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S1.1 Full model9

The nematode population dynamics model is stage-structured. We also keep track of three genotypes10

in the nematode population: the avirulent genotypes AA and Aa, and the virulent genotype aa.11

The densities of encysted eggs (and juveniles J1) are denoted EAA, EAa, and Eaa. The densities12

of free-living J2 juveniles, thereafter larvae, are JAA, JAa, and Jaa. The densities of adult females13

are FAA, FAa, and Faa. The densities of adult males are MAA, MAa, and Maa.14

Figure S3 shows how the stages occur over a growing season in the model. Growing seasons are15

indexed by k ∈ N. The date the growing season k + 1 begins is tk. The duration of the larval stage16

is τ1. The duration of the adult stage is τ2 − τ1.17

Figure S1: Schematic representation of how the stages occur over a growing season in the model.

The host is either susceptible or resistant, with two possible forms of resistance: blocking re-18

sistance, or masculinizing resistance. As indicated in the main text, since we assume virulence is19

initially present in the nematode population, the demographic dynamics are the same regardless of20

whether one grows a susceptible host or a blocking-resistance. From now on, we thus consider only21

two types of host for simplicity: a susceptible host or masculinizing resistance. The dynamics are22

described as follows.23

1. After hatching (at time tk), the larvae genotype densities are:24

JAA(tk), JAa(tk), Jaa(tk) . (1)

2. A fraction s of larvae, regardless whether they are virulent (genotype aa) or avirulent (geno-25

types Aa and Aa), survive until reaching the differentiation time (tk + τ1).26
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Avirulent larvae (genotypes AA and Aa) differentiate into adults with a proportion mA(k) of27

males, and a proportion 1−mA(k) of females. Virulent larvae (genotype aa) differentiate into28

adults with a proportion of ma(k) of males, and a proportion 1−ma(k) of females.29

Sex allocation depends on host resistance during season k:30

mA(k) =

{
m, if the host is susceptible

1 , otherwise (if resistance is masculinizing)
, (2a)

31

ma(k) = m, (2b)

in which 0 < m < 1 is the male fraction when masculinizing resistance does not occur or32

is broken. The transition from the larval stage to the adult stage is given by the following33

equation:34 

FAA(tk + τ1) = s(1−mA(k))JAA(tk)

FAa(tk + τ1) = s(1−mA(k))JAa(tk)

Faa(tk + τ1) = s(1−ma(k))Jaa(tk)

MAA(tk + τ1) = smA(k)JAA(tk)

MAa(tk + τ1) = smA(k)JAa(tk)

Maa(tk + τ1) = sma(k)JAa(tk)

. (3)

3. We assume that all adults survive until mating occurs (time tk + τ2). We assume that males35

and females are homogeneously mixed, and that mating occurs at random. The next three36

steps lead to the female-to-egg transition from females to eggs.37

(i) We first derive the frequencies of allele A and a in males and females. The variables38

M = MAA +MAa +Maa and F = FAA + FAa + Faa are the total densities of males and39

females, respectively. The frequency of allele A in females, the frequency of allele a in40

females, the frequency of allele A in males, and the frequency of allele a in males, are41

respectively:42

pf (k) =
FAA(tk + τ1) +

1
2FAa(tk + τ1)

F (tk + τ1)
, (4a)

43

qf (k) = 1− pf (k) , (4b)
44

pm(k) =
MAA(tk + τ1) +

1
2MAa(tk + τ1)

M(tk + τ1)
, (4c)

45

qm(k) = 1− pm(k) . (4d)

(ii) The allelic frequencies yield the following next-generation genotypic frequencies:46 
fAA(k) = pf (k)pm(k)

fAa(k) = qf (k)pm(k) + pf (k)qm(k)

faa(k) = qm(k)qf (k)

. (5)
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(iii) Egg density is then obtained, for each genotype, as the product of the total female density,47

the average number of eggs per female, e, and the next-generation genotype frequency48

from equation (5):49 

EAA(tk + τ2) = eF (tk + τ1)fAA(k)

EAa(tk + τ2) = eF (tk + τ1)fAa(k)

Eaa(tk + τ2) = eF (tk + τ1)faa(k)

. (6)

Remark. Equation (6) encompasses polyandry, since males have equal access to females.50

