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SHARP RATES OF CONVERGENCE IN THE HAUSDORFF METRIC
FOR COMPACTLY SUPPORTED STATIONARY MARKOV CHAINS

OR STATIONARY β-MIXING SEQUENCES

SANA LOUHICHI

Abstract. We study rates of convergence, in mean, for the Hausdorff metric between
a finite set of stationary random variables and their common support, which is supposed
to be a compact subset of IRd. We propose two different approaches for this study. The
first approach is based on the notion of minimal index. This notion is introduced in
this paper. It is in the spirit of the extremal index which is very used in the extreme
value theory. The second approach is based on a β-mixing condition together with a
local type dependence assumption. More precisely, all our results concern stationary β-
mixing sequences satisfying a tail condition, known as the (a, b)-standard assumption,
together with a local type dependence condition or stationary sequences satisfying the
(a, b)-standard assumption and having a positive minimal index. We prove that the
optimal rates of the i.i.d. setting can be reached. We apply our results to stationary
Markov chains on a ball, or to a class of Markov chains on a circle or on a torus. We
study with simulations the particular examples of a Möbius Markov chain on the unit
circle and of a Markov chain on the unit square wrapped on a torus.

Keywords: Hausdorff metric, stationary dependent random variables, β-mixing, Möbius
Markov chain, Markov chain on a torus, geometrically ergodic Markov chain, compact support,
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1. Introduction

The Hausdorff metric, dH , is an useful measurement for determining how similar one set or
shape is to another. More formally, given two compact sets A and B of IRd,

(1) dH(A,B) = max

(
sup
x∈A

inf
y∈B

∥x− y∥, sup
x∈B

inf
y∈A

∥x− y∥
)
,

where ∥ · ∥ denotes the Euclidean distance. Classically, in practical applications, a Hausdorff
metric that is very close to 0 would indicate a great similarity between the considered sets
or shapes. Due to its utility in comparing shapes and sets, the Hausdorff metric finds appli-
cations in a variety of fields such as in computer vision and image processing ([25]), medical
imaging ([28]), pattern recognition ([27]), robotics ([9]), machine learning ([21]), topological
data analysis ([5, 10, 14, 20]) or in statistics and directional statistics ([7, 8, 14, 15]).

For this later field, circular data is a key concept. Circular data x1, · · · , xn are those for
which the natural support is the unit circle or its toroidal extensions ([15, 26]). They may serve
as models for wind directions, orientations of strata, and movement of animals, among others.
Suppose that the data x1, · · · , xn, living in a same compact set, is a realisation of stationary
random variables X1, · · · , Xn compactly supported and not necessarily independent. Studying
the Hausdorff metric from the observable random cloud {X1, · · · , Xn} to their common support
and how much it is close to 0 as n grows, shall then be helpful to deduce some information on
this common support which is, in generally, unknown.

From now, let (Xi)i∈IN be a stationary sequence of IRd-valued random variables. Let µ be
the distribution of X1, and thus of all the Xi’s. Suppose that µ is supported on a compact set
M of IRd, meaning that M is the smallest closed set having probability 1. More formally,

(2) M =
⋂

C⊂IRd, P (C)=1

C,

where C means the closure of the set C in Euclidean space. Denote by Xn the set {X1, · · · , Xn}
which is viewed as a subset of IRd. We are interested by the evaluation of the Hausdorff metric,
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dH , of Xn to the support M, more precisely to give a sharp upper bound for IE (dH(Xn,M)),
the expectation of dH(Xn,M), by suitably controlling IP (dH(Xn,M) > ϵ) for positive ϵ.

In topological data analysis, upper bounds for IE (dH(Xn,M)) are useful since they lead,
thanks to the stability theorem, to upper bounds for the bottleneck distance between suitable
persistence diagrams. We refer the reader to the seminal paper [5], where, in particular, optimal
upper bounds for IE (dH(Xn,M)) are obtained for i.i.d. random sequence (Xi)i∈IN.

One of our objectives is to extend the estimates of the i.i.d. case to the dependent one.
Although this generalization is useful in order to model real phenomena, only few works have
addressed these questions. To our knowledge the only papers that deal with the dependent
framework are [6] (for the trajectories of a reflected Brownian motion) and more recently [1]
where the authors give estimation results and optimal rates on the R-convex hull of stationary
dependent random variables using a kernel density estimation approach and [14] for topological
reconstruction of compact supports of various class of stationary dependent random variables.
Even in the area of topological data analysis, only few works have been explored for dependent
data. We refer for instance to the recent paper [18] who gave a concentration inequality for
persistent Betti numbers or to the more recent paper [22] for the estimation of topological
signatures (both in the dependent context).

Now, we come back to the main purpose of this paper which is to give sharp upper bounds
for IE (dH(Xn,M)) by suitably controlling IP (dH(Xn,M) > ϵ) for positive ϵ and for stationary
sequence (Xi)i∈IN. In [14] we gave upper bounds for IP (dH(Xn,M) > ϵ) for different types of
weak dependence of the stationary sequence (Xn)n∈IN. Those upper bounds met the purpose
of [14] which was to establish the asymptotic (ϵ, α)-density in M of the stationary sequence
(see Definition 1.1 in [14]). The proofs, there, used a clustering technique which consists
of grouping the random variables into clusters and treating them as random variables in a
larger space. While this approach accommodates multiple dependency types, it may not yield
optimal speeds of convergence for IE (dH(Xn,M)) because of the curse of dimensionality due
to the Euclidean distance.

In this paper, our starting point to control IE (dH(Xn,M)) is Proposition 1.1 below, which
is true for any stationary IRd-valued sequence of random variables compactly supported (for
its proof we refer the reader to Proposition 3.1 in [14], with k = n and r = 1 there). The
statement of this proposition and its proof are already done along the lines of [5, 7, 8, 10]. Its
proof uses a nice geometrical result, proved in [20], relating the ϵ-covering number of a compact
set by closed balls of radius ϵ to its ϵ-packing number, i.e., to the maximal length of chains of
points whose pairwise distances are bounded below by ϵ (see Lemma 5.2 in [20]).

Proposition 1.1. Let (Xn)n≥0 be a stationary IRd-valued sequence of random variables com-
pactly supported. Let M be this common support. Then, for any ϵ > 0,

IP (dH(Xn,M) > ϵ) ≤ supx∈M IP (min1≤i≤n ∥Xi − x∥ > ϵ/2)

1− supx∈M IP (∥X1 − x∥ > ϵ/4)
.

Recall that Xn = {X1, · · · , Xn}.

In view of Proposition 1.1, to bound IP(dH(Xn,M) > ϵ) we have, mainly, to control the
two quantities IP (∥X1 − x∥ ≤ ϵ) and IP (min1≤i≤n ∥Xi − x∥ > ϵ). To control the first term
IP (∥X1 − x∥ ≤ ϵ), we assume the (a, b)-standard assumption for µ (the distribution of X1) as
was done in the i.i.d. case. The (a, b)-standard assumption was used, in the i.i.d context, for
set estimation problems under the Hausdorff metric ([7], [8]) and also for a statistical analysis
of persistence diagrams ([5], [10]). This (a, b)-standard assumption gives a lower bound for
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IP (∥X1 − x∥ ≤ ϵ), uniformly in x ∈ M. This lower bound is a power of ϵ. We summarise this
notion in Definition 1.2 below.

Definition 1.2. Let X be a compactly supported IRd-random variable. Let M be its support.
This random variable X satisfies the (a, b)-standard assumption if there exist a > 0, b > 0 and
ϵ0 > 0 such that for any 0 < ϵ ≤ ϵ0,

(3) inf
x∈M

IP (∥X − x∥ ≤ ϵ) ≥ aϵb.

In [14] we needed also, in order to establish the convergence in probability of dH(Xn,M), a
lower bound for infx∈M IP (∥X1 − x∥ ≤ ϵ) which is not necessarily a power of ϵ. This specific
form of the lower bound as a power of ϵ allows to get precise rates of convergence with the
Hausdorff metric as we shall see later.

Now to control the second term IP (min1≤i≤n ∥Xi − x∥ > ϵ) appearing in Proposition 1.1,
we use two different approaches. The first approach is based on the following remark. For
i.i.d. random variables satisfying the (a, b)-standard assumption, a uniform (on x ∈ M) upper
bound for IP (min1≤i≤n ∥Xi − x∥ > ϵ) is easily obtained since, for i.i.d. random variables, it
holds :

(4) IP( min
1≤i≤n

∥Xi − x∥ > ϵ) = (IP (∥X1 − x∥ > ϵ))n .

The situation becomes more complicated when the variables are no longer i.i.d. For this
reason, we introduce the notion of minimal index θ∗ of a stationary sequence (see Definition
2.1 below): instead of having a power n in (4), we have a power nθ∗ for some θ∗ ∈]0, 1], also
an inequality instead of an equality. Finally to be more general, the upper bound that we
propose for IP (min1≤i≤n ∥Xi − x∥ > ϵ) is up to some positive constant c, (1− κϵ)

nθ∗ where κϵ
is in ]0, 1[. We called in Definition 2.1, θ∗ the minimal index and κϵ a marginal lower bound
of the sequence. Theorem 2.2 proves that the rate (of convergence to 0 of IE(dH(Xn,M))) for
i.i.d. sequences is reached for stationary sequences satisfying the (a, b)-standard assumption
and having θ∗ ∈]0, 1]. In Subsection 2.1, we give some examples of calculations of θ∗. The
reader accustomed to the theory of extreme values will no doubt think of the extremal index.
The extremal index introduced in [19], which is connected to the asymptotic distribution of the
maximum, has a nice meaning. It is a measure of the extent of clustering in the extremes of a
stationary process since it represents the reciprocal of the mean cluster size. Clearly in view of
their definitions, these two indexes are not the same. But they may have an analogous meaning.
In fact, Definition 2.1 (i.e. an inequality in (4) with pθ∗ instead of p in its right hand side)
suggests that the minimum over p random variables is controlled by pθ∗ independent ”clusters”
with a same size. So each cluster has the size p/(pθ∗), that is 1/θ∗. Of course, this explanation
remains intuitive at this stage. The evaluation of the minimal index for an m-dependent
sequence agrees with this interpretation. We prove in Proposition 2.3 that the minimal index
for stationary m-dependent sequence is θ∗ = 1/(m+ 1). In Proposition 2.4, we give sufficient
conditions for a stationary sequence to have θ∗ = 1 and to satisfy the requirements of Theorem
2.2 (see Corollary 2.5). We apply Proposition 2.4 to stationary Markov chains. The results
are announced in Proposition 2.6, in Corollary 2.7 and in Corollary 2.8. Here the minimal
index of this Markov chain is θ∗ = 1. The explicit values of a and b of the (a, b)-standard
assumptions are also given. The proofs for Markov chains are based on some calculations
in [14]. In Proposition 2.9, we give sufficient conditions for a stationary sequence to have
0 < θ∗ < 1 and to satisfy the requirements of Theorem 2.2 (see Corollary 2.10). We apply
those results to stationary Markov chains (see Proposition 2.11 and Corollary 2.12).
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The second approach to bound the second term IP(min1≤i≤n ∥Xi − x∥ > ϵ/2) appearing in
Proposition 1.1, is based on a mixing assumption and on a local type dependence condition. We
are interested in this paper by the β-mixing assumption. We prove in Proposition 3.1 below
that, for β-mixing sequences, the control of IP(min1≤i≤n ∥Xi − x∥ > ϵ/2) needs a suitable

control of IPk (min1≤i≤p ∥Xi − x∥ > ϵ/4) for kp ≤ n. The control of this later probability
needs a local dependence condition in the spirit of the well known Leadbetter’s anti-clustering
condition D′(un) ([13], [19]). This local dependence condition allows to give a lower bound for

IP (min1≤i≤p ∥Xi − x∥ ≤ ϵ/4)

pIP (∥X1 − x∥ ≤ ϵ/4)
,

by using a Bonferroni-type inequality (see Lemma 5.1). The result is summarized in Proposition
3.2. Once we have bounded IP (dH(Xn,M) > ϵ), we deduce a bound for IE (dH(Xn,M)). This
is the purpose of Theorem 3.4: for a stationary β-mixing sequence under a polynomial decay
of the β-coefficients together with the (a, b)-standard assumption and a local type dependence
condition, the optimal rate of the i.i.d. setting, proved in [5], can be reached for IE (dH(Xn,M))
(see Theorem 3.4, Corollaries 3.5 and 3.6 below for precise statements).

