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Abstract: Falls and frailty status are often associated with a decline in physical capacity and multifac-
torial assessment is highly recommended. Based on the functional and biomechanical parameters
measured during clinical tests with an accelerometer integrated into smart eyeglasses, the purpose
was to characterize a population of older adults through an unsupervised analysis into different
physical performance groups. A total of 84 participants (25 men and 59 women) over the age of
sixty-five (age: 74.17 ± 5.80 years; height: 165.70 ± 8.22 cm; body mass: 68.93 ± 13.55 kg) performed
a 30 s Sit-to-Stand test, a six-minute walking test (6MWT), and a 3 m Timed Up and Go (TUG) test.
The acceleration data measured from the eyeglasses were processed to obtain six parameters: the
number of Sit-to-Stands, the maximal vertical acceleration values during Sit-to-Stand movements,
step duration and length, and the duration of the TUG test. The total walking distance covered during
the 6MWT was also retained. After supervised analyses comparison (i.e., ANOVAs), only one of
the parameters (i.e., step length) differed between faller groups and no parameters differed between
frail and pre-frail participants. In contrast, unsupervised analysis (i.e., clustering algorithm based
on K-means) categorized the population into three distinct physical performance groups (i.e., low,
intermediate, and high). All the measured parameters discriminated the low- and high-performance
groups. Four of the measured parameters differentiated the three groups. In addition, the low-
performance group had a higher proportion of frail participants. These results are promising for
monitoring activities in older adults to prevent the decline of physical capacities.

Keywords: fall; frailty; sit-to-stand; timed up and go; unsupervised analysis; inertial measurement
unit

1. Introduction

The progressive decline in most physiological systems with aging has a negative
impact on the health and well-being of older adults. The musculoskeletal system is a
major determinant of reduced functional physical capacities, which could lead to frailty
and/or falls. Frailty is defined as “a physiological vulnerability related to the intrinsic
aging of the person” [1] and it affects ~18% of older adults in Europe [2]. The World
Health Organization [3] defined a fall as “an event which results in a person coming to rest
inadvertently on the ground or floor or other lower level”. This phenomenon affects one
third of the persons over the age of 65 [4,5] and fifty percent over the age of 85 [6–9]. The
consequences of frailty or falls are damaging for older adults, impairing their quality of life
and eventually leading to a loss of autonomy or even dependence [10]. The consequences
are also economic, with higher medical costs for frail and falling older adults [11–13]
making frailty and falls major public health concerns.
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Although the two are distinct, there is recent evidence that falls are associated with
frailty in older adults [14,15] and both frailty and falls should be assessed in people
aged 60 years and over. Frailty status is generally evaluated with the physical frailty
phenotype consisting of three questions (i.e., unintentional weight loss, general fatigue,
physical activity level) and two measures of functional physical capacities (i.e., grip strength,
walking speed) [11]. The incidence of falls can be assessed by a simple question like “have
you fallen in the last 12 months?” [16]. To provide a more objective characterization of
the person’s risk of falling, this question can be combined with a measure of functional
physical capacities through different clinical tests that reproduce daily life movements. For
example, among these tests, the 30 s Sit-to-Stand (STS) test measures lower limb muscle
strength and endurance [17], the six-minute walk test (6MWT) assesses walking capacity
in older adults [18], and the Timed Up and Go (TUG) test was developed to evaluate
functional mobility [19]. Although these tests have been used to discriminate fallers from
non-fallers [20–23], it is extremely challenging to determine precisely whether an older
adult is at risk of falling using a simple test [24]. Consequently, multifactorial fall risk
assessment is highly recommended in the literature [21,22,25].

Due to the complexity and non-linearity that characterizes the clinical status of in-
dividuals, an alternative approach was recently used to categorize the frailty or faller
status in older adults from multifactorial measures [26,27]. This approach is based on
unsupervised clustering analysis that aims at identifying similarities in clinical outcomes
within a population. For example, blood analyses (e.g., total cholesterol, fasting glucose,
hemoglobin, hematocrit) and both waist and arm circumferences were measured based on
their capacity to better categorize frailty in older adults [26]. Similarly, the categorization of
the risk of falling was determined from different clinical tests (i.e., TUG, functional reach
test, and handgrip strength) and cardiovascular data (e.g., systolic and diastolic blood
pressure variability ratio and heart rate variability ratio) [27]. The authors obtained four
groups corresponding to physical performance levels that were associated with different
levels of fall risk. Considering the non-linearity observed in frailty development [26], as
well as faller status [27], this approach seems more relevant to categorizing older adults
according to different physical performance levels.

