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Abstract—Peer sampling is a crucial primitive in distributed
systems, used to manage overlays and disseminate information in
large-scale scenarios such as permissionless blockchain systems.
Its purpose is to maintain and regularly update a local and
partial snapshot, or view, of the complete system’s membership.
These protocols are often targeted by malicious actors who
aim to disrupt higher-level protocols. Typically, an adversary
who controls a set of Byzantine nodes attempts to manipulate
how legitimate nodes perceive the presence of Byzantine ones
by increasing their representation in the view of honest nodes.
While state-of-the-art Byzantine-tolerant peer sampling protocols
mitigate this bias, their effectiveness decreases significantly as
the number of malicious nodes increases. This paper introduces
AUPE, the first collaborative Byzantine-tolerant peer sampling
protocol that leverages the presence of trusted nodes, such as
Intel’s SGX capable devices, to collaboratively track the spread
of identifiers in the system and locally debias the representation
of Byzantine nodes. Simulations with 10,000 nodes demonstrate
that AUPE outperforms state-of-the-art solutions, achieving near-
perfect resilience even when faced with an adversary controlling
26% of the nodes. Overall, by including as few as 10% of trusted
nodes, AUPE increases the tolerance of BRAHMS by up to 60%
while limiting the impact of the adversary’s attack, even when
possessing up to 40% of the nodes.

Index Terms—Gossip, Peer Sampling, Distributed System,
Byzantine tolerance, Eclipse Attacks

I. INTRODUCTION

Gossip-based peer sampling is a well-known paradigm used
for building large-scale and dynamic applications, primarily
for information dissemination [1] and overlay management [2].
For instance, they are currently largely employed in public
blockchain systems with several thousands of nodes. These
applications depend heavily on the system’s ability to man-
age and maintain up-to-date information about its members.
Gossip-based protocols have been designed to achieve de-
sirable properties [3] such as scalability, robustness to node
failures, and a low probability of partitions even when nodes
join or leave.

In this context, the role of peer sampling services becomes
crucial. These services aim to maintain knowledge of active
nodes in the system by continuously providing uniformly and
randomly selected samples of node descriptors from the entire
population. Typically, each node has a local knowledge of
the system called a view which consists of a set of neighbor
identifiers or descriptors. This view is periodically updated by
exchanging messages with some of its neighbors. Typically,
during a round of the peer sampling protocol execution, each
node selects at least one peer from its view to push its own

identifier or exchange known identifiers. This process spreads
knowledge of active nodes throughout the system, ensuring
global connectivity.

Peer sampling services face challenges in achieving their
goal of randomly selecting partners. Malicious, i.e., Byzantine,
nodes can manipulate the peer sampling protocol to promote
specific nodes within their member group as honest nodes.
These nodes engage in such behavior to increase their repre-
sentation in the views of correct nodes. As the percentage of
malicious descriptors in the views of honest nodes increases,
the probability of selecting these malicious identifiers for
request exchanges also increases. Consequently, the views
of honest nodes gradually become saturated with malicious
descriptors. An attacker controlling multiple nodes can exploit
this vulnerability to poison the views of honest nodes. This
can lead to scenarios where the views of some honest nodes
consist entirely of these malicious identifiers. As a result,
the poisoned nodes may become isolated from the system,
unable to connect with other honest nodes. Additionally,
malicious nodes can also gain a leading position within the
system, by becoming over-represented in the views of honest
nodes, enabling them to launch network attacks such as DoS
or target higher-level protocols like consensus. A notable
example of this vulnerability is the Eclipse attack in Bitcoin’s
peer sampling protocol [4]. In this attack, Byzantine nodes
exclude honest nodes and control all their connections. This
manipulation enables attackers to present a corrupted version
of the blockchain and even manipulate tokens of victim nodes.