In conclusion, this paper extends known optimal bounds for IE (dH(Xn,M)) to stationary
random sequences having a minimal index θ∗ ∈]0, 1] or to β-mixing random variables (Xi)i∈IN,
thus extending the framework of independence. This shall open the scope of applications. As
such, we apply Theorem 2.2 and Theorem 3.4 to some stationary Markov chains. In Subsection
4.1 we discuss an example of a Markov chain on a closed ball for which Theorem 2.2 applies.
Subsection 4.2 gives a class of Markov chains for which our two approaches works: Proposition
4.2 for the first approach and Proposition 4.3 for the second approach. In fact, Proposition 4.3
proves that the considered Markov chain is geometrically ergodic and then β-mixing (recall
that geometrically ergodic Markov chains are β-mixing (see Theorem 3.7 in [3])). Two explicit
examples are studied: a Markov chain on the circle and on a Torus. The first example was
introduced by [15] to model the wind direction. Both Theorem 2.2 and Theorem 3.4 apply to
this Möbius Markov chain on the circle. We illustrate the result, in Subsection 4.2, by some
simulations. The second example studies with simulations the case of a stationary Markov
chain on a Torus. This model satisfies the requirements of Theorem 2.2 (see Subsection 4.3,
Proposition 4.4).

The paper is organized as follows. In Section 2, the first approach is described. The second
approach is described in Section 3. Explicit examples are discussed in Section 4. All the proofs
are given in Section 5.

From now on and in all the paper, the notation an = O(bn) (respectively an = o(bn))
means, as usual, that there exists a positive constant C such that for n large enough an ≤ Cbn
(respectively limn→∞

an
bn

= 0). The notation [·] means the integer part. The notation a ∧ b

means min(a, b) and finally cst denotes a positive constant that may be different from line to
line.

2. An approach based on the minimal index θ∗

We introduce the following definition, that allows to give uniformly on x ∈ M, an upper
bound for the main term of Proposition 1.1, which is IP (min1≤i≤n ∥Xi − x∥ > ϵ).

Definition 2.1. Let (Xi)i∈IN be a stationary sequence of IRd-valued random variables. Suppose
that X1 is with compact support M. We say that this sequence (Xi)i≥0 has a minimal index θ∗

with a marginal lower bound κϵ, if there exist a positive constant c, θ∗ ∈]0, 1], ϵ0 > 0, n0 ∈ IN
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such that for any n ≥ n0 and any ϵ ∈]0, ϵ0],

sup
x∈M

IP

(
min
1≤i≤n

∥Xi − x∥ > ϵ

)
≤ c(1− κϵ)

n θ∗ ,(5)

for a constant κϵ ∈]0, 1[.
Clearly, compactly supported i.i.d. random variables have a minimal index θ∗ = 1 with a

marginal lower bound κϵ ∈]0, 1[ if for ϵ small enough infx∈M IP (∥X1 − x∥ ≤ ϵ) ≥ κϵ.
We have now what we need, to announce our first result on the rates of IE (dH(Xn,M)) and

using this notion θ∗.

Theorem 2.2. Let (Xn)n≥0 be a stationary sequence of IRd-valued random variables. Suppose
that X1 is supported on a compact set M and satisfies the (a, b)-standard assumption. Suppose
moreover that (Xn)n≥0 has a minimal index θ∗ ∈]0, 1] with a marginal lower bound κϵ = aϵb.
Then,

IE (dH(Xn,M)) = O

((
lnn

n

)1/b
)
.

For i.i.d random variables whose common distribution satisfies the (a, b)-standard assump-
tion, the rate in Theorem 2.2 is optimal (see [5]).

2.1. Examples of calculation of θ∗. The purpose of this section is to apply Theorem 2.2 to
stationary m-dependent random sequences and to a class of some stationary random sequences
including some stationary Markov chains. All compactly supported. We specify, for each
example, the value of the minimal index θ∗ as is introduced in Definition 2.1.

2.1.1. Stationary m-dependent random sequences. Recall that the random sequence (Xi)i∈IN
is m-dependent for some m ≥ 0 if the two σ-fields σ(Xi, i ≤ k) and σ(Xi, i ≥ k +m+ 1) are
independent for every k. In particular, 0-dependent is the same as independent.

Proposition 2.3. Let (Xi)i∈IN be a sequence of stationary m-dependent random variables
compactly supported. Suppose that X1 satisfies the (a, b)-standard assumption. Then (Xi)i∈IN
has a minimal index

θ∗ =
1

m+ 1
,

with a marginal lower bound κϵ = aϵb. The conclusion of Theorem 2.2 holds for this m-
dependent random sequence (Xi)i∈IN.

2.1.2. Stationary random sequences and Markov chains with θ∗ = 1. In the sequel, we denote
by IPX0,··· ,Xn−1 or by IP(· |X0, · · · , Xn−1), the conditional distribution known X0, · · · , Xn−1.

Proposition 2.4. Let (Xn)n≥0 be a stationary IRd-valued random sequence compactly sup-
ported. Suppose that, for a positive ϵ ≤ ϵ0 there exists a positive constant κϵ ∈]0, 1[ such that,
for any x0 ∈ M, and any n ≥ 1

inf
x∈M

IPX0,··· ,Xn−1(∥Xn − x∥ ≤ ϵ) ≥ κϵ,(6)

a.s. Then for any n ≥ 1,

IP

(
min
1≤i≤n

∥Xi − x∥ > ϵ

)
≤ (1− κϵ)

n.

That is (Xi)i∈IN has a minimal index θ∗ = 1 with a marginal lower bound κϵ, as soon as the
bound (6) is satisfied.
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An immediate consequence of Proposition 2.4 is the following corollary.

Corollary 2.5. Let (Xn)n≥0 be a stationary IRd-valued random sequence compactly supported.
Suppose that (6) is satisfied with κϵ = aϵb. Then the conclusion of Theorem 2.2 holds true.

Proof of Corollary 2.5. We deduce from,

IP(∥X1 − x∥ ≤ ϵ) = IP(∥Xn − x∥ ≤ ϵ) = IP(IPX0,··· ,Xn−1(∥Xn − x∥ ≤ ϵ))

that if (6) is satisfied with κϵ = aϵb then the distribution of X1 satisfies the (a, b)-standard
assumption. This fact together with the conclusion of Proposition 2.4 are enough to guarantee
all the requirements of Theorem 2.2. The conclusion of Theorem 2.2 holds. □

Application to stationary Markov chains. We suppose in all this paragraph that (Xn)n≥0 is a
Markov chain satisfying Assumption (A1) below.

(A1) The Markov chain (Xn)n≥0 has an invariant measure µ with compact support M (and
then the chain is stationary).

Under Assumption (A1), Proposition 2.4 is reduced to the following proposition (we denote
by IPx0 (respectively by IPµ) the conditional distribution known X0 = x0 (respectively known
that X0 is distributed as µ)).

Proposition 2.6. Let (Xn)n≥0 be a Markov chain satisfying Assumption (A1). Suppose that,
for a positive ϵ ≤ ϵ0 there exists a positive constant κϵ ∈]0, 1[ such that, for any x0 ∈ M,

inf
x∈M

IPx0(∥X1 − x∥ ≤ ϵ) ≥ κϵ.(7)

Then for any n ≥ 1,

IPµ

(
min
1≤i≤n

∥Xi − x∥ > ϵ

)
≤ (1− κϵ)

n.

That is, (Xi)i∈IN has a minimal index θ∗ = 1 with a marginal lower bound κϵ, as soon as the
bound (7) is satisfied.

We deduce from Proposition 2.6, the following corollary.

Corollary 2.7. Let (Xn)n≥0 be a Markov chain satisfying Assumption (A1). Suppose that (7)
is satisfied with κϵ = aϵb. Then the conclusion of Theorem 2.2 holds true.

The proof of Corollary 2.7 is exactly as that of Corollary 2.5 and is omitted, in fact it is based
on IPµ(∥X1 − x∥ ≤ ϵ) =

∫
IPx0(∥X1 − x∥ ≤ ϵ)µ(dx0)). Our purpose now is to give sufficient

conditions under which the lower bound (7) is satisfied. For this, we consider the following
assumption introduced in [14].

(A2) The transition probability kernel K, defined for x ∈ M, by

K(x, ·) = IP(X1 ∈ ·|X0 = x)

is absolutely continuous with respect to some measure ν on M, i.e. there exists a
positive measure ν and a positive function k such that for any x ∈ M, K(x, dy) =
k(x, y)ν(dy). Suppose that, for some b > 0 and ϵ0 > 0,

(8) Vd := inf
x∈M

inf
0<ϵ<ϵ0

(
1

ϵb

∫
B(x,ϵ)∩M

ν(dx1)

)
> 0,

and that there exists a positive constant κ such that inf
x∈M, y∈M

k(x, y) ≥ κ > 0.
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Corollary 2.8. Under Assumptions (A1) and (A2), the bound (7) is satisfied with

κϵ = κVdϵ
b,

and the conclusion of Theorem 2.2 holds true.

2.1.3. Stationary random sequences and Markov chains with θ∗ < 1. The purpose of this
paragraph is to give sufficient conditions for a stationary random sequence to have θ∗ < 1.

Proposition 2.9. Let (Xn)n≥0 be a stationary IRd-valued random sequence compactly sup-
ported. Suppose that, for 0 < ϵ ≤ ϵ0, there exists a positive integer m ≥ 1 and a positive
constant κϵ ∈]0, α[ (for fixed α ∈]0, 1[) such that, for any x0 ∈ M, and any integer n ≥ 1,

inf
x∈M

IPX0,··· ,Xn−1(∥Xn+m − x∥ ≤ ϵ) ≥ κϵ,(9)

a.s. Then for any n ≥ m+ 1,

IP

(
min
1≤i≤n

∥Xi − x∥ > ϵ

)
≤ 1

1− α
(1− κϵ)

n/(m+1).

That is (Xi)i∈IN has a minimal index θ∗ = 1
m+1 with a marginal lower bound κϵ, as soon as

the lower bound (9) is satisfied.

We deduce the following corollary (its proof is omitted since it is the same as that of Corollary
2.5).

