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ABSTRACT

SAR-to-optical remote sensing modality translator neural net-
works are mainly trained on flat areas preventing their use to
detect gravitational movements as landslides in steep sloped
areas. In this paper, we first propose a new SAR-DEM-optical
dataset in mountainous regions to improve performances of
SAR-to-optical image translators under these extreme condi-
tions. Then we upgrade SARDINet (SAR Distorted Image
translator Network) model previously developped for urban
areas, to take a Digital Elevation Model (DEM) together with
the SAR image as input and perform translation in natural
mountainous environment. Multiple fusion strategies are ex-
plored to merge efficiently SAR and DEM images: late fu-
sion, early fusion but also an intermediate fusion based on
balanced separable convolutions. These approaches are com-
pared to the original SARDINet and two standard adversarial
networks - Pix2pix and CycleGAN - showing improvements
in distorted regions.

Index Terms— Multimodal Images, SAR, DEM, Image
Translation, Deep Learning

1. INTRODUCTION

Disaster detection [1] and early warning systems [2] require
regular data acquisitions to make possible the identification
of suspicious phenomena, monitor them and early react to
threats. But due to clouds sensitivity, rainfall induced phe-
nomena (e.g. floods or landslides) detection from optical im-
ages is often delayed or even impossible. Adversarial SAR-
to-optical translators neural networks are increasingly consid-
ered to fill missing optical acquisitions. In particular, Pix2pix
[3] and CycleGAN [4]] are shown as the most efficient in re-
mote sensing [S]. Supervised approaches mostly focus on
modifying Pix2pix [3], for instance by training latent features
to mimic an adjoint optical autoencoder in [6] or by translat-
ing the SAR input to the optical wavelet decomposition in [[7].
Unsupervised networks leverage CycleGAN [4] architecture
as in [8]] where multiscale cascaded residual connections are
introduced in the generators or in [1]] where their latent spaces
are forced to be aligned. Authors of [9] merge both architec-
tures to implement a semi-supervised approach.

These methods are trained on flat landscapes, avoiding
steep slopes which cause strong geometrical distortions in
SAR images: foreshortening, layovers and shadows. Re-
cently, we proposed a network called SARDINet (SAR Dis-
torted Image translator Network) [[10] to tackle distortions in
urban areas. In this paper, the focus is set on mountainous re-
gions affected by wider distortions and more variable shapes
and textures to be reconstructed, making them more challeng-
ing to translate. We first introduce a new SAR-DEM-optical
dataset containing 53.475 patches of SAR-optical couples
with the corresponding DEM over the French Alps. Then we
propose to include the DEM as input to deep learning models
to strengthen the identification of distorted areas and there-
fore their translation. Taking SARDINet [[10] as backbone,
three fusion strategies are explored: early fusion, late fusion
and intermediate fusion which leverages balanced separable
convolutions [11]. To the best of our knowledge, this is the
first SAR-to-optical translator leveraging the DEM to tackle
strong geometrical distortions.

The remaining of the paper is organized as follows. Sec-
tion [2)introduces our fusion strategies and Section 3|describes
the mountainous dataset. Experiments and results are devel-
oped in Section ] before concluding in Section 3

2. METHOD

2.1. SARDINet architecture

SARDINet [10] is a deep encoder-decoder network target-
ing SAR-to-optical translation in areas with geometrical and
radiometrical SAR distortions as foreshortening or shadows.
This non-adversarial architecture is three-stepped. First, input
conditioning layers are applied for noise removal and coarse
feature extraction. Second, a three branches encoder com-
putes finer feature extraction depending on the resolution.
Branches are based on separable convolutions [[L1] for suc-
cessive spatial and inter-channel feature extractions. Finally,
latent features are input to the decoder which reconstructs
each output channel in an independent branch.