Two distinct approaches have been explored to mitigate the
presence of Byzantine behaviors in peer-sampling protocols.
Protocols such as SPS [5] and SECURE CYCLON [6] employ
fault-detection to identify malicious nodes and produce proofs
of misbehavior to blame and evict the latter nodes from the
system. Other protocols, such as BRAHMS [7], along with
its extensions RAPTEE [8] or BASALT [9], aim to tolerate
Byzantine nodes by masking their behaviors. These protocols
have demonstrated their ability to tolerate a limited number
of malicious nodes in the system, typically never larger than
30% of the system’s population. For example, in BRAHMS,
the views of honest nodes contain 71% and 80% of Byzantine
identifiers as 24% and 28% of the nodes in the system are
malicious, respectively. RAPTEE improves the resilience of
BRAHMS by 21% by leveraging the presence of 10% of trusted
nodes operating on trusted execution environments (TEE), e.g.,
Intel’s SGX [10]. BASALT outperforms BRAHMS in resisting



Byzantine attacks; however, its effectiveness declines once the
proportion of Byzantine nodes exceeds 20%.

We introduce AUPE, yet another extension of BRAHMS
designed to withstand Byzantine attacks even when a signif-
icant number of nodes are compromised. The AUPE protocol
enhances Byzantine resistance by equipping nodes with a
Set Cleaner that consists of two key components: a tracking
component that records the frequency of received identifiers,
and a debiasing component responsible for transforming a
given set of IDs into a set that more closely matches the
expected uniform distribution of the IDs observed thus far.
This reduces the likelihood of frequently encountered nodes
being resampled. Similarly to RAPTEE, AUPE also benefit
from the presence of nodes running on a trusted execution
environment. In this paper, we consider Intel SGX, but any
TEE technology providing similar code integrity and remote-
attestation properties would be a fit for our approach, e.g.,
ARM’s TrustZone [11]. In AUPE, trusted nodes track col-
laboratively and in a distributed fashion the dissemination of
identifiers in the system by merging their respective tracking
component. This merge strategy allows them to quickly gain
a better understanding of the frequencies of node ID adver-
tisement in the overall system and provides a larger basis
of information to operate the debiasing mechanism. Hence,
trusted nodes collectively serve as a source of less biased views
for the rest of the system. Our simulation results including
10,000 nodes show that AUPE achieves near-perfect resilience
with 26% of malicious nodes, where the average percentage
of Byzantine samples in honest nodes’ views converges to the
proportion of malicious nodes in the system.

In section II, we describe the basis of this work, BRAHMS,
our system model and objectives as well as the attack model
of our adversary. In Section III, we describe AUPE and detail
how it complements BRAHMS with its debiasing approach and
Section IV presents the experimental methodology used to
evaluate the performance and resilience of AUPE under dif-
ferent configurations and discusses the results. We review the
state of the art in Section V before concluding in Section VI.

II. BACKGROUND, SYSTEM MODEL AND OBJECTIVES

A. BRAHMS

BRAHMS [7], is designed for large and dynamic systems
prone to Byzantine failures and sybil attacks. With high
probability, BRAHMS prevents an attacker from creating a
partition between correct nodes, and allows each node’s view
to converge to a uniform random draw of all participating
nodes over time. The core ideas of BRAHMS lies in its
two components used by all nodes: a push-pull gossip-based
communication pattern, and a uniform sampler based on
min-wise independent permutations [12]. Through the gossip
component, each node spreads locally known IDs across the
system and maintains a dynamic view V of l1 entries. With
the sampling component, each node maintains a sample list S
of l2 entries uniformly sampled from the received IDs.

Initially, each node has a list that includes node IDs and ad-
dresses obtained from a bootstrap node. Periodically, through

the gossip component, each node selects α × l1 nodes from
its dynamic view V to send push messages containing its
own ID. It also selects β × l1 nodes to send pull-request
messages in order to retrieve their views. At the end of each
communication round, the sample list S is updated via the
sampling component, while the dynamic view V is renewed
by selecting uniformly at random: (i) α× l1 IDs received from
push messages, (ii) β×l1 IDs from pull answers, and (iii) γ×l1
IDs from the sample list (referred to as the history sample),
with α+ β + γ = 1, as shown in Figure 1.
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Fig. 1: BRAHMS view computation

Depicted in figure 2, the sampling component outputs a list
of l2 IDs from a stream of identifiers obtained via push and
pull messages. The component is composed of a set of l2
samplers, each of which consists of a hash function with a seed
selected pseudo-randomly at bootstrap and a locally stored ID.
For each input ID, a sampler stores and outputs the ID that
results in the smallest value from its hash function between
the current ID and the stored one.