4. A fraction (1−µ)(1−h) of eggs naturally survives a single period of host absence. This fraction51

is the product of the average fraction of viable eggs (1− µ) with the fraction of cysts that did52

not accidentally hatch (1− h).53

In addition to mortality, a fraction (1 − b) of nematodes survives biocontrol application (b is54

the biocontrol efficacy fraction). Not using biocontrol amounts to setting b = 0.55

The rotation number r is the number of years without growing potatoes. We assume that56

biocontrol is applied every year, regardless of whether potato is grown or not.57

As the potato growing season is relatively short on an annual scale (16 to 18 weeks), we assume,58

for simplicity, that annual cyst mortality is the same regardless of whether the host absence59

period is one year or less (one year minus the growing season).60

At the beginning of the next season, i.e. at time tk+1, we assume that all eggs hatch from61

cysts. Therefore, the nematode generations do not overlap.62

The transition from eggs to larvae is thus given by:63 

JAA(tk+1) =
[
(1− µ)(1− h)(1− b)

]r+1
EAA(tk + τ2)

JAa(tk+1) =
[
(1− µ)(1− h)(1− b)

]r+1
EAa(tk + τ2)

Jaa(tk+1) =
[
(1− µ)(1− h)(1− b)

]r+1
Eaa(tk + τ2)

. (7)

To simplify notations, we introduce the reproduction number R′, accounting for biocontrol and64

rotation:65

R′ = e
[
(1− µ)(1− h)(1− b)

]r+1
s . (8)

We also introduce the female fractions66 {
fA(k) = 1−mA(k)

fa(k) = 1−ma(k)
. (9)

S1.2 Compact model67

Renaming the larvae genotype densities JAA(tk) = Xk, JAa(tk) = Yk, Jaa(tk) = Zk for convenience,68

we summarize equations (3-7) in the following discrete-time dynamical system:69

3





Xk+1 = R′ mA(k)fA(k)
(
Xk + 1

2
Yk

)2
mA(k)(Xk + Yk) +ma(k)Zk

Yk+1 = R′mA(k)
(
fa(k)Zk + 1

2
fA(k)Yk

)(
Xk + 1

2
Yk

)
+ fA(k)

(
Xk + 1

2
Yk

)(
ma(k)Zk + 1

2
mA(k)Yk

)
mA(k)(Xk + Yk) +ma(k)Zk

Zk+1 = R′
(
fa(k)Zk + 1

2
fA(k)Yk

)(
ma(k)Zk + 1

2
mA(k)Yk

)
mA(k)(Xk + Yk) +ma(k)Zk

. (10)

We modify model (10) to account for intraspecific competition among larvae to host access, in a70

Beverton-Holt form:71



Xk+1 =
R′

1 + c(Xk + Yk + Zk)

mA(k)fA(k)
(
Xk + 1

2
Yk

)2
mA(k)(Xk + Yk) +ma(k)Zk

Yk+1 =
R′

1 + c(Xk + Yk + Zk)

mA(k)
(
fa(k)Zk + 1

2
fA(k)Yk

)(
Xk + 1

2
Yk

)
+ fA(k)

(
Xk + 1

2
Yk

)(
ma(k)Zk + 1

2
mA(k)Yk

)
mA(k)(Xk + Yk) +ma(k)Zk

Zk+1 =
R′

1 + c(Xk + Yk + Zk)

(
fa(k)Zk + 1

2
fA(k)Yk

)(
ma(k)Zk + 1

2
mA(k)Yk

)
mA(k)(Xk + Yk) +ma(k)Zk

,

(11)

in which c is an intraspecific competition parameter.72

System (11) defines our demo-genetic model of potato cyst nematode population dynamics.73

S1.3 Basic demographic model74

If only susceptible plant hosts are grown over years, the male fractions are mA(k) = ma(k) = m and75

the female fractions are fA(k) = fa(k) = (1−m), for all k ≥ 0. Model (11) simplifies as:76 

Xk+1 =
(1−m)R′

1 + c(Xk + Yk + Zk)

(
Xk + 1

2Yk

)2
Xk + Yk + Zk

Yk+1 =
2(1−m)R′

1 + c(Xk + Yk + Zk)

(
Zk + 1

2Yk

)(
Xk + 1

2Yk

)
Xk + Yk + Zk

Zk+1 =
(1−m)R′

1 + c(Xk + Yk + Zk)

