¹ Supplementary Materials from "Combining ² masculinizing resistance, rotation and biocontrol to ³ achieve durable suppression of the potato pale cyst nematode: a model" 5 Israël Tankam Chedjou, Josselin Montarry, Sylvain Fournet, Frédéric M. Hamelin

⁶ Supplementary Material S1. Step-by-step modelling and analysis of the demo-genetic model 8 with masculinizing resistance

⁹ S1.1 Full model

¹⁰ The nematode population dynamics model is stage-structured. We also keep track of three genotypes 11 in the nematode population: the avirulent genotypes AA and Aa, and the virulent genotype aa.

12 The densities of encysted eggs (and juveniles J1) are denoted E_{AA} , E_{Aa} , and E_{aa} . The densities ¹³ of free-living J2 juveniles, thereafter larvae, are J_{AA} , J_{Aa} , and J_{aa} . The densities of adult females ¹⁴ are F_{AA} , F_{Aa} , and F_{aa} . The densities of adult males are M_{AA} , M_{Aa} , and M_{aa} .

¹⁵ Figure [S3](#page-8-0) shows how the stages occur over a growing season in the model. Growing seasons are ¹⁶ indexed by $k \in \mathbb{N}$. The date the growing season $k+1$ begins is t_k . The duration of the larval stage 17 is τ_1 . The duration of the adult stage is $\tau_2 - \tau_1$.

Figure S1: Schematic representation of how the stages occur over a growing season in the model.

 The host is either susceptible or resistant, with two possible forms of resistance: blocking re- sistance, or masculinizing resistance. As indicated in the main text, since we assume virulence is initially present in the nematode population, the demographic dynamics are the same regardless of whether one grows a susceptible host or a blocking-resistance. From now on, we thus consider only two types of host for simplicity: a susceptible host or masculinizing resistance. The dynamics are described as follows.

24 1. After hatching (at time t_k), the larvae genotype densities are:

$$
J_{AA}(t_k), J_{Aa}(t_k), J_{aa}(t_k). \tag{1}
$$

²⁵ 2. A fraction s of larvae, regardless whether they are virulent (genotype aa) or avirulent (genobetween types Aa and Aa), survive until reaching the differentiation time $(t_k + \tau_1)$.

- 27 Avirulent larvae (genotypes AA and Aa) differentiate into adults with a proportion $m_A(k)$ of 28 males, and a proportion $1 - m_A(k)$ of females. Virulent larvae (genotype aa) differentiate into 29 adults with a proportion of $m_a(k)$ of males, and a proportion $1 - m_a(k)$ of females.
- 30 Sex allocation depends on host resistance during season k:

$$
m_A(k) = \begin{cases} m, & \text{if the host is susceptible} \\ 1, & \text{otherwise (if resistance is masculinizing)} \end{cases} \tag{2a}
$$

31

$$
m_a(k) = m \,,\tag{2b}
$$

 $\frac{32}{2}$ in which $0 \lt m \lt 1$ is the male fraction when masculinizing resistance does not occur or ³³ is broken. The transition from the larval stage to the adult stage is given by the following ³⁴ equation:

$$
\begin{cases}\nF_{AA}(t_k + \tau_1) = s(1 - m_A(k))J_{AA}(t_k) \\
F_{Aa}(t_k + \tau_1) = s(1 - m_A(k))J_{Aa}(t_k) \\
F_{aa}(t_k + \tau_1) = s(1 - m_a(k))J_{aa}(t_k) \\
M_{AA}(t_k + \tau_1) = sm_A(k)J_{AA}(t_k) \\
M_{Aa}(t_k + \tau_1) = sm_A(k)J_{Aa}(t_k) \\
M_{aa}(t_k + \tau_1) = sm_a(k)J_{Aa}(t_k)\n\end{cases}
$$
\n(3)

35 3. We assume that all adults survive until mating occurs (time $t_k + \tau_2$). We assume that males ³⁶ and females are homogeneously mixed, and that mating occurs at random. The next three ³⁷ steps lead to the female-to-egg transition from females to eggs.