Sampler1 Sampler2 Samplerk...

ID stream

ID1 ID2 ... IDkSample list

Fig. 2: BRAHMS sampling component

The four defense mechanisms that prevent partitioning and
allow convergence to uniform sampling are the following:
(i) limited pushes, (ii) attack detection and blocking, (iii) con-
trolling the contribution of pulls versus pushes, and (iv) history
sampling. We detail these mechanisms in the following. (i) An
adversary could forge identities or flood the system with push
requests, leaving correct IDs propagated mainly through pulls
and diminishing their representation exponentially. BRAHMS
assumes a mechanism that limits the message sending rate
of nodes, for example, via computational challenges like
Merkle’s puzzles, virtual currency, etc. (ii) Limiting push
messages prevents a simultaneous attack on all correct nodes
but does not protect against flooding a targeted node. To do
so, BRAHMS blocks dynamic view updates if more than the
expected α× l1 pushes are received. This policy slows down
progress but its expected impact in the absence of attacks
is bounded, and thanks to limited pushes, some nodes make
progress even under attack. (iii) Node views are threatened



by pulls from neighbors more than by adversarial pushes.
Pushes from correct nodes are correct, but pull answers from
correct nodes may contain some identifiers of Byzantine nodes.
Hence, the contribution of pushes and pulls to V must be
balanced. BRAHMS updates V with randomly chosen α × l1
pushed IDs to protect targeted nodes, and β × l1 pulled IDs
to protect the rest. (iv) The attack detection and blocking
technique slows down a targeted attack but cannot prevent it
completely. A node victim of targeted pushes will pull more
IDs from Byzantine nodes, send fewer pushes to correct ones,
causing its system-wide representation to decrease, hence
receiving fewer correct pushes. BRAHMS overcomes such an
attack using a self-healing mechanism by incorporating in the
view an unbiased historical sample of γ × l1 IDs from the
sample list S. Once some correct ID becomes the permanent
sample of the node under attack (or if the node’s ID becomes
a permanent sample of another correct node) the threat of
isolation is eliminated.

B. System model

We consider a system of N active nodes, each identified by
a unique identifier ID and that communicates by exchanging
messages on a routed network. This system runs a gossip-
based peer sampling protocol for peer discovery that operates
periodically in rounds. We assume that the system is at a
time T0 where no nodes join or leave the system. Each node
possesses a local view of l1 entries representing its neighbors.

The system is composed of a fraction f < 1 of malicious
nodes managed by an attacker trying to over-represent itself,
a fraction t of nodes operating on a trusted execution environ-
ment, referred to as trusted nodes, and a fraction h = 1−f−t
of honest nodes following the instructions of the peer sampling
protocol AUPE.

Honest nodes execute AUPE, the extension of the iconic
BRAHMS peer-sampling protocol. AUPE relies on both the
push-pull gossip and sampling components of BRAHMS as
well as on its defense mechanisms. Push messages include
only the sender’s ID, while responses to pull requests contain
the full view of the requested node. AUPE nodes integrate
a local component, coined AUPE’s set cleaner, responsible
for correcting the representation bias in favor of Byzantine
nodes that exist in the sets of received IDs at the end of each
round. Similarly, trusted nodes adopt the same behavior as
honest nodes. In addition, interactions among trusted nodes are
designed to boost their set cleaner and help them better debias
their sets of received IDs, thus acting as source of slightly less
biased membership information for honest nodes.

C. Attack model and design goal

We consider an adversary controlling all Byzantine nodes,
with the goal of undermining the system by manipulating
and increasing honest nodes’ perception of the proportion of
Byzantine nodes. The adversary has access to the system’s
global membership, including Byzantine and correct nodes, but
is unaware of the location or amount of trusted nodes. In the
original BRAHMS paper [7], the authors prove that a balanced

attack, which spreads faulty pushes evenly among correct
nodes, maximizes the expected system-wide fraction of faulty
IDs. Additionally, thanks to its sampling mechanism, BRAHMS
sustains targeted attacks where the adversary tries to partition
the network by targeting a subset of nodes and sending more
pushes than in balanced attacks. As AUPE is built on top of
BRAHMS and inherits its properties, our adversary exclusively
advertises Byzantine IDs to honest ones via answers to pull
requests and evenly balanced push messages.