Corollary 2.10. Let (Xn)n≥0 be a stationary IRd-valued random sequence compactly supported.
Suppose that (9) is satisfied with κϵ = aϵb. Then the conclusion of Theorem 2.2 holds true.

Application to stationary Markov chains. Proposition 2.9 applied to stationary Markov chains
gives the following.

Proposition 2.11. Let (Xn)n≥0 be a Markov chain IRd-valued, satisfying Assumption (A1).
Suppose that, there exists a positive integer m ≥ 1 and α ∈]0, 1[, such that for any positive
ϵ ≤ ϵ0, there exists a positive constant κϵ ∈]0, α[ such that, for any x0 ∈ M,

inf
x∈M

IPx0(∥Xm+1 − x∥ ≤ ϵ) ≥ κϵ.(10)

Then for any n ≥ m+ 1,

IPµ

(
min
1≤i≤n

∥Xi − x∥ > ϵ

)
≤ 1

1− α
(1− κϵ)

n/(m+1).

That is, (Xi)i∈IN has a minimal index θ∗ = 1
m+1 with a marginal lower bound κϵ, as soon an

the lower bound (10) is satisfied.

We deduce the following corollary (its proof is omitted since it is as that of Corollary 2.5
and Corollary 2.7.)

Corollary 2.12. Let (Xn)n≥0 be a Markov chain satisfying Assumption (A1). Suppose that
the lower bound (10) holds with κϵ = aϵb. Then the conclusion of Theorem 2.2 holds true.
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3. An Approach for β-mixing random sequences

The main purpose of this section is to present a second approach to bound the quantity
IP(min1≤i≤n ∥Xi − x∥ > ϵ/2) (which shall give, thanks to Proposition 1.1 together with the
(a, b)-standard assumption, an upper bound for IP(dH(Xn,M) > ϵ)). We focus on stationary
β-mixing random sequences (introduced by [24]). Recall that the stationary random sequence
(Xn)n∈IN is β-mixing if its coefficient βn tends to 0 when n tends to infinity. These coefficients
βn can be defined by,

βn = sup
l≥1

IE {sup |IP (B|σ(X1, · · · , Xl))− IP(B)| , B ∈ σ(σi, i ≥ l + n)} ,

we refer the reader to [4] and to [29] for this expression of βn.
Geometrically ergodic Markov chains are an example of β-mixing random sequences with

geometrically decaying mixing coefficients (βn)n≥1 (cf. for instance Theorem 3.7 in [3] and the
references therein). Recall that a stationary Markov chain, with a stationary measure µ, is
geometrically ergodic, if there exists a positive constant c and a Borel positive function a such
that the following bound holds for any µ-a.e. x ∈ IR: for any n ∈ IN∗ and any B Boolean of
IRd, it holds,

(11) |IPn(x,B)− µ(B)| ≤ a(x)e−cn.

Proposition 3.1 below gives a bound for IP(min1≤i≤n ∥Xi − x∥ > ϵ/2) and for stationary
β-mixing random sequences. For its proof, we use a specific tool based on a Berbee’s coupling
argument [2] (see also [23]), available for β-mixing random sequences.

Proposition 3.1. Let (Xn)n≥0 be a stationary sequence of β-mixing and IRd-valued random
variables. Suppose that X1 is supported on a compact set M. Let p be a positive integer less
than n/2 and k = [n/(2p)]. Then, for any positive ϵ,

sup
x∈M

IP( min
1≤i≤n

∥Xi − x∥ > ϵ/2) ≤ kβp + sup
x∈M

IPk

(
min
1≤i≤p

∥Xi − x∥ > ϵ/4

)
.

We see from Proposition 3.1 that, the control of IP(min1≤i≤n ∥Xi − x∥ > ϵ/2) needs a

control of IPk (min1≤i≤p ∥Xi − x∥ > ϵ/4). We control this later term by introducing a local type
dependence condition analogous to the well known Leadbetter’s condition D′(un), described in
our case by the local dependence coefficient (Λ(n, p, ϵn))n,p (see (12) below). Propositions 3.1
and 1.1 together with a local dependence study give the following bound for IP(dH(Xn,M) > ϵ)
under a β-mixing condition.

Proposition 3.2. Let (Xn)n≥0 be a stationary sequence of β-mixing and IRd-valued random
variables. Suppose that X1 is supported on a compact set M and that its distribution satisfies
the (a, b)-standard assumption. Let p be a positive integer less than n/2 and k = [n/(2p)].
Define, for a non-random sequence (ϵn)n≥0 tending to 0 as n tends to infinity,

(12) Λ(n, p, ϵn) = n sup
x∈M

(
p∑

r=2

IP(∥X1 − x∥ ≤ ϵn, ∥Xr − x∥ ≤ ϵn)

)
.

Then, for any positive ϵ small enough,

IP(dH(Xn,M) > ϵ) ≤ 1
∧(

kβp
a′ϵb

)
+1
∧(

exp(−kpa′ϵb)

a′ϵb
exp(Λ(n, p, ϵn))1I0<ϵ≤ϵn

)
+ 1

∧(
exp(−kpa′ϵbn)

a′ϵbn
exp(Λ(n, p, ϵn))1Iϵn<ϵ

)
.
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Recall that a′ = a
4b

and that c ∧ d means min(c, d).

An immediate consequence of Proposition 3.2 is the following corollary.

Corollary 3.3. Suppose that all the requirements of Proposition 3.2 are satisfied. Let pn → ∞

and ϵn → 0 as n → ∞ be such that pn ≤ n
4 ,

exp(−na′
4
ϵbn)

ϵbn
= O(( lnn

n )1/b) and that

lim sup
n→∞

Λ(n, pn, ϵn) < ∞.(13)

Then, for n large enough,

IE (dH(Xn,M)) ≤ cst
n

2pn
βpn +

∫ ∞

0

(
1
∧(

n
2pn

βpn

a′ϵb

))
dϵ+ cst

(
lnn

n

)1/b

.

Condition (13) is a local type dependence condition or an anti-clustering dependence con-
dition. Its meaning is analogous to the well known Leadbetter’s condition D′(un) ([19], [13]).
Condition (13) means that an observation X1 in the small ball B(x, ϵn) cannot be followed by
an observation Xr in this ball, within an interval of length pn. The size pn affects the rates for
IE (dH(Xn,M)) are is shown in the following theorem.

Theorem 3.4. Let (Xn)n≥0 be a stationary sequence of β-mixing and IRd-valued random
variables. Suppose that X1 is supported on a compact set M and that its distribution satisfies

the (a, b)-standard assumption. Let ϵn → 0 as n → ∞ such that
exp(−na′

4
ϵbn)

ϵbn
= O(( lnn

n )1/b) and

that, for some α ∈]0, 1], this sequence (ϵn) satisfies also,

lim sup
n→∞

Λ (n, [nα/4], ϵn) < ∞,

where (Λ(n, p, ϵn))n,p is as defined in (12). Suppose that βn = O(n−γ) for some γ > 0. Let
s = min(1, 1b ). The following rates hold.

• If γ ≥ max(1, 1/b), b ̸= 1 and s+1/b
s(1+γ) ≤ α ≤ 1 then,

IE (dH(Xn,M)) = O

((
lnn

n

)1/b
)
.

• If 0 < γ < max(1, 1/b), b ̸= 1 and 1
1+γ < α ≤ 1 then,

IE (dH(Xn,M)) = O
(
n−αsγ+(1−α)s

)
.

• If γ > 0, b = 1 and 1
1+γ < α ≤ 1 then,

IE (dH(Xn,M)) = O

(
lnn

nmin(−1+α+αγ,1)

)
.

The following corollary proves that the optimal rates of the i.i.d. case can be reached, under
suitable decays of the mixing coefficient βn together with a suitable control of the local-type
dependence condition.

Corollary 3.5. Suppose that all the requirements of Theorem 3.4 are satisfied. If γ ≥
max(1, 1/b) and s+1/b

s(1+γ) ≤ α ≤ 1 then,

IE (dH(Xn,M)) = O

((
lnn

n

)1/b
)
.
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Finally the following corollary gives a sufficient condition for the local-type dependence con-
dition of Theorem 3.4 to hold.

Corollary 3.6. Let (Xn)n≥0 be a stationary sequence of β-mixing and IRd-valued random
variables. Suppose that X1 is supported on a compact set M and that its distribution satisfies
the (a, b)-standard assumption. Suppose that,

lim sup
u→0

sup
x∈M

sup
r≥2

u−2bIP(∥X1 − x∥ ≤ u, ∥Xr − x∥ ≤ u) < ∞.(14)

Then the requirements of Theorem 3.4 are satisfied for some arbitrary α < 1. The conclusion
of Theorem 3.4 holds (for this α < 1).

4. Explicit examples

The purpose of this section is to give some explicit examples satisfying the requirements of
Theorem 2.2 and/or Theorem 3.4.

4.1. Stationary Markov chains on a ball of IRd. We recall the following example already
studied in [14]. Let (Xn)n≥0 be a Markov chain defined, for n ≥ 0, by

(15) Xn+1 = An+1Xn +Bn+1,

where An+1 is a (d × d)-matrix, Xn ∈ IRd, Bn ∈ IRd, (An, Bn)n≥1 is an i.i.d. random se-
quence independent of X0. Recall that for a matrix M , ∥M∥ is the operator norm defined
by ∥M∥ = supx∈IRd, ∥x∥=1 ∥Mx∥. It is well known that for any n ≥ 1, Xn is distributed as∑n

k=1A1 · · ·Ak−1Bk+A1 · · ·AnX0, see for instance [17]. It is also well-known that the following
conditions (see [12, 16]),

(16) IE(ln+ ∥A1∥) < ∞, IE(ln+ ∥B1∥) < ∞, lim
n→∞

1

n
ln ∥A1 · · ·An∥ < 0 a.s.,

ensure the existence of a stationary solution to (15), and that ∥A1 · · ·An∥ approaches 0
exponentially fast. If in addition IE∥B1∥β < ∞ for some β > 0, then the series R :=∑∞

i=1A1 · · ·Ai−1Bi converges a.s. and the distribution of Xn converges to that of R, inde-
pendently of X0. The distribution of R is, then, that of the stationary measure of the chain.
Corollary 5.2 in [14] gives conditions under which Assumptions (A1) and (A2) are satisfied and
thus θ∗ = 1 for this Markov chain. We summarise these conditions in the following corollary
(that we announce without proof).

Corollary 4.1. Suppose that in the model (15), conditions (16) are satisfied, and moreover
∥B1∥ ≤ c < ∞. If the density of A1x + B1, fA1x+B1, satisfies infx, y∈M fA1x+B1(y) ≥ κ > 0
for some positive κ, then Assumptions (A1) and (A2) are satisfied with b = d, ν being the
Lebesgue measure on IRd and thus θ∗ = 1 for this Markov chain. The conclusion of Theorem
2.2 holds.

4.2. The Möbius Markov chain on the circle. Our purpose is to study an explicit exam-
ple of a Markov chain on the unit circle, known as a Möbius Markov chain, for which both
approaches are applicable. We first check that this model satisfies all the requirements of The-
orem 2.2. Next we prove that this Markov chain is geometrically ergodic. The Möbius Markov
chain on the circle is introduced in [15] and is defined as follows.