The emergence of wearable technologies [28] now enables the monitoring of daily
life movements by inertial measurement units (IMUs) that acquire data from accelerom-
eters and gyroscopes integrated into everyday objects (e.g., watches, smartphones, etc.).
IMUs have the advantage of being small, low-cost, portable, and user friendly [29]. Some
disadvantages can include a lack of acceptance for fall detection assessment [30,31] and
a lack of consensus on the placement of IMUs. Although most of the studies placed the
IMUs close to the body’s center of mass or at the wrist [32], some studies have suggested
that head-level placement improves movement accuracy for fall detection compared to
wrist [33] or hip and trunk [34] placements. In this context, connected smart eyeglasses
have been developed and validated to monitor Sit-to-Stand movements and spatiotemporal
parameters during walking in healthy young participants [35,36]. However, to date, smart
eyeglasses embedding an IMU have not been used to assess the functional physical capaci-
ties of older adults. Smart eyeglasses are unobtrusive, can be worn comfortably throughout
the day, and provide a non-invasive way to monitor physical capacities. In addition, the
acceptability of these eyeglasses for fall detection assessment in older adults seems higher
than other devices (i.e., watches and necklaces) [37]. It is therefore of major interest to test
the ability of smart eyeglasses to measure the functional and biomechanical parameters of
daily life movements performed in clinical settings.

Therefore, the purpose of this study was to assess functional physical capacities (i.e.,
30 s STS test, 6MWT, and TUG test) in older adults with the use of smart eyeglasses. The
first objective of this study was to assess the dependence of frailty and faller status on
selected functional and biomechanical parameters measured with the eyeglasses. The
second objective was to characterize the population through a clustering approach based
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on these parameters. We hypothesized that participants would be categorized in different
physical performance group levels independently of their frailty or faller status.

2. Materials and Methods
2.1. Particpants

This observational study included a convenience sample of 84 volunteer participants
(25 men and 59 women; aged 74.17 ± 5.80 years, height 165.70 ± 8.22 cm; body mass
68.93 ± 13.55 kg; body mass index 25.07 ± 4.40 kg/m2; mean ± standard deviation). Inclu-
sion criteria: aged 65 years and over, able to walk without any aid (e.g., canes, walkers),
and autonomous in daily living activities. Participants were informed of the experimental
procedures. Informed consent was obtained from all the participants. This study was
approved by the South Mediterranean Protection of Persons Ethics Committee (registration
number: 2015-A01188-41) and conducted according to the revised Declaration of Helsinki
of 2013.

2.2. Experimental Design

Participants were required to attend the laboratory (Plateforme fragilité, Nice Uni-
versity Hospital Center, Nice, France) on a single occasion between October 2020 and
October 2021. To evaluate fall history, a clinician asked the participant “Have you fallen in
the last 12 months?”. Participants were considered fallers if their answer was “yes” [16].
Frailty status was determined from Fried’s frailty phenotype [11] and participants were
classified as robust, pre-frail, or frail. Participants were considered frail when they met at
least three of five frailty criteria (unintentional body mass loss, muscle weakness, general
fatigue, slowed walking speed, and low physical activity). Three functional physical ca-
pacity tests were performed in the same order for all participants: (i) the 30 s Sit-to-Stand
(STS) test, (ii) the 6 min walk test (6MWT), and (iii) the 3 m Timed Up and Go (TUG) test.
The tests were performed when the participants had fully understood the instructions of
each test to ensure each test was carried out correctly (e.g., the experimenter performed
a demonstration and the participants could perform practice trials). In order to address
potential sources of bias associated with the clinical evaluations, only highly skilled and
trained experimenters hired by the University Hospital Center performed the assessment
of the participants’ functional physical capacities. The evaluations performed are used in
clinical routine in the University Hospital Center and standardized realization instructions
were given to the participants. During all tests, participants were equipped with smart
eyeglasses without correction (Ellcie-Healthy, Antibes, France). The experimenter had to
adjust eyeglasses on the nose and behind the ears of the participant and determine that
he/she had clearly understood the instructions before the test. Once equipped with smart
eyeglasses, participants were free to decide whether to continue with the tests or not. All
older adults performed the 30 s STS, the 6MWT, and the 3 m TUG test (i.e., compliance
with evaluations was 100%). In addition, there was no harm associated with these tests to
report in this study.