We rule out Sybil attacks [13] by relying on the Sybil
resilience of BRAHMS that limits the message sending rate
of nodes via computational challenges like Merkle’s puz-
zles, virtual currency, etc. We assume that trusted nodes can
only crash fault. They cannot act maliciously even though
Byzantine IDs can bias their view. Trusted nodes operate on
Intel’s SGX framework, and we trust Intel for the certification
of genuine SGX-enabled CPUs, we also assume that the
code running inside enclaves is properly attested before being
provided with secrets. We assume Byzantine nodes can neither
break cryptographic primitives nor read data available in the
trusted environment of trusted nodes. We also assume that it
is impractical for an adversary to extract secrets from enclaves
using side-channel attacks, having no physical access or means
to colocate a process on a target machine. Communications
between any two nodes, including trusted ones, are ciphered
with symmetric encryption to protect against an eavesdropping
adversary. Finally, we consider that the adversary does not
have global access to communication links in the network that
do not involve itself and cannot, therefore, infer information
from communication patterns.

III. THE AUPE PROTOCOL

A. AUPE set cleaner

In BRAHMS, the view of honest nodes is composed of γ ∗
l1 identifiers from BRAHMS’s history sample. This provides
Byzantine resilience once enough node identifiers have passed
through the sampling component, but only for these γ ∗ l1
entries. The remaining (α+ β)l1 entries are selected directly
from the sets of received identifiers that are biased towards the
representation for malicious node IDs due to the attack led by
Byzantine nodes. To mitigate this problem, AUPE integrates a
Set Cleaner that is responsible for mitigating this bias during
the computation of each node’s view, as depicted in Figure 3,

At the end of each round, the sets of received identifiers
from push and pull requests are injected into the Set Cleaner
of AUPE. The Set Cleaner is composed of two components: a
tracking component that records the occurrences of received
IDs from the beginning of the protocol’s execution, and a
debiasing component responsible for transforming a given
ID set into a set that better matches the expected uniform
distribution of the IDs seen up to that point. The output set is
used to select the required number of identifiers to be used for
the view construction of AUPE. Figure 4 depicts the general
operations of AUPE’s Set Cleaner. In AUPE’s case, the two sets
resulting from the pulled and pushed IDs are passed through
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Fig. 4: Overview of AUPE’s set cleaner

the Set Cleaner, and two sets of α ∗ l1 and β ∗ l1 are created
to fill the push and pull parts of AUPE’s dynamic view.

By reducing the bias introduced by the Byzantine nodes
in its sets, the AUPE node ends up with less biased views.
This, in turn, helps to spread less biased information about
the membership of the system, benefiting other honest nodes.

Tracking component Each node has a tracking datas-
tructure providing the occurrences of received IDs. This can
simply consists of a key-value store where the keys are the
received identifiers and the values of their occurrences (i.e.,
the number of times they were received). Each pushed or
pulled ID feeds this occurrence table throughout the execution
of the protocol. In systems where the memory available on
each node is constrained, AUPE can use count-min-sketches,
which are fixed-size probabilistic data-structures, to drastically
reduce memory footprint. This comes at the cost of a reduced
precision on the identifiers estimated occurrences depending
on the actual size of the latter data structure. Our current
implementation relies on the count-min-sketches described
by Anceaume et al. [14], where the precision reduction is
determined and quantified.

Debiasing component Debiasing is performed at the end
of each round of the protocol. The two sets resulting from
the received pulled and pushed IDs are transformed using
this component. Its algorithm is detailed in Algorithm 1 when
considering a tracking component in the form of a key-value
store Φ. We refer to the approach detailed by Anceaume et
al. [14] when relying on count-min-sketches. We consider a
AUPE node that receives a set σ of IDs at the end of round
r. For each ID in σ, the debiasing component produces an ID
to build the output set σ

′
. The node maintains a local sample

memory Γ of size sm << N . The purpose of this sample
memory is to hold nodes’ IDs that will be selected to create the
output set σ

′
for current and future rounds. When processing

the input set σ, each encountered node ID j is used to update
the node’s occurrence table Φ with its current occurrence count

Φj (line 2). If the sample memory Γ is not already full and
does not contain node j’s ID, it is added to the sample memory
(line 4). If full, the node computes the probability of inserting
node j into the sample memory, denoted as pj (line 6), as the
minimum known occurrence learned so far min divided by the
actual occurrence of node j, Φj . The values min and Φj are
known from the occurrence table maintained in the tracking
component. If selected for insertion in the sample memory
Γ, the ID of node j replaces another existing entry selected
uniformly at random. Finally, an ID is selected uniformly at
random from Γ to fill the output set σ

′
(lines 10 and 11).