 δ (i) We first derive the frequencies of allele A and a in males and females. The variables ³⁹ $M = M_{AA} + M_{Aa} + M_{aa}$ and $F = F_{AA} + F_{Aa} + F_{aa}$ are the total densities of males and ⁴⁰ females, respectively. The frequency of allele A in females, the frequency of allele a in ⁴¹ females, the frequency of allele A in males, and the frequency of allele a in males, are ⁴² respectively:

$$
p_f(k) = \frac{F_{AA}(t_k + \tau_1) + \frac{1}{2}F_{Aa}(t_k + \tau_1)}{F(t_k + \tau_1)},
$$
\n(4a)

$$
q_f(k) = 1 - p_f(k),
$$
\n(4b)

$$
p_m(k) = \frac{M_{AA}(t_k + \tau_1) + \frac{1}{2}M_{Aa}(t_k + \tau_1)}{M(t_k + \tau_1)},
$$
\n(4c)

45

⁴⁶ (ii) The allelic frequencies yield the following next-generation genotypic frequencies:

$$
\begin{cases}\nf_{AA}(k) = p_f(k)p_m(k) \\
f_{Aa}(k) = q_f(k)p_m(k) + p_f(k)q_m(k) \\
f_{aa}(k) = q_m(k)q_f(k)\n\end{cases} \tag{5}
$$

 $q_m(k) = 1 - p_m(k).$ (4d)

⁴⁷ (iii) Egg density is then obtained, for each genotype, as the product of the total female density, ⁴⁸ the average number of eggs per female, e, and the next-generation genotype frequency 49 from equation (5) :

$$
\begin{cases}\nE_{AA}(t_k + \tau_2) = eF(t_k + \tau_1)f_{AA}(k) \\
E_{Aa}(t_k + \tau_2) = eF(t_k + \tau_1)f_{Aa}(k) .\n\end{cases}
$$
\n(6)\n
$$
E_{aa}(t_k + \tau_2) = eF(t_k + \tau_1)f_{aa}(k)
$$

⁵⁰ Remark. Equation [\(6\)](#page-2-0) encompasses polyandry, since males have equal access to females.

 $\frac{1}{51}$ 4. A fraction $(1-\mu)(1-h)$ of eggs naturally survives a single period of host absence. This fraction 52 is the product of the average fraction of viable eggs $(1 - \mu)$ with the fraction of cysts that did $_{53}$ not accidentally hatch $(1-h)$.

 $\frac{54}{54}$ In addition to mortality, a fraction $(1 - b)$ of nematodes survives biocontrol application (b is $\frac{1}{55}$ the biocontrol efficacy fraction). Not using biocontrol amounts to setting $b = 0$.

 56 The rotation number r is the number of years without growing potatoes. We assume that ⁵⁷ biocontrol is applied every year, regardless of whether potato is grown or not.

⁵⁸ As the potato growing season is relatively short on an annual scale (16 to 18 weeks), we assume, ⁵⁹ for simplicity, that annual cyst mortality is the same regardless of whether the host absence ⁶⁰ period is one year or less (one year minus the growing season).

61 At the beginning of the next season, i.e. at time t_{k+1} , we assume that all eggs hatch from ⁶² cysts. Therefore, the nematode generations do not overlap.

⁶³ The transition from eggs to larvae is thus given by:

$$
\begin{cases}\nJ_{AA}(t_{k+1}) = \left[(1 - \mu)(1 - h)(1 - b) \right]^{r+1} E_{AA}(t_k + \tau_2) \\
J_{Aa}(t_{k+1}) = \left[(1 - \mu)(1 - h)(1 - b) \right]^{r+1} E_{Aa}(t_k + \tau_2) \quad .\n\end{cases} \tag{7}
$$
\n
$$
J_{aa}(t_{k+1}) = \left[(1 - \mu)(1 - h)(1 - b) \right]^{r+1} E_{aa}(t_k + \tau_2)
$$

 ϵ ⁶⁴ To simplify notations, we introduce the reproduction number R' , accounting for biocontrol and ⁶⁵ rotation:

$$
R' = e[(1 - \mu)(1 - h)(1 - b)]^{r+1}s.
$$
\n(8)

