
HAL Id: hal-04720334
https://hal.science/hal-04720334v1

Submitted on 3 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

An algorithm and a prototype for the dynamic discovery
of e-services.

Mohand-Said Hacid, Alain Léger, Farouk Toumani, Christophe Rey

To cite this version:
Mohand-Said Hacid, Alain Léger, Farouk Toumani, Christophe Rey. An algorithm and a prototype
for the dynamic discovery of e-services.. LIMOS (UMR CNRS 6158), université Clermont Auvergne,
France. 2003. �hal-04720334�

https://hal.science/hal-04720334v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

An Algorithm and a Prototype
for the Dynamic Discovery of E-Services

Mohand Said Hacid1 Alain Leger2 Farouk
Toumani3 Christophe Rey4

Research Report LIMOS/RR03-05
Revisited - July 2003

July 8, 2003

1 LISI, mshacid@lisi.fr
2 France Telecom R&D, alain.leger@rd.francetelecom.com
3 LIMOS, ftoumani@isima.fr
4 LIMOS, rey@isima.fr

Abstract.

In [9] and [10], we have shown that the dynamic discovery of e-services (or web
services) can be reduced to the computational problem of finding all minimal
transversals with a minimal cost of a hypergraph. Here, we propose an algorithm
called computeBCov to achieve this task: it is in fact the classical algorithm to
generate minimal transversals of a hypergraph (given in [13]) which we have
optimized and adapted. We give and theoretically study worst cases for com-
puteBCov. We describe the D2CP prototype in which computeBCov has been
implemented, and, through many tests, show how it behaves on worst cases and
on generated sets of e-services.

Keywords: e-services, web services, discovery, prototype, hypergraphs, transver-
sals

Résumé

Dans [9] et [10], nous avons montré que la découverte dynamique de e-services
(ou services web) pouvait être vue comme la recherche des transversaux mini-
maux de coût minimal dans un hypergraphe. Dans ce rapport, nous proposons
un algorithme appelé computeBCov pour faire ce calcul : c’est une optimisation
et une adaptation de l’algorithme classique de calcul des transversaux minimaux
d’un hypergraphe (donné notamment dans [13]). Nous donnons et étudions de
très mauvais cas pour computeBCov afin d’étudier sa complexité au pire. Nous
décrivons le système D2CP qui implémente computeBCov. Au travers de nom-
breux tests, nous montrons comment ce prototype se comporte sur les mauvais
cas ainsi que sur des cas générés aléatoirement par D2CP .

Mots clés : e-services, services web, découverte, prototype, hypergraphes, transver-
saux minimaux

Acknowledgement / Remerciements

This study is closely linked to the european project MKBEEM: MKBEEM stands

for Multilingual Knowledge Based European Electronic Marketplace (IST-1999-10589,

1st Feb. 2000 - 1st Dec. 2002). Its aim is to provide electronic marketplaces with

intelligent, knowledge-based multilingual services.

1 Introduction

The internet are revolutionizing the way companies interact with their suppliers,
partners and clients. In the last decade, the number and type of on-line services
increased considerably and leads to a new form of automation, namely B2B
and B2C e-commerce. A recent industrial initiative envisions a new paradigm
for electronic commerce in which applications are wrapped and presented as
integrated electronic services (E-services) [1, 2]. An e-service can be defined as an
application made available via the Internet by a service provider, and accessible
by clients [5]. Examples of e-services currently available range from on-line travel
reservation or banking services to entire business functions of an organization.
What makes such a vision attractive is that e-services promise to be capable of
intelligent interaction by being able to discover and negotiate with each other,
compose themselves into more complex services, etc [4, 1].

In this paper, we present an algorithm to achieve the dynamic discovery of
e-services: given a user query and a bunch of e-services expressed in the same
logical language, this algorithm finds the best subsets (or combinations) of e-
services that match the query, according to 2 criteria : the information present
in the query but not in the e-services must be minimized, and the information
present in the e-services and not in the query must also be minimized.

The detailed formalization of this problem is given in [9] and [10]. It shows
that it amounts to compute the minimal transversals with a minimal cost of
a hypergraph, in which the vertices are the e-services and the edges are the
different parts of the query. This is what our algorithm do by proposing an
adaptation and an optimization of the classical algorithm to compute minimal
transversals of a hypergraph [3, 6, 13].

The work presented in this paper is part of the project called MKBEEM5

which aim is to provide electronic marketplaces with intelligent, knowledge-based
multilingual services. In this project, e-services are used to describe the offers
delivered by the MKBEEM platform independently from specific providers. The
algorithm described in this paper allow clients to dynamically discover the avail-
able e-services that best meet their needs, to examine their properties and ca-
pabilities and possibly to complete missing information.

The rest of this paper is organized as follows. Section 2 summarizes the prob-
lem of the dynamic discovery of e-services (detailed in [9] and [10]) to set up the
corresponding algorithmic problem of the computation of minimal transversals
with a minimal cost of a hypergraph. In Section 3, we explain the algorithm we
propose. Section 4 focuses on the implementation of this algorithm. Then in sec-
tion 5, we discuss some experiments we have done. And eventually, we conclude
in Section 6.

5 MKBEEM stands for Multilingual Knowledge Based European Electronic Market-
place (IST-1999-10589, 1st Feb. 2000 - 1st Dec. 2002).

2 Preliminaries

Let us consider an ontology6 that contains the following e-services:
- ToTravel allowing to consult a list of trips given a departure place, an arrival
place, an arrival date and an arrival time,
- FromTravel allowing to consult a list of trips given a departure place, an arrival
place, a departure date and a departure time,
- Hotel allowing to consult a list of hotels given a destination place, the check-in
date, the check-out date, the number of adults and the number of children.

Now, assume we have the following query ”I want to go from Paris to
Madrid on Friday 21st of June, look for an accommodation there for one week
(from 21st of June to 28th of June) and rent a car”. Our goal is to answer
Q with the closest combination of e-services E. Considering our ontology of
e-services, the possibly interesting combinations are: E1 = {Hotel, ToTravel}
and E2 = {Hotel, FromTravel}. To determine the closest to Q, we have to get
and measure the two types of extra information, implied by each combination
wrt Q, and given in Figure 1. For each combination, these two kinds of “extra
information” are:

– the information which is contained in the query Q and not contained in any
combination (cf. Table 1, column Rest), and

– the information contained in a combination and not contained in the query
Q (cf. Table 1, column Missing information).

Solution Rest Missing information
E1 car rental, departure date arrival date, arrival time, number of adults, number

of children
E2 car rental departure time, number of adults, number of children

Fig. 1. Example of extra information.

Continuing with the example, the best combinations are discovered by search-
ing the ones that bring the least possible of extra information with respect to the
query. It is clear that to better meet the user needs, it is more interesting to try
to minimize, in first, the first kind of extra information (i.e., the column Rest).
Here, the extra information of ToTravel is “bigger” than the extra information
of FromTravel. So, the best combination for the query is {Hotel, FromTravel}.
If the Rest of each combination had the same size, then the better combination
would be the one with the least Miss (cf. the column Missing Information).

As detailed in [9] and [10], we can use Description Logics, a family of logical
languages well known in the Knowledge Representation and Reasoning commu-
nity, to describe Q and the e-services (see figure 2).
6 This ontology describes some e-services extracted from the French railways company

(SNCF) web site (http://www.sncf.com).

ToTravel
.
= (≥ 1 departurePlace) u (∀ departurePlace.Location) u (≥ 1 ar-

rivalPlace) u (∀ arrivalPlace.Location) u (≥ 1 arrivalDate) u (∀
arrivalDate.Date) u (≥ 1 arrivalTime) u (∀ arrivalTime.Time)

FromTravel
.
= (≥ 1 departurePlace) u (∀ departurePlace.Location) u (≥ 1 ar-

rivalPlace) u (∀ arrivalPlace.Location) u (≥ 1 departureDate) u
(∀ departureDate.Date) u (≥ 1 departureTime) u (∀ departure-
Time.Time)

Hotel
.
= Accommodation u (≥ 1 destinationPlace) u (∀ destination-

Place.Location) u (≥ 1 checkIn) u (∀ checkIn.Date) u (≥
1 checkOut) u (∀ checkOut.Date) u (≥ 1 nbAdults) u (∀
nbAdults.Integer) u (≥ 1 nbChildren) u (∀ nbChildren.Integer)

Q
.
= (≥ 1 departurePlace) u (∀ departurePlace.Location) u (≥ 1 ar-

rivalPlace) u (∀ arrivalPlace.Location) u (≥ 1 departureDate)
u (∀ departureDate.Date) u Accommodation u (≥ 1 destina-
tionPlace) u (∀ destinationPlace.Location) u (≥ 1 checkIn) u
(∀ checkIn.Date) u (≥ 1 checkOut) u (∀ checkOut.Date) u car-
Rental

Fig. 2. Logical representation of the e-services and the query Q.

From the logical representation of the e-services and the query, a hypergraph
can be constructed (see figure 3) where the vertices are derived from the e-
services, and the edges are derived from the atomic parts of Q.

Then, as it is shown in [9] and [10], finding the closest combinations of e-
services amounts to finding the minimal transversals with a minimal cost of the
generated hypergraph.