2.3. Apparatus, Data Collection

The smart eyeglasses used in this study were embedded with an IMU (Inertial Mea-
surement Unit; LSM6DS3-TR; 2.5 mm × 3 mm × 0.83 mm), combining an accelerometer
and a gyroscope in the right temple (Figure 1). The inertial units are 3-dimensional and
are oriented forward along the anterior–posterior y-axis towards the left along the medio-
lateral x-axis and upward along the vertical z-axis. The range of measurement was set
at ±8 g for the accelerometer and ±250◦/s for the gyroscope. The sampling rate of the
IMU was 26 Hz. Eyeglasses were connected to a smartphone (Samsung A5) through a
Bluetooth connection. Raw data from both the accelerometer and the gyroscope were sent
to the mobile application (Research, Ellcie-Healthy, Antibes, France) and were saved on the
smartphone. Data were processed offline with MATLAB scripts (MathWorks, Inc., Natick,
MA, USA, version R2018a) that were created in order to derive the different parameters of
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interest for each test. Before the beginning of each test, participants had to maintain a static
position for 10 s to clearly detect the onset of motion from the accelerometer signal.
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During the 30 s STS test, participants had to perform the maximum possible number
of STS movements with their arms crossed on their chest from a starting position sitting on
a chair (standard height of 45 cm without armrests). During the test, two parameters were
measured with the smart eyeglasses: (i) the total number of complete STS movements [38]
and (ii) the average of the maximal vertical acceleration values recorded during the STS
movements [35]. The peaks of maximal vertical acceleration provided by the IMU were
detected during offline analysis [35] and the number of STS movements realized over the
30 s period was obtained from these peaks.

During the 6MWT, participants had to cover the greatest possible distance in 6 min,
without running, in a 10 m shuttle. Besides the total distance obtained from the number
of shuttles performed [18], two previously validated spatiotemporal parameters were
collected with the smart eyeglasses [36]. During offline analysis, step duration was first
calculated from each step, represented by the temporal difference between two consecutive
maximal vertical acceleration peaks recorded by the smart eyeglasses’ IMU. Second, the step
length was deduced from step duration and the number of steps realized in each 10 m. The
average of all step durations and all step lengths computed was used for statistical analyses.

The 3 m TUG test consisted of standing up from the standardized 45 cm chair, walking
3 m, turning round, walking back the 3 m, and sitting down on the chair. This test was
carried out in two conditions: (i) at a comfortable walking speed and (ii) at the fastest
possible walking speed without running. In both conditions, the ground was flat without
obstacles. The total time to complete the test was obtained during offline analysis thanks
to the IMU of the smart eyeglasses detecting the moments when the participant stood
up and sat down again at the beginning and end of the test (i.e., onset and termination
of movement).

2.4. Statistical Analysis

Through the different physical tests, besides the distance covered during the 6MWT,
six functional and biomechanical parameters were obtained from the smart eyeglasses
for our older adults (i.e., number of STS, maximal vertical acceleration during the STS,
average step duration during the 6MWT, average step length during the 6MWT, TUG time
in comfort condition, TUG time in fast condition). Since this study included a convenience
sample of older adults, there were no missing data. A Shapiro–Wilk test was used to assess
the normality of the data distribution. Participants were allocated to one of two groups,
depending on their fall history (i.e., fallers and non-fallers). The same procedure was carried
out for the frailty phenotype, with participants divided into three groups (i.e., robust, pre-
frail, and frail). Considering the first objective, aiming at assessing the influence of faller
and frailty status on the selected functional and biomechanical parameters measured, we
compared these parameters between the faller and non-faller groups and between the three
frailty groups. Between-group comparisons were performed with one-way ANOVAs for
normally distributed data and with Mann–Whitney U tests (two groups) or Kruskall–Wallis
tests (three groups) for non-normally distributed data. The effect size of the ANOVAs was
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estimated from partial eta square (η2p) values and considered small when ~0.01, medium
when ~0.06, and large when ≥0.14. A post hoc Tuckey HSD test for unequal sample sizes
was used to compare means. Fall history proportion was assessed using k proportions tests
to compare frailty phenotypes.

The second objective was to create physical performance groups from the functional
and biomechanical parameters measured. An unsupervised analysis was performed to
determine the optimal number of clusters and to allocate the participants to the different
groups of physical performance. First, a clustering algorithm was created in Python
(version 2.7.18) based on K-means (unsupervised analysis) [27]. Second, the optimal
number of clusters was identified from the maximum silhouette coefficient [39]. For
cluster determination, the initial centroids in each group were selected randomly, and each
participant was assigned to the closest centroid by calculating the Euclidean distance. The
initial positions were refined during the analysis to create centroids that were the most
spaced in terms of distance from each other, and to have the smallest distance between
participants in the same group to centroids [27]. Participants were then assigned to different
distinct groups of physical performance based on the coefficient score and a performance
equation was obtained through linear regression of the functional and biomechanical
parameters. Demographic data, and the functional and biomechanical parameters of
the performance groups created, were analyzed with one-way ANOVAs for normal data
distribution and with Kruskall–Wallis tests for non-normally distributed data. Sex, fall
history, and Fried’s phenotype proportions were compared using k proportions tests to
compare the different performance groups. Statistica (Statsoft, version 8.0 Tulsa, OK, USA)
and XLSTAT (Addinsoft, version 2022.1, Paris, France) software was used for analyses and
the significance level was set at p < 0.05. Throughout the manuscript, unless specified, data
are expressed as mean ± standard deviation in the tables and figures.