SARDINet [10] is originally applied in urban areas, i.e.
with a structured context (circular tanks, rectangular build-
ings, straight streets). In this work we first propose to evaluate
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Fig. 1: SAR-DEM fusion strategies within the input conditioning.
Encoder and decoder remain as in [10]]. Networks are trained
whether with a) late, b) early or c) intermediate fusion strategy.

its performances on a more challenging mountainous dataset.
Indeed, the environmental context is less structured than ur-
ban areas and SAR geometrical distortions are stronger due to
steep mountainous slopes which affects the range sampling of
radar images as depicted by red and purple circles in Figure
To account for these distorted areas during the translation
process and improve the relevancy of their optical reconstruc-
tions by the network, we modify SARDINet input condition-
ing to leverage the DEM as an additional input to the network.

2.2. Fusion strategies

As depicted in Figure |I| three DEM-SAR fusion strategies
are implemented. Late Fusion SARDINet;, in Figure [Th
processes both SAR and DEM images through independent
branches. Features are then concatenated and input to the en-
coder. Early Fusion SARDINetg in Figure [Ib first com-
bines both modalities and processes them using the standard
input conditioning of SARDINet [10]. Intermediate Fusion
SARDINet; in Figure [Tk leverages separable convolutions
[L1]. The purpose is to temper feature merging to avoid an
input to rule over the other with channel-wise convolutions
while allowing feature exchanges in point-wise convolutions.
Contrary to the original paper [[11l], we balance separable
convolutions as illustrated in Figure [2] Depth-wise convolu-
tion first extracts Kg spatial features from the same channel
which are then concatenated along the channel dimension and
input to the same point-wise convolutional layer to extract
K¢ inter-channel features. All resulting features are finally
concatenated to output Kg x K¢ feature maps.

3. MOUNTAINOUS SAR-DEM-OPTICAL DATASET

To study distortion robustness of deep translators, we cre-
ate a new mountainous SAR-optical dataset released on
IEEE Dataport (https://ieee-dataport.org/documents/sar-dem-
optical-mountainous-dataset-distortion-management). It is
composed by 53.475 patches of size 256 x 256 and reso-
Iution 10 x 10 meters from 36 SAR-DEM-optical triplets
of images acquired over the northern French Alps between
2018 and 2021. Selected SAR images are standard Ground
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Fig. 2: Balanced separable convolutions. Depth-wise convolutions
extract multiple features with K's channel-wise independent
convolutional kernels. Point-wise convolutions apply the same K¢
kernels to the K's groups of features maps.

Range Detected ESA products from Sentinel 1 constellation
acquired during descending passes, in interferometric wide
swath mode both in VV and VH polarizations. Images are
orthorectified with the SRTM 1sec HGT DEM and calibrated.
The long tail distribution of values is compressed with a log-
arithmic transformation. We select the aforementioned DEM
to be input to the network after being normalized based on
the maximum elevation. Optical images are RGB channels
of level 2A products from Sentinel 2 constellation with a
cloud coverage below 25%. These images are masked using
provided snow and cloud maps. This step results in regions
where unavailable values are set to O for each optical channel.
Intensities are linearly transformed channel-wise to exploit
the whole [0, 255] range of values.

4. EXPERIMENTS

4.1. Training configuration

Based on results from [5]], Pix2pix and CycleGAN are se-
lected as state-of-the-art translators. They are trained using
the Pytorch implementation available on Github with the
SAR-DEM couple as input. To assess the impact of the DEM
on the reconstruction, the original SARDINet [10] is also
trained only with the SAR input. Each network is trained
for 100 epochs with a learning rate of 1.10~° and a batch
size of 24. Optimization of SARDINet-derived networks is
based on the MAE loss with an Adam optimizer. Pix2Pix and
CycleGAN optimizations are left unchanged. The dataset is
splitted in 80% training, 10% evaluation and 10% test.