3 Algorithm

In this section we give an algorithm, called computeBCov, for computing the
minimal transversals with minimal cost of the hypergraph ĤTQ which is the
hypergraph built as shown in previous section from the ontology (or ”terminol-
ogy”) T and the query Q. The problem of computing minimal transversals of
an hypergraph is central in various fields of computer science [6]. A few algo-
rithms have been designed to solve this problem (see section 3.4). In our case,
the problem is slightly different: we want to compute the minimal transversals
with a minimal cost. Thus we propose an adaptation of the classical algorithm
to compute minimal transversals based on a combinatorial optimization tech-
nique called branch-and-bound. In addition, we propose a new way to generate
the minimal transversal candidates which is an optimization w.r.t. the classical
algorithm.

So, in section 3.1, we first explain the classical algorithm to compute minimal
transversals of a hypergraph. In section 3.2, we present the optimization in the
generation of the minimal transversal candidates. And finally, in section 3.5, we

w(�1departurePlace)
w(�departurePlace.Location)
w(�1arrivalPlace)
w(�arrivalPlace.Location)VToTravel VFromTravel

w(�1departureDate)
w(�departureDate.Date)

wAccommodation
w(�1destinationPlace)
w��destinationPlace.Location)
w(�1checkIn)
w��checkIn.Date)
w(�1checkOut)
w��checkOut.Date)

The only minimaltransversal

wcarRental
(empty edge) VHotel

Fig. 3. Hypergraph bHTQ built from the logical representation of the e-services (the
ontology T) and Q.

present the Branch and Bound adaptation of the classical algorithm, which leads
directly to our algorithm computeBCov.

3.1 Classical incremental approach[3, 13, 6]

Let us first recall some useful definitions regarding hypergraphs.

Definition 1. hypergraph and transversals [6]
A hypergraph H is a pair (Σ,Γ) of a finite set Σ = {v1, . . . , vn} and a set
Γ = {e1, . . . , em} of subsets of Σ. The elements of Σ are called vertices, and
the elements of Γ are called edges.
A set T ⊆ Σ is a transversal of H if for each ε ∈ Γ , T ∩ ε 6= ∅. A transversal T
is minimal if no proper subset T ′ of T is a transversal. The set of the minimal
transversals of an hypergraph H is noted Tr(H).

To compute minimal transversals of a hypergraph H, the classical way is to
start from the minimal transversals set of H’, where H’ is equal to H minus one
of its edges. Then the computation is clearly incremental: to compute minimal
transversals of a hypergraph H with one more edge E than another hypergraph
H’ for which minimal transversals are known, there are two steps (see algorithm
1 below):

– step 1 (line 3 of algorithm 1): the generation of a set of candidates by compu-
tation of all possible unions between one transversal X of H’ and one vertex
e of E (we recall that both X and E are vertices sets),

– step 2 (line 4 of algorithm 1): the pruning of non minimal candidates, ie the
candidates in which at least one other candidate is included.

Algorithm 1 Classical algorithm to compute minimal transversals of a hyper-
graph (see [13])
Require: A simple hypergraph H on a set R of vertices
Ensure: The edges of the hypergraph Tr(H) which are the minimal transversals of H
1: Tr:= {Ø};
2: for all edge E ∈ H do
3: Tr := {X∪{e}|X ∈Tr and e∈E};
4: Tr := {X∈ Tr| there is no set Y ∈ Tr with Y⊂X};
5: end for

So, at each iteration, many candidates are generated, and then only a few
(the minimal ones) are kept at the end of the iteration. Thus, the idea of the
optimization presented in the next section is to find a way, at each iteration, to
only generate minimal candidates so that the pruning phase become useless.

3.2 Optimization in the candidates generation step

In this section we bring a theorem (theorem 1) which gives a necessary and
sufficient condition that characterizes transversal candidates that are not min-
imal. So it allows us to derive algorithm 2 from algorithm 1: algorithm 2 is an
optimization of the classical algorithm in that there is no pruning step anymore
and that only minimal transversals are generated at each iteration. Of course
the generation step is then more complicated.

Theorem 1. Let H be an hypergraph and its associated set of minimal transver-
sals Tr(H) = {Xi | i ∈ {1, ..,m}}. Let e = {cj | j ∈ {1, .., n}} be an extra edge
of H. Let H′ = H ∪ e.
∀i ∈ {1, ..,m} it holds:

a) if Xi ∩ e 6= ∅:
∀j ∈ {1, .., n}:
• (cj 6∈ Xi ∩ e)→ (Xi ∪ {cj} is a transversal of H′ that is not minimal)
• (cj ∈ Xi ∩ e)→ (Xi ∪ {cj} = Xi is a minimal transversal of H′)

b) if Xi ∩ e = ∅:
∀j ∈ {1, .., n}:
(Xi∪{cj} is a transversal of H′ that is not minimal)↔ (∃Xk ∈ Tr(H) | Xk∩
e = {cj} and Xk \ {cj} ⊂ Xi)

Proof. a): straightforward.
b): we recall (1) Xi ∩ e = ∅, (2) Xi ∈ Tr(H), (3) H′ = H ∪ e and (4) cj ∈ e.
Let (∗) = Xi ∪ {cj} is a non minimal transversal of H′.
Let (∗∗) = ∃Xk ∈ Tr(H) | Xk ∩ e = {cj} and Xk \ {cj} ⊂ Xi. Let’s note
tr(H) the set of all transversals of H (recall that Tr(H) is the set of all minimal
transversals of H).

(∗) (1,2,3)⇔ ∃Y | Y ∈ Tr(H′) and
Y ⊂ Xi ∪ {cj}

(1,2,3,4)⇔ ∃Y | Y ∈ Tr(H′) and
cj ∈ Y and
Y \ {cj} ⊂ Xi

⇔ ∃Y | ∀e′ ∈ H′, Y ∩ e′ 6= ∅ and
∀cy ∈ Y, Y \ {cy} 6∈ tr(H′) and
cj ∈ Y and
Y \ {cj} ⊂ Xi

⇔ ∃Y | ∀e′ ∈ H′, Y ∩ e′ 6= ∅ and
Y \ {cj} 6∈ tr(H′) and
∀cy ∈ Y, cy 6= cj , Y \ {cy} 6∈ tr(H′) and
cj ∈ Y and
Y \ {cj} ⊂ Xi

(2,3)⇔ ∃Y | ∀e′ ∈ H′, Y ∩ e′ 6= ∅ and
Y \ {cj} 6∈ tr(H) and
∀cy ∈ Y, cy 6= cj , Y \ {cy} 6∈ tr(H′) and
cj ∈ Y and
Y \ {cj} ⊂ Xi

(3,4)⇔ ∃Y | ∀e′ ∈ H′, Y ∩ e′ 6= ∅ and
Y \ {cj} 6∈ tr(H) and
∀cy ∈ Y, cy 6= cj , Y \ {cy} 6∈ tr(H) and
cj ∈ Y and
Y \ {cj} ⊂ Xi

(3,4)⇔ ∃Y | ∀e′ ∈ H, Y ∩ e′ 6= ∅ and
Y \ {cj} 6∈ tr(H) and
∀cy ∈ Y, cy 6= cj , Y \ {cy} 6∈ tr(H) and
cj ∈ Y and
Y \ {cj} ⊂ Xi

⇔ ∃Y | Y ∈ Tr(H) and
cj ∈ Y and
Y \ {cj} ⊂ Xi

(1,4)⇔ ∃Y | Y ∈ Tr(H) and
Y ∩ e = cj and
Y \ {cj} ⊂ Xi

⇔ (∗∗)

Proposed algorithm for the minimal transversals generation
The algorithm 2 presented below is an improvement of the classical algorithm

1 based on theorem 1.

Another trivial improvement is, at the beginning of the algorithm, to put
in Tr all vertices that are in 1-vertex edges, since these vertices belong to all
transversals.

Algorithm 2 Improvement of the classical algorithm to compute minimal
transversals of a hypergraph
Require: A simple hypergraph H on a set R of vertices
Ensure: The edges of the hypergraph Tr(H) which are the minimal transversals of H
1: Tr := {E| E is a 1-vertex edge of H};
2: for all edge E ∈ H| |E| ≥ 2 do
3: Trnp := ∅;
4: Tr1p := ∅;
5: Trnotp := ∅;
6: for all X ∈ Tr do
7: I := E ∩X;
8: if |I| ≥ 2 then
9: Trnp := Trnp ∪ {X};

10: else if |I| = 1 then
11: Tr1p := Tr1p ∪ {(X, I)};
12: else
13: Trnotp := Trnotp ∪ {(X,E)};
14: end if
15: end for
16: for all (X, I) ∈ Tr1p do
17: for all (Y,E) ∈ Trnotp|X\I ⊂ Y do
18: E := E\I ;
19: end for
20: end for
21: Tr := Trnp;
22: for all (X, I) ∈ Tr1p do
23: Tr := Tr ∪ {X};
24: end for
25: for all (Y,E) ∈ Trnotp do
26: for all vertex s ∈ E do
27: Tr := Tr ∪ {Y ∪ {s}};
28: end for
29: end for
30: end for

Algorithms 1 and 2 allow to compute minimal transversals of a hypergraph.
Our problem is to compute minimal transversals with a minimal cost of a hy-
pergraph. So in section 3.5, we will see that we can adapt algorithms 1 and 2

to this problem via the adding of a combinatorial optimization technique called
Branch and Bound: we have called the obtained algorithm computeBCov.

But before, in the next section, we will discuss about the complexity of al-
gorithm 2, and compare it with algorithm 1 in worst cases.

