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DISCRETIZING THE FOKKER-PLANCK EQUATION WITH

SECOND-ORDER ACCURACY: A DISSIPATION DRIVEN APPROACH

CLÉMENT CANCÈS, LÉONARD MONSAINGEON, AND ANDREA NATALE

Abstract. We propose a fully discrete finite volume scheme for the standard Fokker-
Planck equation. The space discretization relies on the well-known square-root approxi-
mation, which falls into the framework of two-point flux approximations. Our time dis-
cretization is novel and relies on a tailored nonlinear mid-point rule, designed to accurately
capture the dissipative structure of the model. We establish well-posedness for the scheme,
positivity of the solutions, as well as a fully discrete energy-dissipation inequality mim-
icking the continuous one. We then prove the rigorous convergence of the scheme under
mildly restrictive conditions on the unstructured grids, which can be easily satisfied in
practice. Numerical simulations show that our scheme is second order accurate both in
time and space, and that one can solve the discrete nonlinear systems arising at each time
step using Newton’s method with low computational cost.

1. Introduction

1.1. Fokker-Planck equation and Wasserstein gradient flows. Because of their broad
interest in physics [2, 10, 36, 56], biology [6, 16, 22] or social sciences [27, 47], Wasserstein
gradient flows have been the object of strong interest by the mathematical community in
the last decades. A prototypical example of such Wasserstein gradient flows is the Fokker-
Planck equation

∂tρ+ divF = 0,(1.1a)

F + ρ∇V +∇ρ = 0,(1.1b)

set in a space time domain QT = (0, T )×Ω, where Ω is a convex and bounded open subset
of Rd that we further assume to be polyhedral for meshing purposes, and where T is an
arbitrary finite time horizon. The background potential V ∈ C2(Ω) is always assumed to
be given and smooth. The kinematics is complemented by a nontrivial initial condition ρ0

and no-flux boundary conditions

(1.1c) F · n∂Ω = 0 on (0, T )× ∂Ω.

We always assume that

(1.1d) ρ(0, ·) = ρ0 ≥ 0 with H(ρ0) < +∞ and

∫
Ω
ρ0 > 0.

Here the (negative) entropy H(ρ) and free energy E(ρ) are defined as

H(ρ) :=

∫
Ω
(ρ log ρ− ρ+ 1), E(ρ) := H(ρ) +

∫
Ω
ρV,
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and the associated stationary Gibbs measure reads

π := e−V .

A formal multiplication of (1.1a) by log ρ
π provides that

(1.2)
d

dt
E(ρ) +

∫
Ω
ρ
∣∣∣∇ log

ρ

π

∣∣∣2 = 0,

meaning that the energy is dissipated along time at a precise rate. Since the seminal work
of Otto [34, 53] and the book of Ambrosio, Gigli and Savaré [1], the minimizing movement
scheme (also referred to as the JKO scheme in this setting) has been playing a central role for
the analysis and numerical discretization of gradient flows. It indeed enjoys strong stability
properties as well as a variational structure, in the sense that it amounts to a minimization
problem at each time step. Being the limiting curve obtained by the convergence of a JKO
scheme is even one of the possible characterizations of abstract metric gradient flows, see
[1]. However, although very attractive from a theoretical point of view, the JKO scheme
suffers from several downsides when it comes to practical implementation. First, it is merely
first order accurate in time. Second, the optimality condition of the problem to be solved
at each time-step amounts to a continuous in time mean field game, that further needs
to be discretized, either with inner time stepping [5, 14] or by linearizing the Wasserstein
distance [12, 40, 52]. Moreover, full space discretization of the JKO scheme on fixed grids
creates difficulties which do not arise in semi-discrete problems [44, 19, 33, 46], and as a
consequence the JKO time discretization is often replaced by the computationally cheaper
Backward Euler scheme [13]. Lagrangian particle schemes [38, 28, 51] and moving meshes
[45, 15] on the other hand, are generally only first order accurate in space.

Our new approach here will circumvent these numerical bottlenecks and relies instead on
another by-now classical characterization of gradient flows (still formal at this stage): Any
smooth density ρ = ρ(t, x) solving the continuity equation (1.1a) with no-flux boundary
conditions satisfies

(1.3)
d

dt
E(ρ) =

∫
Ω
log

ρ

π
∂tρ =

∫
Ω
F · ∇ log

ρ

π
≥ −1

2

∫
Ω

|F |2

ρ
− 1

2

∫
Ω
ρ
∣∣∣∇ log

ρ

π

∣∣∣2 .
The key observation is that equality holds in Young’s inequality above if and only if (1.1b)
is fulfilled. Therefore if ρ is such that (1.1a) holds and satisfies in addition the reverse
Energy-Dissipation Inequality (EDI):

(1.4)
d

dt
E(ρ) ≤ −1

2

∫
Ω

|F |2

ρ
− 1

2

∫
Ω
ρ
∣∣∣∇ log

ρ

π

∣∣∣2 ,
then ρ must also satisfy (1.1b). The first term in the right-hand side dissipation only
depends on the kinematics through the continuity equation (1.1a), while the second part,
known as the Fisher information functional, is related to the specific choice of an energy
through the first variation δE

δρ = log ρ
π . In order to make the EDI formulation rigorous,

and following ideas of [4], one introduces the one-homogeneous, convex, and lower semi-
continuous Benamou-Brenier function B : [0,+∞)× Rd → [0,+∞] defined by

(1.5) B(a, b) :=


|b|2

2a
if a > 0 ,

0 if b = 0 and a = 0 ,
+∞ otherwise ,
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and observes that the Fisher information rewrites as a convex function of ρ under the form

R(ρ) :=
1

2

∫
Ω
ρ
∣∣∣∇ log

ρ

π

∣∣∣2 = 2

∫
Ω
π

∣∣∣∣∇√ρ

π

∣∣∣∣2 .
Then, integrating (1.4) over time leads to the following notion of EDI solution to (1.1),
thoroughly developed in [1].

Definition 1. A curve ρ ∈ C([0, T ];L1
w(Ω)) is an EDI solution to (1.1) corresponding to

the initial solution ρ0 if, denoting by ρT = ρ(T, ·), there holds

(1.6) E(ρT ) +
∫ T

0
R(ρ) + inf

F

{∫
QT

B(ρ, F )

}
≤ E(ρ0),

where the infimum is taken among vector fields F ∈ L1(QT ;Rd) satisfying the continuity
equation ∂tρ+divF = 0 with initial/terminal data ρ0, ρT and no-flux boundary conditions:

(1.7)

∫
QT

ρ ∂tφ+

∫
QT

F · ∇φ−
∫
Ω
ρTφ(T, ·) +

∫
Ω
ρ0φ(0, ·) = 0 , ∀φ ∈ C1(QT ).

In the previous definition L1
w(Ω) denotes the space of integrable functions equipped with

its weak topology. It is not difficult to check [1] that densities ρ ∈ L1(QT ) satisfying
(1.7) with finite kinetic energy

∫∫
QT

B(ρ, F ) are L1
w(Ω)-continuous in time, and satisfy

ρ(0) = ρ0, ρ(T ) = ρT .
For the sake of self-completeness we collect basic properties of EDI solutions in Appen-

dix A. Let us only mention at this stage that a) EDI solutions are unique, and b) they are
automatically distributional solutions of the Fokker-Planck equation (1.1).

1.2. Our contribution and organization of the paper. Our goal here is to propose
a fully discrete finite volume scheme based on a two-point flux approximation (TPFA)
which satisfies a discrete counterpart of the EDI formulation (1.4) while being second order
accurate in both space and time.

The space discretization we adopt relies on the well-established square-root approximation
(SQRA) scheme [41, 32]. As exploited in [11], this space discretization enjoys a dissipative
structure involving hyperbolic cosine dissipation potentials, cf. Section 3.2, very much
related to [49, 54, 55]. Our main contribution here concerns the time discretization, and
our strategy consists in capturing the energy dissipation

(1.8)

∫ (n+1)τ

nτ
R(ρ) +

∫ (n+1)τ

nτ

∫
Ω
B(ρ, F )

over each time step in a sufficiently accurate way to be discussed shortly. In [35, 58] this
is achieved by recursively minimizing a discrete version of the full dissipation functional
appearing in the left-hand side of the EDI (1.6), resulting in a variational – but first order
scheme. In this work our approximation of the above quantity will rely instead on a mid-
point rule in order to recover second order accuracy. More precisely, given a density ρn

at time tn = nτ , we first introduce a density θn+1/2 at the intermediate time tn+1/2 =
(n+ 1/2)τ . The next time step will be obtained as a particular extrapolation

ρn+1 = Ξ(ρn, θn+1/2)

to be detailed in Section 2.2 below. Defining the Fokker-Planck flux at time tn+1/2

Fn+1/2 = θn+1/2∇ log
θn+1/2

π
= π∇θn+1/2

π
= ∇θn+1/2 + θn+1/2∇V
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(or rather, its discrete SQRA counterpart (2.10) later on), we further impose the discrete
continuity equation

ρn+1 − ρn

τ
+ div Fn+1/2 = 0,

and we finally approximate the dissipation (1.8) by

τ

{∫
Ω
B(θn+1/2, Fn+1/2) +R(θn+1/2)

}
.

In addition to the desirable preservation of mass and positivity, our specific choice of ex-
trapolation combined with the variational structure of the SQRA flux will entail a discrete
(upper) chain rule for the energy density (see Lemma 2.1 below), which in turn will crucially
result in a fully discrete EDI inequality. Passing next to the limit in an appropriate sense,
we will establish full convergence of the scheme towards a dissipative EDI solution. In the
time-continuous setting, this idea of proving convergence by passing to the limit in a semi-
discrete EDI was already implemented in [23] for a similar finite volume discretization of
the Fokker-Planck. This essentially boils down to proving asymptotic lower bounds on the
two dissipation functionals involved in a continuous-in-time discrete-in-space EDI, which in
our setting will be given by Propositions 4.5 and 4.6 below. Nonetheless, the possibility
of vacuum (vanishing of the densities ρ, θ) makes the analysis more delicate in our setting
compared to [23], and the methods of proof are different.

Remark 1.1. Exploiting the estimates and the resulting compactness properties established
later on, one could directly prove that the solutions produced in the limit by our numerical
scheme are distributional solutions of the Fokker-Planck equation, following for instance the
methodology proposed in [9, 11] and even for non-convex domains Ω. At the price of the
convexity assumption on Ω, the recovery of (1.1) in the distributional sense is for free (cf.
Proposition A.2 in the Appendix), together with uniqueness of the EDI solutions [30].

Finally, let us stress that our time extrapolation is local and only requires pointwise

evaluation (ρn+1
K = Ξ(ρnK , θ

n+1/2
K ) for each cell K in the finite volume discretization), in

contrast to the nonlocal one introduced in [29]. Similarly, the mid-point rule proposed in [39]
relies on the computationally expensive evaluation of intermediate Wasserstein geodesics,
which we completely dispense from. Our approach also shares some features with [43], but

with different relations between θn+1/2, ρn and ρn+1. The specific choices we make for Θ
and Ξ in this paper allow us to rigorously prove the convergence or our scheme, beyond the
partial consistency and stability results provided in [43].

The paper is organized as follows: The scheme is introduced in Section 2. After intro-
ducing usual concepts related to TPFA finite volumes in Section 2.1, the space and time
discretization are presented in Section 2.2, where the extrapolation is constructed. Then
elements of numerical analysis at fixed grid are presented in Section 3. This encompasses
the well-posed character of the scheme in Section 3.1 as well as the fully discrete EDI in
Section 3.2. The latter plays a crucial role in Section 4, where the convergence of the scheme
towards an EDI solution is established under some restriction on the mesh detailed in Sec-
tion 4.1. Compactness properties on the approximate reconstructions are then derived in
Section 4.2 and refined in 4.3 thanks to some discrete Aubin-Lions-Simon argument. We
pass to the limit and establish two separate Gamma-liminf’s for the dissipation functionals
in Sections 4.4 and 4.5, and the full convergence is then detailed in Section 4.6. Numerical
results are then presented in Section 5, showing that our scheme is second order accurate in
time and space. Finally, we defer two technical parts to the appendix: Appendix A recalls
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basic properties of EDI solutions, while Appendix B contains an extension adapted to our
needs of an Aubin-Lions-Simon lemma by Moussa [50].

2. A space-time discretization for the Fokker-Planck equation

2.1. Finite volume discretization. The space discretization of our scheme falls into the
framework of TPFA finite volumes. It requires the definition of an admissible mesh of the
domain Ω ⊂ Rd, which is assumed to be polyhedral with Lebesgue measure mΩ > 0.

An admissible mesh of Ω is a triplet (T ,Σ, (xK)K∈T ), consisting in a set of cells K ∈ T ,
facets σ ∈ Σ, and cell centers xK ∈ Ω, satisfying in addition the conditions in [20, Definition
9.1]. Specifically, we require the following:

1) The cells K ∈ T are open disjoint polyhedra with positive d-dimensional Lebesgue
measure mK > 0. They form a tessellation of Ω, i.e.⋃

K∈T
K = Ω and

∑
K∈T

mK = mΩ.

2) The facets σ ∈ Σ are closed subsets of Ω contained in an hyperplane of Rd, and with
strictly positive (d−1)-dimensional Hausdorff (or Lebesgue) measure denoted bymσ > 0.
Every facet σ ∈ Σ satisfies either σ = K|L := ∂K∪∂L or σ = ∂K∪∂Ω, for someK,L ∈ T
with K ̸= L. The subset of interior facets Σ ⊂ Σ is the set of facets σ for which there
exists K,L ∈ T such that σ = K|L.

3) For any cell K ∈ T , there exists a subset ΣK ⊂ Σ such that

∂K =
⋃

σ∈ΣK

σ and Σ =
⋃
K∈T

ΣK .

We denote the interior facets associated with a cell K by ΣK = ΣK ∩ Σ.
4) Two cell centers xK and xL coincide if and only if K = L. Moreover, if σ = K|L then

xK − xL is orthogonal to σ, and denoting dσ := |xK − xL|, the outward normal to the
cell K on the facet σ ∈ ΣK is given by

(2.1) nKσ =
xL − xK

dσ
.

Discrete densities are represented by collections of degrees of freedom ρ = (ρK)K∈T ∈ RT
+,

where ρK is the degree of freedom associated with the cell K ∈ T . Similarly, fluxes are
represented by the collection of outward fluxes through the inner facets, and denoted as
follows: F = ((FKσ, FLσ))σ=K|L∈Σ ⊂ R2Σ. We also define the space of conservative fluxes
as follows

FΣ := {F ∈ R2Σ ; FKσ + FLσ = 0 ∀σ = K|L ∈ Σ} .