3. Results
3.1. Fall History Groups

The faller group comprised 34 participants (age 74.50 ± 5.94 years; height 166.00
± 8.26 cm; body mass 70.61 ± 14.20 kg; 24 females and 10 males) and the non-faller
group comprised 50 participants (age 73.95 ± 5.76 years; height 165.50 ± 8.27 cm; body
mass 67.79 ± 13.11 kg; 34 females and 16 males). Except for the average step length
(F(1,82) = 4.24, p < 0.05, η2p = 0.05), no significant difference between groups was observed
for any of the variables (Table 1). A post hoc analysis indicated that the average step length
in the faller group tended to be shorter than in the non-faller group (p = 0.06).

Table 1. Functional and biomechanical parameters obtained in the faller and in the non-faller groups
based on fall history.

Faller Group
n = 34

Non-Faller Group
n = 50 p Value

STS: Number in 30 s 10.82 ± 3.42 11.10 ± 3.44 0.72

STS: Average maximal vertical
acceleration (m·s−2) 13.02 ± 2.15 12.84 ± 2.04 0.69

6MWT: Distance covered (m) 410.36 ± 80.69 441.35 ± 70.93 0.07

6MWT: Average step duration (s) 0.48 ± 0.04 0.48 ± 0.05 0.56

6MWT: Average step length (m) 0.65 ± 0.12 0.71 ± 0.12 0.04

TUG: Time comfort (s) 8.87 ± 1.54 9.08 ± 1.73 0.55

TUG: Time fast (s) 7.27 ± 1.74 7.06 ± 1.77 0.54
STS: Sit-to-Stand; 6MWT: six-minute walking test; TUG: Timed Up and Go test. Mann–Whitney U test was applied
for TUG Time fast and ANOVAs were used for all other parameters. p value in bold represents a significant
difference between the faller and non-faller groups.
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3.2. Frailty Phenotype Groups

Based on Fried’s frailty phenotype, 24 participants were robust (age 72.90 ± 5.87 years;
height 164.29 ± 7.96 cm; body mass 65.63 ± 10.68 kg; 20 females and 4 males), 45 were pre-frail
(age 73.75 ± 5.67 years; height 166.00 ± 8.64 cm; body mass 71.34 ± 15.15 kg; 29 females
and 16 males), and the remaining 15 participants were frail (age 77.48 ± 5.20 years, height
167.07 ± 7.48 cm; body mass 67.00 ± 11.74 kg; 9 females and 6 males). According to the frailty
phenotype, the proportion of fallers was 60%, 42.2%, and 25% in the frail, pre-frail, and robust
groups, respectively. No significant difference was found in the proportion of fallers between
groups (χ2 = 4.82, p = 0.09).

Significant differences were observed for the number of STS performed (F(2,81) = 8.30,
p < 0.001, η2p = 0.17), the average maximal vertical acceleration during the STS (F(2,81) = 7.30,
p < 0.01, η2p = 0.15), the total distance covered (F(2,81) = 5.75, p < 0.01, η2p = 0.12), and the
average step length (F(2,81) = 3.61, p < 0.05, η2p = 0.08) during the 6MWT (Table 2). The TUG
time in the fast condition also significantly differed (H(2) = 7.45, p = 0.024). The robust group
performed a higher number of STS (p < 0.01), reached a greater average maximal vertical
acceleration during the STS (p < 0.01), walked a longer distance during the 6MWT (p = 0.01)
with a wider average step length (p < 0.05) than the frail group, and completed the TUG faster
in fast condition (p = 0.02).

Table 2. Functional and biomechanical parameters obtained in the robust, pre-frail, and frail groups
based on Fried’s frailty phenotype.

Robust Group
n = 24

Pre-Frail Group
n = 45

Frail Group
n = 15

STS: Number in 30 s 12.79 ± 3.12 ** 10.82 ± 2.79 8.60 ± 4.12

STS: Average maximal vertical
acceleration (m·s−2) 13.95 ± 1.27 ** 12.82 ± 2.13 11.53 ± 2.17

6MWT: Distance covered (m) 452.76 ± 73.39 ** 434.21 ± 64.04 374.25 ± 91.33

6MWT: Average step duration (s) 0.48 ± 0.05 0.48 ± 0.04 0.50 ± 0.04

6MWT: Average step length (m) 0.72 ± 0.10 * 0.69 ± 0.12 0.62 ± 0.15

TUG: Time comfort (s) 8.39 ± 1.36 9.14 ± 1.81 9.54 ± 1.34

TUG: Time fast (s) 6.64 ± 1.44 * 7.11 ± 1.74 8.09 ± 1.95
STS: Sit-to-Stand; 6MWT: six-minute walking test; TUG: Timed Up and Go test. Kruskall–Wallis test was applied
for fast TUG and ANOVAs were performed for all other parameters. * and ** indicate significant differences
between the robust and the frail groups (p < 0.05 and p < 0.01, respectively).