Algorithm 1: Local debiasing component for a node
receiving the set of identifiers σ

Input: Input stream σ in round r
Output: Output stream σ

′

Data: Set of sm identifiers Γ
1 for j ∈ σ do
2 Φj ← Φj + 1;
3 if |Γ| < sm then
4 Γ← Γ ∪ {j};
5 else
6 min← minΦj ; pj ← min

Φj
;

7 if rand() ≤ pj then
8 choose unoformly at random k1 from Γ;
9 Γ← (Γ \ {k1}) ∪ {j};

10 choose uniformly at random k2 from Γ;
11 σ

′ ← σ
′ ∪ {k2};

B. Secret collaborative debiasing

We provide AUPE’s trusted nodes the capacity to recognize
their trusted peers hidden in the mass. Further, we enhance
their behaviors compared with honest nodes by allowing them
to exchange and aggregate the information they have collected
on the dissemination of identifiers. In turn, the debiasing
executed by trusted nodes is based on a larger amount of in-
formation, enabling a more accurate cleansing of the received
sets of identifiers. Consequently trusted nodes build less biased
views and serve as a source of more representative samples of
the system’s membership thereby benefiting the correct nodes.

1) Mutual authentication: To allow trusted nodes to verify
beforehand whether they are interacting with other trusted
nodes, we rely on a secure mutual authentication protocol,
executed by all nodes before sending push or pull messages
to a chosen neighbor. We assume that each node possesses
a symmetric secret key. In AUPE, untrusted nodes generate a
random secret key during the initialization phase. In contrast,
trusted nodes share a common secret key that is provisioned
during the remote attestation phase.

The mutual authentication protocol between two nodes A
and B operates as follows. First, A generates a pseudo-random
number rA and sends it to B via a cryptographic challenge.
In turn, B generates another pseudo-random number rB



and computes the hash of the concatenation of rA and rB ,
H(rA · rB), and encrypts it with its own secret key obtaining
[H(rA · rB)]KB

. Then, B sends rB and [H(rA · rB)]KB
to

A. Upon reception, A computes H(rA · rB) and deciphers
[H(rA ·rB)]KB

using its own secret key KA. If the two values
are identical (i.e., A and B share the same secret key), A can
identify B as trusted. Then, A sends [H(rB · rA)]KA

to B.
Like A, B deciphers this encrypted hash using its own secret
key KB and compares it with H(rB · rA). If the two are
equal, B can also identify A as trusted and the protocol’s
execution is successful. Note that in this protocol, if one of
the two considered nodes is untrusted, no information about
the trustworthiness of the trusted node is revealed, keeping the
identity of trusted nodes secret.

2) Remembering trusted peers and aggregating tracking
components: We aim to have trusted nodes function as a
group of actors who track the dissemination of identifiers they
observe, collectively sharing this information to accelerate the
detection of nodes attempting to over-represent themselves.
Ideally, one could devise a collaborative tracking oracle where
all trusted nodes know one another, sharing and using a
single and global tracking component. Although not practically
feasible, this oracle would allow for the instant tracking of
identifier propagation within the system. Essentially, the oracle
represents a configuration in which all trusted nodes merge
their tracking components during each round.

With AUPE, we aim to approximate this oracle by em-
ploying well-known gossip-based aggregation techniques [15].
The key is to merge tracking components in a commutative
and associative manner between subsets of trusted nodes in
every round. Based on the work of Jelasity et al. [15], we
select the average operation as the candidate for merging
tracking components. Eventually, with sufficient merge op-
erations between trusted nodes, they will possess tracking
components that expose the same information. Whether using
a tracking data structure instantiated as a key-value store or a
count-min-sketch, the merge operation involves averaging each
corresponding entry from both structures (each entry from the
same key in the case of key-value stores, or each matrix entry
for count-min-sketches).