• Let X0 be a random variable which takes values on the unit circle.
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• Define, for n ≥ 1,

Xn =
Xn−1 + β

βXn−1 + 1
ϵn,

where β ∈] − 1, 1[ and (ϵn)n≥1 is a sequence of i.i.d. random variables which are
independent of X0 and distributed as the wrapped Cauchy distribution with a common
density, fφ, with respect to the arc length measure ν on the unit circle ∂B(0, 1), i.e.,
∀ z ∈ ∂B(0, 1),

fφ(z) =
1

2π

1− φ2

|z − φ|2
,

φ ∈ [0, 1[ being fixed.

The following proposition proves that the introduced Möbius Markov chain satisfies the re-
quirements of the first approach.

Proposition 4.2. Let (Xn)n≥0 be the Möbius Markov chain on the unit circle as defined
above. Then all the requirements of Theorem 2.2 are satisfied. More precisely, this Markov
chain admits a unique invariant distribution, denoted by µ. If X0 is distributed as µ then the
(a, b)-standard assumption is satisfied by µ with

a =
1

2π

1− φ

1 + φ

(
inf

u∈∂B(0,1)
inf

0<ϵ<ϵ0

ν(∂B(0, 1) ∩B(u, ϵ)

ϵ

)
> 0, b = 1,

ν is the arc length measure on the unit circle. This Markov chain has a minimal index θ∗ = 1
with a marginal lower bound κϵ = aϵ. The conclusion of Theorem 2.2 holds, that is,

IE (dH(Xn, ∂B(0, 1))) = O

(
lnn

n

)
.

Proposition 4.3 below proves that the Möbius Markov chain, as introduced in this section,
satisfies also the requirements of the second approach.

Proposition 4.3. Let (Xn)n≥0 be the Möbius Markov chain on the unit circle as defined
above. This Markov chain is β-mixing with βn = O(e−cn) (for some c > 0). It satisfies all the
requirements of Theorem 3.4 and IE (dH(Xn, ∂B(0, 1))) = O

(
lnn
n

)
.

The purpose now is to simulate a Möbius Markov chain on the unit circle and to illustrate the
rate of IE (dH(Xn, ∂B(0, 1))). More precisely, we simulate,

• a random variable X0 uniformly distributed on the unit circle ∂B(0, 1), that is X0 has
the density,

f(z) =
1

2π
, ∀ z ∈ ∂B(0, 1).

• For n ≥ 1,

Xn = Xn−1ϵn,

where (ϵn)n≥1 is a sequence of i.i.d. random variables which are independent of X0 and
distributed as the wrapped Cauchy distribution with a common density with respect
to the arc length measure ν on the unit circle ∂B(0, 1),

fφ(z) =
1

2π

1− φ2

|z − φ|2
, φ ∈ [0, 1[, z ∈ ∂B(0, 1).
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It is proved, in [15], that this Markov chain is stationary. Its stationary measure is the uniform
law on the unit circle.

Simulations give the following numerical values and illustrations, which do not contradict
the theoretical result of both Proposition 4.2 and Proposition 4.3.

n Hausdorff dist.

1 20 0.44273078

2 40 0.42544579

3 60 0.23801556

4 80 0.23807300

5 100 0.13752374

6 120 0.13511955

7 140 0.11108553

8 160 0.12247550

9 180 0.11113827

10 200 0.09572337

11 220 0.08870232

12 240 0.06918471

13 260 0.11012207

14 280 0.07965723

15 300 0.07060258

Table 1. Behavior of dH(Xn, ∂B(0, 1)) with n. We used the function distFct from the
library(TDA) of the software R as described in [11].

Figure 1. dH(Xn, ∂B(0, 1)) and the rate (lnn)/n.

4.3. A Markov chain on a square wrapped on a torus. Recall that, for x ∈ IR, [x]
denotes the integer part of x and x− [x] denotes its fractional part. Clearly, 0 ≤ x− [x] < 1.
Define the Markov chain (Φn)n≥0 = (θn, ϕn)n≥0 on the square [0, 1[×[0, 1[ with opposite edges
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identified, by {
θn+1 = θn + ϵn+1 − [θn + ϵn+1]
ϕn+1 = ϕn + ηn+1 − [ϕn + ηn+1],

where (ϵi)i≥0 and (ηi)i≥0 are two independent sequences of i.i.d. random variables all uniformly
distributed over [0, 1]. Suppose also that, for each n, θn (respectively ϕn) is independent of
ϵn+1 (respectively ηn+1). The following proposition proves that the requirements of Theorem
2.2 are satisfied.

Proposition 4.4. The following properties hold.

• (Φn)n≥0 is a stationary Markov chain with the uniform over [0, 1] × [0, 1] stationary
distribution.

• For any positive ϵ small enough and any couples (x, y) ∈ [0, 1[×[0, 1[ and (u, v) ∈
[0, 1[×[0, 1[,

IP
(√

|θ1 − x|2 + |ϕ1 − y|2 ≤ ϵ | θ0 = u, ϕ0 = v
)
≥ ϵ2

2

• Φ1 satisfies the (a, b)-standard assumption with a = 1
2 and b = 2.

• The Markov chain (Φn)n≥0 has a minimal index θ∗ = 1 with a marginal lower bound

κϵ =
ϵ2

2 .

Figure 2. A Markov chain on [0, 1[×[0, 1[ with opposite edges identified. Dif-

ferent realisations of the set {Φ1, · · · ,Φn} with different values of n.
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The random torus on [0, 1[×[0, 1[ can be represented parametrically in 3D-dimension using
the following equations,  Xn = (R+ r cos(2πθn)) cos(2πϕn)

Yn = (R+ r cos(2πθn)) sin(2πϕn)
Zn = r sin(2πθn)

Figure 3. Different realisations of the set Xn = {(Xi, Yi, Zi)1≤i≤n} for differ-
ent values of n. From the left to the right n = 100, 1000, 10000.50000, 100000.
The realisations of (Xi, Yi, Zi)1≤i≤n are in blue. The paths of the Markov chain
are in red. (Here R = 0.9 and r = 0.3).

n Hausdorff dist.

1 30 0.01520626

2 40 0.37171930

3 60 0.17933311

4 80 0.20862514

5 100 0.12695697

6 120 0.16236784

7 140 0.13807599

8 160 0.08060261

9 180 0.09467337

10 200 0.06865655

11 220 0.10108801

12 240 0.07552198

13 260 0.05321497

14 280 0.06503609

15 300 0.06932031

Table 2. Behavior (with n) of the Hausdorff distance between a set of the realisations of
Xn = {(Xi, Yi, Zi)1≤i≤n} and the torus with R = 0.9 and r = 0.3.
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Figure 4. The rate ((lnn)/n)1/2 and the behavior of the Hausdorff distance

between the set of realisations of Xn = {(Xi, Yi, Zi)1≤i≤n} and the torus with n,

(here R = 0.9 and r = 0.3). Proposition 4.4 together with Theorem 2.2 ensure

that the rate of convergence is (lnn/n)1/2 who agrees with this figure.

5. Proofs

5.1. Proof of Theorem 2.2. We have from the assumptions of Theorem 2.2 and the definition
of θ∗ (letting a′ = a/4b), for any 0 < ϵ ≤ 4ϵ0 =: ϵ′0,

inf
x∈M

IP(∥X1 − x∥ ≤ ϵ/4) ≥ a′ϵb

sup
x∈M

IP

(
min
1≤i≤n

∥Xi − x > ϵ/4

)
≤ c (1− a′ϵb)nθ

∗ ≤ c exp(−a′θ∗nϵb),

(the last bound is obtained since for any x ∈ [0, 1], 1−x ≤ e−x). The conclusion of Proposition
1.1 together with the two last bounds, give for any 0 < ϵ ≤ ϵ′0,

IP(dH(Xn,M) > ϵ) ≤ 1 ∧
(
c
exp(−a′θ∗nϵb)

a′ϵb

)
.(17)

We have, a.s., since Xn is a subset of M, dH(Xn,M) ≤ diam(M). Hence IP(dH(Xn,M) ≥ ϵ) = 0
for any ϵ ≥ C where C is a positive constant satisfying C > max(diam(M), ϵ′0). We have
(noting by a′′ = a′/c and by cst a positive constant that does not depend on n),

IE (dH(Xn,M)) =

∫ ∞

0
IP(dH(Xn,M) > ϵ)dϵ =

∫ C

0
IP(dH(Xn,M) > ϵ)dϵ

≤
∫ C

ϵ′0

IP(dH(Xn,M) > ϵ)dϵ+

∫ ϵ′0

0

(
1 ∧ exp(−a′θ∗nϵb)

a′′ϵb

)
dϵ

≤ CIP(dH(Xn,M) > ϵ′0) +

∫ ∞

0

(
1 ∧ exp(−a′θ∗nϵb)

a′′ϵb

)
dϵ

≤ cst exp(−a′θ∗nϵ′b0 ) +

∫ ∞

0

(
1 ∧ exp(−a′θ∗nϵb)

a′′ϵb

)
dϵ,(18)
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the last bound is obtained thanks to (17). We have also, using the same calculations as for the
i.i.d. case (see for instance [5], Section B.2),∫ ∞

0

(
1 ∧ exp(−a′θ∗nϵb)

a′′ϵb

)
dϵ ≤ cst

(
lnn

n

)1/b

.(19)

Clearly,

exp(−a′θ∗nϵ′b0 ) = o

((
lnn

n

)1/b
)
.(20)

The proof of Theorem 2.2 is complete by combining the bounds (18), (19) and (20). □

5.2. Proof of Proposition 2.3. The random sequence (Xi)i∈IN is stationary andm-dependent,
so that the random variables:

X1, Xm+2, X2m+3, · · · , X1+k(m+1), k ∈ IN

are i.i.d. Hence, for any ϵ ∈]0, ϵ0], x ∈ M and n ≥ m+ 1,

IP

(
min
1≤i≤n

∥Xi − x∥ > ϵ

)
≤ IP

(
min

0≤k≤[n/(m+1)]−1
∥X1+k(m+1) − x∥ > ϵ

)
≤
(
IP (∥X1 − x∥ > ϵ)

)[n/(m+1)]
≤
(
IP (∥X1 − x∥ > ϵ)

)n/(m+1)−1

The (a, b)-standard assumption satisfied by the distribution of X1 gives, for any 0 < ϵ ≤ ϵ0,

IP (∥X1 − x∥ > ϵ) = 1− IP (∥X1 − x∥ ≤ ϵ) ≤ 1− aϵb.

Consequently, for any 0 < ϵ ≤ ϵ0,

IP

(
min
1≤i≤n

∥Xi − x∥ > ϵ

)
≤ (1− aϵb)n/(m+1)−1 ≤ (1− aϵb)n/(m+1)

1− aϵb0
.

The requirement of Definition 2.1 is then satisfied with,

θ∗ =
1

m+ 1
, κϵ = aϵb, c =

1

1− aϵb0
.