The average step duration (F(2,81) = 2.14, p = 0.12, η2p = 0.05) and TUG time during the
comfort condition (F(2,81) = 2.74, p = 0.07, η2p = 0.06) did not differ significantly between
groups. Although a significant effect was noted for age (F(2,81) = 3.31, p < 0.05, η2p = 0.08),
a post hoc analysis did not reveal significant differences between groups.

3.3. Physical Performance Groups

To classify participants into different groups, the optimal number of clusters was first
determined through the maximum silhouette score (Figure 2). The K-means clustering
algorithm was used to achieve the best clustering performance through adjusting the
centroids. The recommended number of clusters for the population included in this study,
and the functional and biomechanical parameters analyzed, was three, which allowed us
to create three distinct groups.
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Figure 2. Graph of silhouette method to determine the optimal number of clusters for the functional
and biomechanical parameters measured. The red circle indicates the number of clusters chosen.

To illustrate this classification, in Figure 3, two examples of the distribution of partic-
ipants in the three performance groups is shown, for (i) the distance covered during the
6MWT with the maximum number of STS and (ii) the time to complete the TUG in the
comfort condition with the distance covered during the 6MWT. The participants allocated
to the green group covered a short distance during the 6MWT, performed a low number of
STS, and needed a longer time to complete the TUG in comfort condition. The participants
in the blue group performed more STS than the other two groups, covered a greater distance
during the 6MWT, and completed the TUG in the comfort condition more rapidly. Finally,
the participants in the red group had intermediate values between the two other groups.
A level of physical performance was then assigned for the three groups as follows: (i) the
green group—“low physical performance-LPP”, (ii) the red group—“intermediate physical
performance-IPP”, and (iii) the blue group—“high physical performance-HPP”.
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Figure 3. K-means clustering of the three clusters (n = 84). Representation of the physical performance
between the distance covered in 6 min and the number of Sit-to-Stand (a) and between the TUG time
in comfort condition and the distance covered in 6 min (b). Green dots represent the low physical
performance group (LPP; n = 22); red dots represent the intermediate physical performance group
(INT; n = 39); and blue dots represent the high physical performance group (HPP; n = 23). Black
crosses represent the centroids of each group.

3.3.1. Characteristics of the Three Performance Groups

After the clustering procedure, the three physical performance groups were compared
regarding demographic data, fall history, and Fried’s phenotype.

Significant age differences were found between groups (F(2,81) = 15.91, p < 0.001,
η2p = 0.28). HPP participants were younger than the IPP and LPP participants (p < 0.001;
Table 3). No significant difference was found between the IPP and LPP groups (p = 0.27).
Height (F(2,81) = 2.03, p = 0.14), body mass (F(2,81) = 0.02, p = 0.98), and the proportions of
males and females (χ2 = 1.57, p = 0.46) were not different between groups. The percentage of
fallers in the last 12 months did not significantly differ between the three groups (χ2 = 0.54,
p = 0.76). Regarding frailty phenotype, while no difference was found between groups in
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the proportions of robust (χ2 = 3.83, p = 0.15) and pre-frail (χ2 = 3.46, p = 0.18) participants,
the proportion of frail participants significantly differed (χ2 = 10.82, p = 0.004). The LPP
group had a higher proportion of frail participants compared to both the IPP and HPP
groups (Table 3).

Table 3. Distribution, demographic data, fall history, and Fried’s phenotype of participants in the low
physical performance (LPP), intermediate physical performance (IPP), and high physical performance
(HPP) groups.

LPP IPP HPP

n 22 39 23
Sex (% females) 68% 72% 65%

Age (years) 77.45 ± 4.39 *** 75.12 ± 5.61 *** 69.43 ± 4.29
Height (cm) 164.73 ± 8.15 164.54 ± 7.83 168.61 ± 8.57

Body mass (kg) 68.52 ± 14.76 69.16 ± 13.52 68.94 ± 12.97
Fallers (%) 45.45 41.03 34.78
Robust (%) 18.18 25.64 43.48
Pre-frail (%) 40.91 64.10 47.82

Frail (%) 40.91 10.26 ££ 8.70 ££

ANOVAs were applied on demographic data and k proportions tests were used for sex, fall history, and Fried’s
phenotype comparisons. *** indicates a significant difference with the HPP group (p < 0.001). ££ indicates a
significant difference with the LPP group (p < 0.01).

3.3.2. Physical Capacities of the Three Performance Groups

The number of STS (F(2,81) = 11.08, p < 0.001, η2p = 0.22) and the average maximal
vertical acceleration during the STS (F(2,81) = 13.08, p < 0.001, η2p = 0.24) significantly
differed between the physical performance groups. The number of STS was lower in the
LPP group compared with the IPP (p < 0.01) and the HPP (p < 0.001) groups. No significant
difference was found between the IPP and HPP groups (p = 0.55). The average maximal
vertical acceleration during the STS was significantly higher in the HPP group compared to
the IPP (p < 0.01) and LPP (p < 0.001) groups. No significant difference was noted between
the LPP and IPP groups (p = 0.31) (Figure 4a,b).