Since trusted nodes play a crucial role in accelerating the
debiasing operations of AUPE, each trusted node maintains a
trusted peer list of the last M trusted node identifiers it has
contacted. This list is updated as the trusted node contacts
other trusted peers by replacing the oldest entry with each
newly acquired trusted node identifier. During every round
in AUPE, each trusted node contacts the M peers from their
trusted peer list, sending them its tracking component before
receiving theirs. The trusted node then merges each received
tracking component with its own. To ensure that the identity
of trusted nodes remains undetectable, honest nodes perform
similar operations, e.g., maintaining a random list of M
identifiers and contacting them every round, although they
do not merge as they cannot successfully execute the mutual
authentication protocol.

IV. EVALUATION

We compare the Byzantine-tolerance of AUPE against
its competitor BRAHMS, as well as another extension
of BRAHMS: BASALT [9]. In a nutshell, BASALT employs
the min-wise independent permutation technique of BRAHMS
to build the complete view of each node. Basically, each node
picks l1 different random seeds to define l1 hash functions and
uses the min-wise independent permutation technique to select
node IDs that minimize the functions’ output. Once a BASALT
node sees all the IDs in the system, its view will no longer
change and is considered complete. To add dynamicity to the
network connectivity and continuously generate fresh views,
nodes periodically refresh some of the hash function’s seeds
used in the min-wise independent permutation technique. As
described in the initial BASALT paper, we consider the value
of 1 reset seed per round as the refresh rate, implying that
each seed is reset every l1 round on average.

We used a simulation infrastructure implemented in Rust
to conduct a simulation campaign and assess the extent to
which AUPE, BRAHMS and BASALT provide resilience against
Byzantine nodes attempting to manipulate the view of hon-
est nodes by over-representing themselves. Our simulation
infrastructure is also based on the official implementation
of BASALT, available on GitHub [16]. To assess each pro-
tocol’s resilience, we measure the average proportion of ma-
licious identifiers present in the local views of non-Byzantine
nodes at the end of the simulation runs. We run simulations
over a system composed of N = 10, 000 nodes. Views are
composed of l1 = 160 entries. We set the parameters α, β
and γ to 1/3, and l2 = 160. Byzantine nodes run the attack
described in section II. Each simulated configuration executed
over 200 rounds represents a system with f × N malicious
nodes, t×N trusted nodes, and (1−f − t)×N honest nodes.
Once over, we collect the logs of each node and tear down
the simulator.

Our evaluation of Aupe consider a key-value approach for
the tracking component and a sample memory of size 100
for the debiasing component. To evaluate the effectiveness of
AUPE’s debiasing strategy alone, we first consider a system
with no trusted nodes. We refer to this AUPE variant as Aupe-
simple. We vary the proportion f of Byzantine nodes from
8% to 50% with steps of 2%, and compare Aupe-simple to
its two competitors. Figure 5 depicts the evolution of the
average proportion of Byzantine identifiers in the views of
non-Byzantine nodes for each protocol as f increases.

As expected, Aupe-simple always provides views composed
of fewer Byzantine IDs than BRAHMS. While BRAHMS
generates view polluted with 77% of Byzantine IDs when
f = 26%, Aupe-simple only reaches 46%. This is because
Aupe-simple identifies frequent IDs in the sets of pushed and
pulled IDs and selects them less often than infrequent IDs for
the construction of its push (i.e., α× l1) and pull (i.e., β× l1)
view subparts. Aupe-simple also surpasses BASALT in all
configurations and goes beyond the limit reached by BASALT:
when f > 24%, BASALT output views composed of more
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Fig. 5: AUPE’s Byzantine resilience.

than 90% of malicious IDs, while Aupe-simple keeps the
proportion of Byzantine IDs below, and only reaches about
80% of malicious IDs in its views when f > 32%.