⁶⁶ We also introduce the female fractions

$$
\begin{cases}\nf_A(k) = 1 - m_A(k) \\
f_a(k) = 1 - m_a(k)\n\end{cases}.
$$
\n(9)

⁶⁷ S1.2 Compact model

68 Renaming the larvae genotype densities $J_{AA}(t_k) = X_k$, $J_{A}(\overline{t}_k) = Y_k$, $J_{aa}(t_k) = Z_k$ for convenience, ⁶⁹ we summarize equations [\(3](#page-1-1)[-7\)](#page-2-1) in the following discrete-time dynamical system:

3

$$
\begin{cases}\nX_{k+1} = R' \frac{m_A(k) f_A(k) (X_k + \frac{1}{2} Y_k)^2}{m_A(k) (X_k + Y_k) + m_a(k) Z_k} \\
Y_{k+1} = R' \frac{m_A(k) (f_a(k) Z_k + \frac{1}{2} f_A(k) Y_k) (X_k + \frac{1}{2} Y_k) + f_A(k) (X_k + \frac{1}{2} Y_k) (m_a(k) Z_k + \frac{1}{2} m_A(k) Y_k)}{m_A(k) (X_k + Y_k) + m_a(k) Z_k} \\
Z_{k+1} = R' \frac{(f_a(k) Z_k + \frac{1}{2} f_A(k) Y_k) (m_a(k) Z_k + \frac{1}{2} m_A(k) Y_k)}{m_A(k) (X_k + Y_k) + m_a(k) Z_k}\n\end{cases} (10)
$$

⁷⁰ We modify model [\(10\)](#page-3-0) to account for intraspecific competition among larvae to host access, in a ⁷¹ Beverton-Holt form:

$$
\begin{cases}\nX_{k+1} = \frac{R'}{1 + c(X_k + Y_k + Z_k)} \frac{m_A(k)f_A(k)(X_k + \frac{1}{2}Y_k)^2}{m_A(k)(X_k + Y_k) + m_a(k)Z_k} \\
Y_{k+1} = \frac{R'}{1 + c(X_k + Y_k + Z_k)} \frac{m_A(k)(f_a(k)Z_k + \frac{1}{2}f_A(k)Y_k)(X_k + \frac{1}{2}Y_k) + f_A(k)(X_k + \frac{1}{2}Y_k)(m_a(k)Z_k + \frac{1}{2}m_A(k)Y_k)}{m_A(k)(X_k + Y_k) + m_a(k)Z_k} \\
Z_{k+1} = \frac{R'}{1 + c(X_k + Y_k + Z_k)} \frac{(f_a(k)Z_k + \frac{1}{2}f_A(k)Y_k)(m_a(k)Z_k + \frac{1}{2}m_A(k)Y_k)}{m_A(k)(X_k + Y_k) + m_a(k)Z_k}\n\end{cases} (11)
$$

,

 γ ² in which c is an intraspecific competition parameter.

⁷³ System [\(11\)](#page-3-1) defines our demo-genetic model of potato cyst nematode population dynamics.

⁷⁴ S1.3 Basic demographic model

⁷⁵ If only susceptible plant hosts are grown over years, the male fractions are $m_A(k) = m_a(k) = m$ and

⁷⁶ the female fractions are $f_A(k) = f_a(k) = (1 - m)$, for all $k \ge 0$. Model [\(11\)](#page-3-1) simplifies as:

$$
\begin{cases}\nX_{k+1} = \frac{(1-m)R'}{1 + c(X_k + Y_k + Z_k)} \frac{(X_k + \frac{1}{2}Y_k)^2}{X_k + Y_k + Z_k} \\
Y_{k+1} = \frac{2(1-m)R'}{1 + c(X_k + Y_k + Z_k)} \frac{(Z_k + \frac{1}{2}Y_k)(X_k + \frac{1}{2}Y_k)}{X_k + Y_k + Z_k} \\
Z_{k+1} = \frac{(1-m)R'}{1 + c(X_k + Y_k + Z_k)} \frac{(Z_k + \frac{1}{2}Y_k)^2}{X_k + Y_k + Z_k}\n\end{cases} (12)
$$