The time to complete the TUG significantly differed between groups in both the
comfort (F(2,81) = 27.09, p < 0.001, η2p = 0.40) and fast conditions (H(2) = 55.64, p < 0.001).
The LPP group performed the TUG more slowly than the IPP and HPP in both conditions
(p < 0.001). The HPP completed the test faster than the IPP in comfort (p < 0.05) and in fast
(p < 0.001) conditions (Figure 4c,d).

Significant differences were observed between groups in the distance walked during
the 6MWT (F(2,81) = 240.19, p < 0.001, η2p = 0.86), the average step duration (F(2,81) = 16.74,
p < 0.001, η2p = 0.29), and the average step length (F(2,81) = 57.92, p < 0.001, η2p = 0.59).
Both the distance covered and the average step length were greater in the HPP compared
to both the IPP and the LPP groups (p < 0.001) and in the IPP compared to the LPP groups
(p < 0.001). The average step duration was longer in the LPP compared to both the IPP
(p < 0.01) and HPP groups (p < 0.001). No significant difference was observed between the
IPP and HPP groups (p = 0.13) (Figure 4e–g).

3.3.3. Physical Performance Equation Obtained from the Functional and Biomechanical
Parameters Measured

Clustering the participants into the three physical performance groups from the
functional and biomechanical parameters measured generated a physical performance
equation:

Physical performance = number of STS × (−0.014) + vertical acceleration of STS × 0.010 + distance covered
× 0.009 + step length × (−0.098) + step duration × 0.051 + TUG time fast × 0.002 + TUG time comfort ×

(−0.045) −2.265
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The physical performance score determined with the K-means clustering was signif-
icantly different between the three groups (F(2,81) = 256.42, p < 0.001, η2p = 0.86). The score
was lower in the LPP group (0.23 ± 0.35, p < 0.001) compared with the IPP (1.13 ± 0.18)
and the HPP (2.01 ± 0.29) groups. The score in the IPP group was also lower than the HPP
group (p < 0.001).
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Figure 4. Differences of functional and biomechanical parameters measured between the three
performance groups (n = 84). (a) Number of Sit-to-Stand; (b) mean maximum vertical acceleration
of Sit-to-Stand; (c) time of TUG comfort; (d) time of TUG fast; (e) step duration; (f) step length and;
(g) distance. Times of fast TUG were analyzed through Kruskall–Wallis test and ANOVAs were
used for all other parameters. Significant differences between performance groups are indicated by
horizontal lines and p values.
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4. Discussion

The main objective of this study was to assess the functional physical capacities
of older adults through the measuring of six functional and biomechanical parameters
collected using smart eyeglasses embedded with an IMU (i.e., maximal vertical acceleration
during the STS, number of STS, average step duration and length during the 6MWT, and
TUG time in comfort and fast conditions). To the best of our knowledge, this is the first
study to assess functional and biomechanical parameters with smart eyeglasses in older
adults. As expected, the frailty or faller status of the participants, based on the accepted
definitions used in the literature, is not sufficient to fully characterize the population tested
with the measures performed. In contrast, the clustering-based approach applied in this
study (i.e., K-means) allowed us to categorize the population into three groups of physical
performance. With this approach, the selected functional and biomechanical parameters
differed between groups independently of the participants’ frailty or faller status. However,
even though the faller status did not differ among performance groups, the LPP group had
a higher percentage of frail participants compared to both the IPP and the HPP group.

Based on the question, “have you fallen in the last 12 months?” [16], thirty-four of
our older adults (i.e., ~40%) were considered fallers. From the data collected, only one out
of the seven functional and biomechanical parameters was different between the fallers
and the non-fallers (i.e., step length measured during the 6MWT). The faller group had a
smaller step length than the non-faller group (Table 1). Although this result is consistent
with the literature [40,41], a recent study pointed out that gait spatiotemporal parameters
alone are not sufficient to identify fall risk in older adults [42]. It is well recognized
that falls are multifactorial [24,43] and it is extremely challenging to determine the most
accurate combination of multiple measures of risk [22]. Consequently, the functional and
biomechanical parameters recorded with our smart eyeglasses do not provide a satisfactory
characterization of the population tested based on the “fall” definition chosen in the
present study. In addition, although the participants’ ability to remember a fall was
thoroughly assessed, it cannot be excluded that the participants voluntarily or involuntarily
omit the fact that they have fallen within the last 12 months and would partially bias
our observations.