(
Zk + 1

2Yk

)2
Xk + Yk + Zk

. (12)

Let Nk = Xk + Yk + Zk be the total nematode density. System (12) yields:77

Nk+1 = (1−m)R′ Nk

1 + cNk
. (13)

This is the classical Beverton-Holt model. It has at most two non-negative equilibria: N = 0,78

and N = ((1−m)R′ − 1)/c (if and only if R′ > 1). The nematode-free equilibrium, N = 0, is stable79

if and only if (1 −m)R′ < 1. Otherwise (if (1 −m)R′ > 1), the nematode population grows until80

reaching its carrying, K(R′,m, c) = ((1−m)R′ − 1)/c.81
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Next we show that genotype frequencies stabilize at the Hardy-Weinberg equilibrium. Using82

equations (12) and (13) yields the following genotype frequencies:83 

fAA(k) =
Xk+1

Nk+1
=

(
Xk + 1

2Yk

)2
N2

k

fAa(k) =
Yk+1

Nk+1
= 2

(
Zk + 1

2Yk

)(
Xk + 1

2Yk

)
N2

k

faa(k) =
Zk+1

Nk+1
=

(
Zk + 1

2Yk

)2
N2

k

. (14)

The frequency of allele a on season k is ak = (Zk+
1
2Yk)/Nk. Using equation (14), one can check84

that ak+1/ak = 1 for all k ≥ 0. Therefore, ak = a0 for all k > 0. The Hardy-Weinberg equilibrium85

follows: for all k > 0, fAA(k) = (1− a0)
2, fAa(k) = 2a0(1− a0), and faa(k) = a20.86

S1.4 Demo-genetic model with masculinizing resistance87

In this section, we consider masculinizing resistance to be the only potato variety grown over years.88

The male fractions are therefore mA(k) = 1, ma(k) = m for all growing seasons k ≥ 0; consequently,89

the female fractions are fA(k) = 0 and fa(k) = (1−m) for all k ≥ 0.90

Equation (11) yields Xk+1 = 0 for all k ≥ 0, meaning that the homozygous avirulent genotype91

(AA) cannot persist. Therefore, Nk = Yk + Zk for all k > 0. Equation (11) simplifies as:92 
Yk+1 = (1−m)R′ Zk

1 + cNk

1
2Yk

Yk +mZk

Zk+1 = (1−m)R′ Zk

1 + cNk

mZk + 1
2Yk

Yk +mZk

. (15)

Summing both equations above yields:93

Nk+1 = (1−m)R′ Zk

1 + cNk
.

Let the frequency of the virulent genotype (aa) on season k be94

vk =
Zk

Nk
.

We obtain95

vk+1 =
Zk+1

Nk+1
=

mZk + 1
2Yk

mZk + Yk
=

mvk + 1
2 (1− vk)

mvk + (1− vk)

Model (15) can therefore be equivalently expressed as a demo-genetic model coupling population96

and virulence dynamics:97 
Nk+1 = (1−m)R′ Nk

1 + cNk
vk

vk+1 =
mvk + 1

2 (1− vk)

mvk + (1− vk)

. (16)
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Non-dimensionalization98

We rescale model (16) by letting nk = cNk, which yields:99 
nk+1 = (1−m)R′ nk

1 + nk
vk

vk+1 =
mvk + 1

2 (1− vk)

mvk + (1− vk)

. (17)

Equilibria100

The fixed points of Equation (17) are (0, 1), ((1−m)R′ − 1, 1), (0, v⋆) and (n⋆, v⋆), with101

v⋆ =
1

2(1−m)
, (18)

and102

n⋆ =
R′

2
− 1 . (19)

Stability of equilibria103

The stability of a given fixed point (n̄, v̄) depends on the spectral radius of the following matrix:104

J(n̄, v̄) =

 (1−m)R′ 1
(1+n)2 v̄ (1−m)R′ n̄

1+n̄

0 m

2
(
mv̄+1−v̄

)2
 .

