position. 

Using an exponential distribution 

A simple probability distribution that determines the 
position of the backpropagation point for a given 
laser beam could be the exponential distribution 
defined by the following equation for a given range x: 

𝑃(𝑋 > 𝑥) = 1 − 𝑒−𝜆𝑥 
Such a distribution law would be representative of a 
fog where most of the points are in the very near field 
of the LiDAR with less and less points in the further 
field. 

Using the cumulative distribution 
function 

The results of the CEREMA measurements have 
shown that soft target representing fog 
backpropagation can be more complex in terms of 
positions and multi-echoes, depending on the fog 
density. That is why we can define a probability 
distribution with the density distribution obtained 
from the metrics. By taking them as a probability law, 
a new way of generating soft target can be defined. 

For each echo j, 𝑃(𝑋 > 𝑥) = 𝐹𝑗(𝑥) 

Intensities of the soft target points take into account 
the same probability law and is extracted from the 
mean intensity function. In addition to positioning the 
soft target points depending on multi-echoes, 
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intensities of the generated points are scaled to 
correspond to the real data used in the simulation. 

Simulation with the perturbation 

Simulated scenario 

In order to compare simulated data with real data, 
the CEREMA Pavin platform has been modelled to 
have a similar scenario running in SCANeR Studio. 
Moreover, the correct parameters have been chosen 
to model the simulated sensor according to the 
datasheet of the used LiDAR. 

 
Figure 10: The simulated environment in SCANeR Studio 

Perturbation model construction 

A module is used in SCANeR to add the perturbation 
model generated previously into the point cloud that 
is generated by the LASERMETER model (through 
the communication bus of SCANeR Studio which is 
known as the “Network”) and publishes modified 
point cloud as PCD files respecting the same format 
as the LiDAR’s point cloud outputs. 

Obtained point clouds 

By applying the presented methodology with the 
exponential law fog perturbation. The obtained point 
cloud is given in Figure 11. 

 
Figure 11: The simulated perfect point cloud on top and the 

obtained point cloud after using the noise model 
(exponential law) 

Results and discussion 

Comparison 

Qualitative analysis 

The presented methodology uses three parts to 
generate the noisy point cloud; the collected data 
with the method to analyse the density, the 
simulation environment with the virtual LiDAR and 

the virtual CEREMA Pavin Platform, and the noise 
model relying on a defined probability law. 

Merging these three elements lead to have a scaled 
model of noising based on the collected data. The 
obtained result is presented in the figure below.  

 
Figure 12: Obtained point clouds for real and virtual values 

Both the point clouds presented have a significant 
similarity that is visible, and the presence of the fog 
model adds a lot more realism. However, 
improvements can be done in removing the isotropy 
of the model. 

Quantitative analysis 

A more quantitative method can be used in order to 
compare obtained point clouds. The goal of such 
metrics has multiple reasons: having a visually 
coherent point cloud, having precision in 
representing objects and having a similarity between 
point clouds in terms of software detection.A first 
analysis based on computing point cloud density has 
been introduced.  

This metric is designed to consider the whole point 
cloud by splitting it into voxels, with each containing 
the number of points to compute the density per 
voxel (as shown in Figure 13). By comparing the 
densities between real point cloud and simulated 
point cloud, the difference can be computed and a 
metric has been established using two formulas that 
count the numbers of points 𝑁𝑖,𝑟𝑒𝑎𝑙 or 𝑁𝑖,𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  in 

each voxel i. 

𝑀𝑒𝑡𝑟𝑖𝑐1 =  
∑ (𝑁𝑖,𝑟𝑒𝑎𝑙 − 𝑁𝑖,𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)𝑖

∑ (𝑁𝑖,𝑟𝑒𝑎𝑙)𝑖

 

𝑀𝑒𝑡𝑟𝑖𝑐2 =  
1

𝑁𝑏_𝑣𝑜𝑥𝑒𝑙𝑠
∑

𝑁𝑖,𝑟𝑒𝑎𝑙−𝑁𝑖,𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

𝑁𝑖,𝑟𝑒𝑎𝑙
𝑖

 

 
Figure 13: Representation of the comparison metric 
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The metrics has been computed for some of the 
obtained point clouds and the following table has 
been obtained. 

Table 1: Obtained metrics for different level of fog 

 With fog model Without model 

Fog  Metric1 Metric2 Metric1 Metric2 

20m 20% 1% 182% 10% 

50m 50% 11% 131% 14% 

100m 59% 15% 111% 17% 

 

The obtained metrics are different regarding the 
used formula and these can be improved by taking 
into account intensities, and size of cells of the grid. 
The results show that the noise model reduces the 
difference between the virtual and real data. 

Future improvements 
The model presented in this paper let users of the 
simulation have a first representation of degraded 
fog measurements, with room for improvements. 

Non homogeneous soft targets 

To ensure a more realistic model, the need to 
implement the soft target via spot or cloud forms are 
needed, to avoid the problems of homogenous soft 
targets.  

Azimuth dependence 

The current model does not yet implement the 
different azimuthal direction as had been collected at 
PAVIN, which could improve the model’s precision. 

Dynamic study 

The data collected has been done for static 
scenarios corresponding of fixed targets and a fixed 
vehicle. Weather perturbation (especially fog) can 
have important variation when the car is moving and 
dynamic studies allow a more realistic scenario. 

Metrics of comparison 

The work of comparison of the point clouds has to 
being improved with other metrics and to be applied 
for other point clouds. Moreover, a comparison with 
other scenarios that have been acquired outside the 
CEREMA platform can enable a richer validation of 
the methodology of modelling. 

Conclusion 

This paper proposes a methodology that is able to 
characterize and implement adverse weather 
conditions into a simulated LIDAR sensor model, 
aimed to be used for the validation and homologation 
of autonomous vehicles. The approach is based on 
collecting and recording real life LIDAR data under 
various adverse weather condition, and from that 
generating the perturbation model. This perturbation 

model is then implemented into the perfect sensor 
model to provide a more realistic sensor model to be 
used and tested against. It is important that the 
collected real data contains precise information 
about the weather condition to be able to correctly 
identify the type of perturbation to be simulated. This 
approach using real life recording can be 
implemented to various other types of weather 
perturbations, and is also not just limited to LIDAR 
sensors, but also in the case of camera, radar and 
even ultrasonic sensors. This approach is also less 
resource consuming compared to other physical 
based sensor models, and allows for its 
implementation in real-time simulations. 
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