For any F ∈ FΣ we denote Fσ := |FKσ| = |FLσ|.
We discretize a fixed time interval [0, T ] in N ∈ N∗ time steps of size τ = T/N . A discrete

time-dependent density is described by a collection (ρn)Nn=0, where ρ
n is the discrete density

associated with the time tn = nτ . Discrete time-dependent fluxes are staggered in time
with respect to the densities and they are therefore described by (F n+1/2)N−1

n=0 , with F n+1/2

representing now the discrete fluxes at time tn+1/2 = (n+ 1/2)τ .
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2.2. Numerical scheme. As already mentioned, the dissipation properties of our scheme
will only be guaranteed by the correct choice of an extrapolation ρn+1 = Ξ(ρn, θn+1/2). In
order to construct Ξ we first define a specific nonlinear mean Θ : R+ × R+ → R+

(2.2) Θ(a, b) := H∗′
(
H(b)−H(a)

b− a

)
= exp

(
b log b− a log a

b− a
− 1

)
, ∀ a, b > 0 , a ̸= b,

where the entropy function

H(a) :=

 a log a− a+ 1 if a > 0
1 if a = 0
+∞ if a < 0

,

has explicit Legendre-Fenchel transform H∗(p) = exp(p) − 1. We naturally extend by
continuity

(2.3) Θ(a, a) := a , Θ(a, 0) = Θ(0, a) := e−1a , ∀ a ≥ 0.

Note that by usual properties of convex duality there holds (H∗)′(p) = (H ′)−1(p) for all
p ∈ R. This fact together with (2.2)–(2.3) implies that

(2.4) (b− a)H ′(Θ(a, b)) = H(b)−H(a) , ∀ a, b ≥ 0 , (a, b) ̸= (0, 0) ,

which will precisely entail the discrete chain rule.
At least formally, our extrapolation is simply given by inverting the mean, i.e. Ξ(a, ·) =

Θ(a, ·)−1. However, as is clear from Figure 1, Θ(a, 0) > 0 prevents any global invertibility
and some extra care is needed in order to obtain a well-posed scheme. To this end, one
can check that Θ ∈ C(R+ × R+;R+) defined by (2.2) and (2.3) is jointly concave in its
arguments and 1-homogeneous. In particular, defining the concave, increasing function
f ∈ C(R+; [e

−1,∞)) as

f(r) := Θ(1, r) =

 exp

(
r log(r)− r + 1

r − 1

)
if r > 0

e−1 if r = 0
,

we have that for any a, b > 0

Θ(a, b) = af

(
b

a

)
= bf

(a
b

)
= Θ(b, a) .

Since f is concave and increasing (see Figure 1), its inverse r = f−1(s) is unambiguously
defined at least on [e−1,+∞). Extending this inverse to the whole real line s ∈ R, our
extrapolation Ξ is finally defined as

(2.5) g(s) :=

{
f−1(s) if s > e−1

0 otherwise
and Ξ(a, c) :=

{
ag
( c
a

)
if a > 0

ec if a = 0
, c ∈ R .

Note that f has vertical tangent at r = 0+, which implies that g(·) and Ξ(a, ·) are C1, convex
functions for any fixed a ≥ 0 as depicted in Figure 1. For any fixed a ≥ 0, Θ(a, ·) is an
invertible map from R+ to [ae−1,∞) and Ξ(a, ·) coincides with its inverse when restricted on
[ae−1,∞). In other words, c = Θ(a, b) is a mean between a and b, whereas b = Ξ(a, c) is the
corresponding extrapolation. We stress again that, for any a ≥ 0, Ξ(a, ·) is a well-defined
C1, convex, non-decreasing function on the whole R. We have moreover

Ξ(a,Θ(a, b)) = b , Θ(a,Ξ(a, c)) = c ∀ a, b ≥ 0, c ≥ e−1a,

but this invertibility relation may fail if c < e−1a. This turns out to be quite delicate
because our numerical scheme primarily solves for θn+1/2, and then extrapolates ρn+1 =
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r

y

Θ(a, r)

a/e

f(r)

1/e

1

1

s

y

g(s)

Ξ(a, s)

1/e a/e1

1

Figure 1. A graphical representation of the functions f , g, Θ(a, ·) and
Ξ(a, ·).

Ξ(ρn, θn+1/2): If for some reason 0 ≤ θn+1/2 < e−1ρn, which does happen at least from our
numerical experiments, then the invertibility relation fails and the chain rule (2.4) does not
hold as such. Fortunately, and this is the whole cornerstone of our subsequent analysis, one
still has an upper chain-rule (2.6). For convenience we collect here useful properties of Θ,Ξ.

Lemma 2.1. There holds

(2.6) ∀ a ≥ 0, c > 0 : b = Ξ(a, c) ⇒ (b− a)H ′(c) ≥ H(b)−H(a)

with equality if c ≥ e−1a, and moreover

(2.7) ∀ a, b ≥ 0, c ∈ R : Θ(a, b) ≥ min(a, b) and Ξ(a, c) ≥ 2c− a.

The possible failure of equality in (2.6) is precisely what makes our scheme non-variational
in the sense that ρn+1 cannot be characterized as the minimizer of some functional (cf.

Remark 3.3). Whenever the scheme produces a value θ
n+1/2
K < e−1ρnK (which eventually

happens at least in our simulations) an entropy release

r
n+1/2
K = H(ρn+1

K )−H(ρnK)−H ′(θ
n+1/2
K )(ρn+1

K − ρnK) < 0

occurs in (2.6) for ρn+1
K = Ξ(ρnK , θ

n+1/2
K ), compared to the expected variational equality.

Note however that our scheme keeps some variational character as it amounts to a mini-
mization problem in θn+1/2/π, cf. the proof of Proposition 3.1 below.

Proof. Let us begin with (2.6) and fix a ≥ 0. Since c > 0 one always has b = Ξ(a, c) ≥ 0,
including if a = 0 (in which case b = Ξ(0, c) = ec). If b > 0 then by definition of Ξ we have
c > e−1a, thus one can legitimately write Θ(a, b) = Ξ(a, ·)−1(b) ⇒ c = Θ(a, b) and from
(2.4) we see that equality holds in (2.6). If b = 0 and a = 0, (2.6) is trivially safisfied. If
now b = 0 and a > 0 then, again by definition of Ξ, we see that necessarily c ≤ Θ(a, 0) and
therefore by convexity H ′(c) ≤ H ′(Θ(a, 0)). Whence

(b− a)H ′(c) = (0− a)H ′(c) ≥ (0− a)H ′(Θ(a, 0)) = H(0)−H(a)

as desired, where the last equality follows again from (2.4).
As for (2.7), consider first the case a ≤ b. Then Θ(a, b) = af(b/a) ≥ af(1) = a, and thus

by symmetry Θ(a, b) ≥ min(a, b). The second inequality in (2.7) follows by convexity: for
a ≥ 0 simply write Ξ(a, c) = ag(c/a) ≥ a[g(1)+ g′(1)(c/a− 1)] = a[1+ 2(c/a− 1)] = 2c− a,
and the proof is complete. □
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We are now in position of defining the scheme. Let V ∈ C2(Ω) be a given potential and
ρ0 ∈ L1(Ω;R+) a nonnegative density with finite entropy and positive total mass

H(ρ0) =

∫
Ω
H(ρ0) <∞ , ρ0[Ω] :=

∫
Ω
ρ0 > 0 ,

where as before H(a) = a log a − a + 1. Denote by V ∈ RT , π ∈ RT and ρ0 ∈ RT the
discrete functions defined by

(2.8) VK := V (xK) , πK := exp(−VK) , ρ0K :=
1

mK

∫
K
ρ0, ∀K ∈ T .

A discrete solution is a pair of discrete curves (ρn)Nn=0 and (θn+1/2)N−1
n=0 satisfying for all

n = 0, . . . , N − 1,

(2.9) mK
ρn+1
K − ρnK

τ
+
∑
σ∈ΣK

mσF
n+1/2
Kσ = 0, K ∈ T ,

where F n+1/2 ∈ FΣ is the square-root approximation (SQRA) finite volume flux [41, 32]

(2.10) F
n+1/2
Kσ =

1

dσ
πσ

(
θ
n+1/2
K

πK
−
θ
n+1/2
L

πL

)
with πσ =

√
πKπL, K ∈ T , σ ∈ ΣK ,

constructed on the intermediate densities θn+1/2 = (θ
n+1/2
K )K∈T at time tn+1/2 = tn + τ/2.

To complete the scheme, the discrete density ρn+1 at time tn+1 is defined from ρn and
θn+1/2 by extrapolation:

(2.11) ρn+1
K = Ξ(ρnK , θ

n+1/2
K ), K ∈ T .

We stress again that this can be considered as a problem in the single primary variable
θn+1/2, from which F n+1/2,ρn+1 can be explicitly obtained whenever needed.

Remark 2.2. Our scheme can be thought of as an extension of the usual Crank-Nicolson
scheme, which corresponds to the linear time-extrapolation

ρn+1
K = ΞCN(ρ

n
K , θ

n+1/2
K ) = 2θ

n+1/2
K − ρnK .

This scheme is known to be second-order accurate in time and energy stable for quadratic
energies. However, it is neither positivity preserving nor entropy-stable for Boltzmann type
energies, and its extension to our entropic framework thus requires the introduction of the
nonlinear extrapolation (2.5).

Let us also mention that our approach shares similarities with the so-called discrete vari-
ational derivative method [26], at least when the relation θn+1/2 = Θ(ρn,ρn+1) holds true

(i.e. when equality holds in (2.6)). However our choice to use θn+1/2 as an unknown and
then to extrapolate to reconstruct ρn+1 allows us to deal with the degenerate geometry stem-
ming from optimal transportation and to incorporate the positivity constraint in the scheme,
while allowing the entropy release leading to the inequality in (2.6). This is a cornerstone to
carry out the rigorous convergence analysis presented in this paper. The choice of keeping
θn+1/2 as the main unknown is also key in the implementation strategy, which shows great
robustness despite the singularly nonlinear character of the scheme.

3. Discrete well-posedness and dissipative structure

In this section we prove the main properties of the scheme (2.9)–(2.11). We establish
existence and uniqueness of solutions, as well as a discrete version of the energy dissipation
inequality which will be crucial for the convergence analysis carried out in Section 4.
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3.1. Existence and uniqueness of solutions. We first establish one-step well-posedness
of the scheme, and therefore global existence and uniqueness of the whole discrete curve by
immediate recursion.

Proposition 3.1. For any ρn ≥ 0 with
∑

K mKρ
n
K > 0 there exists a unique θn+1/2 and

ρn+1 verifying (2.9)–(2.11). Moreover there holds

θ
n+1/2
K > 0, ρn+1

K ≥ 0,
∑
K∈T

mKρ
n+1
K =

∑
K∈T

mKρ
n
K ,

and

(3.1)
ρn+1
K + ρnK

2
≥ θ

n+1/2
K ≥ min(ρn+1

K , ρnK)

for all K ∈ T .

Note in particular that our scheme is positivity and mass preserving.

Proof. Recall that on can view (2.9)–(2.11) as a single equation for θn+1/2. Changing

variables sK = θ
n+1/2
K /πK for all K ∈ T , it is easy to see that the former problem is

equivalent to finding a critical point of

(3.2) J (s) :=
1

τ

∑
K∈T

mKJK(sK) +
∑
σ∈Σint

mσπσ
2dσ

|sK − sL|2, s ∈ RT ,

where JK(·) is any primitive of the function s 7→ Ξ(ρnK , sπK)− ρnK . Note that J is C1 and
convex. Hence critical points are necessarily global minima, and by compactness at least
one minimum exists. (By definition of Ξ it is not difficult to check that all the JK ’s are
coercive, regardless of the particular value of ρnK)

Let s be any minimizer and write θn+1/2,F n+1/2,ρn+1 for the corresponding auxiliary
variables. Summing (2.9) over K ∈ T immediately guarantees mass conservation

(3.3)
∑
K∈T

mKρ
n+1
K =

∑
K∈T

mKρ
n
K > 0 .

This implies that, for any minimizer s, there exists a K ∈ T such that θ
n+1/2
K = sKπK >

e−1ρnK ≥ 0. For if not, then ρn+1
K ≤ 0 for all K ∈ T by definition (2.5) of Ξ, which in turn

would contradict (3.3). As a consequence for any minimizer s at least one of the JK ’s is
strictly convex in a neighborhood of sK . This improved convexity in at least one direction
suffices to compensate for the lack of strict convexity of the discrete Dirichlet energy in
(3.2), and J is thus strictly convex in the neighborhood of s. Since J is also globally

convex, this proves existence and uniqueness of θn+1/2 as claimed.

In order to show that θn+1/2 ≥ 0, set K∗ = argminK θ
n+1/2
K /πK . Then by (2.9)–(2.10)

(3.4) Ξ(ρnK∗ , θ
n+1/2
K∗ ) = ρn+1

K∗ = ρnK∗ +
τ

mK∗

∑
σ∈ΣK

mσ

dσ
πσ

(
θ
n+1/2
L

πL
−
θ
n+1/2
K∗

πK∗

)
≥ ρnK∗

From this we see that if ρnK∗ = 0 then by (2.5) eθ
n+1/2
K∗ = Ξ(0, θ

n+1/2
K∗ ) ≥ 0. If now ρnK∗ > 0

and θ
n+1/2
K∗ ≤ 0 then, again by definition of Ξ, we would have that Ξ(ρnK∗ , θ

n+1/2
K∗ ) = 0

(3.4), and this would contradict (3.4) since ρnK∗ > 0. Whence θ
n+1/2
K∗ ≥ 0, and therefore

θ
n+1/2
K ≥ 0 for all K ∈ T .
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Let us now implement a strong maximum principle-type argument in order to improve

this nonnegativity to strict positivity. Assuming by contradiction that θ
n+1/2
K∗ = 0, we see

that ρn+1
K∗ = Ξ(ρnK∗ , 0) = 0, and evaluating (2.9) for K = K∗ yields

0 ≥ mK
0− ρnK∗

τ
=

∑
σ∈ΣK∗

mσπσ
dσ

(
θ
n+1/2
L

πL
− 0

)
≥ 0.

This would imply θ
n+1/2
L = 0 for all L ∈ T sharing a facet with K, thus also ρn+1

L = 0
since Ξ(ρnL, 0) = 0 always. Propagating from neighboring cell to neighboring cell we would
conclude that ρn+1 ≡ 0, which would in turn contradict the mass conservation (3.3). Hence,

we have shown that θ
n+1/2
K > 0 for all K ∈ T , and as a consequence ρn+1

K = H(ρnK , θ
n+1
K ) ≥

0, yet again by definition (2.5) of Ξ.

Let us finally establish the bounds (3.1) for θn+1/2. Since θ
n+1/2
K > 0, clearly the lower

bound θ
n+1/2
K ≥ min(ρn+1

K , ρnK) only needs to be checked when both ρn+1
K , ρnK > 0. However,

in this case we are necessarily in the “invertibility regime” θ
n+1/2
K = Θ(ρn+1

K , ρnK), and the
claim immediately follows from the first bound in (2.7). The second bound in (2.7) also

gives 1
2 [ρ

n
K + ρn+1

K )] = 1
2 [ρ

n
K + Ξ(ρnK , θ

n+1/2
K )] ≥ 1

2 [ρ
n
K + (2θ

n+1/2
K − ρnK)] = θ

n+1/2
K and the

proof is complete. □

3.2. Discrete energy dissipation equality. For any nonnegative discrete density ρ ≥ 0
we define the discrete total energy of the system

ET (ρ) := HT (ρ) +
∑
K∈T

mKVKρK , where HT (ρ) :=
∑
K

mKH(ρK) .