 77 Let $N_k = X_k + Y_k + Z_k$ be the total nematode density. System [\(12\)](#page-3-2) yields:

$$
N_{k+1} = (1 - m)R' \frac{N_k}{1 + cN_k} \,. \tag{13}
$$

⁷⁸ This is the classical Beverton-Holt model. It has at most two non-negative equilibria: $N = 0$, ⁷⁹ and $N = ((1 - m)R' - 1)/c$ (if and only if $R' > 1$). The nematode-free equilibrium, $N = 0$, is stable 80 if and only if $(1 - m)R' < 1$. Otherwise (if $(1 - m)R' > 1$), the nematode population grows until r_{max} reaching its carrying, $K(R', m, c) = ((1 - m)R' - 1)/c$.

⁸² Next we show that genotype frequencies stabilize at the Hardy-Weinberg equilibrium. Using $\frac{12}{2}$ and $\frac{13}{2}$ yields the following genotype frequencies:

$$
\begin{cases}\nf_{AA}(k) = \frac{X_{k+1}}{N_{k+1}} = \frac{\left(X_k + \frac{1}{2}Y_k\right)^2}{N_k^2} \\
f_{Aa}(k) = \frac{Y_{k+1}}{N_{k+1}} = 2\frac{\left(Z_k + \frac{1}{2}Y_k\right)\left(X_k + \frac{1}{2}Y_k\right)}{N_k^2} \\
f_{aa}(k) = \frac{Z_{k+1}}{N_{k+1}} = \frac{\left(Z_k + \frac{1}{2}Y_k\right)^2}{N_k^2}\n\end{cases} \tag{14}
$$

⁸⁴ The frequency of allele a on season k is $a_k = (Z_k + \frac{1}{2}Y_k)/N_k$. Using equation [\(14\)](#page-4-0), one can check ⁸⁵ that $a_{k+1}/a_k = 1$ for all $k \ge 0$. Therefore, $a_k = a_0$ for all $k > 0$. The Hardy-Weinberg equilibrium $f_{44}(k) = (1 - a_0)^2$, $f_{A4}(k) = (1 - a_0)^2$, $f_{A4}(k) = 2a_0(1 - a_0)$, and $f_{aa}(k) = a_0^2$.

⁸⁷ S1.4 Demo-genetic model with masculinizing resistance

⁸⁸ In this section, we consider masculinizing resistance to be the only potato variety grown over years. 89 The male fractions are therefore $m_A(k) = 1$, $m_a(k) = m$ for all growing seasons $k \geq 0$; consequently, 90 the female fractions are $f_A(k) = 0$ and $f_a(k) = (1 - m)$ for all $k \ge 0$.

91 Equation [\(11\)](#page-3-1) yields $X_{k+1} = 0$ for all $k \geq 0$, meaning that the homozygous avirulent genotype

92 (AA) cannot persist. Therefore, $N_k = Y_k + Z_k$ for all $k > 0$. Equation [\(11\)](#page-3-1) simplifies as:

$$
\begin{cases}\nY_{k+1} = (1-m)R' \frac{Z_k}{1+cN_k} \frac{\frac{1}{2}Y_k}{Y_k+mZ_k} \\
Z_{k+1} = (1-m)R' \frac{Z_k}{1+cN_k} \frac{mZ_k + \frac{1}{2}Y_k}{Y_k+mZ_k}\n\end{cases} (15)
$$

⁹³ Summing both equations above yields:

$$
N_{k+1} = (1 - m)R' \frac{Z_k}{1 + cN_k}.
$$

 \mathbb{P}_{4} Let the frequency of the virulent genotype (aa) on season k be

$$
v_k = \frac{Z_k}{N_k} \, .
$$

⁹⁵ We obtain

$$
v_{k+1} = \frac{Z_{k+1}}{N_{k+1}} = \frac{mZ_k + \frac{1}{2}Y_k}{mZ_k + Y_k} = \frac{mv_k + \frac{1}{2}(1 - v_k)}{mv_k + (1 - v_k)}
$$