To better understand the impact of AUPE’s debiasing strat-
egy, Figure 6 shows the evolution over time of the proportion
of Byzantine IDs in the views of non-Byzantine nodes for
f = 26%. In addition, Figure 7 shows the evolution of the pro-
portion of Byzantine IDs in the push, pull, and history sample
view subparts for f = 26%. At the end of this configuration’s
simulation, Aupe-simple provides views composed with 46%
of malicious IDs whereas BRAHMS reaches 77%. Detailed in
Figure 7, the push and pull view subparts of Aupe-simple are
significantly less polluted than those of BRAHMS, 31% and
30% of Byzantine IDs, respectively, against 92% and 96%
for BRAHMS. In turn, this also positively impacts the history
sample view subpart, as Aupe-simple nodes are allowed to
discover new honest nodes at a faster pace than in BRAHMS.

A. On the impact of collaborative debiasing

To study the impact of introducing trusted nodes that coop-
erate to track the spread of IDs in the system, we first capture
the potential of this collaborative approach by evaluating the
oracle described in section III-B2, referred to as Aupe-oracle in
the following figures. Additionally, we examine three variants
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Fig. 6: Evolution of proportion of Byzantine samples in the
system, for f = 26%.
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Fig. 7: Evolution in time of Byzantine sample proportion
inside the push view subpart (top figure), pull view subpart
(middle figure) and history sample view subpart (bottom
figure) for f = 26%.
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of AUPE by introducing t = 10%, t = 20% and t = 30%
of trusted nodes in the system, respectively. The number of
remembered trusted nodes, denoted M , is set to a low value
of 10 in order to operate only a limited number of tracking
component merges per round. Figure 8 illustrates the evolution
of the average proportion of Byzantine IDs in the views of
non-Byzantine nodes for each protocol as f increases.



Furthermore, Figure 9 reveals the impact of AUPE’s collabo-
rative debiasing on each view subpart, e.g., push, pull, and his-
tory sample. Comparatively, Aupe-oracle outperforms all other
protocols, providing views with a proportion of Byzantine
samples close to the optimal until f exceeds 40%. However,
while its push and pull view subparts are already optimal, the
history sample view becomes polluted with Byzantine IDs as
they propagate faster than honest and trusted IDs.

As the proportion of trusted nodes increases, AUPE’s vari-
ants become more resilient than Aupe-simple. This is due to
the high effectiveness of the collaborative tracking strategy, as
depicted in Figure 9, the push and pull view subparts of each
of AUPE’s variants become significantly less polluted when
trusted nodes are added to the system.

In Figure 10, the graph illustrates the resilience gains of
AUPE compared to BRAHMS. This refers to the percentage
reduction of Byzantine samples in the view of non-Byzantine
nodes. Overall, for values of f < 24%, AUPE provides up
to 60% resilience gains with regards to BRAHMS. When f
increases from 24% to 40%, the attack led by the adversary
become more effective, resulting in the resilience gains grad-
ually dropping to 0% when f = 40%. In these configurations,
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the specific role played by trusted nodes becomes evident. The
presence of more trusted nodes helps mitigate the reduction
in resilience gains. With f = 30%, incorporating 30%, 20%
and 10% of trusted nodes reduce the proportion of malicious
IDs in AUPE’s views by 34%, 27% and 20%, respectively, in
comparison to BRAHMS.

Figure 11 shows the evolution of the proportion of Byzan-
tine IDs in the view of non-Byzantine nodes over time for
f = 30%. While each of AUPE’s variants initially exhibits
similar behavior, introducing a greater proportion of trusted
nodes helps them gather more information about the spread
of Byzantine IDs over time. This, in turn, enables them to
reduce the proportion of Byzantine samples in their views and
consequently, in the views of honest nodes.

V. RELATED WORK

Peer sampling protocols have been mostly studied in non-
adversarial environments. Cyclon [17], Newscast [18], and
the more generic protocol framework for gossip-based peer
sampling of Jelasity et al. [19] efficiently handle churn and
quickly discover other nodes in the network. A few studies
targeted protocols tolerant to Byzantine behaviors [5], [7]–[9],
[14], [20].

In SPS [5], nodes employ a fault detection mechanism to
identify and blacklist nodes acting maliciously in the system.
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Fig. 11: Evolution of merge for 200 rounds. f = 30%.