In this section we show that the solutions of our scheme satisfy a fully discrete energy
dissipation inequality with respect to the discrete energy H. We will strongly rely on the
following convex real-valued conjugate functions

ψ(z) = 2z arcsinh(z/2)− 2
√
4 + z2 + 4 , ψ∗(ξ) = 4(cosh(ξ/2)− 1) ,

which emerge naturally in (electro-)chemistry [25, 48, 8], large deviations of jump pro-
cesses [49], multi-scale limits of diffusion processes [42, 24], and more [55]. Note in particular
that for any a, b > 0 we have identity

√
ab(ψ∗)′(log a− log b) = a− b .

This allows to recast the SQRA fluxes F n+1/2 in (2.10) as

(3.5) F
n+1/2
Kσ =

θ
n+1/2
σ

dσ
(ψ∗)′

(
log

(
θ
n+1/2
K

πK

)
− log

(
θ
n+1/2
L

πL

))
with

θn+1/2
σ :=

√
θ
n+1/2
K θ

n+1/2
L .

Next, observe from the critical upper-chain rule (2.6) and ρn+1
K = Ξ(ρnK , θ

n+1/2
K ) that

(3.6) H(ρn+1
K )−H(ρnK) ≤ log(θ

n+1/2
K )(ρn+1

K − ρnK), ∀K ∈ T , n ≥ 0.

Adding VK(ρn+1
K − ρnK) = − log πK(ρn+1

K − ρnK) on both sides, multiplying by mK , and
denoting for convenience

ϕ
n+1/2
K := log

(
θ
n+1/2
K

πK

)
,
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we find
(3.7)

ET (ρn+1)− ET (ρn) =
∑
K

mK

[
H(ρn+1

K )−H(ρnK)
]
−
∑
K

mK log πK
[
ρn+1
K − ρnK

]
(3.6)

≤
∑
K

mK log

(
θ
n+1/2
K

πK

)
(ρn+1
K − ρnK)

(3.5)
= −τ

∑
K

∑
σ∈ΣK

mσ

dσ
ϕ
n+1/2
K θn+1/2

σ (ψ∗)′
(
ϕ
n+1/2
K − ϕ

n+1/2
L

)

= −τ
∑
σ∈Σ

mσθ
n+1/2
σ

dσ

(
ϕ
n+1/2
K − ϕ

n+1/2
L

)
(ψ∗)′

(
ϕ
n+1/2
K − ϕ

n+1/2
L

)
,

where we used the fact that the function (ψ∗)′ is odd in the last equality. Let us define, for
all ρ ∈ RT

+ and F , ξ ∈ FT ,

Dψ(ρ,F ) :=
∑
σ∈Σ

mσρσ
dσ

ψ

(
dσFσ
ρσ

)
, D∗

ψ(ρ, ξ) :=
∑
σ∈Σ

mσρσ
dσ

ψ∗(dσξσ) ,

where as before ρσ =
√
ρKρL. By definition D∗

ψ(ρ, ·) is nothing but the Legendre transform

of Dψ(ρ, ·) with respect to the pairing

⟨ξ,F ⟩Σ =
∑
σ∈Σ

mσdσξKσFKσ .

We also define

(3.8) Rψ(ρ) := D∗
ψ (ρ,−∇Σϕ) ,

with ϕ ∈ RT and ∇Σϕ ∈ FΣ given by

ϕK := log

(
ρK
πK

)
, (∇Σϕ)Kσ :=

ϕL − ϕK
dσ

.

With these definitions, the calculations above imply altogether:

Proposition 3.2. Any discrete solution satisfies the one-step discrete EDI

(3.9) ET (ρn+1) + τDψ(θ
n+1/2,F n+1/2) + τRψ(θ

n+1/2) ≤ ET (ρn),

and equality holds if θ
n+1/2
K ≥ e−1ρnK for all K ∈ T .

Proof. Leveraging the expression (3.5) for the fluxes FKσ, we obtain from (3.7)

ET (ρn+1)− ET (ρn) ≤ −τ
∑
σ∈Σ

mσdσ
ϕ
n+1/2
K − ϕ

n+1/2
L

dσ
F
n+1/2
Kσ

= −τ⟨−∇Σϕ
n+1/2,F n+1/2⟩

= −τDψ

(
θn+1/2,F n+1/2

)
− τD∗

ψ

(
θn+1/2,−∇Σϕ

n+1/2
)
.

In the last equality we simply used the equality case in the Dψ,D∗
ψ Fenchel duality, which

stands owing to F
n+1/2
Kσ = θ

n+1/2
σ
dσ

(ψ∗)′ (−(∇Σϕ)Kσ) in (3.5). □
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Remark 3.3. By analogy with the continuous setting, and similarly to [35, 58], an al-
ternative scheme could consist in defining recursively ρ̃n+1 as a solution to the following
variational problem:

(3.10) ρ̃n+1 ∈ argmin
ρ≥0

inf
F
{ET (ρ) + τDψ(θ,F ) + τRψ(θ)},

in which the continuity equation mK
ρK−ρ̃nK

τ +
∑

σ∈ΣK mσFKσ = 0 is imposed as a constraint

and θ = Θ(ρ̃n,ρ). Note that this problem admits indeed minimizers since, by the same
calculations as above, we always have that the function minimized in (3.10) is bounded from
below by ET (ρ̃n), and the set of admissible discrete densities is compact. Note also that,
discarding Rψ(θ), one is left with a discretized version of the classical JKO scheme.

In general, the solution obtained via (3.10) is different from the solution (ρn)n obtained

using our scheme. In fact, due to (2.11), we may have θn+1/2 ̸= Θ(ρn,ρn+1) if ρn+1 is not

strictly positive. On the other hand, if and whenever our scheme outputs θn+1/2 ≥ e−1ρn,
then the invertibility ρn+1 = Ξ(ρn,θn+1/2) ⇔ θn+1/2 = Θ(ρn,ρn+1) holds and the equality
holds in (3.9). As a consequence ρn+1 solves (3.10) with ρ̃n = ρn, since it realizes the lower
bound ET (ρn). Our scheme is somehow “almost variational”, in the sense that it is locally
variational except in those situations when entropy releases occur due to equality failure in
(2.6). The significant advantage of using our scheme is that the optimality conditions for
(3.10) are much harder to manage than the system (2.9)–(2.11), and both the theoretical
analysis and numerical implementation for (3.10) become more intricate.

Starting from the expression of ψ∗, easy algebra allows to recast the discrete Fisher
functional (3.8) as

(3.11) Rψ(ρ) = 2
∑
σ∈Σ

mσπσ
dσ

∣∣∣∣√ρK
πK

−
√
ρL
πL

∣∣∣∣2 .
Clearly this is a consistent approximation of the dissipation rate

(3.12) 2

∫
Ω
π

∣∣∣∣∇√ρ

π

∣∣∣∣2 =
1

2

∫
Ω
ρ
∣∣∣∇ log

ρ

π

∣∣∣2
appearing in (1.2).

In order to gain compactness in the next section we exploit Proposition 3.2 to retrieve
uniform bounds for the discrete curves (ρn)n, (F

n+1/2)n, (θ
n+1/2)n.

Lemma 3.4. There exists a constant C > 0 only depending on mΩ, H(ρ0), (max(V ) −
min(V )), and the total mass ρ0[Ω], such that

N−1∑
n=0

τ
[
Dψ(θ

n+1/2,F n+1/2) +Rψ(θ
n+1/2)

]
≤ C

and

sup
0≤n≤N−1

(
HT (ρ

n+1) +HT (θ
n+1/2)

)
≤ C.
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Proof. Summing Proposition 3.2 over n we get

N−1∑
n=0

τ
[
Dψ(θ

n+1/2,F n+1/2) +Rψ(θ
n+1/2)

] (3.9)

≤ ET (ρ0)− ET (ρN )

=

[
HT (ρ

0) +
∑
K

mKVKρ
0
K

]
−

[
HT (ρ

N ) +
∑
K

mKVKρ
N
K

]

≤ H(ρ0) + (max(V )−min(V ))

∫
Ω
ρ0,

where in the last inequality we used successively Jensen’s inequality to bound HT (ρ
0) ≤

H(ρ0), HT (ρ
N ) ≥ 0, and the mass conservation

∑
K mkρ

N
K =

∑
K mkρ

0
K =

∫
Ω ρ

0.

For the bound on HT (ρ
n+1), note first that Dψ,Rψ ≥ 0 in (3.9) and therefore

ET (ρn+1) ≤ ET (ρn) ≤ · · · ≤ ET (ρ0).

This gives similarly

HT (ρ
n+1) = ET (ρn+1)−

∑
mKρ

n+1
K VK

≤ ET (ρ0)−
∑

mKρ
n+1
K VK

= HT (ρ
0) +

∑
mKρ

0
KVK −

∑
mKρ

n+1
K VK

≤ H(ρ0) + (maxV −minV )ρ0[Ω].

As for the bound on HT (θ
n+1/2), let us first recall the elementary but useful property of

the entropy function

(3.13) H(c) ≤ 1 +
1

2
[H(a) +H(b)] for a, b, c ≥ 0, c ≤ a+ b

2

(For c ≤ 1 one has trivially H(c) ≤ H(0) = 1, while for c ≥ 1 one can simply use the

monotonicity H(c) ≤ H(a + b/2) and conclude by convexity.) Owing to θ
n+1/2
K ≤ 1

2(ρ
n
K +

ρn+1
K ) from Proposition 3.1, we get

HT (θ
n+1/2) =

∑
K

mKH(θ
n+1/2
K )

≤
∑
K

mK

[
1 +

1

2

(
H(ρnK) +H(ρn+1

K )
)]

= mΩ +
1

2

[
HT (ρ

n) +HT (ρ
n+1)

]
,

and the previous uniform bound on HT (ρ
n) concludes the proof. □

4. Convergence via the energy dissipation equality

In this section we establish the convergence of the discrete solutions associated with a
sequence of meshes T and time steps τ , in the limit τ, size(T ) → 0, where

size(T ) := max{diam(K) ; K ∈ T } .
For technical reasons that will appear later in the proofs, we require the sequence of meshes
to satisfy some asymptotic isotropy condition inspired from [31], up to some subset of
vanishing d-dimensional Lebesgue measure as in [18]. We further have to assume some
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CFL-type condition, cf. (4.5) in what follows, which for quasi-uniform meshes would simply
write τ = o(size(T )).

Throughout the section we will denote by QT := [0, T ]× Ω the space-time domain.

4.1. Assumptions on the sequence of meshes. Our convergence result relies on the
following assumptions on the sequence of meshes:

1) mesh regularity: there exists a constant ζ > 0 uniform w.r.t. T such that

(4.1)
∑
σ∈ΣK

mσdσ
2d

≤ ζmK and ζ−1 dist(xK ,K) ≤ diam(K) ≤ ζ min
σ∈ΣK

dσ , ∀K ∈ T

whereas

(4.2) dσ ≤ ζ size(T ), ∀σ ∈ Σ.

2) asymptotic isotropy: there exists a subset Tiso ⊂ T and a nonnegative εT → 0 as
size(T ) → 0, such that

(4.3) (1− εT )|v|2 ≤
1

2mK

∑
σ∈ΣK

mσdσ(v · nKσ)2 ≤ (1 + εT )|v|2, ∀K ∈ Tiso, ∀ v ∈ Rd ;

moreover, denoting Ωiso := ∪{K ; K ∈ Tiso} we have

(4.4) lim
size(T )→0

meas(Ω \ Ωiso) = 0 ;

3) CFL-type condition: denoting by dmin
Σ = minσ∈Σ dσ, then we assume that

(4.5)
τ

dmin
Σ

→ 0 as size(T ) → 0.

Conditions (4.1) and (4.2) are satisfied by usual discretizations based on Delaunay triangu-
lations (or dual Voronoi diagrams) under mild regularity assumptions. Condition (4.3) is
much more restrictive. A weighted version of condition (4.3) was introduced in [31] under
the name of asymptotic isotropy to study convergence of discrete optimal transport models
to their continuous counterparts. In order to ensure convergence, such weights need to be
chosen consistently with the reconstruction operator mapping densities from cells to edges.
In our case, the reconstruction is defined by the map (θK , θL) 7→ θσ =

√
θKθL, and for this

specific choice the isotropy assumption in [31] takes precisely the form (4.3). This condition
also imposes a strong regularity requirement on the meshes. In particular, taking v = ei
with {ei}di=1 an orthonormal basis and summing over all i = 1, . . . , d, this implies

1

2mK

∑
σ∈ΣK

mσdσ ≤ d(1 + εT ), ∀K ∈ Tiso.

This is verified if, at least in the limit size(T ) → 0, each edge σ divides the corresponding
diamond subcell in two parts of equal area mσdσ/2d. However, in contrast with [31], we
allow the isotropy condition to fail in an asymptotically negligible volume Ωiso, which is
precisely the meaning of (4.4). This improved flexibility allows us to consider a practical
refinement strategy and generate a sequence of meshes for which the assumption is verified;
see Remark 4.1 and [18]. As noted already in [31], condition (4.3) can be obtained by
requiring a stronger condition, which is usually referred to as superadmissibility [21] or
center of mass condition. Specifically, denoting by xσ the barycenter of the facet σ, suppose
that

(4.6) xσ =
xK + xL

2
, ∀σ = (K|L) ∈ ΣK
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Then applying Gauss’s theorem to the vector fields ⟨x − xK , ei⟩ej for i, j = 1, . . . , d, we
recover

2

mK

∑
σ∈ΣK

mσdσ(xσ − xK)⊗ (xσ − xK) = Id ,

which directly implies (4.3) on the cell K. This suggests that the classical refinement
procedure by subsequent subdivisions, described below in Remark 4.1, generates a sequence
of meshes for which the assumption holds.

Finally, condition (4.5) is introduced for purely technical reasons in order to guarantee

that the reconstructions based on
(
ρn+1

)
n≥0

and
(
θn+1/2

)
n≥0

, defined in (4.7) below, share

their cluster points as size(T ) → 0.

Remark 4.1 (Refinement by subdivision). Given a bounded polygonal set Ω ⊂ R2, consider
an admissible mesh T 0 made of acute triangles, and subdivide each control volume by parti-
tioning its edges using a fixed number of points and joining the corresponding points on all
edges. Choosing as cell centers the triangles’ circumcenters, the superadmissibility condition
(4.6) holds for all triangles not sharing an edge with the initial partition T 0. Consequently,
increasing the number of subdivisions yields a sequence of admissible meshes verifying the
asymptotic isotropy assumption above.