3.3 Complexity of algorithm 2

Number of minimal transversals In this section, we want to evaluate the
optimization we have proposed in the last section for the computation of minimal
transversals w.r.t. the classical algorithm. The theoretical complexity of this
problem is not yet known. Of course, it is well known that there can be an
exponential (with respect to the input size) number of minimal transversals in a
hypergraph: for example, if there are m edges of 2 vertices in a hypergraph H,
knowing that each edge has 2 vertices that are only in this edge (so there are
n = 2 ∗m vertices), then the number of minimal transversals will be 2m. So the
real theoretical problem is whether there exists an output-polynomial algorithm
(that is polynomial with respect to the combined size of the hypergraph and the
number of minimal transversals. Up to our knowledge, the best theoretical time
bound is given in [14], where it is shown that the generation of the transversal
hypergraph can be done in incremental subexponential time kO(logk), where k is
the combined size of the input and the output.

With theorem 1, we know a way to generate at each iteration only the minimal
transversals of the hypergraph built with the edges already examined. So it is
natural to think that theorem 1 could give us a way to evaluate the number of
minimal transversals generated at each iteration and so the global number of
minimal transversals. That would be very useful to determine the complexity of
algorithm 2 with respect to the output size.

Unfortunately, it seems that theorem 1 is not sufficient to derive such infor-
mation about the complexity of algorithm 2. Indeed, the study of many examples
allows us to do the following remarks:

– A 1-persisting can make non-minimal 0,1 or 2 candidates built from a non-
persisting (we don’t know if there is an upper bound).

– It can happen that all candidates generated by a non-persisting may be
non-minimal. That means that the number of minimal transversals gener-
ated at iteration i can be smaller than the number of thoses generated at
iteration i−1. This implies that it is difficult to evaluate the number of min-
imal transversals that will be generated at i knowing the number of those
generated at i− 1.

However, through these examples, it seems (but NOTHING is proven) that
two different 1-persistings cannot make non-minimal a same candidate built
from a non-persisting. If it were true, it could be a good start point towards an
evaluation of the number of minimal transversal generated at each iteration.

Worst cases for algorithms 1 and 2
We present now a way to construct worst cases for both algorithms 1 and

2, based on an estimation of the numbers of inclusion tests and transversal
generations at each iteration. We give examples of hypergraphs that are worst
cases for both algorithms.

Suppose we have an hypergraph H with m edges and n vertices. We will
examine two sorts of operations:

– The inclusion test between two sets of vertices: as the maximum number
of vertices there can be in a set of vertices is n, then testing an inclusion
between two vertices sets is O(n2) if sets are not supposed to be ordered
(O(n) if they are ordered). As the computation of an intersection between
two sets of vertices has the same complexity as an inclusion test between the
same two sets, then we will count together inclusion tests and intersection
computations.

– The generation of a new transversal as the union between an existing transver-
sal (generated at iteration i− 1) and a vertex of the edge ei examinated at
iteration i: this operation is O(n) if we suppose that we have to test that the
vertex that will be added is not already in the existing transversal (O(1),
that is constant else).

To cope with our implementation in which inclusion tests are O(n2) and gener-
ations are O(n), we can say that there is a factor n between an inclusion test
and a transversal generation.

Now, let xi−1 be the number of minimal transversals at the end of iteration
i− 1. At iteration i, the edge ei is examinated.

At each iteration, algorithm 1 works in two steps:

– the generation step: the number of transversals that are generated is always
xi−1 ∗ |ei|,

– the pruning step: to identify the minimal transversals, it is mandatory to
test whether each generated transversal is included in each other generated
transversal. So the number of inclusion tests is O((xi−1 ∗ |ei|)2), with |ei| =
O(n).

So it is clear that the worst case is the one where each edge of the hypergraph
has vertices that are only in this edge. It is the previously evoked case where
there is an exponential number of minimal tranversals. This number is obviously
O(nm).

Example 1. An example, with 13 edges and 2 vertices by edge (so 26 vertices),
we can construct the following hypergraph:

H1 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}, {13, 14}, {15, 16}, {17, 18}

{19, 20}, {21, 22}, {23, 24}, {25, 26}}

and then the set Tr(H1) of all the minimal transversals of H is built with
213 = 8192 minimal transversals. For algorithm 1, the number of inclusion tests

is:
13∑
i=1

2i ∗ (2i − 1) = 89462102

The way algorithm 2 works is a little bit more complicated. At iteration i,
there are three steps:

– Step 1: the intersection between the xi−1 minimal transversals generated
at iteration i − 1 and the |ei| vertices of edge ei is computed in order to
determine for each minimal transversal generated at iteration i − 1 if it is
a 1-, n- or not-persisting at iteration i. Let respectively ri, si and ti be the
number of 1-, n-, and not-persisting at iteration i.

– Step 2: according to theorem 1, each vertex of ei that makes a transversal 1-
persisting has to be removed from that 1-persisting in order to test the strict
inclusion between this 1-persisting minus this vertex and each not-persisting.
So this is a step of inclusion tests.

– Step 3: each not-persisting generates some new minimal transversals with a
maximum of |ei| new minimal transversals by not-persisting.

In order to build a worst case, as intersection computations (that is step 1) are
mandatory, the only way is to maximize both the number of inclusion tests in
step 2 and transversal generations in step 3. As we have seen before, an inclusion
test is more expensive than a generation, but in order to have the most inclusion
tests possible during the execution, we need to have a lot of transversals at each
iteration, so their number must also be maximized.

First it seems obvious to say that to maximize both numbers (inclusion tests
and transversal generations), the number si of n-persisting at each iteration has
to be zero. Indeed if si = 0, ri + ti will be maximum, and so the number of
inclusion tests and transversal generations will be greater.

If we try to maximize the only number of inclusion tests, we have to remark
that the number of inclusion tests at iteration i is always ri ∗ ti. As si = 0 and
ri + ti = xi−1, then it is easy to show that the number of inclusion tests will be
the greatest if and only if:

if xi−1 is even, then ri = ti = xi−1/2

if xi−1 is odd, then ri = bxi−1/2c and ti = dxi−1/2e

or ti = bxi−1/2c and ri = dxi−1/2e

So we can say that the maximal number of inclusion tests, for iteration i, is
O(x2

i−1).
If we try to maximize the only number of transversal generations, then it is

the same remarks as those for algorithm 1: the worst case is the one where the
total number of minimal transversals is exponential according to the input size
(O(nm)).

So, in order to construct a worst case for algorithm 2, we have to build a
hypergraph that has an exponential number of transversals and such that, at
each iteration i of algorithm 2, there is no n-persisting, and there are as many
1-persisting as not-persisting.

Example 2. As we can see in figure 4, the following hypergraph follows near
exactly these recommandations:

H2 = {{1, 2, 3, 4}, {3, 4, 5, 6}, {5, 6, 7, 8}, {7, 8, 9, 10}, {9, 10, 11, 12}, {11, 12, 13, 14},

{13, 14, 15, 16}, {15, 16, 17, 18}, {17, 18, 19, 20}, {19, 20, 21, 22}, {21, 22, 23, 24},

{23, 24, 25, 26}, {25, 26, 27, 28}}

The numbers of 1-, n- and not-persisting and the number of transversals
evolves as shown in figure 4. As we can see,H2 is nearly a worst case for algorithm

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of 1-persisting 0 2 4 4 16 24 48 112 192 416 832 1600 3328
Number of n-persisting 0 0 0 0 0 0 0 0 0 0 0 0 0

Number of not-persisting 1 2 2 8 12 24 56 96 208 416 800 1664 3264

Number of min transversals 4 6 12 28 48 104 208 400 832 1632 3264 6592 13056

Fig. 4. Evolution of algorithm 2 on H2.

2 because the total number of minimal transversals is exponential according to
the input size and at each iteration there are nearly as many 1-persisting as
not-persisting.

Example 3. Now, figure 5 compare number of inclusions tests in the executions
of algorithms 1 and 2 for H1 and H2.

Figure 6 sums up the different results discussed in this section for the worst
cases of algorithms 1 and 2.

Before seeing how to using algorithm 2, we first references a list of papers
that focus on the problem of minimal transversals.

3.4 Minimal transversals bibliography

The problem of computing minimal transversals of an hypergraph is central in
various fields of computer science [6, 7]. The precise complexity of this problem
is still an open problem. In [14], it is shown that the generation of the transversal
hypergraph (i.e. the set of all minimal transversals) can be done in incremental
subexponential time kO(log(k)), where k is the combined size of the input and the
output. To our knowledge, this is the best theoretical time bound for the problem

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13

of minimal
transversals for
H1

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

of inclusion
tests for algo 1
on H1

2 12 56 240 992 4032 16256 65280 261632 1047552 4192256 16773120 67100672

of inclusion
tests for algo 2
on H1

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

of minimal
transversals for
H2

4 6 12 28 48 104 208 400 832 1632 3264 6592 13056

of inclusion
tests for algo 1
on H2

12 30 132 756 2256 10712 43056 159600 691392 2661792 10650432 43447872 170446080

of inclusion
tests for algo 2
on H2

4 10 20 60 240 680 2896 11152 40768 174688 668864 2668992 10875648

Fig. 5. Number of inclusion tests.

candidates
generations

tests inclusions and inter-
section computations

of minimal transversals at
the end of the iteration

Algorithm 1 xi−1 ∗ |ei| (xi−1 ∗ |ei|)2 xi = xi−1 ∗ |ei|
Algorithm 2

xi−1
2
∗ |ei| xi−1 +

x2
i−1
4

xi =
xi−1

2
∗ (|ei|+ 1)

Fig. 6. Critical values at each iteration in worst cases for algorithms 1 and 2.

of the generation of the transversal hypergraph. Other important complexity
results can be found in [8].