The first part of Proposition 2.3 is then proved. All the requirements of Theorem 2.2 are
satisfies. The conclusion of Theorem 2.2 holds. □

5.3. Proof of Propositions 2.4 and 2.6. The proof of this proposition is analogous to that
of Lemma 7.2 of [14]. We have, letting k be a positive integer,

IP

(
min
1≤i≤k

∥Xi − x∥ > ϵ

)
= IE

(
k−1∏
i=1

1I{Xi ̸∈B(x,ϵ)}IEFk−1
(1I{Xk ̸∈B(x,ϵ)})

)
,

where Fk−1 = σ(X0, · · · , Xk−1) and B(x, ϵ) = {y, ∥x− y∥ ≤ ϵ}. We deduce from (6) that,

IP

(
min
1≤i≤k

∥Xi − x∥ > ϵ

)
≤ (1− κϵ)IE

(
k−1∏
i=1

1I{Xi ̸∈B(x,ϵ)}

)

≤ (1− κϵ)IP

(
min

1≤i≤k−1
∥Xi − x∥ > ϵ

)
.

The proof of Proposition 2.4 is complete by induction on k. Recall that, for k = 1,

(21) IP (∥X1 − x∥ > ϵ) = 1− IP(IP (∥X1 − x∥ ≤ ϵ|X0, · · · , Xn−1)) ≤ 1− κϵ,
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by (6). Now in the case of stationary Markov chains, we have,

IEFk−1
(1I{Xk ̸∈B(x,ϵ)}) = IEXk−1

(1I{Xk ̸∈B(x,ϵ)) = IEX0(1I{X1 ̸∈B(x,ϵ)),

and by (7),

IEX0(1I{X1 ̸∈B(x,ϵ)) ≤ 1− κϵ,

almost surely. So that, Proposition (2.4) applies. More precisely, we obtain, for any k ≥ 1,

IPµ

(
min
1≤i≤k

∥Xi − x∥ > ϵ

)
≤ (1− κϵ)

k.

The proof of Proposition 2.6 is complete.

5.4. Proof of Corollary 2.8. We have, for any x0 ∈ M, using (A2),

IPx0(∥X1 − x∥ ≤ ϵ) =

∫
1I{y∈B(x,ϵ)}K(x0, dy) =

∫
1I{y∈B(x,ϵ)∩M}k(x0, y)ν(dy).

So that, using again (A2),

IPx0(∥X1 − x∥ ≤ ϵ) ≥ κ

∫
1I{y∈B(x,ϵ)∩M}ν(dy) ≥ κϵbVd > 0.

The bound (7) is then satisfied with κϵ = κϵbVd. The rest of the proof of Corollary 2.8 follows
from Corollary 2.7.

5.5. Proofs of Propositions 2.9 and 2.11. Let m and k be two positive integers for which
(m+ 1)k ≤ n. Then,

IP

(
min
1≤i≤k

∥Xi(m+1) − x∥ > ϵ

)
= IE

(
k−1∏
i=1

1I{Xi(m+1) ̸∈B(x,ϵ)}IE
(
1I{Xk(m+1) ̸∈B(x,ϵ)} | (X0, · · · , X(k−1)(m+1)

))

≤ (1− κϵ)IE

(
k−1∏
i=1

1I{Xi(m+1) ̸∈B(x,ϵ)}

)
,

the last bound is obtained thanks to (9). So that, we deduce using an induction on k (the case
k = 1 follows from (9), as in (21)),

IP

(
min
1≤i≤k

∥Xi(m+1) − x∥ > ϵ

)
≤ (1− κϵ)

k,

and for k = [n/(m+ 1)] (recall that κϵ ∈]0, α[), we obtain,

IP

(
min
1≤i≤n

∥Xi − x∥ > ϵ

)
≤ IP

(
min
1≤i≤k

∥Xi(m+1) − x∥ > ϵ

)
≤ (1− κϵ)

[n/(m+1)]

≤ (1− κϵ)
n/(m+1)−1 ≤ 1

1− α
(1− κϵ)

n/(m+1).

The proof of Proposition 2.9 is complete. Let us now prove Proposition 2.11. We get thanks
to the stationary assumption of the Markov chain,

IE
(
1I{Xk(m+1) ̸∈B(x,ϵ)}|(X0, · · · , X(k−1)m

)
= IEX(k−1)(m+1)

(
1I{Xk(m+1) ̸∈B(x,ϵ)}

)
= IEX0(1I{Xm+1 ̸∈B(x,ϵ)}).

This last fact proves Proposition 2.11 from Proposition 2.9.
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5.6. Proof of Proposition 3.1. Define, for a positive integer p < n/2, k = [ n2p ], recall that

[·] denotes the integer part. Define also, for 1 ≤ i ≤ k, the sets of indices,

Ii,2p = {2p(i− 1) + 1, · · · , ip+ (i− 1)p}.

We need for the proof of this proposition the following Berbee’s coupling (we refer, for instance,
to [23] page 116 for a clear formulation): there exists a random sequence of i.i.d. blocks
{ξj , j ∈ Ii,2p} (onto a richer probability space) such that, for any 1 ≤ i ≤ k, the following
three properties hold,

(P1) {ξj , j ∈ Ii,2p} and {Xj , j ∈ Ii,2p} are identically distributed
(P2) IP ({ξj , j ∈ Ii,2p} ≠ {Xj , j ∈ Ii,2p}) ≤ βp
(P3) {ξj , j ∈ Ii,2p} is independent of ({Xj , j ∈ Il,2p})1≤l≤i−1, for i ≥ 2.

Our purpose is to control IP(min1≤i≤n ∥Xi − x∥ > ϵ). For this, we use Berbee’s coupling on
the blocs of variables having the set of indices (Il,2p)l, as defined above. More precisely, define
for x ∈ M, Xl(x) and ξl(x), respectively, by

(22) Xl(x) ∈ argminXi, i∈Il,2p∥Xi − x∥, ξl(x) ∈ argminξi, i∈Il,2p∥ξi − x∥,

so that,

∥Xl(x)− x∥ = min
i∈Il,2p

∥Xi − x∥,

and

∥ξl(x)− x∥ = min
i∈Il,2p

∥ξi − x∥.

Let x ∈ M be fixed. Clearly,

(23) min
1≤i≤n

∥Xi − x∥ ≤ min
1≤l≤k

min
i∈Il,2p

∥Xi − x∥

and,

min
i∈Il,2p

∥Xi − x∥ = ∥Xl(x)− x∥ ≤ ∥Xl(x)− ξl(x)∥+ ∥ξl(x)− x∥.

Hence,

min
1≤l≤k

min
i∈Il,2p

∥Xi − x∥ ≤ min
1≤l≤k

(∥Xl(x)− ξl(x)∥+ ∥ξl(x)− x∥)

≤ max
1≤l≤k

∥Xl(x)− ξl(x)∥+ min
1≤l≤k

∥ξl(x)− x∥.

Consequently, by (23),

min
1≤i≤n

∥Xi − x∥ ≤ max
1≤l≤k

∥Xl(x)− ξl(x)∥+ min
1≤l≤k

∥ξl(x)− x∥,

and

IP

(
min
1≤i≤n

∥Xi − x∥ > ϵ/2

)
≤ IP

(
max
1≤l≤k

∥Xl(x)− ξl(x)∥+ min
1≤l≤k

∥ξl(x)− x∥ > ϵ/2

)
.(24)
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Now (recall that x ∈ M),

IP

(
max
1≤l≤k

∥Xl(x)− ξl(x)∥+ min
1≤l≤k

∥ξl(x)− x∥ > ϵ/2

)
≤ IP

(
max
1≤l≤k

∥Xl(x)− ξl(x)∥ > ϵ/4

)
+ IP

(
min
1≤l≤k

∥ξl(x)− x∥ > ϵ/4

)
≤ sup

x∈M
IP

(
max
1≤l≤k

∥Xl(x)− ξl(x)∥ > ϵ/4

)
+ sup

x∈M
IP

(
min
1≤l≤k

∥ξl(x)− x∥ > ϵ/4

)
≤ k sup

x∈M
max
1≤l≤k

IP (∥Xl(x)− ξl(x)∥ > ϵ/4) + sup
x∈M

IP

(
min
1≤l≤k

∥ξl(x)− x∥ > ϵ/4

)
.(25)

We get, using (24) and (25),

IP

(
min
1≤i≤n

∥Xi − x∥ > ϵ/2

)
≤ k sup

x∈M
max
1≤l≤k

IP (∥Xl(x)− ξl(x)∥ > ϵ/4)

+ sup
x∈M

IP

(
min
1≤l≤k

∥ξl(x)− x∥ > ϵ/4

)
=: I(ϵ/4) + II(ϵ/4).(26)

Let us control the two terms I(ϵ/4) and II(ϵ/4) on the right hand side of the last bound.

Control of I(ϵ/4). We deduce from (22) that the random variable Xl(x) (respectively ξl(x))
belongs to the sigma-fields generated by {Xj , j ∈ Il,2p} (respectively by {ξj , j ∈ Il,2p}).
Hence, by (22),

(∥Xl(x)− ξl(x)∥ > ϵ/4) =⇒ ({ξj , j ∈ Il,2p} ≠ {Xj , j ∈ Il,2p}) ,

so that, (by the construction of the random sequence (ξj)j , more precisely by Property (P2)),

IP (∥Xl(x)− ξl(x)∥ > ϵ/4) ≤ IP ({ξj , j ∈ Il,2p} ≠ {Xj , j ∈ Il,2p}) ≤ βp,

and,

I(ϵ/4) ≤ kβp(27)

Control of II(ϵ/4). By construction, the random variables (ξl(x))1≤l≤k are i.i.d., each of
them is distributed as X1(x), since ξ1(x) and X1(x) are identically distributed. Hence,

sup
x∈M

IP

(
min
1≤l≤k

∥ξl(x)− x∥ > ϵ/4

)
≤ sup

x∈M
IPk (∥ξ1(x)− x∥ > ϵ/4)

≤ sup
x∈M

IPk (∥X1(x)− x∥ > ϵ/4) = sup
x∈M

IPk

(
min
1≤i≤p

∥Xi − x∥ > ϵ/4

)
,

the last equality is obtained by using the definition of X1(x) (in 22). Hence,

II(ϵ/4) ≤ sup
x∈M

IPk

(
min
1≤i≤p

∥Xi − x∥ > ϵ/4

)
.(28)

We deduce, collecting (27), (28) together with (26),

IP

(
min
1≤i≤n

∥Xi − x∥ > ϵ/2

)
≤ kβp + sup

x∈M
IPk

(
min
1≤i≤p

∥Xi − x∥ > ϵ/4

)
.

The last bound completes the proof of Proposition 3.1. □
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5.7. Proof of Proposition 3.2. We combine Proposition 3.1 together with Proposition 1.1.
We obtain, noting that (a+b)∧1 ≤ (a∧1)+(b∧1) for a, b > 0 and that 1−supx∈M IP(∥X1−x∥ >
ϵ/4)) ≥ infx∈M IP(∥X1 − x∥ ≤ ϵ/4)),

IP(dH(Xn,M) > ϵ) ≤ 1
∧(

kβp

(
inf
x∈M

IP(∥X1 − x∥ ≤ ϵ/4))

)−1
)

+1
∧((

inf
x∈M

IP(∥X1 − x∥ ≤ ϵ/4))

)−1

sup
x∈M

IPk

(
min
1≤i≤p

∥Xi − x∥ > ϵ/4

))
.