4.2. Compactness and limit densities. Let us define a reconstruction for the discrete
densities and fluxes. For the densities we define, for 0 ≤ n ≤ N − 1,

(4.7)

ρT ,τ (t, x) = ρn+1
K for a.e. x ∈ K, t ∈ (tn, tn+1] ,

θT ,τ (t, x) = θ
n+1/2
K for a.e. x ∈ K, t ∈ (tn, tn+1] ,

θΣ,τ (t, x) = θn+1/2
σ for a.e. x ∈ ∆σ, t ∈ (tn, tn+1] ,

where

θn+1/2
σ =

{ √
θ
n+1/2
K θ

n+1/2
L if σ = K|L

θ
n+1/2
K if σ = K ∩ ∂Ω

.

The diamond cell ∆σ corresponding to the edge σ is a polytope included in Ω, the vertices
of which being xK and those of σ if σ ⊂ ∂Ω, and additionally xL if σ = K|L ∈ Σ. Note
that we do note require ∆σ to be convex as xK can lie outside of K.

For the initial density profile ρ0, which has been discretized into ρ0 by (2.8), we build
the approximation ρ0T defined by

ρ0T (x) = ρ0K for a.e. x ∈ K.

Then one readily checks that ρ0T converges (strongly) in L1(Ω) towards ρ0. We will also
need a reconstruction for the terminal discrete density at t = T , which will be given by

(4.8) ρTT ,τ (x) = ρNK for a.e. x ∈ K .

Finally, for the fluxes we use the following reconstruction:

(4.9) FΣ,τ (t, x) = dF
n+1/2
Kσ nKσ for a.e. x ∈ ∆σ , t ∈ (tn, tn+1],

where F
n+1/2
Kσ is defined in (3.5) for σ = K|L, and Fn+1/2

Kσ = 0 on the boundary σ ⊂ ∂Ω.

Note that this is well-defined since F
n+1/2
Kσ = −Fn+1/2

Kσ and nKσ = −nLσ for σ = K|L.



16 C. CANCÈS, L. MONSAINGEON, AND A. NATALE

By Lemma 3.4, the total space-time entropies of ρT ,τ and θT ,τ are uniformly bounded,
i.e. there exists a constant C > 0 independent of T , τ such that

(4.10)

∫
QT

H(ρT ,τ ) ≤ CT and

∫
QT

H(θT ,τ ) ≤ CT .

Therefore, given any family of admissible meshes T k and time steps τk with size(T k) → 0
and τk → 0 as k → ∞, there exists ρ, θ ∈ L1(QT ) such that, up to extraction of a
subsequence if needed and as k → ∞,

(4.11) θT k,τk ⇀ θ , ρT k,τk ⇀ ρ , weakly in L1(QT ) .

Similarly, since the entropy of ρTT k,τk is uniformly bounded, we have that there exists ρT ∈
L1(Ω) such that, up to a further extraction as k → ∞,

(4.12) ρTT k,τk ⇀ ρT , weakly in L1(Ω) .

We claim now that the entropy of θΣ,τ is also uniformly bounded. Indeed, as

θn+1/2
σ =

√
θ
n+1/2
K θ

n+1/2
L ≤ 1

2

(
θ
n+1/2
K + θ

n+1/2
L

)
,

it follows from our previous entropy bound (4.10) that

(4.13)

∫
QT

H(θΣ,τ ) =

N−1∑
n=0

τ
∑
σ∈Σ

meas(∆σ)H(θn+1/2
σ )

=
N−1∑
n=0

τ
∑
σ∈Σ

mσdσ
d

H(θn+1/2
σ )

(3.13)

≤
N−1∑
n=0

τ
∑
σ∈Σ

mσdσ
d

[
1 +

1

2

(
H(θ

n+1/2
K ) +H(θ

n+1/2
L )

)]

=
N−1∑
n=0

τ
∑
K

∑
σ∈ΣK

mσdσ
2d

[
1 +H(θ

n+1/2
K )

]
(4.1)

≤ ζ
N−1∑
n=0

τ
∑
K

mK

[
1 +H(θ

n+1/2
K )

]
= ζ

(
mΩT +

∫
QT

H(θT ,τ )

)
≤ CT.

This gives equiintegrability of {θΣ,τ}T ,τ for any family of admissible meshes and time steps.
We use this to show that the fluxes {FΣ,τ}T ,τ are also equiintegrable. To this end, denote
by dΣ ∈ L∞(Ω) the piecewise constant function equal to dσ in each diamond subcell, and
define

(4.14) Dψ :=
N−1∑
n=0

τDψ(θ
n+1/2,F n+1/2) =

∫
QT

θΣ,τ
d2Σ

ψ

(
|FΣ,τ |dΣ
dθΣ,τ

)
.

Observe that Dψ is uniformly bounded due to Lemma 3.4. Let now A ⊂ QT be an arbitrary
measurable subset, and for any ε > 0 write

∥FΣ,τ∥L1(A) =

∫
A
|FΣ,τ | =

dε

2Dψ

∫
A

θΣ,τ
d2Σ

(
|FΣ,τ |dΣ
dθΣ,τ

)(
2dΣDψ

ε

)
.
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By ψ,ψ∗-Young’s inequality and the expression for Dψ in (4.14), we obtain

∥FΣ,τ∥L1(A) ≤
dε

2Dψ

∫
A

θΣ,τ
d2Σ

[
ψ

(
|FΣ,τ |dΣ
dθΣ,τ

)
+ ψ∗

(
2dΣDψ

ε

)]
≤ ε

2
+

dε

2Dψ

∫
A

θΣ,τ
d2Σ

ψ∗
(
2dΣDψ

ε

)
≤ ε

2
+

dε

2Dψ
max
σ

(
1

d2σ
ψ∗
(
2Dψdσ
ε

))∫
A
θΣ,τ

by definition of dΣ. For all ε ≥ 0, there exists a constant Cε such that ψ∗ (ξ/ε) =
4(cosh(ξ/2ε) − 1) ≤ Cεξ

2/2 if ξ ≤ 1. Since Dψ is bounded we have that eventually
ξσ = 2Dψdσ ≤ 1 in the max

σ
(. . . ) term if size(T ) is sufficiently small (using (4.2)), hence

(4.15) ∥FΣ,τ∥L1(A) ≤
ε

2
+ dεCεDψ

∫
A
θΣ,τ .

Since {θΣ,τ}T ,τ is equiintegrable one can pick δ = δ(ε) > 0 such that meas(A) ≤ δ =⇒
∥θΣ,τ∥L1(A) ≤ 1

2dCεDψ
, and therefore

meas(A) ≤ δ =⇒ ∥FΣ,τ∥L1(A) ≤
ε

2
+ dεCεDψ∥θΣ,τ∥L1(A) ≤ ε.

This means precisely that {FΣ,τ}T ,τ is equiintegrable, and as a consequence we can assume
up to extraction of a further subsequence that

(4.16) FΣk,τk ⇀ F weakly in L1(QT ;Rd)

for some vector field F ∈ L1(QT ;Rd).
The next lemma shows that the previous weak limits ρ, θ from (4.11) coincide, and as of

now one should keep in mind θ = ρ. Note carefully that this requires a condition τ = o(dmin
Σ )

on the mesh.

Lemma 4.2. Consider a sequence of solutions associated with
(
T k, τk

)
k
satisfying size(T k) →

0 and (4.5), i.e. τk = o(dmin
Σk

) as k → ∞. Then

lim
k→∞

∥θT k,τk − ρT k,τk∥L1(QT ) = 0 .

Proof. Let us consider the solution (ρn)Nn=0, (θ
n+1/2)N−1

n=0 obtained for fixed T , τ . By Propo-
sition 3.1 and (2.9)–(2.10) we control first by ψ,ψ∗-Young inequality∑
K

mK |θn+1/2
K − ρn+1

K |
(3.1)

≤
∑
K∈T

mK |ρn+1
K − ρnK |

≤ 2τ
∑
σ∈Σint

mσ

dσ
πσ

∣∣∣∣∣θ
n+1/2
K

πK
−
θ
n+1/2
L

πL

∣∣∣∣∣
≤ 2τ

∑
σ∈Σint

mσ

d2σ
θn+1/2
σ

[
ψ

(
πσ

θ
n+1/2
σ

∣∣∣∣∣θ
n+1/2
K

πK
−
θ
n+1/2
L

πL

∣∣∣∣∣
)

+ ψ∗(dσ)

]

≤ 2τ

dmin
Σ

∑
σ∈Σ

mσ

dσ
θn+1/2
σ

[
ψ

(
πσ

θ
n+1/2
σ

∣∣∣∣∣θ
n+1/2
K

πK
−
θ
n+1/2
L

πL

∣∣∣∣∣
)

+ ψ∗(dσ)

]
.
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Pick now C > 0 such that ψ∗(ξ) = 4(cosh(ξ/2)− 1) ≤ Cξ2 for ξ ≤ 1. Summing the above
estimate over n, and recalling the definition (4.14) of Dψ, we obtain

∥θT ,τ − ρT ,τ∥L1(QT ) =
N−1∑
n=0

τ
∑
K∈T

mK |θn+1/2
K − ρn+1

K |

≤ 2τ

dmin
Σ

(
Dψ + C

∑
n

τ
∑
σ∈Σ

mσdσθ
n+1/2
σ

)
=

2τ

dmin
Σ

(
Dψ + Cd∥θΣ,τ∥L1(QT )

)
.

Recall now that Dψ is bounded (Lemma 3.4), and observe that since {θΣ,τ} is equiintegrable
(owing to the entropy bound (4.13)) it has bounded L1(QT ) norm. Due to our standing
assumption (4.5) the last term is o(1) as k → ∞ and the proof is complete. □

4.3. Strong convergence of the approximate densities. The main goal of this section
is to establish improved compactness and therefore strong convergence of the reconstruc-
tructions θT ,τ and ρT ,τ . Since the Fokker-Planck equation is linear this is not strictly
required in order to prove the convergence of the scheme in Section 4.6 (see also Remark
4.8), and this should rather be read as a separate result of independent interest.

As a preliminary, we derive a uniform estimate on the discrete L2
t Ḣ

1
x semi-norm of

√
θT ,τ ,

where the discrete TPFA Ḣ1 semi-norm is classically defined as

|u|21,T =
∑
σ∈Σ

mσ

dσ
(uK − uL)

2, u ∈ RT .

Starting from (3.11), we first rearrange the Fisher information as the sum of a linear part

plus the Ḣ1 semi-norm

(4.17)
1

2
Rψ(ρ) =

∑
σ∈Σ

mσπσ
dσ

∣∣∣∣√ρK
πK

−
√
ρL
πL

∣∣∣∣2 = I(ρ) + |√ρ|21,T ,

where

(4.18) I(ρ) :=
∑
K∈T

∑
σ∈ΣK

mσ

dσ
ρK

(√
πL
πK

− 1

)
.

Lemma 4.3. There exists C depending on V and ζ (but neither on τ nor on size(T )) such
that

(4.19) |I(ρ)| ≤ Cρ[Ω] +
1

2
|√ρ|21,T , ∀ρ ∈ RT

+.

As a consequence, there exists CT uniform with respect to T , τ such that the solution of our
scheme satisfies

(4.20)
N−1∑
n=0

τ
∣∣∣√θn+1/2

∣∣∣2
1,T

≤ CT .

Proof. Let us first focus on (4.19). Bearing in mind that πK = e−VK , we write first
√

πL
πK

−

1 = e
VK−VL

2 − 1 in (4.18). Applying the mean value theorem ex − 1 = x+ x2

2 e
y for some y

between 0 and x, we further split, for any ρ ∈ RT
+

I(ρ) = I1(ρ) + I2(ρ)
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with

I1(ρ) :=
1

2

∑
σ∈Σ

mσ

dσ
(ρK − ρL)(VK − VL)

I2(ρ) :=
1

8

∑
K∈T

∑
σ∈ΣK

mσ

dσ
ρK(VK − VL)

2ey
n+1/2
K,σ

for some y
n+1/2
K,σ between 0 and (VK − VL)/2. As ρK ≥ 0, and using the regularity of V , we

get that

I2(ρ) ≤ e
maxV−minV

2 ∥∇V ∥2∞
1

8

∑
K∈T

ρK
∑
σ∈ΣK

mσdσ
(4.1)

≤ C
∑
K∈T

ρKmK = Cρ[Ω]

with C depending only on V and ζ. For the I1 term we use next the identities a − b =
(
√
a−

√
b)(

√
a+

√
b) and ab ≤ (a2 + b2)/4 to get

I1(ρ) ≤
1

2
|√ρ|21,T +

1

8

∑
σ∈Σ

mσ

dσ
(
√
ρK +

√
ρL)

2 (VK − VL)
2 .

The Lipschitz continuity of V and the elementary inequality (
√
a +

√
b)2 ≤ 2(a + b) then

yield

I1(ρ) ≤
1

2
|√ρ|21,T +

∥∇V ∥2∞
4

∑
K∈T

ρK
∑
σ∈ΣK

mσdσ

(4.1)

≤ 1

2
|√ρ|21,T +

∥∇V ∥2∞
4

∑
K∈T

ρK2dζmK

=
1

2
|√ρ|21,T + Cρ[Ω],

for C depending again only on V, ζ. Combining the above elements provides (4.19).
Turning now to (4.20), observe from (4.17)–(4.19) that

1

2
|√ρ|21,T ≤ 1

2
Rψ(ρ) + Cρ[Ω], ∀ρ ∈ RT

+.

Summing over n gives, for any discrete curve (θn+1/2)N−1
n=0 ,

(4.21)

N−1∑
n=0

τ
∣∣∣√θn+1/2

∣∣∣2
1,T

≤
N−1∑
n=0

τRψ(θ
n+1/2) + 2C∥θT ,τ∥L1(QT ).

When evaluated for our particular solution of the discrete scheme, the first term in the right-

hand side is bounded by Lemma 3.4. Recalling θ
n+1/2
K ≤ ρn+1

K +ρnK
2 from (3.1) and the mass

conservation ρn+1[Ω] = ρn[Ω] = ρ0[Ω] from Proposition 3.1, we see that ∥θT ,τ∥L1(QT ) ≤
Tρ0[Ω] and the proof is complete. □

We can now upgrade the previous weak L1(QT ) convergence of the approximate densities
ρT ,τ , θT ,τ into strong convergence to a common limit.

Proposition 4.4. Let ρ, θ be as in (4.11) and assume (4.5) as in Lemma 4.2. Then ρ = θ
and, up to extraction of a subsequence,

θT k,τk −−−−→
k→+∞

ρ strongly in L1(QT ),(4.22)

ρT k,τk −−−−→
k→+∞

ρ strongly in L1(QT ).(4.23)
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Proof. Observe first from Lemma 4.2 that the weak limits must coincide ρ = θ, so it suffices
to prove that θT k,τk → ρ strongly in L1(QT ). Our proof relies on a combination of an Aubin-
Lions-Simon concentration-compactness argument and a monotone Minty’s trick, already
proposed in [3]. This will however need some adaptation of results from [50] to our specific
setup, which we defer to Proposition B.1 in the appendix.