Considering that frailty is associated with falls in older adults [14,15], the present
study also aimed to characterize the influence of frailty status on the functional and
biomechanical parameters measured. In our population, 18%, 53.5%, and 28.5% participants
were considered frail, pre-frail, and robust, respectively, but lower frailty status was not
associated with a higher percentage of fallers. Although no differences were observed
between the frail and pre-frail groups, five of the seven functional and biomechanical
parameters were better in the robust group compared to the frail group (i.e., number and
average maximal vertical acceleration of STS, distance covered and step length during
the 6MWT, and TUG time in fast condition (Table 2)). Similar to the results obtained
for the “fall” definition, the parameters measured do not discriminate frail from pre-frail
participants. However, most of the parameters were useful in differentiating frail and
robust participants. Regarding the spatiotemporal parameters measured during the 6MWT,
step duration did not differ between groups, although this parameter was previously
reported as a relevant parameter of frailty [44,45]. In contrast, we observed a significant
difference in step time [46] and 6MWT performance [47] between the robust and frail
groups. The two variables measured during the 30 s STS test with the smart eyeglasses
(i.e., number and average maximal vertical acceleration), that differentiate robust and frail
groups, are in agreement with previous observations comparing frail older adults and
middle-aged healthy participants [48]. Finally, the TUG time achieved in the fast condition
permitted the distinction between frail and robust participants [49,50]. Collectively, these
observations indicate that the parameters measured could be used to distinguish frail
and robust participants, but were not sensitive enough to distinguish consecutive frailty
phenotypes (i.e., robust from pre-frail and pre-frail from frail).
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Similar to a previous study using a clustering-based approach to identifying clinical
patterns associated with frailty in a population [26], the unsupervised analysis based on
the parameters measured categorized our older adults into three distinct groups. Since
we performed measures assessing functional physical capacities, the three groups created
represent three physical performance groups (i.e., LPP, IPP, and HPP). Although most
of the measured parameters differed between the three physical performance groups,
some exceptions were observed between two consecutive groups (i.e., LPP with IPP or
IPP with HPP), emphasizing the non-linearity and multifactorial clinical evolution of
aging. One of the most important results of the present study is that all functional and
biomechanical parameters measured differed between the LPP and HPP groups, with the
HPP displaying a better performance than the LPP. In addition, it is worth mentioning that
the proportion of fallers did not differ between these two groups. This result is consistent
with a recent study showing that older adults with a higher functional capacity performed
better than their counterparts with a lower functional capacity, independently of their faller
status [42]. Similarly, here, we do not observe a significant difference in the proportion of
fallers between the LPP and the HPP groups (Table 3). In contrast, the proportion of frail
participants was lower in the HPP (8.7%) compared to the LPP group (40.9%), which is in
agreement with a recent study using a hierarchical cluster analysis to classify participants
into groups of similar characteristics regarding functional performance [51]. In addition,
the age was different between the HPP group and the LPP group [42], the participants of the
HPP group being younger. Unlike other studies using a clustering-based approach [26,27],
we did not include the age of the participant, a possible predictor of our observations, as
a variable in the K-means algorithm. Actually, although taken into account in these two
studies, significant differences in age were still reported between the highest and lowest
frail [26] or fall risk [27] groups as determined via clustering analysis. Altogether, these
observations emphasized the fact that age has a negative impact on the decline in physical
capacities, whether or not it is considered as a variable in a clustering-based approach.
However, other studies did not report a significant influence of age on the frailty status
of their participants [51,52]. Rather, based on the World Health Organization approach
to healthy aging focusing on “function” [53], Dapp et al. [52] recently highlighted that a
hierarchical arrangement of functional physical levels is more determinative than sex or age
in describing community-dwelling persons aged 70 years and over. Along with this study,
our results provide evidence that the functional and biomechanical parameters investigated
could be used in older adults to discriminate low versus high levels of functional physical
performance based on movements encountered in daily life activities and that six of these
parameters can be collected using smart eyeglasses embedded with an IMU.

The outcomes observed for two adjacent groups (i.e., LPP with IPP and IPP with
HPP) slightly differed from those reported between the LPP and HPP groups. First, and
importantly, the proportion of fallers based on fall history was not significantly differ-
ent between the three groups. Second, the LPP group had a greater proportion of frail
participants (40.9%) compared to the IPP (10.3%), but no difference was noted between
the IPP and HPP groups. Third, the age of the participants was similar for the LPP and
IPP groups, whereas the participants of the IPP group were older than those of the HPP
group (Table 3). From the functional and biomechanical parameters measured, six were
significantly better in the IPP group compared to the LPP group (i.e., only the average
maximal vertical acceleration of the STS did not differ between groups). The comparison
of the IPP and HPP groups underlined a significant difference in five parameters (i.e.,
the number of STS performed and step duration during the 6MWT were similar in these
groups). These observations have important clinical implications. For example, during
the 30 s STS test, a low number of Sit-to-Stand movements achieved (i.e., <9) clearly in-
dicates a low level of physical performance, whereas a high value of average maximal
vertical acceleration (i.e., >14 m·s−2) indicates a high level of physical performance. In
addition, the step length and the distance covered during the 6MWT, as well as the time
to perform a TUG test, are the common variables that could discriminate the three levels
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of physical performance. Although important to screen, fall history was not related to the
categorization of the population in the different physical performance groups. However,
being identified as a frail individual using Fried’s frailty phenotype could indicate a higher
probability of having a low level of physical performance, but we suggest complementing
this evaluation with physical functional testing. Overall, the results of the present study
expand our comprehensive understanding of functional decline with aging.