In an algorithmic point of view, the first and classical algorithm (algorithm
1 taken from [13]) is derived from a property on hypergraph transversals given
in [3] and in [6]. Our proposition, algorithm 2, is an optimization of this clas-
sical algorithm. Another optimization of the classical algorithm is proposed in
[11]: in that paper, a property called ”appropriate node” is given that allows
to generate only minimal candidates. Thus, appropriate nodes and our theo-
rem 1 about the persistings have the same role. In addition, appropriate nodes
provide the interesting feature of allowing the generation of transversals in a
depthfirst manner, thus saving a lot of space used during the execution of the
algorithm. The counterpart is that the computation of appropriate nodes seems
to be time-consuming.

Two other approaches to compute minimal transversals have been proposed
which have no link with the classical algorithm. In [12], a levelwise strategy is
used to compute minimal transversals. This technique is efficient if the average
cardinality of the minimal transversals is reduced. For other cases, it is very time-
consuming. In [15] a depth-first enumeration of the vertices, based on the lectic
order, is achieved: this heuristic seems to give better results than the previous
algorithm, due to a limited space search and so a limited memory usage.

3.5 The computeBCov algorithm

In this section, we present the algorithm computeBCov. computeBCov computes
the transversals with a minimal cost of the hypergraph ĤTQ.

Knowing algorithms 1 and 2, the naive approach to compute minimal transver-
sals with a minimal cost of ĤTQ would consist in computing all minimal transver-
sals of ĤTQ, evaluating their costs and then picking those which have the lowest
cost.

Instead, computeBCov uses the iterative structure of algorithm 1 and 2.
Indeed, at each iteration, once the minimal transversals have been computed,
an additional pruning criteria is used to reduce the number of these minimal
transversals at this iteration, while ensuring that the minimal transversals with
a minimal cost are still computable from those remaining minimal transversals.

The main idea behind computeBCov is to use a Branch-and-Bound like enu-
meration of transversals to prune amongst minimal transversals those which will
not generate transversals with a minimal cost. At the beginning of computeBCov
(line 3), a simple heuristic is used to efficiently compute a cost of an apriori good
transversal (i.e., a transversal expected to have a small cost). This is carried out
by adding, for each edge of the hypergraph, the cost of the vertex that has the
minimal cost. The resulting cost is stored in the variable CostEval. As we have,
for any set of vertices X = {VSi}:

cost(X) = |MissEX (Q)| ≤
∑
i |MissSi(Q)| =

∑
VSi∈X

cost({VSi})

the evaluation is an upper bound of the cost of a feasible transversal. Then,
at each iteration, after the generation of the minimal transversals (line 5), we
can eliminate from Tr any minimal transversal that has a greater cost than
CostEval (line 8 and line 9), since that candidate cannot lead to a transversal
that is better than what we already know. Then, from each candidate transversal
that remains in Tr, we compute a new evaluation for CostEval by considering
only remaining edges (line 11). If one of these new evaluations is strictly lower
than the current evaluation, we replace CostEval by this new evaluation (lines
12 and 13).

At the end of the algorithm, each computed minimal transversal X ∈ Tr is
translated into a concept EX which constitutes an element of the solution to the
BCOV(T , Q) problem.

3.6 The CostEval computation policy

The Branch and Bound optimization technique implies that a new evaluation of
an a priori good transversal has to be computed at each iteration of algorithm
3 (cf line 11). The principle is the same as the one explained in section 3.5 to
compute the first evaluation of an a priori good transversal: to the current cost
of the current transversal at iteration i (stored in the variable RealCost), we
add the cost of the vertices that have the lowest cost for all edges that have
not been taken into account yet. This is the CostEval computation policy 1. In

Algorithm 3 computeBCov

Require: An instance BCOV(T , Q) of the best covering problem.
Ensure: The set of the best covers of Q using T .
1: Build the associated hypergraph bHTQ = (Σ,Γ ′).
2: Tr ← ∅.
3:
CostEval←

X

e∈Γ ′
min
VSi∈e

(|MissSi(Q)|);

4: for all edge e ∈ Γ ′ do
5: Tr ← {minimal transversals generated as proposed in algorithm 2}
6: for all minimal transversal X ∈ Tr do
7: RealCost← |MissEX (Q)|;
8: if RealCost > CostEval then
9: Tr ← Tr \X;

10: else if RealCost < CostEval then
11:

Eval← RealCost+
X

f∈Γ ′| f∩X=∅

min
VSi∈f

(|MissSi(Q)|);

12: if Eval < CostEval then
13: CostEval← Eval;
14: end if
15: end if
16: end for
17: end for
18: for all X ∈ Tr such that |MissEX (Q)| = CostEval do
19: return the concept EX .
20: end for

fact in algorithm 3, there is a modified version of policy 1: instead of adding the
cost of the vertices that have the lowest cost for all edges that have not been
taken into account yet, we add these costs only for edges that have not been
taken into account yet and that have an empty intersection with the current
transversal, because other edges are obviously covered by this transversal. This
is policy 2. It is obvious that policy 2 implies that the values of CostEval will
be at least as good as in policy 1, and often better (lower). So with policy 2,
the Branch and Bound technique will be more efficient. However, policy 2 needs
some intersection computations. As it is not a priori clear which policy will give
the better overall results, we have implemented both. Results will be given in
section 5. In fact, we will see that policy 2 is generally better.

4 Prototype

In this section we present the Java prototype in which computeBCov has been
implemented. We have called this system D2CP , for ”Dynamic Discovery of
Concepts Prototype”. After the presentation of D2CP capabilities (section 4.1),
we will see how D2CP helps the user in generating ontologies (section 4.2), in
running different algorithms to discover e-services (section 4.3) and in displaying
results (section 4.4).

4.1 Overview of D2CP

The purpose of this system is to be a platform for testing the computeBCov
algorithm. The main functionalities of D2CP are the following:

– It allows the user to generate random acyclic terminologies of e-services.
These are generated from DTD files and from parameters given by the user
via D2CP ’s interface. These generated terminologies are then stored as XML
files. See section 4.2.

– It allows the user to search the best covers of a query Q using:
• its own terminologies,
• terminologies generated by D2CP (in order to test the computation on

large sets of e-services).
See section 5.

– It allows the user to run different versions of the best covers computation
algorithm, which are of course computeBCov but also any algorithm that
can be derived from algorithm 1 and 2. See section 4.37.

– It allows the user to run these algorithms:
• with a precise tree-like trace, which is very convenient to verify the exe-

cution, and very didactic in order to understand how they work,
• with time measures in order to compare the different algorithms.

See section 5.

Figure 7 sums up the functionalities of the system and figure 8 shows the
graphical user interface of D2CP .
7 From now the name computeBCov will stand for the algorithm that is detailed in

section 3.5, but also for any variant of it.

Setting of parameters:
- Max number of e-sevices and
defined concepts
- Number of atomic roles and atomic
concepts
- Proportion of defined concepts
reused in concept definitions

Choice of algorithms:
- With or without persisting
optimization
- With or without Branch and Bound
- with policy 1 or 2 to compute the
miss
- With or without a tree trace
- With or without time measures
and graphical and tabular output

XML generation engine:
- XML structure generated via IBM
XML Generator v1r8
- Elements names generated in
order to get an acyclic FLo-
terminology of e-services and one
query

Best covers of a
concept using a
terminology
computation engine
(reused in the MKBEEM system)

XML files
generated by

D2CP
or user provided
containing FLo-
terminologies of
e-services with

one query

DTD files
user provided
containing the

structural
description of a
FLo-terminology

of e-services

User

D2CP
Graphical

User
Interface

D2CP
Core

XML files

Results

Qualitative results:
textual tree trace of the
executions to verify and learn
algorithms

Quantitative results:
graph of time measures and table of time measures to compare
efficiency of algorithms

Fig. 7. Overview of the D2CP functionalities.

Fig. 8. The D2CP graphical user interface.

4.2 Generation of terminologies

The ontology generation part of D2CP allows to generate ontologies as XML
files according to a DTD file that describe the basic structure of the language
used. This generation is divided into two parts:

– first, the structure of the XML ontology is created via the use of IBM XML
Generator v1r88,

– second, some element names and values are generated in order to obtain an
acyclic ontology valid wrt the dynamic discovery of e-services process.

As the dynamic discovery of e-services is implemented for the description
logic FL0, the DTD file from which XML FL0-ontologies files are generated
contains the structural definition of the FL0 description logic. Figure 9 shows
this DTD and figure 10 shows the 2 steps in the generation of an FL0-ontology.

<!-- X-FLo DTD 1.0 -->

<!ELEMENT FLo-Ontology (Name , Description , Author , Creation-Date , Version , Conceptualization)>

<!ELEMENT Name (#PCDATA)>
<!ELEMENT Description (#PCDATA)>
<!ELEMENT Author (#PCDATA)>
<!ELEMENT Creation-Date (#PCDATA)>
<!ELEMENT Version (#PCDATA)>

<!-Conceptualization : 50% of e-services and 50% of concepts -->
<!ELEMENT Conceptualization (Concept-Definition | Eservice-Definition)+>

<!-- Eservice Definitions -->
<!ELEMENT Eservice-Definition (Concept-Name, Concept-Description)>

<!-- Concept Definitions -->
<!ELEMENT Concept-Definition (Concept-Name, Concept-Description)>

<!ELEMENT Concept-Name (#PCDATA)>

<!ELEMENT Concept-Description (AND) >

<!-Conjunction : Between 1 and 6 conjuncts -->
<!ELEMENT AND ((Concept-Description-Bis), (Concept-Description-Bis)?, (Concept-Description-Bis)?,
(Concept-Description-Bis)?, (Concept-Description-Bis)?, (Concept-Description-Bis)?) >

<!ELEMENT Concept-Description-Bis (Atomic-Concept | FORALL) >

<!ELEMENT Atomic-Concept (#PCDATA)>

<!ELEMENT Atomic-Role (#PCDATA)>

<!ELEMENT FORALL (Atomic-Role, Concept-Name)>

Fig. 9. The DTD file containing the definition of the FL0 description logic.