Let f be an increasing and bounded function from R+ to R such that f(0) = 0 and
such that z 7→ f(z2) is 1-Lipschitz continuous (typically f(z) = tanh

√
z). Define next the

piecewise constant and discrete functions

fT ,τ := f(θT ,τ ) and fn+1/2 := f(θn+1/2).

Recall from (4.11) that

ρT k,τk −−−−⇀
k→+∞

ρ weakly in L1(QT ),

and observe that, since f is bounded, {fT ,τ} is bounded in L∞(QT ) and therefore

fT k,τk −−−−→
k→+∞

f weakly-∗ in L∞(QT )

for some f ∈ L∞(QT ) and possibly up to extraction of a subsequence. We aim to use
Proposition B.1 from the Appendix to guarantee that, with suitable time-compactness on
{ρT ,τ} and space compactness on {fT ,τ}, we can pass to the limit in the product ρT ,τfT ,τ ⇀
ρf in the sense of measures.

We first focus on the space compactness. Since z 7→ f(z2) is 1-Lipschitz, we have that∣∣∣fn+1/2
∣∣∣
1,T k

≤
∣∣∣√θn+1/2

∣∣∣
1,T k

, n ≥ 0,

hence we deduce from Lemma 4.3 that

(4.24)
N−1∑
n=0

τ |fn+1/2|21,T k ≤ CT .

A slight adaptation of [20, Lemma 9.3] shows first of all that the limit f ∈ L2(0, T ;H1(Ω)),
and moreover controls the L2 space difference quotients by the discrete H1 norm in the
following quantitative sense: there exists a constant C > 0 only depending on Ω such that,
for any compact subset ω ⊂⊂ Ω and h ∈ Rd such that |h| < dist(ω, ∂Ω),

∫ T

0

∫
ω
|fT ,τ (t, x+ h)− fT ,τ (t, x)|2 ≤ |h|

[
|h|+ C size(T )

]∑
n

τ |
√
fn+1/2|21,T ≤ CT |h|.

This gives in turn the (suboptimal) L1 difference quotient estimate

(4.25)

∫ T

0

∫
ω

∣∣fT k,τk(t, x+ h)− fT k,τk(t, x)
∣∣ ≤ C

√
|h|, uniformly in k.

Turning now to the compactness in time for ρ, take any arbitrary test function φ ∈
C∞
c (QT ), define (φn)n ∈ RT by

φnK :=
1

mK

∫
K
φ(tn, x)dx, K ∈ T , n = 0, . . . , N − 1,
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and compute∣∣∣∣∣
N−1∑
n=0

∑
K∈T

mK(ρn+1
K − ρnK)φnK

∣∣∣∣∣ (2.9)=

∣∣∣∣∣
N−1∑
n=0

τ
∑
σ∈Σ

mσF
n+1/2
Kσ (φnL − φnK)

∣∣∣∣∣
≤ max

n,σ

∣∣∣∣φnL − φnK
dσ

∣∣∣∣N−1∑
n=0

τ
∑
σ∈Σ

mσdσ

∣∣∣Fn+1/2
Kσ

∣∣∣
= max

n,σ

∣∣∣∣φnL − φnK
dσ

∣∣∣∣ ∥FΣ,τ∥L1(QT ).

Taking ε = 1 and A = QT in (4.15) gives that ∥FΣ,τ∥L1(QT ) ≤ C is bounded uniformly in
T , τ . Moreover, it is shown in [3, §4.4] that∣∣∣∣φnL − φnK

dσ

∣∣∣∣ ≤ (1 + 2ζ)∥∇φ∥∞,

so that altogether we get the M(0, T ; (W 1,∞(Ω)′)) estimate

(4.26) |⟨∂tρT ,τ , φ⟩| =

∣∣∣∣∣
N−1∑
n=0

τ
∑
K∈T

mK
ρn+1
K − ρnK

τ
φnK

∣∣∣∣∣ ≤ C∥∇φ∥∞.

We are now in position of rigorously applying our Aubin-Lions compactness from Proposi-
tion B.1: (i) ρT k,τk is bounded in L∞(0, T ;L1(Ω)) (conservation of mass), hence in L1(QT ),
and fT k,τk is bounded in L∞(QT ), the equiintegrability (ii) follows from the entropy bound
(4.10), the space compactness (iii) is exactly given by (4.25), and the time compactness (iv)
is just (4.26). We conclude that, up to extraction of a subsequence if need be,

(4.27) ρT k,τkfT k,τk −−−−⇀
k→+∞

ρ f in M(QT ),

and from Lemma 4.2 also

(4.28) θT k,τkfT k,τk −−−−⇀
k→+∞

ρ f in M(QT ).

Fix now any z ∈ R+ and φ ∈ C(Q̄T ) with φ ≥ 0. Recalling that fT ,τ = f(θT ,τ ), the
monotonicity of f gives ∫

QT

(θT k,τk − z)(fT k,τk − f(z))φ ≥ 0

and therefore owing to (4.28)∫
QT

(ρ− z)(f− f(z))φ = lim
k→+∞

∫
QT

(θT k,τk − z)(fT k,τk − f(z))φ ≥ 0.

Since φ ≥ 0 is arbitrary we see that

∀ z ≥ 0 , (ρ− z)(f− f(z)) ≥ 0 a.e. in QT ,

which implies

(4.29) f = f(ρ) a.e. in QT .

Finally, we claim that the non-negative sequence (Rk)k ⊂ L1(QT ) defined by

Rk := (θT k,τk − ρ)(f(θT k,τk)− f(ρ)) ≥ 0
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converges to 0 strongly in L1(QT ). Indeed, thanks to (4.28) and (4.29):

0 ≤ ∥Rk∥L1(QT ) =

∫
QT

Rk =

∫
QT

(θT k,τk − ρ)(f(θT k,τk)− f(ρ))

=

∫
QT

θT k,τkfT k,τk −
∫
QT

ρfT k,τk −
∫
QT

θT k,τkf(ρ) +

∫
QT

ρf(ρ)

−−−→
k→∞

∫
QT

ρf−
∫
QT

ρf−
∫
QT

θf(ρ) +

∫
QT

ρf(ρ) = 0

since we already proved that ρ = θ and f = f(ρ). This strong convergence implies almost
everywhere convergence Rk(t, x) → 0 in QT , up to a subsequence if needed. As f is
increasing, this also implies almost everywhere convergence of θT k,τk towards ρ. Vitali’s
convergence theorem then provides (4.22), and (4.23) finally follows from Lemma 4.2. □

4.4. Asymptotic lower bound for the discrete Fisher information. In this section
we show that the Γ-lim inf of the total dissipation functional

N−1∑
n=0

τRψ(θ
n+1/2)

with respect to the weak L1 convergence is bounded from below by the total dissipation
of the continuous system, i.e. the dissipation rate (3.12) integrated in time. As this is a
statement on the functional itself, throughout this section we will consider arbitrary discrete
curves (θn+1/2)n that possibly do not solve (2.9)–(2.10)–(2.11).

Let us first consider the easy case of a trivial background potential V ≡ 0. In that case,
according to (3.11), the dissipation is exactly given by the semi-norm

1

2
Dψ∗(ρ) = |√ρ|21,T =

∑
σ∈Σ

mσ

dσ
|√ρK −√

ρL|2 .

Using the previous adaptation of [20, Lemma 9.3] to control L2 space difference quotients
by the discrete seminorms, there exists a constant C > 0 only depending on Ω such that,
for any compact subset ω ⊂⊂ Ω and h ∈ Rd such that |h| < dist(ω, ∂Ω),

(4.30)

∫ T

0

∫
ω

∣∣∣∣√θT ,τ (t, x+ h)−
√
θT ,τ (t, x)

∣∣∣∣2 ≤∑
n

τ |
√

θn+1/2|21,T |h|
[
|h|+ C size(T )

]
.

In particular, consider any sequence of meshes and time steps such that size(T k) → 0

and τk → 0, and let (θ
n+1/2
k )N−1

n=0 be any associated discrete curve (again, not necessarily
solution to our discrete scheme). Assume that the reconstruction θT k,τk ∈ L1(QT ) from
(4.7) converges as

θT k,τk ⇀ θ weakly in L1(QT ) .

Because f(a, b) = |
√
a −

√
b|2 is convex and continuous, the left-hand side of (4.30) is

lower-semicontinuous for the weak L1 convergence, hence∫ T

0

∥∥∥√θ(t, ·+ h)−
√
θ(t, ·)

∥∥∥2
L2(ω)

dt ≤ |h|2 lim inf
k→∞

∑
n

τk|
√
θ
n+1/2
k |21,T k
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and therefore, by classical characterization of H1(Ω) by difference quotients,

(4.31)

∫ T

0
∥∇
√
θ(t, ·)∥2L2(Ω)dt ≤ lim inf

k→∞

∑
n

τk|
√
θ
n+1/2
k |21,T k .

This settles the case V ≡ 0.
In order to prove the analogue result in the presence of a non-zero potential V , we will

rewrite below the dissipation functional as the sum of the above H1 seminorm plus a linear
term, which can be dealt with easily at least when ∇V · n∂Ω = 0 on the boundary. More
precisely, at the continuous level, if ∇V · n∂Ω = 0 on the boundary we have the identity

(4.32)

∫
π

∣∣∣∣∇√ρ

π

∣∣∣∣2 = 1

2

∫
ρ

(
|∇V |2

2
−∆V

)
+

∫
|∇√

ρ|2 .

This formula can be directly related to the expression for the discrete Fisher information
(3.11), decomposed into 1

2Rψ(ρ) = I(ρ)+|√ρ|21,T as in (4.17)–(4.18). The case∇V ·n∂Ω ̸≡ 0

on the boundary will be handled via an approximation argument from [17].

Proposition 4.5. Let (θ
n+1/2
k )N−1

n=0 ∈ (RT
+)

N be a given discrete curve associated with

T k, τk with reconstruction θT k,τk ∈ L1(QT ) as in (4.7), and suppose that

θT k,τk ⇀ θ , weakly in L1(QT )

for some θ ∈ L1(QT ). Then

lim inf
k→∞

∑
n

τkRψ(θ
n+1/2
k ) ≥ 2

∫
QT

π

∣∣∣∣∣∇
√
θ

π

∣∣∣∣∣
2

.

Proof. Consider first ∇V · n∂Ω = 0 on the boundary, and assume that the lim inf in the
statement is finite (otherwise the statement is vacuous). By (4.21) we readily obtain that

lim inf
k→∞

∑
n

τk
∣∣∣∣√θ

n+1/2
k

∣∣∣∣2
1,T

≤ 2C lim sup
k→∞

∥θT k,τk∥L1(QT ) + lim inf
k→∞

∑
n

τkRψ(θ
n+1/2
k ) < +∞

is finite. By the previous considerations for V ≡ 0 we see that (4.31) holds, hence comparing
(4.17)–(4.18) on the one hand and (4.32) on the other hand, clearly it suffices to show:

(4.33) lim inf
k→∞

∑
n

τkI(θn+1/2
k ) ≥ 1

2

∫
θ

(
|∇V |2

2
−∆V

)
.

To this end we first observe that√
πL
πK

− 1 = exp

(
VK − VL

2

)
− 1 ≥ VK − VL

2
+

(VK − VL)
2

8
.

Therefore we can write I(ρ) ≥ I1(ρ) + I2(ρ) where

I1(ρ) :=
∑
K∈T

∑
σ∈ΣK

mσ

dσ
ρK

(VK − VL)
2

8
,

I2(ρ) :=
∑
K∈T

∑
σ∈ΣK

mσ

dσ
ρK

VK − VL
2

.

For fixed K ∈ T we have∑
σ∈ΣK

mσ

dσ

VK − VL
2

≥ −1

2

∫
K
∆V − C size(T k),
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where C only depends on V .
Since V belongs to C2(Ω), and because of the orthogonality condition (2.1), there holds

VK − VL
dσ

= −∇V (xK) · nKσ +O(dσ) = −∇V (x) · nKσ +O(dσ + |x− xK |)

for any x ∈ K. Therefore, we deduce from (4.1) and (4.2) that

VK − VL
dσ

= −∇V (x) · nKσ +O(size(T k)).

Using the isotropy condition (4.3) and then integrating w.r.t. x ∈ K yields

(4.34)
∑
σ∈ΣK

mσ

dσ

|VK − VL|2

8
≥ (1− εT k)

(∫
K

|∇V |2

4
− C size(T k)

)
=

∫
K

|∇V |2

4
+ o(1),

where the o(1) remainder is uniform both in K ∈ T k and n = 1, . . . N −1 as k → ∞. Hence
we obtain that ∑

n

τkI1(θn+1/2
k ) ≥

∫
QkT

θT k,τk
|∇V |2

4
+ o(1)

and ∑
n

τkI2(θn+1/2
k ) ≥ −

∫
QT

θT k,τk∆V + o(1),

where we have set

QkT := (0, T )× (Ω \ Ωkiso).

Since we assume θT k,τk ⇀ θ weakly in L1(QT ), the inequality involving I2 immediately
passes to the limit. For the I1 lower bound, the weak convergence implies that {θT k,τk}k
is equi-integrable. Owing to our standing assumption (4.4) we see that meas

(
Q \QkT

)
→ 0

hence the I1 inequality also passes to the limit and our claim (4.33) follows.
Let us finally settle the case ∇V · n∂Ω ̸= 0 on the boundary. Fix ε > 0 and take an

approximation V ε ∈ C∞
c (Rd) of V satisfying

∇V ε · n∂Ω = 0 on ∂Ω, ∥V − V ε∥W 1,p(Ω) ≤ ε,

for some p ∈ [1,∞) to be chosen later. The existence of such a function for arbitrarily large
but finite p ≥ 1 is due to Droniou [17]. Define Iε2 in the obvious way, simply substituting
V ε for V in the previous definition of I2, and for any discrete function ρ ∈ RT

+ decompose

now 1
2Rψ(ρ) = I(ρ) + |√ρ|21,T ≥ I1(ρ) + I2(ρ) + |√ρ|21,T as

(4.35)
1

2
Rψ(ρ) ≥

[
I1(ρ) + Iε2(ρ) + |√ρ|21,T

]
+ [I2(ρ)− Iε2(ρ)] .
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Let us first estimate the difference I2 −Iε2 . To this end, pick an arbitrary η > 0 small, and
for any θ ∈ RT

+ with spatial reconstruction θT ∈ L1(Ω) write

|I2(θ)− Iε2(θ)| ≤
∑
σ∈Σ

mσ

2dσ
|θK − θL||VK − V ε

K − VL + V ε
L |

=
∑
σ∈Σ

mσ

2dσ
|
√
θK −

√
θL| ·

(√
θK +

√
θL

)
|VK − V ε

K − VL + V ε
L |

≤

(
η
∣∣∣√θ

∣∣∣2
1,T

+
1

4η

∑
σ∈Σ

mσ

dσ

∣∣∣√θK +
√
θL

∣∣∣2 |VK − V ε
K − VL + V ε

L |
2

)

≤

(
η
∣∣∣√θ

∣∣∣2
1,T

+
1

2η

∑
σ∈Σ

mσ

dσ
(θK + θL) |VK − V ε

K − VL + V ε
L |

2

)
.