Recall that, for reals a and b, a∧b = min(a, b). The last bound together with the (a, b)-standard
assumption give,

IP(dH(Xn,M) > ϵ) ≤ 1
∧

4b
kβp
aϵb

+ 1
∧(

4b
1

aϵb
sup
x∈M

IPk

(
min
1≤i≤p

∥Xi − x∥ > ϵ/4

))
.(29)

In order to control IPk (min1≤i≤p ∥Xi − x∥ > ϵ/4), we need the following lemma.

Lemma 5.1. Let (ϵn)n≥0 be a non-random positive fixed sequence. Let (Λ(n, p, ϵn))n,p be as
defined in (12). The following statements hold.

• If 0 < ϵ ≤ ϵn then,(
IP( min

1≤i≤p
∥Xi − x∥ > ϵ/4)

)k

≤ exp
(
−kpIP(∥X1 − x∥ ≤ ϵ/4)

)
exp
(
Λ(n, p, ϵn)

)
.

• If ϵ > ϵn then,(
IP( min

1≤i≤p
∥Xi − x∥ > ϵ/4)

)k

≤ exp
(
−kpIP(∥X1 − x∥ ≤ ϵn/4)

)
exp
(
Λ(n, p, ϵn)

)
.

Proof of Lemma 5.1. We have, using the trivial bound ln(1− x) ≤ −x for x ∈]0, 1[,(
IP( min

1≤i≤p
∥Xi − x∥ > ϵ)

)k

≤ exp
(
−kIP( min

1≤i≤p
∥Xi − x∥ ≤ ϵ)

)
.

Recall the following Bonferroni-type inequality, for any events (Ai)1≤i≤p,

p∑
i=1

IP(Ai)−
∑

1≤i<j≤p

IP(Ai ∩Aj) ≤ IP(

p⋃
i=1

Ai) ≤
p∑

i=1

IP(Ai).

Let Ai be the event (∥Xi − x∥ ≤ ϵ) for positive ϵ. So that,
⋃p

i=1Ai ⊂ (min1≤i≤p(∥Xi − x∥ ≤ ϵ)
and for any positive ϵ,

IP( min
1≤i≤p

∥Xi − x∥ ≤ ϵ)

≥ pIP(∥X1 − x∥ ≤ ϵ)−
∑

1≤i<j≤p

IP(∥Xi − x∥ ≤ ϵ, ∥Xj − x∥ ≤ ϵ)

≥ pIP(∥X1 − x∥ ≤ ϵ)− p

p∑
r=2

IP(∥X1 − x∥ ≤ ϵ, ∥Xr − x∥ ≤ ϵ).(30)

• If 0 < ϵ ≤ ϵn then,

IP(∥X1 − x∥ ≤ ϵ, ∥Xr − x∥ ≤ ϵ) ≤ IP(∥X1 − x∥ ≤ ϵn, ∥Xr − x∥ ≤ ϵn)
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and by (30),

IP( min
1≤i≤p

∥Xi − x∥ ≤ ϵ)

≥ pIP(∥X1 − x∥ ≤ ϵ)− p

p∑
r=2

IP(∥X1 − x∥ ≤ ϵn, ∥Xr − x∥ ≤ ϵn).

Consequently (since kp ≤ n),

exp
(
−kIP( min

1≤i≤p
∥Xi − x∥ ≤ ϵ)

)
≤ exp

(
−kpIP(∥X1 − x∥ ≤ ϵ)

)
exp
(
Λ(n, p, ϵn)

)
.

• If ϵ > ϵn then,

IP( min
1≤i≤p

∥Xi − x∥ ≤ ϵn) ≤ IP( min
1≤i≤p

∥Xi − x∥ ≤ ϵ)(31)

and

exp
(
−kIP( min

1≤i≤p
∥Xi − x∥ ≤ ϵ)

)
≤ exp

(
−kIP( min

1≤i≤p
∥Xi − x∥ ≤ ϵn)

)
.

We have, by (30),

IP( min
1≤i≤p

∥Xi − x∥ ≤ ϵn)

≥ pIP(∥X1 − x∥ ≤ ϵn)− p

p∑
r=2

IP(∥X1 − x∥ ≤ ϵn, ∥Xr − x∥ ≤ ϵn).(32)

Finally, we obtain, combining (31) and (32),

exp
(
−kIP( min

1≤i≤p
∥Xi − x∥ ≤ ϵ)

)
≤ exp

(
−kpIP(∥X1 − x∥ ≤ ϵn)

)
exp
(
Λ(n, p, ϵn)

)
.

The proof of Lemma 5.1 is complete. □

Lemma 5.1 and the (a, b)-standard assumption give,

supx∈M IPk (min1≤i≤p ∥Xi − x∥ > ϵ/4)

infx∈M IP (∥X1 − x∥ ≤ ϵ/4)

≤ 4b
1

aϵb
sup
x∈M

IPk

(
min
1≤i≤p

∥Xi − x∥ > ϵ/4

)
≤ 4b

1

aϵb
exp(−kp a/4bϵb) exp(Λ(n, p, ϵn))1I0<ϵ≤ϵn + 4b

1

aϵbn
exp(−kp a/4bϵbn) exp(Λ(n, p, ϵn))1Iϵn<ϵ

This last bound together with (29) prove that for any ϵ ≤ ϵ′0 = 4ϵ0, (since for positive reals
b, c, 1 ∧ (b+ c) ≤ (1 ∧ b) + (1 ∧ c)),

IP (dH(Xn,M) > ϵ)

≤ 1 ∧ kβp
a′ϵb

+

(
4b

1

aϵb
exp(−kp a/4bϵb) exp(Λ(n, p, ϵn))1I0<ϵ≤ϵn

)
∧ 1

+

(
4b

1

aϵbn
exp(−kp a/4bϵbn) exp(Λ(n, p, ϵn))1Iϵn<ϵ

)
∧ 1.(33)

The proof of Proposition 3.2 is thus complete.
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5.8. Proof of Corollary 3.3. We have, a.s., since Xn is a subset ofM, dH(Xn,M) ≤ diam(M).
Hence IP(dH(Xn,M) ≥ ϵ) = 0 for any ϵ ≥ C where C is a positive constant satisfying C >
max(diam(M), ϵ′0). We have (noting by a′′ = a′/c and by cst a positive constant that does not
depend on n) and using (33),

IE (dH(Xn,M)) =

∫ ∞

0
IP(dH(Xn,M) > ϵ)dϵ =

∫ C

0
IP(dH(Xn,M) > ϵ)dϵ

≤
∫ C

ϵ′0

IP(dH(Xn,M) > ϵ)dϵ+

∫ ϵ′0

0

(
1 ∧ kβp

a′ϵb

)
dϵ

+cst exp(Λ(n, p, ϵn))

∫ ϵ′0

0

(
1 ∧ exp (−a′pkϵb)

a′ϵb

)
dϵ+

cst

ϵbn
exp(−kpa′ϵbn) exp(Λ(n, p, ϵn)).(34)

We have from (33) and for n large enough such that ϵn < ϵ′0,∫ C

ϵ′0

IP(dH(Xn,M) > ϵ)dϵ ≤ CIP(dH(Xn,M) > ϵ′0)

≤ 1 ∧ kβp

a′ϵ
′b
0

+
1

a′ϵbn
exp(−kpa′ϵbn) exp(Λ(n, p, ϵn))

≤ cst kβp +
1

a′ϵbn
exp(−kpa′ϵbn) exp(Λ(n, p, ϵn)).(35)

Hence, by (34), (35) and (19), we get for n large enough,

IE (dH(Xn,M)) ≤ cst kβp +

2

a′ϵbn
exp(−kpa′ϵbn) exp(Λ(n, p, ϵn)) + cst exp(Λ(n, p, ϵn))

(
ln(pk)

pk

)1/b

+

∫ ϵ′0

0

(
1 ∧ kβp

a′ϵb

)
dϵ.

Suppose now that p ≤ n
4 , then

n

2
≥ pk ≥ p(

n

2p
− 1) ≥ n

4
.

So that, for n large enough,

IE (dH(Xn,M)) ≤ cst kβp +
cst

a′ϵbn
exp(−n

a′

4
ϵbn) exp(Λ(n, p, ϵn))

+cst exp(Λ(n, p, ϵn))

(
lnn

n

)1/b

+

∫ ϵ′0

0

(
1 ∧ kβp

a′ϵb

)
dϵ.(36)

Let pn → ∞ and ϵn → 0 as n → ∞ be such that pn ≤ n/4,
exp(−na′

4
ϵbn)

ϵbn
= O(( lnn

n )1/b) and that

lim sup
n→∞

Λ(n, pn, ϵn) < ∞.

Then by (36), we obtain for n large enough,

IE (dH(Xn,M)) ≤ cst
n

2pn
βpn +

∫ ∞

0

(
1
∧(

n
2pn

βpn

a′ϵb

))
dϵ+ cst

(
lnn

n

)1/b

.

The proof of Corollary 3.3 is then complete.
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5.9. Proof of Theorem 3.4. The task now is to calculate the integral
∫ ϵ′0
0

(
1 ∧ kβp

a′ϵb

)
dϵ and

to deduce a bound for IE (dH(Xn,M)). We do this by discussing on the values of b. We suppose
that kβp < 1,

(1) If 0 < b < 1 then
∫ ϵ′0
0

1
ϵb
dϵ < ∞ and∫ ϵ′0

0

(
1 ∧ kβp

a′ϵb

)
dϵ ≤ cst kβp = cst (kβp)

min(1,1/b).

(2) If b > 1 and
(
kβp

a′

)1/b
< ϵ′0 then,∫ ϵ′0

0

(
1 ∧ kβp

a′ϵb

)
dϵ ≤

(
kβp
a′

)1/b

+
kβp
a′

∫ ∞

(
kβp
a′ )1/b

1

ϵb
dϵ ≤ cst (kβp)

1/b = cst (kβp)
min(1,1/b).

(3) If b = 1, kβp ≤ Ck,p < 1 and
(
Ck,p

a′

)
< ϵ′0, then∫ ϵ′0

0

(
1 ∧ kβp

a′ϵ

)
dϵ ≤

∫ ϵ′0

0

(
1 ∧

Ck,p

a′ϵ

)
dϵ ≤ cst(Ck,p − Ck,p ln(Ck,p)).

So that, we obtain by Corollary 3.3 since kβp ≤ (kβp)
min(1,1/b) (recall that k = kn, p = pn and

that knβpn < Ckn,pn < 1),

(1) if b ̸= 1 then,

IE (dH(Xn,M)) ≤ cst

(
(kβp)

min(1,1/b) +

(
lnn

n

)1/b
)
.(37)

(2) If b = 1 then,

IE (dH(Xn,M)) ≤ cst

(
Ck,p − Ck,p ln(Ck,p) +

lnn

n

)
.(38)

The task now is to choose, in the last bound, suitable values of p = pn. Let s = min(1/b, 1)
and p = [nα/4] for some α ∈]0, 1] and k = [ n2p ]. Recall that βp = O(p−γ). We have,

(kβp)
s ≤ cst n(1−α)s−(αγ)s.(39)

So that, we obtain when b ̸= 1 (thanks to (37)),

IE (dH(Xn,M)) ≤ cst

(
n(1−α)s−(αγ)s +

(
lnn

n

)1/b
)
.(40)

A. Suppose that b ̸= 1 and βn = O(n−γ) for some γ ≥ max(1, 1/b). Choose α such that,

1 + 1/b

1 + γ
≤ s+ 1/b

s(1 + γ)
≤ α ≤ 1,

(such a value of α exists since s ≤ 1, s+1/b ≤ s(1 + γ) and γ ≥ max(1, 1/b)). Hence, by (40),

IE (dH(Xn,M)) ≤ cst

(
lnn

n

)1/b (
1 +

n(1−α)s−αγs+1/b

(lnn)1/b

)
.
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Consequently, since (1− α)s− αγs+ 1/b ≤ 0,

IE (dH(Xn,M)) = O

((
lnn

n

)1/b
)
.