Before the generation, the D2CP user can adjust 7 parameters:
8 See http://www.alphaworks.ibm.com/tech/xmlgenerator.

<?xml version='1.0'?>
<!-- msg_banner -->
<FLo-Ontology>
 <Name>level 1</Name>
 <Description>level 1</Description>
 <Author>level 1</Author>
 <Creation-Date>level 1</Creation-Date>
 <Version>level 1</Version>
 <Conceptualization>
 <Eservice-Definition>
 <Concept-Name>level 3</Concept-Name>
 <Concept-Description>
 <AND>
 <Concept-Description-Bis>
 <Atomic-Concept>level 6</Atomic-Concept>
 </Concept-Description-Bis>
 <Concept-Description-Bis>
 <FORALL>
 <Atomic-Role>level 7</Atomic-Role>
 <Concept-Name>level 7</Concept-Name>
 </FORALL>
 </Concept-Description-Bis>
 <Concept-Description-Bis>
 <FORALL>
 <Atomic-Role>level 7</Atomic-Role>
 <Concept-Name>level 7</Concept-Name>
 </FORALL>
 </Concept-Description-Bis>
 </AND>
 </Concept-Description>
 </Eservice-Definition>
 <Concept-Definition>
 <Concept-Name>level 3</Concept-Name>

…
 </Concept-Definition>
 </Conceptualization>
</FLo-Ontology>

<?xml version='1.0'?>
<!-- msg_banner -->
<FLo-Ontology>
 <Name>Ontologie exemple</Name>
 <Description>Parametre 1 = …</Description>
 <Author>F.Toumani et C.Rey</Author>
 <Creation-Date>4 septembre 2002</Creation-Date>
 <Version>1.00.02.12</Version>
 <Conceptualization>
 <Eservice-Definition>
 <Concept-Name>S1</Concept-Name>
 <Concept-Description>
 <AND>
 <Concept-Description>
 <Atomic-Concept>C4</Atomic-Concept>
 </Concept-Description >
 <Concept-Description>
 <FORALL>
 <Atomic-Role>R2</Atomic-Role>
 <Concept-Name>C3</Concept-Name>
 </FORALL>
 </Concept-Description>
 <Concept-Description>
 <FORALL>
 <Atomic-Role>R7</Atomic-Role>
 <Concept-Name>C2</Concept-Name>
 </FORALL>
 </Concept-Description>
 </AND>
 </Concept-Description>
 </Eservice-Definition>
 <Concept-Definition>
 <Concept-Name>C4</Concept-Name>

…
 </Concept-Definition>
 </Conceptualization>
</FLo-Ontology>

After step 1: result of IBM XML Generator After step 2: an ontology has been
generated.

Fig. 10. A generated XML ontology containing the e-service S1
.
= C4 u ∀R2.C3 u

∀R7.C2.

– the maximal number of both concept definitions and e-services definitions
in the ontology: this parameter is allowed by the IBM XML Generator API
used in D2CP and can be set by the user via a dialog box in D2CP (see
figure 11).

– the maximal number of child elements of the element AND in concept de-
scriptions: this can be done by modifying the DTD file by hand, that is by
adding or removing (Concept-Description-Bis)? as a child of the element
AND. For example,
<!ELEMENT AND ((Concept-Description-Bis), (Concept-Description-Bis)?,
(Concept-Description-Bis)?, (Concept-Description-Bis)?, (Concept-Description-
Bis)?, (Concept-Description-Bis)?) >
says that AND has at least one child and at most 6.

– the proportion of concept definitions wrt e-services definitions: this can be
done by modifying the DTD file. For example,
<!ELEMENT Conceptualization (Concept-Definition | Concept-Definition |
Eservice-Definition)+>
says that there will be 66% of concept definitions and 33% of e-services
definitions in the XML ontology.

– the proportion of the Atomic-Concept elements wrt the FORALL elements:
this can be done by modifying the DTD file. For example,
<!ELEMENT Concept-Description-Bis (Atomic-Concept | FORALL | FORALL
| FORALL) >
says that the child of the element Concept-Description-Bis will be an ”Atomic-
Concept” for 25% of all Concept-Description-Bis, and FORALL for 75%.

– the number of atomic concepts used in the ontology: this can be set by the
user via a dialog box in D2CP (see figure 11).

– the number of atomic roles used in the ontology: this can be set by the user
via a dialog box in D2CP (see figure 11).

– the proportion of defined concepts that are reused in the definition of other
concepts or e-services: this can be set by the user via a dialog box in D2CP
(see figure 11).

4.3 computeBCov and the other algorithms

D2CP allows the user to test at most 6 versions of computeBCov to dynamically
discover e-services from an XML ontology, that is to compute minimal transver-
sals with a minimal cost of a hypergraph. Indeed, via the dialog box shown in
figure 12, the user can choose between three couples of parameters that will
decide which algorithm will be applied to achieve the dynamic discovery of e-
services.

In figure 12, we can see that the user can choose whether he wants to run an
execution of computeBCov

– with or without the Branch and Bound optimization

Fig. 11. Dialog boxes of D2CP that allows to set parameters of XML generation.

Fig. 12. Dialog box of D2CP that allows to set parameters of the algorithms that will
be run to achieve the dynamic discovery of e-services.

– with the optimized candidates generation (that is with algorithm 2 to gener-
ate minimal transversals) or with the classical candidates generation (with
algorithm 1)

– and with policy 1 or policy 2 to compute CostEval (see section 3.6) if the
Branch and Bound has been chosen (if it is not chosen, there is no difference
between policy 1 and policy 2, since they are evaluation functions used in
the Branch and Bound).

According to the user choices9, D2CP will run one algorithm for each possibility.
In the case of figure 12, D2CP will run 3 different algorithms:

– one with BnB, optimized generation and policy 1,
– one with BnB, optimized generation and policy 2 and
– one without BnB, optimized generation (policy 1 or policy 2 is useless since

the BnB is not chosen).

All computeBCovvariants are summarized in figure 13 where they are ordered
according to their theoretical efficiency.

4.4 Results display

In figure 12, we can see that the user can choose the type of output he wants
D2CP to display:
9 The gray line about a ”scheduling heuristic” stands for an heuristic that has not

been implemented yet in D2CP .

computeBCov

Without BnB

With BnB

With Persistings

Without Persistings

With Persistings

Without Persistings

With BnB1

With BnB2

With BnB1

With BnB2

.....................................

..............................

.....

.....

.....

.....

Worst
variant

Best
variant

Fig. 13. All 6 variants of computeBCov ranked according to their a priori theoretical
performances.

– without trace and without stats: textual results only,
– textual results plus a trace of each execution (see figure 8 for an example of

a trace),
– textual results plus statistics about each execution: statistics are output

under two ways:
• as an interactive histogram, with a linear or logarithmic scale, where

the user can choose the values he wants to compare by checking the
check-boxes on the right of the GUI (see figure 14)
• and as a table of values that is moreover saved as an HTML file, so that

the user can import these data into a spreadsheet program (see figure
15).

– or textual results, plus histogram, plus statistics.

When the user choose both the trace and the stats display, then D2CP make
two different executions for each variant of computeBCov it has to run: indeed
the display of the trace may slower the execution because of the display of each
candidate for all iterations. So to have significant statistical results, there must
be two different executions.

5 Tests

In this section, we first study in details one execution of computeBCov on a
small example. This allows us to explain computeBCov on an example and to
verify that computeBCov is well implemented intoD2CP . Then we study the two
examples detailed in section 3.3 and representing worst cases for computeBCovȦt
least we will study the effectiveness of the different versions of computeBCov on
two bigger examples generated by D2CP .

Fig. 14. The graphical representation of statistics in D2CP .

Fig. 15. The tabular representation of statistics in D2CP .

5.1 Functional test

The example presented below is the example which execution trace is shown in
figure 8. Before explaining computeBCov on it, let’s see its main components.

The terminology T of defined concepts Ci is the following:

– C1
.= ∀R1.P1

– C2
.= ∀R1R2.P2

– C3
.= ∀R2.P2

– C4
.= ∀ε.P3

– C5
.= ∀R1R1.P4

The e-services expressed with the Ci are the following:

– S1
.= C1 u C2 u ∀ε.P1 u ∀R2R1.P2

– S2
.= C2 u C4 u C5 u ∀ε.P1 u ∀R2R1.P2

– S3
.= C1 u C2 u C4 u C5 u ∀R2R1.P2 u ∀R2R1.P3 u ∀ε.P4

The query Q expressed with the Ci is:
Q

.= C1 u ∀R1.C3 uR2.P2 u C4 u C5

So the normalized e-services and query are:

– S1
.= ∀ε.P1 u ∀R1.P1 u ∀R1R2.P2 u ∀R2R1.P2

– S2
.= ∀ε.P1 u ∀R1R2.P2 u ∀R2R1.P2 u ∀ε.P3 u ∀R1R1.P4

– S3
.= ∀R1.P1u∀R2R1.P2u∀R1R2.P2u∀R2R1.P3u∀ε.P3u∀R1R1.P4u∀ε.P4

– Q
.= ∀R1.P1 u ∀R1R2.P2 u ∀R2.P2 u ∀ε.P3 u ∀R1R1.P4

From this knowledge, an hypergraph HTQ is built (see [9, 10]). This hyper-
graph is shown in figure 16. computeBCov computes the minimal transversals
with a minimal cost of this kind of hypergraphs.

c1 =

c2 =

c4 =

c5 =

S1

S3S2

c3 =

Fig. 16. Hypergraph HTQ: edges are the atomic parts of Q and vertices are the e-
services Si.