Similar arguments as those employed to establish (4.34) show that∑
σ∈ΣK

mσ

2dσ
|VK − V ε

K − VL + V ε
L |2 ≤

1

mK

∫
K
|∇(V −V ε)|2+Cε(εT +size(T )), ∀K ∈ Tiso,

where the constant Cε depends on V − V ε but not on the mesh. On the other hand for
K ̸∈ T k

iso we simply write

∀K ̸∈ T k
iso,

∑
σ∈ΣK

mσ

2dσ
|VK − V ε

K − VL + V ε
L |2 ≤

∑
σ∈ΣK

mσdσ
2

(∥∇V ∥∞ + ∥∇V ε∥∞)2

(4.1)

≤ dζmk (∥∇V ∥∞ + ∥∇V ε∥∞)2

≤ CεmK ,

where Cε again depends on ε but not on T k. Hence we find

|I2(θ)− Iε2(θ)| ≤ η|
√
θ|21,T +

1

η

∫
Ω
θT |∇(V − V ε)|2

+ Cε
(
(εT + size(T ))∥θT ∥L1(Ω) + ∥θT ∥L1(Ω\Ωiso)

)
,

which inserted into (4.35) yields

1

2
Rψ(θ) ≥

[
I1(θ) + Iε2(θ) + (1− η)|

√
θ|21,T

]
− 1

η

∫
Ω
θT |∇(V − V ε)|2 − Cε

(
(εT + size(T ))∥θT ∥L1(Ω) + ∥θT ∥L1(Ω\Ωiso)

)
.

Evaluating for a discrete curve (θ
n+1/2
k ) and summing over n, the first three terms in the

right-hand side pass to the lim inf as soon as θT k,τk ⇀ θ weakly in L1(QT ), exactly as in
the previous case where ∇V · n∂Ω = 0 on the boundary. Moreover the non-isotropic term
vanishes as k → ∞ – as before, θT k,τk is equiintegrable and QkT = (0, T ) × (Ω \ Ωiso) has
vanishing measure – hence for fixed η > 0 and ε > 0 we obtain

lim inf
k→∞

∑
n

τkRψ(θ
n+1/2
k )

≥
∫
QT

θ

(
|∇V |2

2
−∆V ε

)
+ 2(1− η)

∫
QT

|∇
√
θ|2 − 2

η

∫
QT

θ|∇(V − V ε)|2
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This shows as a byproduct that, whenever the left-hand side is finite, ∥∇
√
θ∥L2(QT ) is

finite too and ∇θ = 2
√
θ∇

√
θ ∈ L2

tL
1
x due to

√
θ ∈ L∞

t L
2
x. At this stage one would wish

to substitute −
∫
θ∆V ε by the desired +

∫
∇θ · ∇V . To this end we use the exact same

strategy as before, but this time at the continuous level: Since ∇V ε · n∂Ω on the boundary
and θ ∈ L2

tW
1,1
x we can legitimately integrate by parts∣∣∣∣∫
QT

θ∆V ε +

∫
QT

∇θ · ∇V
∣∣∣∣ = ∣∣∣∣∫

QT

∇θ · (∇V ε −∇V )

∣∣∣∣
= 2

∣∣∣∣∫
QT

∇
√
θ ·

√
θ(∇V ε −∇V )

∣∣∣∣
≤ 2η

∫
QT

∣∣∣∇√
θ
∣∣∣2 + 2

η

∫
QT

θ |∇V ε −∇V |2

and thus

lim inf
k→∞

∑
n

τkR(θ
n+1/2
k )

≥
∫
QT

(
θ
|∇V |2

2
+∇θ · ∇V

)
+ (2− 4η)

∫
QT

|∇
√
θ|2 − 4

η

∫
QT

θ|∇(V − V ε)|2 .

Fix now q > 1 such that, for any f ∈ H1(Ω),

∥f∥L2q(Ω) ≤ Cq∥f∥H1(Ω)

for some constant Cq > 0 depending only on Ω and q. Choosing p as 1/p + 1/q = 1 we
estimate in the last term∫

QT

θ|∇(V − V ε)|2 ≤ ∥∇(V − V ε)∥2L2p(Ω)

∫ T

0
∥θ(t, ·)∥Lq(Ω)dt

= ∥∇(V − V ε)∥2L2p(Ω)

∫ T

0
∥
√
θ(t, ·)∥2L2q(Ω)dt

≤ C2
q ∥∇(V − V ε)∥2L2p(Ω)∥

√
θ∥2L2(0,T ;H1(Ω))

Choosing ε > 0 sufficiently small so that

C2
q ∥∇(V − V ε)∥2L2p(Ω) ≤ η2

gives

lim inf
k→∞

∑
n

τkR(θ
n+1/2
k )

≥
∫
QT

(
θ
|∇V |2

2
+∇θ · ∇V + 2

∣∣∣∇√
θ
∣∣∣2)︸ ︷︷ ︸

=2π

∣∣∣∇√
θ
π

∣∣∣2
−4η

∫
QT

|∇
√
θ|2 − 4η,

and since η > 0 was arbitrary the proof is complete. □
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4.5. Asymptotic lower bound for the discrete Benamou-Brenier functional. In
this section we establish a lower bound for the kinetic part of the dissipation, analogous to
the previous section but now for

N−1∑
n=0

τDψ(θ
n+1/2,F n+1/2) =

N−1∑
n=0

τ
∑
σ∈Σ

mσ

dσ
θn+1/2
σ ψ

(
dσF

n+1/2
Kσ

θ
n+1/2
σ

)
.

The lower bound will be given by the Benamou-Brenier functional (see [57, Section 5.3.1]),
which is the map given by (ρ, F ) ∈ L1(QT ;Rd+1) 7→

∫
QT

B(ρ, F ) with the function B

defined as in (1.5).
Just as in section 4.4 for the Fisher information, this statements is about how the ge-

ometry discretization allows a consistent interplay between the discrete Dψ dissipation and
the continuous Benamou-Brenier functional functional, and does not deal with particu-
lar solutions of our scheme properly speaking. Accordingly, consider θ ∈ L1(QT ) and
F ∈ L1(QT ;Rd) that are obtained as weak L1 limits of arbitrary sequences of reconstructed
densities {θT k,τk}k and fluxes {FΣk,τk}k. Our strategy below is similar to [37], where uncon-
ditional convergence of discrete to continuous optimal transport models is proved. Recall
that the Benamou-Brenier functional can be classically written (e.g. [57, Proposition 5.18])
as

(4.36)

∫
QT

B(θ, F ) = sup
b∈C(QT ;Rd)

{
⟨b, F ⟩ −

∫
QT

θ
|b|2

2

}
,

where the duality pairing is ⟨b, F ⟩ =
∫
QT

b · F . Consider first the case when (4.36) is finite.

Then, for any arbitrary small η > 0 we can find b ∈ C(QT ;Rd) such that

(4.37)

∫
QT

B(θ, F ) ≤ ⟨b, F ⟩ −
∫
QT

θ
|b|2

2
+ η ≤ lim

k→∞
⟨b, FΣk,τk⟩ −

∫
QT

θT k,τk
|b|2

2
+ η,

and by density we can actually assume that b ∈ C1(QT ;Rd). At the discrete level, the
analogue of (4.36) is (by definition of the ψ,ψ∗ convex duality)

∑
n

τ
∑
σ

mσθ
n+1/2
σ

dσ
ψ

(
F
n+1/2
σ dσ

θ
n+1/2
σ

)

= sup
b∈FT

{∑
n,σ

τmσdσb
n+1/2
Kσ F

n+1/2
Kσ −

∑
n

τ
∑
σ

mσθ
n+1/2
σ

dσ
ψ∗
(
b
n+1/2
Kσ dσ

)}
.

Let us take b as in (4.37), and define

b
n+1/2
Kσ :=

1

τ meas(∆σ)

∫ tn+1

tn

∫
∆σ

b · nKσ

so that

⟨b, FΣ,τ ⟩ =
∑
n,σ

τmσdσb
n+1/2
Kσ F

n+1/2
Kσ .

Moreover owing to θ
n+1/2
σ =

√
θ
n+1/2
K θ

n+1/2
L ≤ 1

2(θ
n+1/2
K + θ

n+1/2
L ) there holds

∑
n

τ
∑
σ

mσθ
n+1/2
σ

dσ
ψ∗
(
b
n+1/2
Kσ dσ

)
≤
∑
n

τ
∑
K

θ
n+1/2
K

∑
σ∈ΣK

mσ

2dσ
ψ∗
(
b
n+1/2
Kσ dσ

)
.
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Note that |bn+1/2
Kσ | ≤ ∥b∥∞ and, owing to our assumption (4.2) on the meshes, dσ ≤ ζ size(T )

is small. Since ψ∗(ξ) = 4(cosh(ξ/2) − 1) = |ξ|2/2 + O(|ξ|4) ≤ 1
2 |ξ|

2(1 + |ξ|) for small ξ we
can bound

ψ∗
(
b
n+1/2
Kσ dσ

)
≤ d2σ

2

∣∣bn+1/2
Kσ

∣∣2[1 + ∥b∥∞dσ
]
.

Since b ∈ C1(Q̄T ) is Lipschitz and dσ ≤ ζ size(T ) we obtain

ψ∗
(
b
n+1/2
Kσ dσ

)
≤ d2σ

2

[
(b(t, x) · nKσ)2 + C(τ + size(T ))

]
, (t, x) ∈ [tn, tn+1]×K

for some constant C > 0 depending on b, ζ, but not on T , τ . Leveraging one last time the
Lipschitz regularity of b we see that

ψ∗
(
b
n+1/2
Kσ dσ

)
≤ d2σ

2

[
1

τmK

∫ tn+1

tn

∫
K
(b(t, x) · nKσ)2 + C(τ + size(T ))

]
.

Hence, using yet again the mesh isotropy, we get∑
n,K

τθ
n+1/2
K

∑
σ∈ΣK

mσ

2dσ
ψ∗ (bnKσdσ)

≤
∑
n,K

θ
n+1/2
K

∑
σ∈ΣK

[∫ tn+1

tn

∫
K

mσdσ
4mK

(b(t, x) · nKσ)2 + τ
mσdσ
2

C(τ + size(T ))

]
(4.3)−−(4.1)

≤ (1 + εT )

∫
QT

θT ,τ
|b|2

2
+
ζ∥b∥2∞

2

∫ T

0

∫
Ω\Ωiso

θT ,τ +
Cdζ

2
(τ + size(T ))∥θT ,τ∥L1(QT )

≤
∫
QT

θT ,τ
|b|2

2
+ rT ,τ

where the remainder

rT ,τ :=
ζ∥b∥2∞

2

∫ T

0

∫
Ω\Ωiso

θT ,τ +

[
Cdζ

2
(τ + size(T )) +

∥b∥2∞
2

εT

]
∥θT ,τ∥L1(QT ) .

Therefore, combining the previous estimates with (4.37) we deduce that

N−1∑
n=0

τDψ(θ
n+1/2
k ) ≥ ⟨b, FΣk,τk⟩ −

∫
QT

θT k,τk
|b|2

2
− rT k,τk .

Since (θT k,τk)k is converging weakly in L1 it is also equiintegrable and L1-bounded. Due to
our assumption (4.4) that meas((0, T )× (Ω \ Ωiso)) → 0 we see that rT k,τk → 0 as k → ∞,
and as a consequence

lim inf
k→∞

N−1∑
n=0

τDψ(θ
n+1/2
k ) ≥ ⟨b, F ⟩ −

∫
QT

θ
|b|2

2
≥
∫
QT

B(θ, F )− η .

Since η > 0 was arbitrary the claim follows.
If now (4.36) is infinite we can proceed in a similar fashion. For any fixed M > 0 large

there is b ∈ C1(QT ;Rd) such that

⟨b, F ⟩ −
∫
QT

θ
|b|2

2
≥M.
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Following the same line of thought as above we find

lim inf
k→∞

N−1∑
n=0

τDψ(θ
n+1/2
k ) ≥M.

Since M is arbitrary, this lim inf is also infinite. We have just proven the following:

Proposition 4.6. Let (θ
n+1/2
k )N−1

n=0 ∈ (RT
+)

N and (F
n+1/2
k )N−1

n=0 ∈ (FT )
N be given discrete

curves associated with the mesh T k and time step τk. Suppose that their reconstruction
θT k,τk ∈ L1(QT ) and FΣk,τk ∈ L1(QT ;Rd) from (4.7) and (4.9) converge as

θT k,τk ⇀ θ weakly in L1(QT ) , FΣk,τk ⇀ F weakly in L1(QT ;Rd) .
Then,

lim inf
k→∞

N−1∑
n=0

τDψ(θ
n+1/2
k ,F

n+1/2
k ) ≥

∫
QT

B(θ, F ) .

4.6. Convergence of the scheme. It remains now to prove that the curve ρ = θ, con-
structed in the previous sections as the limit of solutions to our discrete scheme, is actually
an EDI solution.

Theorem 4.7. Let (ρnk)
N
n=0 ∈ (RT k

+ )N and (θ
n+1/2
k )N−1

n=0 ∈ (RT k
+ )N be the densities obtained

as the unique solution of the scheme (2.9)–(2.10)–(2.11), associated with a mesh T k and
time step τk satisfying τk = o(dmin

Σk
). Let ρT k,τk ∈ L1(QT ), θT k,τk ∈ L1(QT ) and ρTT k,τk ∈

L1(Ω) be the reconstructions defined in (4.7) and (4.8). Then, there exists ρ ∈ L1(QT ) ∩
C([0, T ];L1

w(Ω)) such that

ρT k,τk , θT k,τk → ρ in L1(QT ) and ρTT k,τk ⇀ ρT = ρ(T ) weakly in L1(Ω)

as k → +∞. Moreover, the limiting density ρ is the unique EDI solution with initial datum
ρ0 in the sense of Definition 1.

Proof. First, notice that no subsequence is involved in the above statement, as a by-product
of the uniqueness of EDI solutions, cf. Proposition A.2 in the Appendix. Showing compact-
ness for

(
ρT k,τk

)
k
and

(
θT k,τk

)
k
, and the fact that any cluster point ρ is an EDI solution

then automatically gives the convergence of the whole sequence. So in what follows, we will
not indicate when convergences hold up to a subsequence.

First of all, the convergence of the reconstructions is a consequence of Proposition 4.4.
Summing Proposition 3.2 in time we get the discrete EDI estimate

(4.38) ET (ρNk ) +
∑
n

τ
{
Dψ(θ

n+1/2,F n+1/2) +Rψ(θ
n+1/2)

}
≤ ET (ρ0

k).