• We have J(0, 1) =

[
(1−m)R′ 0

0 1
2m

]
.105

The eigenvalues of J(0, 1) are (1 − m)R′ and 1
2m . Hence, the fixed point (0, 1) is stable iff106

m ≥ 1
2 and (1−m)R′ < 1.107

• We have J((1−m)R′ − 1, 1) =

[ 1
(1−m)R′ (1−m)R′ − 1

0 1
2m

]
.108

The eigenvalues of J((1−m)R′−1, 1) are 1
(1−m)R′ and

1
2m . Hence, the fixed point ((1−m)R′ − 1, 1)109

is stable iff m ≥ 1
2 and 1

(1−m)R′ < 1, i.e. (1−m)R′ > 1.110

• We have J(0, v⋆) =

[
R′

2 0
0 2m

]
.111

The eigenvalues of J(0, v⋆) are R′

2 and 2m. Hence, the fixed point (0, v⋆) is stable iff m < 1
2112

and R′ < 2.113

• We have J(n⋆, v⋆) =

[
2
R′ − (−1 +m) (R′ − 2)
0 2m

]
.114

The eigenvalues of J(n⋆, v⋆) are 2
R′ and 2m. Hence, the fixed point (n⋆, v⋆) is stable iff m < 1

2115

and R′ > 2.116

Table 1 summarizes the stability of the fixed points.117
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Fixed Point Density Virulence
Stability

m ≥ .5 m < .5
(0, 1) Zero Fixation stable iff (1−m)R′ < 1 unstable
((1−m)R′ − 1, 1) Maximum Fixation stable iff (1−m)R′ > 1 unstable
(0, v⋆) Zero Polymorphism unstable stable iff R′ < 2
(n⋆, v⋆) Intermediate Polymorphism unstable stable iff R′ > 2

Table 1: Fixed points of the demo-genetic model (17) and their stability.

S1.5 Time to effective suppression118

The nematode pest can be considered as effectively suppressed from growing season k† if its density,119

Nk, does not exceed a certain acceptance threshold, τ , for all k ≥ k†. We are interested in deriving120

the length of time required to achieve effective suppression, k†(r + 1). For simplicity, we consider121

that the frequency of the virulent genotype, vk, is initially at equilibrium: i.e., for all k ≥ 0, vk = v⋆,122

as defined in equation (18). Model (16) simplifies as:123

Nk+1 = (1−m)R′ Nk

1 + cNk
v⋆ . (20)

We assume N0 > τ (the nematode population density is initially above the acceptance threshold).124

We next focus on dynamics leading the pest to extinction, which occur if and only if (1−m)Rv⋆ < 1,125

or equivalently R < 2. Using the explicit solution of equation (20), that is126

Nk =

(
1− R

2

)
N0(

1− R
2 + cN0

) (
R
2

)−k − cN0

,

we derive the generation k† from which, for all k ≥ k†, Nk < τ : the latter inequality is equivalent to127

(
1− R

2

)
N0 < τ

((
1− R

2
+ cN0

)(
R

2

)−k

− cN0

)
⇐⇒

(
1− R

2

)
N0

τ
+ cN0

1− R
2 + cN0

<

(
R

2

)−k

,

which can be equivalently expressed as128

log


(
1− R

2

)
N0

τ
+ cN0

1− R
2 + cN0

 < −k log

(
R

2

)
⇐⇒ k >

log


(
1− R

2

)
N0

τ
+ cN0

1−R
2 +cN0


− log

(
R
2

) .

Hence,129

k† =

⌈
log

((
1− R

2

)
N0

τ + cN0

1− R
2 + cN0

)
log

(
2

R

)⌉
. (21)
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Supplementary Material S2. Additionnal simulations130

Figure S2: Rotation number required for long-term suppression of G. pallida under masculinizing
resistance as a function of the biocontrol efficacy b for different values of the number of eggs per
cyst, e. The minimum rotation number is maximized for b = 0, and is a decreasing function of e.
This graphic also illustrates the decrease of biocontrol efficacy needed as e diminishes.
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Figure S3: Time required to decrease nematode density under the acceptance threshold τ = 1
nematode per gram of soil, with biocontrol efficacy fraction b = .65 and default parameter values, for
a range of rotation numbers: r = 0, 1, 2, 3, 4. For high rotation numbers (r = 3, 4), the masculinizing
resistance does not particularly speed up nematode suppression (initially at virulence frequency
v = v⋆). By contrast, for r = 2, growing a susceptible variety does not achieve suppression, whereas
masculinizing resistance does. Lower rotation numbers (r = 0, 1) do not achieve suppression.
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