Let us now explain the execution of computeBCov on HTQ, which is shown
in figure 8. The version of computeBCov which trace is shown in figure 8 uses
algorithm 2 to computes transversal candidates at each iteration, Branch and
Bound optimization, and policy 2 to compute CostEval. As there are only 3
different edges in HTQ, there are only 3 iterations.

– Iteration 1:
• The set of transversals computed during last iteration is obviously empty.
• The first evaluation of a feasible transversal for HTQ has a cost of 12

(sum of the costs of the vertex that have the lowest cost for all edges of
HTQ).
• The current edge is {S1, S3}.
• So there are neither 1-, n-, nor not-persisting, only 2 generated transver-

sals: {S1} and {S3}.
• Branch an Bound:
∗ The cost of {S3} is 7, and from {S3} a transversal of HTQ can be

built with a cost of 7, so the evaluation changes from 12 to 7.

∗ The cost of {S1} is 4, and from {S1} a transversal of HTQ can be
built with a cost of 8, so the evaluation stays to 7.

– Iteration 2:
• The set of transversals computed during last iteration is {{S1}, {S3}}.
• The current evaluation is 7.
• The current edge is {S3, S2}.
• {S3} is 1-persisting (because |{S3} ∩ {S3, S2}| = 1), and {S1} is not-

persisting (because |{S1}∩{S3, S2}| = 0). As {S3} \ ({S3}∩{S3, S2}) =
∅ ⊂ {S1}, then we know, according theorem 1, that {S1} ∪ ({S3} ∩
{S3, S2}) = {S1} ∪ {S3} will not be minimal. So the only generation at
this iteration will be {S1} ∪ {S2}.
• Branch an Bound:
∗ The cost of {S3} is still 7, so, as the current evaluation is also 7,

we know that it is useless to try to find from {S3} a new evaluation
that strictly lower than 7. But {S3} can still be a minimal transversal
with a minimal cost of HTQ, that’s why it is kept.
∗ The cost of {S1, S2} is 4, and from {S1, S2} a transversal of HTQ

can be built with a cost of 4, so the evaluation changes from 7 to 4.
– Iteration 3:
• The set of transversals computed during last iteration is {{S3}, {S1, S2}}.
• The current evaluation is 4.
• The current edge is {S1, S3, S2}.
• {S3} is 1-persisting (because |{S3} ∩ {S1, S3, S2}| = 1), and {S1, S2}

is n-persisting (because |{S1, S2} ∩ {S1, S3, S2}| = 2 > 1). As there is
no other transversals from last iteration, then the transversals of this
iteration are still {S3} and {S1, S2}}.
• Branch an Bound:
∗ The cost of {S3} is still 7, so, as the current evaluation is 4 and

stricty lower, we know that {S3} is has not a minimal cost. So {S3}
is deleted.
∗ The cost of {S1, S2} is 4. As the current evaluation is also 4, nothing

has to be done.
– End: there is no edge left, so the last step consists in keeping among the

transversals that remain those which have the minimal cost. Here, only
{S1, S2} remains, so {S1, S2} is the only combination of e-services that best
answers the query Q. What is called the ”rest” is the part of Q that was in
any e-service, and what is called the ”miss” is the part of {S1, S2} that was
not in Q.

5.2 Effectiveness tests for computeBCov worst cases

In this section, we use D2CP to see how the computeBCov algorithm behaves
with hypergraphs H1 and H2, which are theoretical very bad cases.

In figures 17 and 18, we compare the execution of computeBCov on H1 and
H2 with

1 1 1 1

10 10

160

952

4045

17556

74987

329274

1312

70

150

10

1

10

11
1

10

100

1000

10000

100000

1000000

Time of
iteration

0

Time of
iteration

1

Time of
iteration

2

Time of
iteration

3

Time of
iteration

4

Time of
iteration

5

Time of
iteration

6

Time of
iteration

7

Time of
iteration

8

Time of
iteration

9

Time of
iteration

10

Time of
iteration

11

milliseconds
(logarithmic scale)

Algorithm 1
Algorithm 2

Fig. 17. Execution of both algorithms 1 and 2 on H1 by D2CP .

– ”algorithm 1” : the variant of computeBCov without Branch and Bound and
with the classical candidate generation (with algorithm 1) and

– ”algorithm 2” : the variant of computeBCov without Branch and Bound and
with the optimized candidate generation (with algorithm 2).

Figure 19 sums up the overall time execution of D2CP for each execution of
both algorithms on both cases.

Then, in figure 20, we study the behaviour of the best theoretical variant of
computeBCov on increasing size hypergraphs instances built as H2 is. As H2 is
a very bad case for all computeBCov variant, then this evolution represents an
upper bound in computation times of same size inputs for computeBCov.

Figure 20 confirms what is theoretically true: as there can be an exponential
number of solutions, computeBCov is, in the worst case, computable in expo-
nential time. But it is interesting to remark the following points:

- in the very bad case of H2, it takes about 1 second to solve an instance of
the problem which has until 3264 solutions (best combinations of services)

- and it takes between 1 and 20 seconds to solve an instance with until 13056
solutions.

1 1 1 1

40

110

401

2033

6028

17576

306441

1341689

75348

1913

511

240

50

1

50

1

6539

17606

1

10

100

1000

10000

100000

1000000

10000000

Time of
iteration 0

Time of
iteration 1

Time of
iteration 2

Time of
iteration 3

Time of
iteration 4

Time of
iteration 5

Time of
iteration 6

Time of
iteration 7

Time of
iteration 8

Time of
iteration 9

Time of
iteration 10

Time of
iteration 11

Time of
iteration 12

milliseconds
(logarithmic scale) Algorithm 1 Algorithm 2

Fig. 18. Execution of both algorithms 1 and 2 on H2 by D2CP .

5.3 Effectiveness tests for generated cases

In this section we study three cases which have been generated by D2CP . After
presenting them, we show and discuss the time results of the executions of the
variants of computeBCov on these three cases.

Presentation of three study cases These cases are presented in figure 21.
Let’s now study these examples in details and try to discover if they can be

considered realistic or not. For us, a realistic ontology (called Mark ontology in
figure 21) and a realistic query, wrt the characteristics of figure 21, have:

– at least 3000 concepts (both defined and e-services),
– at least 5 times more defined concepts than of e-services,
– at least 20 conjuncts in the query,
– at least 1 atomic concept for 20 concepts (defined or e-services),
– at least 1 atomic role for 30 concepts (defined or e-services)
– and at least 30% of defined concepts reused in concept definitions.

These values take into account our experience in the domain of e-services mod-
eling. However, this is a very first set of values that may greatly vary in the
future. Anyway, knowing these give us a mark to evaluate each case.

Case 1 is a small ontology, especially concerning the number of defined con-
cept (only 365 defined concepts and 366 e-services). Its query is also very little
(6 conjuncts and about 10 e-services per conjunct). But only 13 atomic concepts

429128

982

1750246

27509

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

Time (in ms)

H1 processed by
computeBCov using

algorithm 1

H1 processed by
computeBCov using

algorithm 2

H2 processed by
computeBCov using

algorithm 1

H2 processed by
computeBCov using

algorithm 2

Fig. 19. Overall time execution of computeBCov on H1 and H2 by D2CP .

and roles make this case more difficult than one can imagine for a real ontology.
Indeed these two values imply that each atomic concept and role is often used
in concepts description (of defined concepts and e-services). So the correspond-
ing problem of finding minimal transversals with a minimal cost will obviously
be more difficult. At last, the proportion of 30% of defined concepts reused in
concept definitions appears to be quite realistic (even if a real ontology might
have a greater proportion). To sum up, case 1 represents a small ontology with
a small query, both quite realistic concerning their structure, but that may be a
bad case for computeBCov.

Case 2 is a greater ontology (but still quite small): 660 e-services and 1334
defined concepts. With 33 conjuncts and an average of about 20 e-services by
conjunct, its query can be considered to be quite realistic. The number of atomic
roles and concepts stay quite low comparing to what one can imagine for a
realistic ontology having this size, implying that this case may be a bad case
for computeBCov. The proportion of 20% of defined concepts reused in concepts
definitions is perhaps a little low but not totally unrealistic. To sum up, case 2
represents a small ontology with a realistic query, that may be a bad case for
computeBCov.

Case 3 is an ontology which size is quite realistic: about 4000 concepts (de-
fined and e-services) and six times more defined concepts (3405) than of e-

1757968

401157

90841

20770

5548

1322
460110

3020
30

1010

1

10

100

1000

10000

100000

1000000

10000000

(10
 - 4

 - 2
8)

(12
 - 5

 - 4
8)

(14
 - 6

 - 1
04

)

(16
 - 7

 - 2
08

)

(18
 - 8

 - 4
00

)

(20
 - 9

 - 8
32

)

(22
 - 1

0 -
 16

32
)

(24
 - 1

1 -
 32

64
)

(26
 - 1

2 -
 65

92
)

(28
 - 1

3 -
 13

05
6)

(20
 - 1

4 -
 26

24
0)

(32
 - 1

5 -
 52

48
0)

(34
 - 1

6 -
 10

47
04

)

Instances of H2
(NB of services - Query size - NB of best combinations of services)

Computation time (in ms, logarithmic scale)

Exponential
trend line

Fig. 20. Overall time computation of the best variant of computeBCov applied on
different size varying instances of H2.