This protocol remains, however, vulnerable to rapid flooding
attack as correct nodes cannot identify and blacklist attackers
before being overwhelmed by them and isolated. SecureCy-
clon [20] further investigates fault detection mechanisms to
prevent additional protocol violations.

Instead of relying on detection mechanisms, the seminal
work BRAHMS [7] employs a min-wise permutation tech-
nique [21] to ensure that a subpart of the view is composed
of an actual uniform sample of the set of identifiers each node
has seen. Additional countermeasures to specific Byzantine
attacks complement the approach to prevent node isolation and
eviction. Similarly to BRAHMS, BASALT [9] exploits a greedy
epidemic procedure towards random nodes that are implicitly
defined using min-wise independent permutations. In BASALT,
each node composes its local view from the current state
of this greedy epidemic procedure, extending the use of
BRAHMS’s min-wise independent permutation techniques to
build the entirety of the view instead of only a subpart. The
authors of RAPTEE [8] introduced trusted nodes operating
on trusted execution environments to improve the resilience
of BRAHMS. Communications between the different types
of nodes (honest-to-honest, honest-to-trusted, and trusted-to-
trusted) are designed to accelerate the spread of identifiers
among trusted nodes and slow down their propagation from
honest nodes (possessing slightly more polluted views) to
trusted nodes. As a result, RAPTEE improves the resilience
of BRAHMS by up to 21% when considering 10% of trusted
nodes and 10% of Byzantine nodes in the system. Similar to
our work, trusted nodes in RAPTEE can act as a source of
slightly less biased views of honest nodes. In our work, we
go one step further by enabling collaboration between trusted
nodes, allowing them to share and collectively make use of
the knowledge they obtained on the actual dissemination of
identifiers. Doing so, AUPE outperforms RAPTEE by providing
up to 60% of resilience gains for f ≤ 24% while mitigating
the impact of the adversary’s attack, even when having control
over 40% of the nodes.

VI. CONCLUSION

We introduced AUPE, the first Byzantine-tolerant random
peer sampling protocol that utilizes collaborative trusted debi-
asing. The inclusion of trusted nodes in the system model en-
abled the collaborative tracking of identifier spread within the
system and the local debiasing of Byzantine nodes in the set
of received descriptors. Through simulations involving 10,000
nodes, AUPE demonstrated superior resilience compared to
state-of-the-art solutions. It exhibited near-perfect resilience,
even in the presence of an adversary controlling 26% of the
nodes. By incorporating as few as 10% trusted nodes, AUPE
increased the resilience of BRAHMS by up to 60%, while
mitigating the impact of the adversary’s attack, even when
having control over 40% of the nodes.
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“Lightweight, efficient, robust epidemic dissemination,” Journal of Par-
allel and Distributed Computing, pp. –, 07 2013.

[2] S. Voulgaris, D. Gavidia, and M. van Steen, “Cyclon: Inexpensive
membership management for unstructured p2p overlays,” Journal of
Network and Systems Management, vol. 13, pp. 197–217, 2005.

[3] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM Trans. Comput. Syst.,
vol. 25, no. 3, p. 8–es, aug 2007.

[4] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks
on bitcoin’s peer-to-peer network,” in Proceedings of the 24th USENIX
Conference on Security Symposium, ser. SEC’15. USA: USENIX
Association, 2015, p. 129–144.

[5] G. P. Jesi, A. Montresor, and M. van Steen, “Secure peer sampling,”
Computer Networks, vol. 54, no. 12, pp. 2086–2098, 2010, p2P Tech-
nologies for Emerging Wide-Area Collaborative Services and Applica-
tions.

[6] A. Antonov and S. Voulgaris, “Securecyclon: Dependable peer sam-
pling,” in 2023 IEEE 43rd International Conference on Distributed
Computing Systems (ICDCS). Los Alamitos, CA, USA: IEEE Computer
Society, jul 2023, pp. 1–12.

[7] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer, “Brahms:
Byzantine resilient random membership sampling,” in Proceedings of the
Twenty-Seventh ACM Symposium on Principles of Distributed Comput-
ing, ser. PODC ’08. New York, NY, USA: Association for Computing
Machinery, 2008, p. 145–154.

[8] M. Pigaglio, J. Bruneau-Queyreix, B. Yerom, D. Frey, E. Riviere,
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