Jensen’s inequality and the definition (2.8) of ρ0
k gives

H(ρ0T k) =
∑
K∈T k

mKH(ρ0K) ≤ H(ρ0),

whereas∣∣∣∣∣∣
∑
K∈T k

mKρ
0
KVK −

∫
Ω
ρ0V

∣∣∣∣∣∣ ≤
∑
K∈T k

∫
K
ρ0(x)|V (x)− V (xK)| dx ≤ C size(T k)

thanks to the regularity of V and (4.1). Therefore,

ET (ρ0
k) ≤ E(ρ0) +O(size(T k)).
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We deduce from similar arguments that∣∣∣ET (ρNk )− E(ρTT k,τk)
∣∣∣ =

∣∣∣∣∣∣
∑
K∈T k

mKρ
N
KVK −

∫
Ω
ρTT k,τkV

∣∣∣∣∣∣ ≤ C size(T k).

Taking the above estimates into acount in (4.38) leads to

(4.39) E(ρTT k,τk) +
∑
n

τ
{
Dψ(θ

n+1/2,F n+1/2) +Rψ(θ
n+1/2)

}
≤ E(ρ0) + C size(T k).

The first term on the left immediately passes to the liminf by standard weak-L1 lower semi-
continuity of the convex functional E together with the weak convergence (4.12). Moreover,
let us recall from (4.16) that FΣk,τk ⇀ F weakly in L1(QT ). Propositions 4.5 and 4.6 thus
allow to take the liminf in the dissipation terms and conclude that

E(ρT ) + 2

∫
QT

π

∣∣∣∣∇√ρ

π

∣∣∣∣2 + ∫
QT

B(ρ, F ) ≤ E(ρ0) .

It only remains to show that the pair (ρ, F ) solves the continuity equation with initial and
terminal data ρ0 and ρT taken in the C([0, T ];L1

w(Ω)) sense. For this, take any test-function
φ ∈ C2(QT ) and denote

φnK =
1

mK

∫
K
φ(tn, ·) .

For fixed T , τ , observe on the one hand that

⟨ρT ,τ , ∂tφ⟩ =
∑
n

∑
K

mKρ
n+1
K (φn+1

K − φn)

=
∑
n

∑
K

mK(ρnK − ρn+1
K )φnK +

∑
K

mK(ρNKφ
N
K − ρ0Kφ

0
K)

=
∑
n

∑
K

mK(ρnK − ρn+1
K )φnK +

∫
Ω
φ(T, ·)ρTT ,τ −

∫
Ω
φ(0, ·)ρ0T ,

and on the other hand that

⟨FΣ,τ ,∇φ⟩ =
1

2

∑
n,K

∑
σ∈ΣK

mσdσF
n+1/2
Kσ

1

∆σ

∫ tn+1

tn

∫
∆σ

∇φ · nKσ

=
1

2

∑
n,K

∑
σ∈ΣK

τmσdσF
n+1/2
Kσ

φnL − φnK
dσ

+O
(
Cφ(size(T ) + τ)∥FΣ,τ∥L1(QT )

)
= −

∑
n,K

∑
σ∈ΣK

τmσF
n+1/2
Kσ φnK +O

(
Cφ(size(T ) + τ)∥FΣ,τ∥L1(QT )

)
,

where Cφ is a constant depending on ∥D2
t,xφ∥∞ only. Hence by (2.9)∣∣∣∣⟨ρT ,τ , ∂tφ⟩+ ⟨FΣ,τ ,∇φ⟩ −

∫
Ω
φ(T, ·)ρTT ,τ +

∫
Ω
φ(0, ·)ρ0T

∣∣∣∣
= O

(
Cφ(size(T ) + τ)∥FΣ,τ∥L1(QT )

)
.

Since FΣk,τk ⇀ F weakly in L1(QT ;Rd), since ρT k,τk → ρ in L1(QT ), since ρ
0
T k → ρ0 in

L1(Ω) and since ρTT k,τk ⇀ ρT weakly in L1(Ω) we can take the limit to retrieve the weak

formulation (1.7) of the continuity equation for C2(Q̄T ) test functions, and therefore for
all φ ∈ C1(Q̄T ) by density. Finally, it is well-known [1] that any pair (ρ, F ) solving the
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continuity equation with finite kinetic energy
∫
QT

B(ρ, F ) < +∞ is L1
w(Ω)-continuous in

time with initial/terminal data ρ0, ρT , and the proof is complete. □

Remark 4.8. Note that, since Proposition 4.5 and 4.6 were established using weak con-
vergence only, the strong convergence of the reconstructions in Proposition 4.4 is itself not
strictly needed to prove that the limit is an EDI solution.

5. Numerical implementation and results

In this section we describe the implementation of the scheme defined by (2.9)–(2.11). We
also present some numerical tests confirming the second order accuracy, both in time and
space.

5.1. Nested Newton method. Given ρn, computing ρn+1 requires solving the nonlinear

system (2.9)–(2.11) with in particular ρn+1
K = Ξ(ρnK , θ

n+1/2
K ). For practical numerical pur-

poses, solving for θn+1/2 as the primary variable requires solving a nonlinear scalar system
in each cell in order to evaluate the function Ξ(ρnK , ·) itself and its derivatives. Since Ξ is C1,
convex, and |Ξ′(a, ·)| ≤ e this can be achieved efficiently with a Newton-Rhapson method.
In order to limit the number of linear systems to be solved in practice, however, we follow
here an alternative reparametrization strategy inspired from [7]. Recall from Section 2.2
that our interpolation Ξ(a, ·) is defined in terms of the convex function g = f−1 in (2.5),
whose graph {y = g(x)} ⊂ R× R+ we choose to reparametrize as

R ∋ s 7−→ (x(s), y(s)) :=

{
(s+ ξ, g(s+ ξ)) if s ≤ 0,

(f(λs+ g(ξ)), λs+ g(ξ)) else.

Here ξ > e−1 is an arbitrary cutoff threshold: for s ≤ 0 one runs the graph y = g(x) at unit
speed, while for s > ξ one rather chooses to run the inverse graph x = f(y) at speed λ. We
impose λ = g′(ξ), so that x(·) and y(·) are C1 across s = 0. Note that, by construction,

ρn+1
K = Ξ(ρnK , θ

n+1/2
K ) if and only if there exists (a unique) sK ∈ R such that

(5.1) ρn+1
K = X(ρnK ; sK) :=

{
sK if ρnK = 0
ρnKx(sK) otherwise

and

θ
n+1/2
K = Y (ρnK ; sK) :=

{
e−1sK if ρnK = 0
ρnKy(sK) otherwise

.

At each time step, we first look for s ∈ RT solving

(5.2) mK
X(ρnK ; sK)− ρnK

τ
+
∑
σ∈ΣK

mσ

dσ
πσ

(
Y (ρnK ; sK)

πK
−
Y (ρnL; sL)

πL

)
= 0 , ∀K ∈ T ,

by the Newton-Raphson method, and then update ρn+1 according to (5.1). Note that
this reparametrization does not change the exact solution, which by Proposition 3.1 should

satisfy ρn+1
K ≥ 0 and θ

n+1/2
K > 0 for all K ∈ T .

Remark 5.1. The evaluation of X(ρnK ; ·), Y (ρnK ; ·) and their derivatives requires the so-
lution of an inner nonlinear system only when ρnK > 0 and sK ≤ 0, which at convergence

corresponds to ρn+1
K ≤ ξρnK . In practice we verified numerically that, even choosing ξ ≈ e−1,

the outer Newton method for (5.2) only require very few iterations. In that case, the in-
ner Newton method is merely required in order to guarantee robustness of the scheme when
dealing with solutions with steep gradients or vanishing densities.
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(a) Coarsest mesh (b) Refinement by subdivision (c) Refinement by repetition

Figure 2. Illustration of the refinement patterns used in the numerical
tests; 2a is the base mesh used for both refinement patterns, while 2b and
2c are the second meshes for the two different refinement patterns used in
the tests.

5.2. Test-cases and numerical results. We set Ω = [0, 1]2 and consider the two refine-
ment patterns illustrated in Figure 2. Note that only the subdivision refinement satisfies
all the requirements on the mesh geometry from Section 4.1.

5.2.1. Convergence test. In order to investigate convergence and accuracy of our scheme
we consider a test-case with gravitational potential V (x) = −gx1 for g ∈ R+ and x =
(x1, x2) ∈ Ω, in which case the continuous model reduces to the following linear Fokker-
Planck equation:

∂tρ−∆ρ− g∂x1ρ = 0 in QT .

An exact solution given by

ρ(t, x) = exp
(
−α(t+ δ) +

g

2
x1

)(
π cos(πx1) +

g

2
sin(πx1)

)
+ π exp

(
g
(
x1 −

1

2

))
with α = π2 + g2/4 and δ > 0. Note that the initial condition satisfies

ρ0(1, x2) = π exp
(g
2

)
(1− exp (−αδ))

for all x2 ∈ [0, 1], and in particular ρ0(1, x2) = 0 if δ = 0, and ρ(t, x1, x2) > 0 for all
t > 0 and (x1, x2) ∈ Ω. In the following we fix g = 1. Tables 1–4 show the L1(QT ),
L2(QT ), and L

∞(QT ) errors computed for the reconstructed density ρτ,T for the two values
δ = 0.0001, δ = 0 and both refinement methods. We observe that the aimed second order
in time and space convergence is practically achieved for the L1(QT ) norm whatever the
initialization and the mesh refinement strategy. In the presence of vacuum, when the initial
profile ρ0 partially vanishes along x1 = 1 for δ = 0, second order accuracy is lost for the
L∞(QT ) norm, and to a lesser extent for the L2(QT ) norm.

In figure 3 we plot the error in the dissipation balance

∆(tn) :=
1

τ

[
ET (ρn)− ET (ρn+1))−Dψ(θ

n+1/2)−Dψ∗(θn+1/2)
]

as a function of time. Recall that ∆(t) ≡ 0 is expected in the limit for continuous EDI
solutions of the Fokker-Planck equation, so the smaller the numerical ∆ the more accurately
dissipation is captured by the scheme.
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τ size(T ) L1 rate L2 rate L∞ rate ρmin
2.50e-02 3.06e-01 4.48e-03 1.04e-02 5.96e-02 6.68e-02
1.25e-02 1.53e-01 9.84e-04 2.19 2.44e-03 2.09 3.65e-02 7.08e-01 5.55e-02
6.25e-03 7.65e-02 2.39e-04 2.04 6.01e-04 2.03 1.46e-02 1.32 5.28e-02
3.13e-03 3.82e-02 5.95e-05 2.01 1.48e-04 2.02 4.94e-03 1.56 5.22e-02
1.56e-03 1.91e-02 1.48e-05 2.01 3.65e-05 2.02 1.42e-03 1.79 5.21e-02
7.81e-04 9.56e-03 3.67e-06 2.01 9.05e-06 2.01 3.38e-04 2.07 5.21e-02

Table 1. δ = 0.001, refinement by subdivision.

τ size(T ) L1 rate L2 rate L∞ rate ρmin
2.50e-02 3.06e-01 2.75e-03 7.64e-03 7.52e-02 6.68e-02
1.25e-02 1.53e-01 6.10e-04 2.17 1.87e-03 2.03 2.81e-02 1.42 5.55e-02
6.25e-03 7.65e-02 1.50e-04 2.03 4.85e-04 1.95 1.43e-02 9.76e-01 5.28e-02
3.13e-03 3.82e-02 3.75e-05 2.00 1.24e-04 1.97 5.29e-03 1.43 5.22e-02
1.56e-03 1.91e-02 9.36e-06 2.00 3.10e-05 2.00 1.64e-03 1.69 5.21e-02
7.81e-04 9.56e-03 2.34e-06 2.00 7.73e-06 2.00 4.31e-04 1.93 5.21e-02

Table 2. δ = 0.001, refinement by repetition.

τ size(T ) L1 rate L2 rate L∞ rate ρmin
2.50e-02 3.06e-01 4.60e-03 1.09e-02 8.49e-02 1.61e-02
1.25e-02 1.53e-01 1.05e-03 2.13 2.85e-03 1.93 6.43e-02 4.00e-01 4.06e-03
6.25e-03 7.65e-02 2.64e-04 1.99 8.26e-04 1.79 3.73e-02 7.85e-01 1.02e-03
3.13e-03 3.82e-02 6.68e-05 1.98 2.45e-04 1.75 2.00e-02 8.99e-01 2.55e-04
1.56e-03 1.91e-02 1.66e-05 2.01 7.31e-05 1.75 1.04e-02 9.48e-01 6.39e-05
7.81e-04 9.56e-03 4.13e-06 2.01 2.18e-05 1.74 5.29e-03 9.72e-01 1.60e-05

Table 3. δ = 0, refinement by subdivision.

τ size(T ) L1 rate L2 rate L∞ rate ρmin
2.50e-02 3.06e-01 2.84e-03 8.16e-03 8.17e-02 1.61e-02
1.25e-02 1.53e-01 6.74e-04 2.07 2.33e-03 1.81 5.55e-02 5.57e-01 4.06e-03
6.25e-03 7.65e-02 1.74e-04 1.96 7.23e-04 1.69 3.43e-02 6.94e-01 1.02e-03
3.13e-03 3.82e-02 4.43e-05 1.97 2.25e-04 1.69 1.91e-02 8.43e-01 2.55e-04
1.56e-03 1.91e-02 1.12e-05 1.99 6.92e-05 1.70 1.01e-02 9.15e-01 6.39e-05
7.81e-04 9.56e-03 2.82e-06 1.99 2.11e-05 1.71 5.23e-03 9.55e-01 1.60e-05

Table 4. δ = 0, refinement by repetition.

5.2.2. A test case with a steep potential. We define now in polar coordinates

V (x) = 5(1− exp(−r2/σ2))(1− cos6(20r − θ)), ρ0(x) =
1√
2πσ

exp(−r2/σ2),

where the origin r = 0 is set at the center of the domain (1/2, 1/2) and σ = 10−2. The
solution for these data concentrates on a small area of the domain centered around the
curve 20r = θ. The density profile at different times is displayed in figure 5. In figure 6 we
show the time evolution of the minimum of the density and the number of outer Newton
iterations.



34 C. CANCÈS, L. MONSAINGEON, AND A. NATALE

Figure 3. Error in the energy balance ∆, for δ = 0. The labels refer to
different meshes and time steps corresponding to the row numbers of Table
3 (left, refinement by subdivision) and 4 (right, refinement by repetition)

Figure 4. Dissipation rates Dψ(θ
n+1/2) (a), and Dψ∗(θn+1/2) (b), for δ = 0

and using the finest mesh and time step, corresponding to the last row of
Table 3 (left, refinement by subdivision) and 4 (right, refinement by repeti-
tion)

6. Conclusion and prospects

The numerical strategy we propose in this paper shows great promises, as its structure
allows to carry out the rigorous numerical analysis. The convergence can even be established
under reasonable assumptions on the mesh that might be relaxed even further. The scheme
preserves positivity and is compatible with thermodynamics in the sense that free energy
decays in time at a rate which accurately approaches the exact one. Moreover, our method
is computationally efficient thanks to the local-in space character of the time extrapolation.
In particular, the resolution of the nonlinear systems arising from our scheme does not seem
to be computationally demanding in practice, at least in the test cases we have run.