Translation performances are evaluated based on Mean
Square Error (MSE), Structural SIMilarity (SSIM) and Peak
Signal To Noise Ratio (PSNR). Metric calculation are per-
formed on the test set by discriminating for each image the
areas impacted by foreshortening and shadows based on maps
obtained through the algorithm detailed in [12]. The Fréchet
Inception Distance (FID) is also measured only on the whole
images to assess the credibility of optical patterns. Networks
stability is studied by averaging the performances resulting
from 5 random initializations.
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J MSE .10—2 [ 1 SSIM.10~2 [ 1 PSNR [ J FID J MSE.10~2 [ 1 SSIM.10~2 [ 1 PSNR
Global Foreshortening areas
CycleGAN 8.67+£2.10 61.11+4.49 27.99+0.06 | 10.67+13.14 14.22+2.89 57.95+2.18 26.0610.03
Pix2Pix 8.19+1.27 59.14+1.46 28.03+0.04 | 21.7148.67 8.05+1.12 59.94+1.91 26.2540.07
SARDINet 2.91+0.06 74.44+0.07 28.584+0.04 | 38.73+0.54 3.41+0.12 74.78+0.11 26.9940.09
SARDINet, 2.8240.06 74.48+0.07 28.59+0.05 38.9440.51 3.204-0.08 74.89+0.15 26.9740.07
SARDINetg 2.814+0.04 74.47+0.02 28.59+0.03 | 39.10+0.70 3.20+0.04 74.84+0.08 26.9840.10
SARDINet; 2.9940.04 74.264+0.06 28.5540.03 | 34.0140.54 3.40+0.05 74.714+0.04 26.9740.07
Non distorted areas Shadows areas
CycleGAN 8.42+2.19 61.27+4.62 27.9940.07 NA 15.33+0.35 55.34+3.12 25.6840.01
Pix2Pix 8.19+1.29 59.124+1.45 28.034+0.04 NA 12.274+1.60 55.2441.18 25.7940.01
SARDINet [[10] 2.844-0.06 74.53+0.07 28.58+0.04 NA 6.164-0.16 66.92+0.06 26.04+0.02
SARDINety, 2.7640.06 74.55+0.07 | 28.60+0.05 NA 5.8540.14 67.00+0.05 26.0540.02
SARDINetg 2.7540.05 74.564-0.02 28.5940.03 NA 5.804-0.09 67.02+£0.05 26.044-0.02
SARDINet; 2.9240.04 74.3440.06 28.554:0.03 NA 6.1840.14 66.65+0.09 26.014:0.02

Table 1: Quantitative comparisons of the fusion methods with the literature depending on SAR distortions. Mean and standard deviation
over 5 experiments with different random initializations are displayed. Best results are displayed in bold.

4.2. Results
4.2.1. Fusion strategy comparison

Based on quantitative results displayed in Table [T} adding the
DEM as input to SARDINet shows improvements in distorted
areas. SARDINety and SARDINet;, both decrease strongly
the MSE score compared to SARDINet. They also show qual-
itative improvements as visible in red circled shadow areas
of Figure [ where SARDINet confuses shadows with water
body. The confusion is strongly reduced with SARDINetg
and disappears with SARDINet;, proving that separating the
sources enforces the network to leverage appropriately the
DEM despite quantitative similarities. Indeed, SARDINetg
reconstructions look mostly ruled by the SAR image as wa-
ter body is still reconstructed in shadow areas and inaccurate
building patterns are reconstructed in urban zones (yellow cir-
cles). Finally, SARDINet; reaches competitive performances
while reducing the number of learning weights from 223.776
to 9.852 in the input conditioning, which is encouraging to-
wards lightweight networks implementations.

4.2.2. State-of-the-art comparison

As expected, in Table[T] Pix2pix [3] and CycleGAN [4] reach
the two best FID scores - the latter being an indicator of the
credibility of reconstructed patterns but not on their relevancy
with respect to a ground truth. Indeed, all three other metrics
show significant decrease and less stability in performances
compared to SARDINet-like networks. As visible in Figure
M] Pix2pix creates cloud-like patterns and reconstructs rocks
instead of a lake in the third row - confusing shadows and
water bodies. On the other hand, CycleGAN is affected by
the land-cover distribution in the training dataset. On the first
and second row, it mostly generates forest-like patterns inde-
pendently from the input image while on the third, it is not
able to generate urban patterns in the yellow circle. In ad-
dition, in distorted areas, none of them is able to distinguish
the forests from the fields in purple circles and CycleGAN

SARDINet; Optical

Wiener Correction

Laplace Correction

Fig. 3: Contrast enhancement applied on SARDINet;, translations.

translates radar shadows as optical shadows which explains
the strong quantitative drops in performances in distorted ar-
eas. Thus, despite their optical-like aspects, those adversarial
reconstructions lack of stability in the training, relevancy in
the reconstructed patterns and robustness to distortions com-
pared to SARDINet derivatives.