Characteristic Mark
ontology

Case 1 Case 2 Case 3

Number of defined concepts 2500 365 1334 3405

Number of e-services (ie. of vertices in the hy-
pergraph)

500 366 660 570

Number of conjuncts in the query (ie. of edges
in the hypergraph)

20 6 33 12

Average number of e-services for one conjunct 20 10.83 20.84 30.75

Number of atomic concepts 150 13 30 12

Number of atomic roles 100 13 30 12

Proportion of defined concepts used in concept
definitions

30% 30% 20% 33%

Fig. 21. Main characteristics of the 3 cases generated by D2CP .

services (570). With 12 conjuncts and about 30 e-services by conjunct, the query
is small but still realistic. Only 12 atomic roles and atomic concepts imply that
it will be a bad case for computeBCov. 33% of defined concepts in concept defi-
nitions indicate that the way concept descriptions are built is quite realistic. To
sum up, case 3 represents a realistic ontology that is a bad case for computeBCov
with a quite small query.

Overall time results of computeBCov executions We have run each vari-
ant of computeBCov (8 variants, see section 4.3) on the three cases. The overall
time results are given in figure 22.

4 1
46

40
50

16
 91

4 7
63

16
 93

0 6
05

10
0 9

95

10
0 5

54

19
1

14
 48

8 9
24

33
2 2

68

10
 36

7 7
28

18
0

31
 96

6

15
 33

2

1 9
13

31
 50

5

1

10

100

1000

10000

100000

1000000

10000000

100000000

Case 1 Case 2 Case 3

m
ill

is
ec

o
n

d
s

1 32 4 5 6 7 8 5 6 7 8 5 6 7 8

> 43 200 000
(> 12 hours)

> 43 200 000
(> 12 hours)

1 : BnB: false,
Pers: false,
Policy 1

2 : BnB: false,
Pers: false,
Policy 2

3 : BnB: false,
Pers: true,
Policy 1

4 : BnB: false,
Pers: true,
Policy 2

5 : BnB: true,
Pers: false,
Policy 1

6 : BnB: true,
Pers: false,
Policy 2

7 : BnB: true,
Pers: true,
Policy 1

8 : BnB: true,
Pers: true,
Policy 2

(1s)

(10s)

(1mn40s)

(16mn40s)

(2h46mn40s)

(27h46mn40s)

(˜ 4h43mn)

(˜ 1mn40s)

(˜ 4h)

(˜ 2h53mn)

(˜ 5mn30s)

Fig. 22. Overall time results for the execution of each variant of computeBCov on the
three study cases by D2CP .

From figure 22, we can say that:

– The Branch and Bound optimization technique is very interesting:
• for case 1, even without the persisting, it allows a real-time solution
• and for cases 2 and 3, it allows the study of the impact of the persistings

and the two policies, and coupled with the persisting, it nearly allows a
real-time solution.

Clearly, the impact of the BnB is to limit the combinatorial explosion of the
problem.

– The persistings are also very interesting, but always associated with the BnB.
They also limit the combinatorial explosion and even allow to get close to a
real-time solution, especially for case 2.

– Policy 2 is better than policy 1: for cases 2 and 3, it helps the BnB to give
better results.

So the couple BnB with policy2) and persistings appears to be efficient to
solve the dynamic discovery of e-services on these three generated examples. As
we have seen before, cases 2 and 3 are close to real cases about their size but
are worse cases than real ones because of their little number of atomic concepts
and roles. So we can imagine that performances would be at least as good for
real normal cases.

Detailed study of cases 1, 2 and 3 In this section we will study in details
the results of the executions of D2CP for cases 1, 2 and 3. We discuss each case
on the basis of the graphical representations of the following results:

– the execution time of each iteration (figure 23 for case 1, figure 26 for case
2 and figure 30 for case 3).

– the number of generated minimal transversal candidates at each iteration
(figure 24 for case 1, figure 27 for case 2 and figure 31 for case 3).

– the average time for the generation of one minimal transversal candidate at
each iteration (figure 25 for case 1, figure 28 for case 2 and figure 32 for case
3).

Moreover, for cases 2 and 3, we provide two graphs (figure 29 and 33) which help
to see the effect of the candidates generation and BnB steps on each other. After
explaining each case, we sum up the main results (see figure 34).

Case 1 (figures 23, 24 and 25) From 23 we can distinguish 3 groups of variants
of computeBCov

– the very slow variants: without BnB and without theorem 1 (for minimal
transversals generation),

– the slow variants: without BnB and with theorem 1
– and the quick variants: with BnB (time of each iteration lower than 100ms).

There are three closely linked arguments that explain this distribution:

– First, it is clear, from figure 24, that the BnB technique limits (or even avoids
in this case) the exponential explosion of the number of generated minimal
transversal candidates that occurs for variants without BnB. For variants
with BnB, the number of candidates is more or less constant during the 6
iterations.

– Second, the generation step (with or without theorem 1) is such that the
average time to compute one candidate increase linerarly with the number of
candidates (see figures 24 and 25). It is easy to understand: in this generation
step, the more there are candidates, the more there will be possibilities to

7532821

9128086

15102

67837

80

20
10

1

10

100

1000

10000

100000

1000000

10000000

0 1 2 3 4 5Iteration

Time in ms

BnB: false,
Pers: false,
Policy 1

BnB: false,
Pers: false,
Policy 2

BnB: false,
Pers: true,
Policy 1

BnB: false,
Pers: true,
Policy 2

BnB: true,
Pers: false,
Policy 1

BnB: true,
Pers: false,
Policy 2

BnB: true,
Pers: true,
Policy 1

BnB: true,
Pers: true,
Policy 2

Fig. 23. Execution time of each iteration during processing of case 1 by D2CP .

generate other candidates, and the longer it will take to test them with
each other in order to only keep the minimal ones. So, when the number
of candidates increases exponentially, so do the average time to compute a
candidate, which implies a longer iteration time. And so, when the number of
candidates is more little, then the average time to generate them is shorter.

– The addition of theorem 1 in the candidates generation step brings a great
improvement in the average generation time. We can see, from figure 25, that
the average time to compute one candidate evolves as before as the number of
candidates, but at very lower level: the trend is the same (as without theorem
1), but the times are far more shorter. So theorem 1 greatly improves the
candidates generation step. And, associated with BnB (i.e. when the number
of candidates doesn’t explode), theorem 1 keeps on greatly improving this
average generation time (in fact, this is then so effective for this little case
1 than we cannot really analyze what it happens for this variants, because
time measures are to low).

To sum up:

– The BnB technique limits the exponential explosion of the number of can-
didates. This implies a lower average candidate generation time.

– Theorem 1 also greatly lowers the average candidate generation time, what-
ever there is BnB or not.

Case 2 (figures 26, 27, 28 and 29) The study of case 2 is limited to variants
of computeBCov with BnB, because executions without BnB made with D2CP
were stopped, due to a too long time (more than 12 hours).

7

3802437597

8659

1477

211

34

144

56

140

72

7

1

10

100

1000

10000

100000

0 1 2 3 4 5 Iteration

BnB:
false

BnB:
true

Fig. 24. Number of generated minimal transversal candidates at each iteration during
processing of case 1 by D2CP .

From figure 26, we can see 2 points.
The first point is that there are two types of algorithm behaviour: those with

the candidates generation step based on theorem 1 (i.e. ”Pers = true”), and
those with the classical generation step. As it was mentioned for case 1, these two
types of computeBCov variants evolves on the whole the same way, but the use of
theorem 1 importantly lowers the time values. This is explained in figure 29 where
we can see that theorem 1 implies a drastic fall in the time of the candidates
generation step (knowing from figure 27 that the number of candidated is quite
the same for the 4 variants of computeBCov studied here). This drastic fall is
itself due to the average time for the generation of one candidate: from figure
28, we see that theorem 1 implies that this time is drastically lowered wrt to the
classical generation.
Besides, we can remark from figure 29 that the times of the BnB steps are
almost the same for each variant of computeBCov : as the number of generated
candidates are also the same, this means that the BnB step is not influenced by
theorem 1.

The second point is that, during the whole process, we can distinguish 3
phases:

– Phase 1: from iteration 0 to 4, computeBCov is beginning, and the time
measures for these 5 iterations are not very significant.

– Phase 2: from iteration 5 to 23, the time of each iteration is bounded: with
theorem 1, this time is nearly constant, and without theorem 1, there are
oscillations between a lower and an upper bound.

0,001

0,01

0,1

1

10

100

1000

0 1 2 3 4 5Iteration

Time (ms)
BnB: false,
Pers: false,
Policy 1

BnB: false,
Pers: false,
Policy 2

BnB: false,
Pers: true,
Policy 1

BnB: false,
Pers: true,
Policy 2

BnB: true,
Pers: false,
Policy 1

BnB: true,
Pers: false,
Policy 2

BnB: true,
Pers: true,
Policy 1

BnB: true,
Pers: true,
Policy 2

Fig. 25. Average time to generate one minimal transversal candidate at each iteration
during processing of case 1 by D2CP .