We only validated our approach so far on the simple linear Fokker-Planck equation. The
extension to nonlinear (possibly degenerate) parabolic equations (or even systems) with
gradient structure remains to be done. We also plan to extend our strategy to the case
of Poisson-Nernst-Planck systems, where the extrapolation step is no longer local but still
computable at reasonable cost.
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(a) t = 0 (b) t = 1.2 · 10−2 (c) t = 2.5 · 10−2

(d) t = 5.0 · 10−2 (e) t = 10−1 (f) t = 2.0 · 10−1

Figure 5. Density evolution for the second test case (note that the color
scale is renormalized in each picture).

Figure 6. Time evolution of density minimum min ρT ,τ (t, ·) and number of
outer Newton iterations to solve the nonlinear system at each time step.

Appendix A. Properties of EDI solutions

We discuss here basic properties of EDI solutions needed for our purpose. The starting
point is the following chain rule:
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Proposition A.1 (Chain rule). Let Ω ⊂ Rd be convex and V ∈ C2(Ω̄). Take any (ρ, F )
satisfying the continuity equation (1.7) in time [0, T ], with moreover finite kinetic energy
and Fisher information ∫ T

0
R(ρ) +

∫
QT

B(ρ, F ) < +∞.

Then t 7→ E(ρt) is absolutely continuous with distributional derivative

(A.1)
d

dt
E(ρt) =

∫
Ω
F t · ∇ log

(
ρt

π

)
∈ L1(0, T ).

As Ω is convex, one can directly apply results from [1] (see in particular §10.1.2.E, Propo-
sition 10.3.18, and thm. 10.4.9 therein). Roughly speaking, the convexity of Ω combined
with the regularity of V guarantee that the relative entropy ρ 7→ E(ρ) = H(ρ |π) is λ-
displacement convex for some λ ∈ R, which then opens the way to the subdifferential
calculus developped in [1]. The extension to non-smooth and non-convex Lipschitz domains
of the above chain rule is an open problem up to our knowledge.

The following properties of EDI solutions is then an easy corollary:

Proposition A.2. Under the same assumptions, take in addition ρ0 with finite energy
E(ρ0) < +∞. Then EDI solutions with initial datum ρ0 are unique, solve the Fokker-Planck
equation (1.1) at least in the distributional sense, and satisfy in fact Energy Dissipation
Equality in the sense that t 7→ E(ρt) is absolutely continutous with

d

dt
E(ρt) = −R(ρt)−

∫
Ω
B(ρt, F t) ∈ L1(0, T ).

Proof. Let us first show that any EDI solution is a distributional solution, which amounts
to proving that the flux driving the continuity equation (1.7) is F = −∇ρ − ρ∇V =
−ρ∇ log

( ρ
π

)
. To this end we first note from (A.1) and Young’s inequality that∣∣E(ρt1)− E(ρt0)

∣∣ ≤ 1

2

∫ t1

t0

∫
Ω

{
|F |2

ρ
+ ρ

∣∣∣∇ log
(ρ
π

)∣∣∣2} =

∫ t1

t0

∫
Ω
B(ρ, F ) +

∫ t1

t0

R(ρ)

for arbitrary subinterval [t0, t1] ⊂ [0, T ]. As a consequence

J(ρ, F ; t0, t1) := E(ρt1) +
∫ t1

t0

R(ρt) +

∫ t1

t0

∫
Ω
B(ρt, F t)− E(ρt0) ≥ 0

is nonnegative. By additivity, if (ρ, F ) is an EDI solution in time [0, T ] – meaning J(ρ, F ; 0, T ) ≤
0 – we have that

0 ≤ J(ρ, F ; t0, t1) = J(ρ, F ; 0, T )− J(ρ, F ; 0, t0)− J(ρ, F ; t1, T ) ≤ 0

and (ρ, F ) is therefore an EDI solution in any subinterval. With the absolute continuity
from (A.1) this gives

− 1

2

∫
Ω

|F t|2

ρt
− 1

2

∫
Ω
ρt
∣∣∣∣∇ log

(
ρt

π

)∣∣∣∣
≤
∫
Ω
F t · ∇ log

(
ρt

π

)
=

d

dt
E(ρt)

EDI
≤ −

∫
Ω
B(ρt, F t)−R(ρt)

= −1

2

∫
Ω

|F t|2

ρt
− 1

2

∫
Ω
ρt
∣∣∣∣∇ log

(
ρt

π

)∣∣∣∣ .
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This forces equality in Young’s inequality, hence F t = −ρt∇ log
(
ρt

π

)
and (ρ, F ) is indeed

a distributional solution. This also gives equality in EDI, and (ρ, F ) is in fact an EDE
solution as in our statement.

For the uniqueness we implement the so-called Gigli’s trick [30]. Let (ρ1, F1), (ρ2, F2) be
two EDI solutions with common initial datum ρ0 and set

ρ̃ :=
1

2
(ρ1 + ρ2) and F̃ :=

1

2
(F1 + F2) .

By linearity (ρ̃, F̃ ) still solves the continuity equation with initial datum ρ̃0 = ρ0. Fix any
τ ∈ (0, T ] and recall form the first part of the proof that any EDI solution in [0, T ] is also
an EDI solution in [0, τ ]. Summing the two EDI inequalities for i = 1, 2 and leveraging the
joint convexity of the Fisher information and Benamou-Brenier functionals, we see that

1

2
(E(ρτ1) + E(ρτ2)) +

∫ τ

0
R(ρ̃) +

∫
Qτ

B(ρ̃, F̃ )

≤ 1

2
(E(ρτ1) + E(ρτ2)) +

∫ τ

0

1

2
[R(ρ1) +R(ρ2)] +

∫
Qτ

1

2
[B(ρ1, F1) +B(ρ2, F2)]

≤ 1

2

(
E(ρ01) + E(ρ02)

)
= E(ρ0) = E(ρ̃0).

This shows in particular that (ρ̃, F̃ ) has finite kinetic energy and Fisher information in [0, τ ].

Owing to (A.1) and Young’s inequality we see that E(ρ̃0) ≤ E(ρ̃τ ) +
∫ τ
0 R(ρ̃) +

∫
Qτ
B(ρ̃, F̃ ),

which substituted into the above right-hand side yields

E
(
ρτ1 + ρτ2

2

)
= E(ρ̃τ ) ≥ 1

2
(E(ρτ1) + E(ρτ2)) .

By strict convexity of E this implies ρτ1 = ρτ2 , and since τ ∈ (0, T ) was arbitrary the proof
is complete. □

Appendix B. An Aubin-Lions-Moussa compensation-compactness result

The technical statement below is a kind of compensation-compactness argument, allowing
to pass to the limit for the product of two weakly converging sequences.

Proposition B.1. Let Ω ⊂ Rd be Lipschitz and bounded, and consider two sequences ρk, fk
such that

(i) ρk is bounded in L1(QT ) and fk is bounded in L∞(QT )
(ii) ρk is L1(QT )-equiintegrable
(iii) for some fixed modulus of continuity η(·) and all ω ⊂⊂ Ω, there holds

(B.1) sup
k

∫ T

0

∫
ω
|fk(t, x)− fk(t, x+ h)| ≤ η(|h|) for |h| ≤ dist(ω, ∂Ω)

(iv) ∂tρk is bounded in M(0, T ; (Wm,q(Ω))′) for some fixed m ∈ N, q ≥ 1

Then, up to extraction of a subsequence, ρk ⇀ ρ weakly in L1(QT ), fk
∗
⇀ f weakly-∗ in

L∞(QT ), and ρkfk ⇀ ρf in M(QT ) in the sense that∫
QT

ρkfkφ→
∫
QT

ρfφ, ∀φ ∈ C(Q̄T ).
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We stress that this is merely a variant on [50, Proposition 1], with however the subtle
difference that the space compactness is obtained therein via suitable W 1,p(Ω) bounds,
whereas we use here the more versatile difference quotient estimate (iii). This has two main
advantages: first, this covers the case where space compactness is obtained via discrete
difference quotients, as is typical for finite volume schemes (see our practical application
for the proof of Proposition 4.4). Second, and more importantly, this allows more general
scenarios since in [50] some restriction is imposed between the (spatial) Sobolev exponent

p ∈ [1, d] on f and the limitation α ∈ [1, p∗) on some dual Lα
′
(Ω) estimates on ρk. This

will be circumvented in our particular setting via the equiintegrability assumption (ii) on
ρk, but at the expense of our L∞ bounds on fk.

Proof. Assume first that Ω = Rd and that our space compactness (B.1) holds with ω = Rd.
We reproduce below the proof of [50, Proposition 1] almost verbatim, and only point out
the main differences. Pick a mollifying sequence ζn(x) = ndζ(nx) (acting in space only and
supported in B1/n), and write for any test-function φ∫ T

0

∫
Rd
(ρf − ρkfk)φ =

∫ T

0

∫
Rd
[ρf − (ρ ∗ ζn)f ]φ

+

∫ T

0

∫
Rd
[(ρ ∗ ζn)f − (ρk ∗ ζn)fk]φ

+

∫ T

0

∫
Rd
[(ρk ∗ ζn)fk − (ρkfk) ∗ ζn]φ

+

∫ T

0

∫
Rd
[(ρkfk) ∗ ζn − ρkfk]φ

=: I1(n) + I2(k, n) + I3(k, n) + I4(k, n).

Arguing as in [50] one shows without too much trouble that I1(n) → 0 as n → ∞, that
I2(k, n) → 0 for fixed n as k → ∞, and that I4(k, n) → 0 uniformly in k as n → ∞. The
main difference lies here in the Friedrich commutator I3, which we handle now with care.
To this end we will show that

Sk,n(t, x) := [(ρk ∗ ζn)fk − (ρkfk) ∗ ζn](t, x)

converges strongly to zero in L1((0, T ) × Rd) as n → ∞, uniformly in k. We first observe
that, by Fubini’s theorem,

∥Sk,n∥L1((0,T )×Rd) ≤
∫
B1/n

∫ T

0

∫
Rd

|ρk(t, x− y)| |fk(t, x)− fk(t, x− y)|ζn(y)dxdtdy.

Take r(n) → +∞ as n → ∞, and let Eyk,n = {(t, x) ∈ (0, T ) × Rd : |ρk(t, x − y)| > r(n)}.
Owing to our L1 bound (i) we have that meas(Eyk,n) ≤

1
r(n)

∫
QT

ρk ≤ C
r(n) → 0 uniformly in

k as n→ ∞. Whence by the equiintegrability assumption (ii)∫
Eyk,n

|ρk(t, x− y)| |fk(t, x)− fk(t, x− y)|dxdt

≤ 2∥fk∥L∞((0,T )×Rd)

∫
Eyk,n

|ρk(t, z)|dzdt −−−→
n→∞

0, uniformly in y, k,
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and integrating in y ∈ B1/n

(B.2)∫
B1/n

∫
Eyk,n

|ρk(t, x− y)| |fk(t, x)− fk(t, x− y)|ζn(y)dxdtdy −−−→
n→∞

0, uniformly in k.

In (Eyk,n)
∁ we have by definition |ρk(t, x− y)| ≤ r(n) and we use instead the space compact-

ness (B.1) (recalling also that we can take ω = Rd at this stage) to estimate∫
(Eyk,n)

∁
|ρk(t, x− y)| |fk(t, x)− fk(t, x− y)|dxdt

≤
∫
(Eyk,n)

∁
r(n) |fk(t, x)− fk(t, x− y)|dxdt

≤ r(n) sup
k

∫
(0,T )×Rd

|fk(t, x)− fk(t, x− y)|dxdt

≤ r(n)η(|y|).

Choosing the speed r(n) = o
(

1
η(1/n)

)
as n→ ∞ and integrating in y, we end up with

(B.3)

∫
B1/n

∫
(Eyk,n)

∁
|ρk(t, x− y)| |fk(t, x)− fk(t, x− y)|ζn(y)dxdtdy

≤
∫
B1/n

r(n)η(|y|)ζn(y)dy ≤ r(n)η(1/n) −−−→
n→∞

0, uniformly in k.

Gathering (B.2)–(B.3) gives ∥Sk,n∥L1 → 0 and therefore

|I3(k, n)| ≤ ∥Sk,n∥L1∥φ∥L∞ −−−→
n→∞

0, uniformly in k

at least in the whole space Ω = Rd. The rest of the proof is then identical to [50, Proposition
1] and we omit the details for the sake of brevity.

Coming back now to the case of bounded domains Ω ⊂ Rd, we can apply the same
localization argument from [50, Proposition 3]: Take an exhausting sequence of compact
sets Kl ⊂⊂ Ω and a sequence of bump functions 0 ≤ χl(x) ≤ 1 such that χ ≡ 1 on Kl, with
meas(Ω \Kl) ≤ 1/l as l → +∞. Extending ρk, fk by zero outside of Ω, it is easy to check
that the sequences {χlρk}k, {χlfk}k satisfy the assumptions in the previous step for fixed l,
hence χ2

l ρkfk ⇀ χ2
l ρf in the sense of measures as k → ∞. Writing El = Ω \Kl, we get∣∣∣∣∫

QT

(ρkfk − ρf)φ

∣∣∣∣ = ∣∣∣ ∫
QT

(χ2
l ρkfk − χ2

l ρf)φ+

∫
QT

(1− χ2
l )ρkfkφ−

∫
QT

(1− χ2
l )ρfφ

∣∣∣
≤
∣∣∣∣∫
QT

(χ2
l ρkfk − χ2

l ρf)φ

∣∣∣∣+ ∫
QT

(1− χ2
l )|ρkfkφ|+

∫
QT

(1− χ2
l )|ρfφ|

≤
∣∣∣∣∫
QT

(χ2
l ρkfk − χ2

l ρf)φ

∣∣∣∣+ ∥φ∥L∞(QT )

∫ T

0

∫
El

|ρkfk|+ |ρf |.

Pick an arbitrary ε > 0. With our assumptions (i)–(ii) it is easy to check that

sup
k

∫ T

0

∫
E
|ρkfk| → 0 as meas(E) → 0, E ⊂ Ω.
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Owing to meas(El) ≤ 1/l → 0 and ρf ∈ L1(QT ), we can first choose l = l0 large enough so
that the second term in the r.h.s. is less than ε/2. For this fixed l = l0 the first term can
also be made smaller than ε/2 if k ≥ k0 is large enough, and the claim finally follows. □
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Email address: clement.cances@inria.fr, andrea.natale@inria.fr

Group of Mathematical Physics, Departamento de Matemática, Instituto Superior Técnico,
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