⁹⁶ Model [\(15\)](#page-4-1) can therefore be equivalently expressed as a demo-genetic model coupling population ⁹⁷ and virulence dynamics:

$$
\begin{cases}\nN_{k+1} = (1 - m)R' \frac{N_k}{1 + cN_k} v_k \\
\vdots \\
v_{k+1} = \frac{m v_k + \frac{1}{2}(1 - v_k)}{m v_k + (1 - v_k)}\n\end{cases} \tag{16}
$$

⁹⁸ Non-dimensionalization

99 We rescale model [\(16\)](#page-4-2) by letting $n_k = cN_k$, which yields:

$$
\begin{cases}\nn_{k+1} = (1-m)R' \frac{n_k}{1+n_k} v_k \\
v_{k+1} = \frac{mv_k + \frac{1}{2}(1-v_k)}{mv_k + (1-v_k)}\n\end{cases}
$$
\n(17)

¹⁰⁰ Equilibria

101 The fixed points of Equation [\(17\)](#page-5-0) are $(0,1)$, $((1-m)R'-1,1)$, $(0,v^*)$ and (n^*,v^*) , with

$$
v^* = \frac{1}{2(1-m)},
$$
\n(18)

¹⁰² and

$$
n^* = \frac{R'}{2} - 1.
$$
 (19)

¹⁰³ Stability of equilibria

104 The stability of a given fixed point (\bar{n}, \bar{v}) depends on the spectral radius of the following matrix:

$$
J(\bar{n}, \bar{v}) = \begin{pmatrix} (1-m)R'\frac{1}{(1+n)^2}\bar{v} & (1-m)R'\frac{\bar{n}}{1+\bar{n}} \\ 0 & \frac{m}{2\left(m\bar{v}+1-\bar{v}\right)^2} \end{pmatrix}.
$$

$$
105 \qquad \bullet \text{ We have } J(0,1) = \left[\begin{array}{cc} (1-m) R' & 0 \\ 0 & \frac{1}{2m} \end{array} \right].
$$

106 The eigenvalues of $J(0,1)$ are $(1-m)R'$ and $\frac{1}{2m}$. Hence, the fixed point $(0,1)$ is stable iff $m \geq \frac{1}{2}$ and $(1 - m)R' < 1$.

$$
W_{108} \qquad \bullet \text{ We have } J((1-m)R'-1,1) = \left[\begin{array}{cc} \frac{1}{(1-m)R'} & (1-m)R'-1\\ 0 & \frac{1}{2m} \end{array}\right].
$$

109 The eigenvalues of $J((1-m)R'-1, 1)$ are $\frac{1}{(1-m)R'}$ and $\frac{1}{2m}$. Hence, the fixed point $((1-m)R'-1, 1)$ 110 is stable iff $m \ge \frac{1}{2}$ and $\frac{1}{(1-m)R'} < 1$, i.e. $(1-m)R' > 1$.

$$
\bullet \quad \mathbf{We} \text{ have } J(0, v^*) = \left[\begin{array}{cc} \frac{R'}{2} & 0 \\ 0 & 2m \end{array} \right].
$$

The eigenvalues of $J(0, v^*)$ are $\frac{R'}{2}$ $\frac{R'}{2}$ and 2m. Hence, the fixed point $(0, v^*)$ is stable iff $m < \frac{1}{2}$ 112 113 and $R' < 2$.

$$
W_{114} \qquad \bullet \text{ We have } J(n^{\star}, v^{\star}) = \left[\begin{array}{cc} \frac{2}{R'} & -(-1+m)\left(R'-2\right) \\ 0 & 2m \end{array} \right].
$$

The eigenvalues of $J(n^*, v^*)$ are $\frac{2}{R'}$ and 2m. Hence, the fixed point (n^*, v^*) is stable iff $m < \frac{1}{2}$ 115 116 and $R' > 2$.

¹¹⁷ Table [1](#page-6-0) summarizes the stability of the fixed points.