A strength of this study was its categorizing of a population of older adults through a
clustering-based approach using functional and biomechanical variables measured during
clinical tests. Although this approach has been used recently [26,27], to the best of our
knowledge, this is the first time that physical performance groups were created on physical
parameters measured with an IMU integrated into smart eyeglasses. We also obtained
a physical performance equation, based on the selected functional and biomechanical
parameters, that is able to discriminate three different groups of physical performance
among older adults. The clinical meaningfulness is that the physical performance level was
determined from clinical tests and this study conforms to “Healthy Aging”, which is defined
by the World Health Organization “as the process of developing and maintaining the
functional ability that enables well-being in older age”. Finally, this approach incorporating
categorizations by physical performance levels is important in assessing the influence of
physical activity programs in older adults.

This study has some limitations. First, and although many recommendations have
been addressed, this study did not strictly include all the items listed in the STROBE
statement for observational studies. Second, only older adults able to walk without aids
and independent in their daily movements were included, which limits the generalization
of our observations. Thus, the categorization and the equation obtained are specific to
our population, which included 70% female participants. Third, uncontrolled potential
confounders, such as nutritional status, previous injury history, psychological factors (e.g.,
namely “fear of falling”, especially for those who had already fallen), and differences in
physical activity levels, may have contributed to the performances in each clinical test. One
further limitation lies in the completion of the clinical tests performed during a single test
session with standardized instructions (e.g., arms crossed over the chest during the 30 s STS
test) in a laboratory environment. The data obtained are dependent on the participant’s
physical fitness at the time of testing. However, this form of testing reflects the current
practice in clinical settings. Fifth, only the K-means clustering algorithm was considered
in this study for categorizing the assessed population. Thus, future research needs to
examine different clustering-based approaches, as well as a larger cohort of older adults.
Finally, since only smart eyeglasses were used, we cannot ascertain this sensor’s superiority
compared to other sensors located over the body. Nevertheless, considering that smart
eyeglasses are a unobtrusive everyday object worn by more than 90% of people aged
60 years and over [54], and are well-accepted by older adults [37], their implementation in
this population seems relevant and very promising.

This study is intended to be innovative and has several future prospects. First, it would
be interesting to assess a larger cohort of participants with a wider age range to confirm
the relevance of the functional and biomechanical parameters tested. Second, another very
interesting possibility would be to record the functional and biomechanical parameters
in ecological situations such as during daily life movements (e.g., at participants’ homes).
Third, performing a longitudinal study would be interesting for monitoring the evolution of
the physical performance of older adults over time while prospectively recording falls (i.e.,
the smartphone mobile application already includes a fall detection alert system). Indeed,
longitudinal studies are essential for understanding the physical performance changes
associated with aging and smart eyeglasses would be useful in such an experimental design.
Fourth, through the smartphone mobile application developed, smart eyeglasses facilitate
the remote monitoring of physical performance, allowing healthcare professionals and/or
relatives to follow older adults’ physical performance changes. This remote monitoring
is particularly beneficial for older adults living alone or those who have limited access to
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healthcare facilities. Finally, smart eyeglasses have been used and validated for human
activity recognition purposes [55]. They can provide real-time feedback on physical perfor-
mance, allowing older adults to adjust their movements and promoting positive changes in
physical activity behaviors and performances.

5. Conclusions

Our study showed that a clustering-based approach to functional and biomechanical
parameters measured with smart eyeglasses during clinical tests was more relevant in
categorizing older adults in distinct physical performance groups than a classification
based on their frailty or faller status. We have highlighted that four of the measured
parameters (i.e., the step length and the distance covered during the 6MWT and the time
to perform a TUG test in comfort and fast conditions) distinguished the three levels of
physical performance and all the selected parameters distinguished the low and high
physical performance groups. Being able to determine the physical performance levels with
smart eyeglasses through movements encountered in daily life activities is very promising
as a way of monitoring an older adult population in ecological conditions. With the
implementation of machine learning techniques [56] and the use of smart eyeglasses, it
may be possible to identify a potential decline in physical performance and, ideally, to
prevent falls.
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