B. Suppose that b ̸= 1 and βn = O(n−γ) for some 0 < γ < max(1, 1/b). Each α ∈] 1
1+γ , 1]

satisfies

(1− α)s− αγs < 0, 1/b+ (1− α)s− αγs > 0,

since sγ < 1/b. So that, for any α ∈](1 + γ)−1, 1],

IE (dH(Xn,M)) ≤ n(1−α)s−αγs

(
1 +

(lnn)1/b

n(1−α)s−αγs+1/b

)
,

and that,

IE (dH(Xn,M)) = O(n(1−α)s−αγs).

C. Suppose that b = 1. In this case, s = 1 and by (39), Ck,p = n1−α−αγ (recall that Ck,p is
an upper bound for kβp less than one). So that, for any α ∈](1 + γ)−1, 1], 1− α− αγ < 0 and
Inequality (38) gives,

IE (dH(Xn,M)) ≤ cst

(
n1−α−αγ ln(n) +

lnn

n

)
so that,

IE (dH(Xn,M)) ≤ cst
ln(n)

nmin(−1+α+αγ,1)
.

The proof of Theorem 3.4 is complete. □

5.10. Proof of Corollary 3.5. According to Theorem 3.4, the rate O
((

lnn
n

)1/b)
is reached

as soon as,

• γ ≥ max(1, 1/b), b ̸= 1 and s+1/b
s(1+γ) ≤ α ≤ 1, or

• γ > 0, b = 1, 1
1+γ < α ≤ 1 and −1 + α+ αγ ≥ 1.

The second case implies that 2
1+γ ≤ α ≤ 1 so that γ ≥ 1. This situation is included in the first

case since, here, s = 1 and b = 1. The proof of Corollary 3.5 is complete.

5.11. Proof of Corollary 3.6. Let ϵbn = 1√
n1+α

, for fixed α ∈]0, 1[. Then,

1

aϵbn
exp(−naϵbn) ≤

√
n1+α exp(−cst

√
n1−α) = O((

lnn

n
)1/b).

We have thanks to (14), Λ(n, [nα/4], ϵn) ≤ cst n1+αϵ2bn ≤ cst, by this choice of ϵbn. All the
requirements of Theorem 3.4 are satisfied for this α ∈]0, 1[. The proof of Corollary 3.6 is
complete.
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5.12. Proof of Proposition 4.2. Our main reference for this proof is [15]. We summarize
Kato’s results in the following proposition (but only for β ∈]− 1, 1[, the case of our interest.)
We note by,

A =
√
(1− φ)2 + 4β2φ

λ1 =
1

2
(1 + φ−A)

λ2 =
1

2
(1 + φ+A)

Proposition 5.2. Consider the Möbius Markov chain (as introduced in Proposition 4.2). The
following properties hold.

(1) For any x in the unit circle ∂B(0, 1), the conditional distribution of Xn given X0 = x
is, for each n ≥ 1, the wrapped Cauchy on the unit circle C∗(ϕn(x)) i.e. having a
density πn (with respect to the arc length on the circle),

πn(z) =
1

2π

1− |ϕn(x)|2

|z − ϕn(x)|2
,

where, if β ̸= 0 and φ > 0 then

ϕn(x) =
λn
1 (1− φ+A)x+ λn

2 (φ− 1 +A)x+ 2(λn
2 − λn

1 )βφ

2(λn
2 − λn

1 )βx+ λn
2 (1− φ+A) + λn

1 (φ− 1 +A)
,

if β = 0 then ϕn(x) = φnx and finally if φ = 0 then ϕn(x) = 0 for each n ≥ 1.
(2) The conditional distribution of Xn given X0 = x converges in law, as n tends to

infinity, to the wrapped Cauchy on the unit circle C∗(ϕ∞) with,

ϕ∞ =
φ− 1 +A

2β
,

if β ̸= 0 and ϕ∞ = 0 otherwise.
(3) The wrapped Cauchy on the unit circle C∗(ϕ∞) is the unique invariant measure of this

Möbius Markov chain (denoted by µ). Recall that C∗(ϕ∞) has a density on the unit
circle defined, for z ∈ ∂B(0, 1), by

π(z) =
1

2π

1− |ϕ∞|2

|z − ϕ∞|2
.

This Markov chain has, then, a unique invariant measure µ on the unit circle. So that
Assumption (A1) is satisfied with M = ∂B(0, 1). The task now is to check Assumption (A2).
We have, for x ∈ ∂B(0, 1),

K(x, dz) = IP(X1 ∈ ν(dz)|X0 = x) = k(x, z)ν(dz),(41)

where ν is the arc length measure on the unit circle and for x, z ∈ ∂B(0, 1),

k(x, z) =
1

2π

1− |ϕ1(x)|2

|z − ϕ1(x)|2
,(42)

with

ϕ1(x) =
φx+ βφ

βx+ 1
, |ϕ1(x)| = φ.

It is proved in [14] (see the proof of Proposition 5.3 there) that,
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(43) k(x, z) ≥ 1

2π

1− φ2

(1 + φ)2
=

1

2π

1− φ

1 + φ
=: κ > 0,

and, for positive ϵ0 sufficiently small,

(44) Vd := inf
u∈∂B(0,1)

inf
0<ϵ<ϵ0

(
ϵ−1

∫
∂B(0,1)∩B(u,ϵ)

ν(dx1)

)
> 0.

Assumption (A2) is satisfied with b = 1, thanks to (41), (43) and to (44). The requirements
of Theorem 2.2 are satisfied thanks to Corollary 2.8. In particular κϵ = κVdϵ. From this, we
deduce that a = κVd. The value of θ∗ = 1 follows from Proposition 2.6. The conclusion of
Theorem 2.2 holds. The proof of Proposition 4.2 is complete.

5.13. Proof of Proposition 4.3. We have now to prove the geometric ergodicity property.
This allows to deduce that this Markov chain is β-mixing with geometrically decaying mixing
coefficients (βn)n≥1 (cf. for instance Theorem 3.7 in [3] and the references therein). We will
prove this property, only, in the case when β ̸= 0 and φ > 0 using Proposition 5.2 above (which
is already proved in [15]). The others cases are much easier. Clearly, for a measurable subset
A of the unit circle, ∂B(0, 1),

IPn(x,A)− µ(A) =

∫
A

1

2π

(
1− |ϕn(x)|2

|z − ϕn(x)|2
− 1− |ϕ∞|2

|z − ϕ∞|2

)
ν(dz).

So that,

|IPn(x,A)− µ(A)| ≤
∫
A

1

2π

∣∣∣∣1− |ϕn(x)|2

|z − ϕn(x)|2
− 1− |ϕ∞|2

|z − ϕ∞|2

∣∣∣∣ ν(dz).(45)

Now we have, (using the fact that |a1a2 − b1b2| ≤ 2|a1 − b1| + 2|a2 − b2| for |a1|, |a2|, |b1|, |b2|
all less than 2), for any z belonging to the unit circle,∣∣∣∣1− |ϕn(x)|2

|z − ϕn(x)|2
− 1− |ϕ∞|2

|z − ϕ∞|2

∣∣∣∣
≤
∣∣∣∣(1− |ϕn(x)|2)|z − ϕ∞|2 − |z − ϕn(x)|2(1− |ϕ∞|2)

|z − ϕn(x)|2|z − ϕ∞|2

∣∣∣∣
≤ 2

∣∣∣∣(1− |ϕn(x)|2)− (1− |ϕ∞|2)
|z − ϕn(x)|2|z − ϕ∞|2

∣∣∣∣+ 2

∣∣∣∣ |z − ϕ∞|2 − |z − ϕn(x)|2

|z − ϕn(x)|2|z − ϕ∞|2

∣∣∣∣
≤ 8

|ϕn(x)− ϕ∞|
|z − ϕn(x)|2|z − ϕ∞|2

.(46)

Now, for any x ∈ ∂B(0, 1),

(φ− 1 +A)x+ 2βφ

2βx+ 1− φ+A
=

(φ−1+A)
2β x+ φ

x+ 1−φ+A
2β

=
(φ− 1 +A)

2β

x+ φ 2β
(φ−1+A)

x+ 1−φ+A
2β

= ϕ∞,
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since, thanks to the expression of A, φ 2β
(φ−1+A) =

1−φ+A
2β . So that, for b̃ = λ1

λ2
∈]0, 1[,

ϕn(x)− ϕ∞

=
b̃n(1− φ+A)x+ (φ− 1 +A)x+ 2βφ(1− b̃n)

2βx(1− b̃n) + (1− φ+A) + b̃n(φ− 1 +A)
− (φ− 1 +A)x+ 2βφ

2βx+ 1− φ+A

=:
α(x)b̃n + β(x)

γ(x)b̃n + µ(x)
− β(x)

µ(x)

=
(α(x)− γ(x)β(x)µ(x))b̃

n

γ(x)b̃n + µ(x)
=

(α(x)− γ(x)ϕ∞)b̃n

γ(x)b̃n + µ(x)
.

We obtain (recall that x is in the unit circle and can be seen as a complex number with |x| = 1),

|ϕn(x)− ϕ∞| ≤ 3A+ 2β + φ− 1

|2β − φ+ 1−A|b̃n + |2β + φ− 1−A|
b̃n

We deduce from the last equality, that there exists a positive constant c (independent of x)
such that for any n ∈ IN \ {0}

|ϕn(x)− ϕ∞| ≤ c b̃n.

The last bound together with (45) and (46) give,

|IPn(x,A)− µ(A)| ≤ 8 c b̃n
∫
A

1

2π

1

|z − ϕn(x)|2|z − ϕ∞|2
ν(dz).

Recall that, for any z ∈ ∂B(0, 1), |z − ϕn(x)| ≥ |1 − |ϕn(x)||. Hence, (recall that ϕ∞ ̸= 1 and
that ϕn(x) ̸= 1),

|IPn(x,A)− µ(A)| ≤ 8c b̃n

(1− |ϕn(x)|)2

∫
A

1

2π

1

|z − ϕ∞|4
ν(dz)

≤ 8c

(1− |ϕn(x)|)2|1− ϕ∞|4
b̃n.