Fixed Point	Density	Virulence	Stability	
			m > .5	m < .5
(0,1)	Zero	Fixation	stable iff $(1-m)R' < 1$	unstable
$((1-m)R'-1,1)$	Maximum	Fixation	stable iff $(1-m)R' > 1$	unstable
$(0, v^{\star})$	Zero	Polymorphism	unstable	stable iff $R' < 2$
(n^{\star},v^{\star})	Intermediate	Polymorphism	unstable	stable iff $R' > 2$

Table 1: Fixed points of the demo-genetic model [\(17\)](#page-5-0) and their stability.

118 S1.5 Time to effective suppression

119 The nematode pest can be considered as effectively suppressed from growing season k^{\dagger} if its density, 120 N_k , does not exceed a certain acceptance threshold, τ , for all $k \geq k^{\dagger}$. We are interested in deriving ¹²¹ the length of time required to achieve effective suppression, $k^{\dagger}(r+1)$. For simplicity, we consider that the frequency of the virulent genotype, v_k , is initially at equilibrium: i.e., for all $k \geq 0$, $v_k = v^*$, 123 as defined in equation [\(18\)](#page-5-1). Model [\(16\)](#page-4-2) simplifies as:

$$
N_{k+1} = (1 - m)R' \frac{N_k}{1 + cN_k} v^*.
$$
\n(20)

124 We assume $N_0 > \tau$ (the nematode population density is initially above the acceptance threshold). we next focus on dynamics leading the pest to extinction, which occur if and only if $(1 - m)Rv^* < 1$, 126 or equivalently $R < 2$. Using the explicit solution of equation [\(20\)](#page-6-1), that is

$$
N_k = \frac{\left(1 - \frac{R}{2}\right) N_0}{\left(1 - \frac{R}{2} + cN_0\right) \left(\frac{R}{2}\right)^{-k} - cN_0},
$$

127 we derive the generation k^{\dagger} from which, for all $k \geq k^{\dagger}$, $N_k < \tau$: the latter inequality is equivalent to

$$
\left(1-\frac{R}{2}\right)N_0 < \tau \left(\left(1-\frac{R}{2}+cN_0\right)\left(\frac{R}{2}\right)^{-k} - cN_0 \right) \Longleftrightarrow \frac{\left(1-\frac{R}{2}\right)N_0}{1-\frac{R}{2}+cN_0} < \left(\frac{R}{2}\right)^{-k} \,,
$$

¹²⁸ which can be equivalently expressed as

$$
\log\left(\frac{\left(1-\frac{R}{2}\right)N_0}{1-\frac{R}{2}+cN_0}\right) < -k\log\left(\frac{R}{2}\right) \Longleftrightarrow k > \frac{\log\left(\frac{\left(1-\frac{R}{2}\right)N_0}{1-\frac{R}{2}+cN_0}\right)}{-\log\left(\frac{R}{2}\right)}.
$$

¹²⁹ Hence,

$$
k^{\dagger} = \left\lceil \log \left(\frac{\left(1 - \frac{R}{2}\right) \frac{N_0}{\tau} + cN_0}{1 - \frac{R}{2} + cN_0} \right) \log \left(\frac{2}{R} \right) \right\rceil. \tag{21}
$$

130 Supplementary Material S2. Additionnal simulations

Figure S2: Rotation number required for long-term suppression of G. pallida under masculinizing resistance as a function of the biocontrol efficacy b for different values of the number of eggs per cyst, e. The minimum rotation number is maximized for $b = 0$, and is a decreasing function of e. This graphic also illustrates the decrease of biocontrol efficacy needed as e diminishes.

Figure S3: Time required to decrease nematode density under the acceptance threshold $\tau = 1$ nematode per gram of soil, with biocontrol efficacy fraction $b = .65$ and default parameter values, for a range of rotation numbers: $r = 0, 1, 2, 3, 4$. For high rotation numbers $(r = 3, 4)$, the masculinizing resistance does not particularly speed up nematode suppression (initially at virulence frequency $v = v^*$). By contrast, for $r = 2$, growing a susceptible variety does not achieve suppression, whereas masculinizing resistance does. Lower rotation numbers $(r = 0, 1)$ do not achieve suppression.