4.2.3. Contrast enhancement

Our reconstructions show high quantitative performance but
suffer from a low contrast compared to the ground truth im-
ages. We demonstrate here that this blurriness can be tack-
led with straightforward post-processings whereas missing in-
formations in adversarial reconstructions are unrecoverable.
Two standard image processing deblurring approaches are ex-
ploited: convolving the blurry image with the Laplacian filter
or applying the Wiener filter on the image - which consists
in dividing the Fourier Transform of the input image by the
Fourier Transform of a gaussian kernel of size 9 x 9 and of
standard deviation 29. For illustration purposes, these strate-
gies are applied on SARDINet, translations which shown the
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Fig. 4: Qualitative comparison of our fusion strategies with the literature. SAR image is displayed as [VV,VH,0]. Red and purple circles
identify shadow and foreshortening areas respectively. Yellow circles focus on an urban high frequency area.

most reliable results. As visible on Figure EI, applying stan- the Tunnel du Chambon, French Alps,” Geosci., vol. 9, no. 7,
dard post-processing not only strengthen underlying objects pp. 313, July 2019.

borders and make structures more visible - as buildings and [3] P.Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-Image
river borders pointed by red arrows - but textures in forested Translation with Conditional Adversarial Networks,” Proc.

areas look also partially reconstructed. These improvements IEEE Comput. Soc. Conf., pp. 1125-1134, Nov. 2016.

have a direct quantitative impact as the FID score decreased ~ [4] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired
to 24.26 (resp. 25.87) with the Laplace (resp. Wiener) filter Image-To-Image Translation Using Cycle-Consistent Adver-
which lies within the FID performances of Pix2pix and Cy- sarial Networks,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,

. . . . 2223-2232.
cleGAN (see Table|I|) without affecting other metrics. PP . . . .
[5] Y. Zhao, T. Celik, N. Liu, and H.-C. Li, “A Comparative Anal-

ysis of GAN-Based Methods for SAR-to-Optical Image Trans-
5. CONCLUSION lation,” IEEE Geosci. Remote. Sens. Letters, vol. 19, pp. 1-5,
In this paper, a new SAR-DEM-optical mountainous dataset 2022. .
is created to assess the impact of the DEM on SAR-to-optical (6] H. Wang, Z. Zhang, Z. Hu, and Q. Dong, “SAR-to-Optical
translations in SAR distorted regions. Three DEM-SAR fu- Image Translation With Hierarchical Latent Features,” [EEE
. . ) Trans. Geosci. Remote Sens., vol. 60, pp. 1-12, 2022.
sion strategies are explored and compared to standard trans- mnf eosct. Remote sens., o PP . ]
lators: Pix2pix [3], CycleGAN [4] and SARDINet [10]. The [7] H. Li, C. Gu, D. Wu, G. Cheng, et al., “Multiscale Genera-

. . . . .1 tive Adversarial Network Based on Wavelet Feature Learning
DEM is shown beneficial to avoid confusions in distorted for SAR-to-Optical Image Translation.” IEEE Trans. Geosci.

areas - especially with the late fusion configuration - improv- Remote Sens., vol. 60, pp. 1-15, 2022.

ing network robustness. Finally, apparent blurriness can be [8] S. Fu, F. Xu, and Y.-Q. Jin, “Reciprocal Translation between

straightforwardly tackled to reach more credible optical-like SAR and Optical Remote Sensing Images with Cascaded-

patterns, while saving reliable land-cover patterns the latter residual Adversarial Networks,” Sci. China Inf. Sci., vol. 64,

cannot restore. Further works aim at using the translation of no. 2, pp. 1-15, Jan. 2021.

post event SAR images for change detection from a multi- [9] W.-L.Du, Y. Zhou, H. Zhu, J. Zhao, et al., “A Semi-Supervised

modal SAR-optical series of images. Image-to-Image Translation Framework for SAR-Optical Im-
age Matching,” IEEE Geosci. Remote. Sens. Letters, vol. 19,
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