Since b̃ ∈]0, 1[ and supn∈IN |ϕn(x)| < ∞, the bound (11) is satisfied. The purpose now is to
check (14) (with b = 1). We have,

u−2IPµ(∥X1 − x∥ ≤ u, ∥Xr+1 − x∥ ≤ u)

= u−2IPµ(∥X1 − x∥ ≤ u, IPX1,Xr(∥Xr+1 − x∥ ≤ u))

= u−2IPµ(∥X1 − x∥ ≤ u, IPXr(∥Xr+1 − x∥ ≤ u))

= u−2IPµ(∥X1 − x∥ ≤ u, IPX0(∥X1 − x∥ ≤ u))(47)

Recall first (arguing as in the proof of (5.5) in [14]) that, ν(∂B(0, 1)∩B(x, u)) ≤ cst u, for any
x ∈ ∂B(0, 1). We also have (recall that the conditional density of X1 known X0 = x0 is given
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in 42),

IPx0(∥X1 − x∥ ≤ u) =

∫
∂B(0,1)∩B(x,u)

1

2π

1− |ϕ1(x)|2

|z − ϕ1(x)|2
ν(dz)

≤
∫
∂B(0,1)∩B(x,u)

1

2π

1− |ϕ1(x)|2

(|z| − |ϕ1(x)|)2
ν(dz)

≤
∫
∂B(0,1)∩B(x,u)

1

2π

1− φ2

(1− φ)2
ν(dz)

≤ 1

2π

1 + φ

1− φ
ν(∂B(0, 1) ∩B(x, u)) ≤ cst u,(48)

and,

IPµ(∥X1 − x∥ ≤ u) =

∫
∂B(0,1)

IPx0(∥X1 − x∥ ≤ u)µ(dx0) ≤ cst u.(49)

Condition (14) with b = 1 follows from (47), (48) and (49). We complete the proof of Propo-
sition 4.3 by applying Corollary 3.6 together with Corollary 3.5 (recall that, here b = 1 and γ
is any real greater than one since βn = O(e−cn), for some positive c).

5.14. Proof of Proposition 4.4. Recall that if ϵ is a random variable uniformly distributed
over [0, 1] then for any u ∈ [0, 1], the random variable u + ϵ − [u + ϵ] is also uniformly dis-
tributed over [0, 1]. From this, we deduce that the stationary Markov chain (Φn)n≥0 has the
uniform over the unit square stationary distribution. Let us now prove the second statement
of Proposition 4.4. We have for any u, v, x, y ∈ [0, 1[ (recall that the two random variables ϵ1,
η1 are independent and that the two couples (ϵ1, η1) and (θ0, ϕ0)) are independent),

IP
(√

|θ1 − x|2 + |ϕ1 − y|2 ≤ ϵ | θ0 = u, ϕ0 = v
)

= IP
(
|u+ ϵ1 − [u+ ϵ1]− x|2 + |v + η1 − [v + η1]− y|2 ≤ ϵ2

)
≥ IP

(
|u+ ϵ1 − [u+ ϵ1]− x|2 ≤ ϵ2/2, |v + η1 − [v + η1]− y|2 ≤ ϵ2/2

)
≥ IP

(
|u+ ϵ1 − [u+ ϵ1]− x|2 ≤ ϵ2/2

)
IP
(
|v + η1 − [v + η1]− y|2 ≤ ϵ2/2

)
(50)

Let us control (letting ϵ′ = ϵ/
√
2), IP (|u+ ϵ1 − [u+ ϵ1]− x| ≤ ϵ′) . Clearly,

I := IP
(
|u+ ϵ1 − [u+ ϵ1]− x| ≤ ϵ′

)
= IP

(
−ϵ′ + x ≤ u+ ϵ1 − [u+ ϵ1] ≤ ϵ′ + x

)
.

• If −ϵ′ + x ≤ 0 ≤ 1 ≤ ϵ′ + x then I = 1, so that I ≥ ϵ′.
• If 0 ≤ −ϵ′ + x ≤ ϵ′ + x ≤ 1 then (recall that u+ ϵ1 − [u+ ϵ1] is uniformly distributed
over [0, 1]), I = 2ϵ′.

• If −ϵ′ + x ≤ 0 ≤ ϵ′ + x ≤ 1 then,

I = IP
(
−ϵ′ + x ≤ u+ ϵ1 ≤ ϵ′ + x, u+ ϵ1 < 1

)
+IP

(
−ϵ′ + x ≤ u+ ϵ1 − 1 ≤ ϵ′ + x, u+ ϵ1 ≥ 1

)
= IP

(
0 ≤ ϵ1 ≤ ϵ′ + x− u

)
+IP

(
u− ϵ′ − x ≤ 1− ϵ1 ≤ u+ ϵ′ − x, u ≥ 1− ϵ1

)
.
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– If 0 < ϵ′ + x− u (we already have ϵ′ + x− u < 1, x ∈ [0, 1[) then,

I = IP
(
0 ≤ ϵ1 ≤ ϵ′ + x− u

)
+ IP (0 ≤ 1− ϵ1 ≤ u)

= ϵ′ + x− u+ u ≥ ϵ′.

– If ϵ′ + x− u < 0 then,

I = IP
(
u− ϵ′ − x ≤ 1− ϵ1 ≤ u+ ϵ′ − x, u ≥ 1− ϵ1

)
= IP

(
u− ϵ′ − x ≤ 1− ϵ1 ≤ u

)
= ϵ′ + x ≥ ϵ′.

• If 0 ≤ −ϵ′ + x ≤ 1 ≤ ϵ′ + x then,

I = IP
(
−ϵ′ + x ≤ u+ ϵ1 ≤ ϵ′ + x, u+ ϵ1 < 1

)
+IP

(
−ϵ′ + x ≤ u+ ϵ1 − 1 ≤ ϵ′ + x, u+ ϵ1 ≥ 1

)
= IP

(
−ϵ′ + x− u ≤ ϵ1 ≤ 1− u

)
+IP

(
u− ϵ′ − x ≤ 1− ϵ1 ≤ u+ ϵ′ − x, u+ ϵ1 ≥ 1

)
.

– If 0 ≤ −ϵ′ + x− u then (recall that 1− x ≥ 0),

I = IP
(
−ϵ′ + x− u ≤ ϵ1 ≤ 1− u

)
= 1− u− (−ϵ′ + x− u)

= 1− x+ ϵ′ ≥ ϵ′.

– If −ϵ′ + x− u ≤ 0 then (recall that u− ϵ′ − x ≤ 1− ϵ′ − x ≤ 0),

I = IP (0 ≤ ϵ1 ≤ 1− u) + IP (0 ≤ 1− ϵ1 ≤ u) = 1− u+ u = 1 ≥ ϵ′.

So that we always have I ≥ ϵ′ and

IP
(
|u+ ϵ1 − [u+ ϵ1]− x|2 ≤ ϵ2/2

)
IP
(
|v + η1 − [v + η1]− y|2 ≤ ϵ2/2

)
≥ ϵ2/2.

This last bound together with (50) prove the second item of Proposition 4.4. This immediately
implies that the distribution of (θ1, ϕ1) satisfies the (a, b)-standard assumption with a = 1/2
and b = 2. The bound (7) of Proposition 2.6 is satisfied and proves the last item of Proposition
4.4. The proof of Proposition 4.4 is now complete.
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[13] A. Jakubowski, J. Rosiński, Local dependencies in random fields via a Bonferroni-type inequality.

https://arxiv.org/pdf/1709.01165.
[14] S. Kallel, S. Louhichi, Topological reconstruction of compact supports of dependent stationary ran-

dom variables, https://hal.science/hal-04366871 (2024). To appear in Advances in Applied
Probability .

[15] S. Kato, A Markov process for circular data, J. R. Statist. Soc. B. 72-5, 655–672, (2010).
[16] H. Kesten, Renewal Theory for Functionals of a Markov Chain with General State Space, Ann.

Probab. 2 (3) (1974), 355–386.
[17] H. Kesten, Random difference equations and Renewal theory for products of random matrices,

Acta Math. 131 (1973), 207–248.
[18] J. Krebs. On limit theorems for persistent Betti numbers from dependent data, On limit theorems

for persistent Betti numbers from dependent data, Stochastic Processes and their Applications,
139, 139–174, (2021).

[19] M.R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random
Sequences and Series, Springer-Verlag, New York, (1983).

[20] P. Niyogi, S. Smale, S. Weinberger, Finding the homology of submanifolds with high confidence
from random samples, Discrete Comput. Geom. 39 , 419–441, (2008).

[21] S. Piramuthu. The Hausdorff Distance Measure for Feature Selection in Learning Applications.
Proc. 32nd Ann. Hawaii Int’l Conf. System Sciences, vol. 6 (1999).

[22] W. Reise, B. Michel, F. Chazal. Topological signatures of periodic-like signals, https://arxiv.
org/abs/2306.13453, (2023).

[23] E. Rio, Inequalities and limit theorems for weakly dependent sequences 3rd cycle. https://cel.
hal.science/cel-00867106v1 (2013).

[24] Y. A. Rozanov, V. A. Volkonskii, Some limit theorems for random functions I. Theory Probab.
Appl. 4, 178-197, (1959).

[25] W. Rucklidge. Efficient visual recognition using the Hausdorff distance Springer, (1996).
[26] M. Taniguchi, S. Kato, H. Ogata, A. Pewsey. Models for circular data from time series spectra.

Journal of Time Series Analysis, 41, 808-829. (2020).
[27] E. P. Vivek, N. Sudha. Robust Hausdorff distance measure for face recognition. Pattern Recog-

nition Volume 40, Issue 2, Pages 431-442, (2007).
[28] S. Xiaoming, Z. Ning, W. Haibin, Y. Xiaoyang, W. Xue, and Y. Shuang. Medical image retrieval

approach by texture features fusion based on Hausdorff distance. Math. Problems Eng., pp. 1-12,
(2018).

[29] B. Yu, Rates of Convergence for Empirical Processes of Stationary Mixing Sequences. Ann.
Probab. 22, 94-116, (1994).

Sana Louhichi: Univ. Grenoble Alpes, CNRS, Grenoble INP*, LJK 38000 Grenoble,
France. *Institut of Engineering Univ. Grenoble Alpes, 700 Avenue Centrale, 38401
Saint-Martin-d’Hères, France.

Email address: sana.louhichi@univ-grenoble-alpes.fr

https://cran.r-project.org/web/packages/TDA/vignettes/article.pdf
https://arxiv.org/pdf/1709.01165
https://hal.science/hal-04366871
https://arxiv.org/abs/2306.13453
https://arxiv.org/abs/2306.13453
https://cel.hal.science/cel-00867106v1
https://cel.hal.science/cel-00867106v1

	1. Introduction
	2. An approach based on the minimal index *
	2.1. Examples of calculation of *
	2.1.1. Stationary m-dependent random sequences
	2.1.2. Stationary random sequences and Markov chains with *=1
	Application to stationary Markov chains
	2.1.3. Stationary random sequences and Markov chains with *<1
	Application to stationary Markov chains


	3. An Approach for -mixing random sequences
	4. Explicit examples
	4.1. Stationary Markov chains on a ball of 0 IRd
	4.2. The Möbius Markov chain on the circle
	4.3. A Markov chain on a square wrapped on a torus

	5. Proofs
	5.1. Proof of Theorem 2.2.
	5.2. Proof of Proposition 2.3.
	5.3. Proof of Propositions 2.4 and 2.6.
	5.4. Proof of Corollary 2.8. 
	5.5. Proofs of Propositions 2.9 and 2.11
	5.6. Proof of Proposition 3.1
	5.7. Proof of Proposition 3.2
	5.8. Proof of Corollary 3.3
	5.9. Proof of Theorem 3.4
	5.10. Proof of Corollary 3.5
	5.11. Proof of Corollary 3.6
	5.12. Proof of Proposition 4.2.
	5.13. Proof of Proposition 4.3
	5.14. Proof of Proposition 4.4

	References