– Phase 3: from iteration 24 to 32, there is an explosion in the time values
before a fall which indicates the end of computeBCov.

Let’s explain phases 2 and 3.
During phase 2, without theorem 1, the iteration time oscillates between two

bounded values, while, with theorem 1, this time is almost constant. Logically,
the same thing happens in figure 28 for the average time of a candidate genera-
tion. As for case 1, this is due to the fact that during some iterations, many non
minimal candidates are generated if theorem 1 is not used: their generation is
time-consuming, so as their deletion. In section 3.3, we have theoretically shown
that theorem 1 avoids generating such useless candidates. Here we show this
optimization is really time-saving in a real execution.

During phase 3, without theorem 1, we can see that iterations 27 and 29 are
very long. It is explained by the fact that, at iteration 27, there are not so many
candidates (less than 4000 from figure 27), but the average time to generate
them is very high (figure 28), and at iteration 29, the average generation time is
not very high, but there are a huge number of candidates (24773). For variants
with theorem 1, as the average time to generate a candidate is always very
low, the iteration time mainly depends on the BnB time and so depends almost
exclusively on the number of generated candidates.

To sum up:

– Theorem 1 implies a very time-saving candidates generation step. It follows
that the iteration time is very close to the BnB time.

36743

7256584

8883

19678

1

10

100

1000

10000

100000

1000000

10000000

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

Iteration

Time (in ms)

BnB: true,
Pers: false,
Policy 1

BnB: true,
Pers: false,
Policy 2

BnB: true,
Pers: true,
Policy 1

BnB: true,
Pers: true,
Policy 2

Fig. 26. Execution time of each iteration during processing of case 2 by D2CP .

– The BnB is not influenced by the candidates generation step, but mainly by
the number of generated candidates.

Case 3 (figures 30, 31, 32 and 33) From figure 30, we can see the same difference
between variants with and variants without theorem 1. Moreover, we can see in
this case the influence of policy 2: in figure 31, we can see that policy 2 implies
a fall in the number of generated candidates from iteration 6 to the end. The
effect is then the same as for case 1 and 2: the less candidates, the shorter the
average time to generate one. We can see that in figure 32 also.

Figure 33 provides a good summary of what happens in case 3:

– The BnB is optimized by policy 2, but, as in cases 1 and 2, not influenced
by theorem 1.

– Theorem 1 implies a large gain in efficiency.
– The variant of computeBCov with BnB, theorem 1 and policy 2 is very quick

(a few seconds).

To conclude this section, figure 34 shows how the BnB, theorem 1 and policy
2 have an influence on the total execution time of computeBCov.

6 Conclusion

References

1. Data Engineering Bulletin: Special Issue on Infrastructure for Advanced E-Services.
24(1), IEEE Computer Society, 2001.

400

198
225

590

212

95

260

75

4097

24773

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Iteration

BnB: true,
Policy 1

BnB: true,
Policy 2

Fig. 27. Number of generated minimal transversal candidates at each iteration during
processing of case 2 by D2CP .

2. The VLDB Journal: Special Issue on E-Services. 10(1), Springer-Verlag Berlin
Heidelberg, 2001.

3. C. Berge. Hypergraphs, volume 45 of North Holland Mathematical Library. Elsevier
Science Publishers B.V. (North-Holland), 1989.

4. Fabio Casati and Ming-Chien Shan. Dynamic and adaptive composition of e-
services. Information Systems, 26(3):143–163, May 2001.

5. Fabio Casati and Ming-Chien Shan. Models and Languages for Describing and
Discovering E-Services. In Proceedings of SIGMOD 2001, Santa Barbara, USA,
May 2001.

6. T. Eiter and G. Gottlob. Identifying the minimal transversals of a hypergraph and
related problems. SIAM Journal on Computing, 24(6):1278–1304, 1995.

7. Thomas Eiter and Georg Gottlob. Hypergraph transversal computation and re-
lated problems in logic and ai. In Sergio Flesca, Sergio Greco, Nicola Leone, and
Giovambattista Ianni, editors, Proceeding of the Logics in Artificial Intelligence,
European Conference, JELIA, Cosenza, Italy, September, 23-26, volume 2424 of
Lecture Notes in Computer Science. Springer, 2002.

8. Thomas Eiter, Georg Gottlob, and Kazuhisa Makino. New results on monotone
dualization and generating hypergraph transversals. In Proceedings of the 34th
Annual ACM Symposium on Theory of Computing (STOC-02), pages 14–22, New
York, May 19–21 2002. ACM Press.

9. M.S. Hacid, A. Léger, C. Rey, and F. Toumani. Computing concept covers: a
preliminary report. In Proceedings of the International Workshop on Description
Logics (DL’02), April 19 to April 21, 2002. Toulouse. France, April 2002.

10. M.S. Hacid, A. Léger, C. Rey, and F. Toumani. Dynamic discovery of e-services
in a knowledge representation and reasoning context. In Proceedings of the 18th
French conference on advanced databases (BDA), Paris, France, October 2002.

0,001

0,01

0,1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Iteration

Time in ms

BnB: true,
Pers: false,
Policy 1

BnB: true,
Pers: false,
Policy 2

BnB: true,
Pers: true,
Policy 1

BnB: true,
Pers: true,
Policy 2

Fig. 28. Average time to generate one minimal transversal candidate at each iteration
during processing of case 2 by D2CP .

11. Dimitris J. Kavvadias and Elias C. Stavropoulos. Evaluation of an algorithm for
the transversal hypergraph problem. Lecture Notes in Computer Science, 1668:72–
85, 1999.

12. Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Efficient discovery of func-
tional dependencies and armstrong relations. In Carlo Zaniolo, Peter C. Locke-
mann, Marc H. Scholl, and Torsten Grust, editors, Proceedings of the 7th Interna-
tional Conference on Extending Database Technology (EDBT 2000), Konstanz,
Germany, volume 1777 of Lecture Notes in Computer Science, pages 350–364.
Springer, 2000.

13. H. Mannila and K-J Räihä. The Design of Relational Databases. Addison-Wesley,
Wokingham, England, 1994.

14. Leonid Khachiyan Michael L. Fredman. On the complexity of dualization of mono-
tone disjunctive normal forms. Journal of Algorithms, 21(3):618–628, November
1996.

15. Catharine Wyss, Chris Giannella, and Edward Robertson. Fastfds: A heuristic-
driven, depth-first algorithm for mining functional dependencies from relation in-
stances. In Yahiko Kambayashi, Werner Winiwarter, and Masatoshi Arikawa, ed-
itors, Proceedings of the Data Warehousing and Knowledge Discovery, Third In-
ternational Conference, DaWaK 2001, Munich, Germany, September 5-7, volume
2114 of Lecture Notes in Computer Science. Springer, 2001.

1

10

100

1000

10000

100000

1000000

10000000

01234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

01234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

01234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

01234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

 BnB: true, Pers: false, Policy 1 BnB: true, Pers: false, Policy 2 BnB: true, Pers: true, Policy 1 BnB: true, Pers: true, Policy 2

Algorithm and iteration

T
im

e
(i

n
 m

s)
BNB Candidates generation

Fig. 29. Executions times of BnB and candidates generation steps at each iteration
and for each variant of computeBCov during processing of case 2 by D2CP .

320

40748

262908

651

270

10

4056

7811

171

1
1

10

100

1000

10000

100000

1000000

0 1 2 3 4 5 6 7 8 9 10 11 Iteration

Time (in ms)

BnB: true,
Pers: false,
Policy 1

BnB: true,
Pers: false,
Policy 2

BnB: true,
Pers: true,
Policy 1

BnB: true,
Pers: true,
Policy 2

Fig. 30. Execution time of each iteration during processing of case 3 by D2CP .

1313

3

102

304

202

1463

3287

428
302

6900

160

40

152

76
82

148

684

111
1

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 Iteration

BnB: true,
Policy 1

BnB: true,
Policy 2

Fig. 31. Number of generated minimal transversal candidates at each iteration during
processing of case 3 by D2CP .

0,001

0,01

0,1

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11
Iteration

Time in ms

BnB: true,
Pers: false,
Policy 1

BnB: true,
Pers: false,
Policy 2

BnB: true,
Pers: true,
Policy 1

BnB: true,
Pers: true,
Policy 2

Fig. 32. Average time to generate one minimal transversal candidate at each iteration
during processing of case 3 by D2CP .

1

10

100

1000

10000

100000

1000000

0 1 2 3 4 5 6 7 8 9 1
0

1
1

0 1 2 3 4 5 6 7 8 9 1
0

1
1

0 1 2 3 4 5 6 7 8 9 1
0

1
1

0 1 2 3 4 5 6 7 8 9 1
0

1
1

 BnB: true, Pers: false, Policy 1 BnB: true, Pers: false, Policy 2 BnB: true, Pers: true, Policy 1 BnB: true, Pers: true, Policy 2

Algorithm and iteration

T
im

e
(i

n
 m

s)

Candidates generation BNB

Fig. 33. Executions times of BnB and candidates generation steps at each iteration
and for each variant of computeBCov during processing of case 3 by D2CP .

implies
Branch and

Bound

Policy 2

Higher reduction of the
minimal transversal candidates

number at each iteration
 (better BnB)

Candidate
generation with

theorem 1

High reduction of the minimal
transversal candidates number

at each iteration

Better (lower) average time to
generate one minimal
transversal candidate

at each iteration

Better execution time at each
iteration

Better overall execution time
for computeBCov

Fig. 34. Summary of the main results of the study of cases 1, 2 and 3 concerning
computeBCov.

