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ABSTRACT

We study boosting for adversarial online nonparametric regression with general
convex losses. We first introduce a parameter-free online gradient boosting (OGB)
algorithm and show that its application to chaining trees achieves minimax optimal
regret when competing against Lipschitz functions. While competing with nonpara-
metric function classes can be challenging, the latter often exhibit local patterns,
such as local Lipschitzness, that online algorithms can exploit to improve perfor-
mance. By applying OGB over a core tree based on chaining trees, our proposed
method effectively competes against all prunings that align with different Lipschitz
profiles and demonstrates optimal dependence on the local regularities. As a result,
we obtain the first computationally efficient algorithm with locally adaptive optimal
rates for online regression in an adversarial setting.

Keywords Online Learning, Boosting, Nonparametric Regression

1 Introduction

Observing a stream of data x1, x2, . . ., an online regression algorithm predicts at each time t ≥ 1

a function f̂t of the current xt ∈ X ⊂ R
d, d ≥ 1. The prediction’s accuracy is assessed using a

sequence of convex loss functions (ℓt)t≥1, each of which has a minimum within [−B,B] for some

B > 0, e.g. ℓt(ŷ) = |ŷ − yt| or (ŷ − yt)2 with |yt| ≤ B. We define the regret over a time horizon

T ≥ 1 and against some function f belonging to a benchmark class of functions F ⊂ R
X as

RegT (f) :=
T∑

t=1

ℓt(f̂t(xt))−
T∑

t=1

ℓt(f(xt)) , ∀f ∈ F . (1)

The set of functions F is usually assumed to perform well on the data sequence (e.g. Lipschitz func-
tions). Unlike traditional (batch) regression methods, which train some model using all available
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data {(xs, ℓs)}Ts=1 at once, online regression algorithms (see Cesa-Bianchi and Lugosi [2006] for a

reference textbook) update f̂t at each time t ≥ 1 using only the past observed data {(xs, ℓs)}t−1
s=1.

This adaptive learning process allows to capture complex and evolving patterns in the data without
requiring strong assumptions about its structure (such as i.i.d.). Furthermore, optimal algorithms (in
the minimax sense of Rakhlin and Sridharan [2014]) can be tailored to adapt to unknown regulari-
ties and systematically leverage these patterns. On the other hand, boosting is a powerful ensemble
learning technique to solve the problem of nonparametric regression in batch learning. First in-
troduced in Freund et al. [1999] for classification task, boosting was later analyzed by Friedman
[2001] as a stagewise greedy numerical optimization strategy to improve the performances of the
combination of weak learners, called strong learner.

Adaptation of boosting methods to online nonparametric regression presents unique challenges and
opportunities. Recent efforts of Beygelzimer et al. [2015], Hazan and Singh [2021], Chen et al.
[2012] have extended the efficiency of the gradient and classification boosting. We introduce in
this paper a new interpretation of boosting in the context of online convex optimization. We de-
sign an algorithm that dynamically trains and optimizes weak learners based on the gradient step
of a given strong learner. This new boosting algorithm holds promise for enhancing predictive
performance and adaptability in chaining trees. In particular, we show that our online boosting
procedure achieves optimal regret over Hölder function classes. Moreover, inspired by prior work
Kuzborskij and Cesa-Bianchi [2020], we further boost the chaining trees in a core tree that adapts
to local regularities of the competitor function.

1.1 Related work

1.1.1 Online nonparametric regression

Vovk [2006] introduced online nonparametric regression with general function classes.
Cesa-Bianchi and Lugosi [2006] developed an algorithm exploiting losses with good curvature prop-
erties such as exp-concavity to achieve fast regret in adversarial settings. Rakhlin and Sridharan
[2014] further developed the minimax theory and provided a non-polynomial algorithm that is
optimal for the regret in cumulative squared errors of prediction. The extension of this the-
ory to general convex losses was later developed in Rakhlin and Sridharan [2015]. Finally
Gaillard and Gerchinovitz [2015], Cesa-Bianchi et al. [2017] designed a chaining algorithm which
is polynomial and minimax knowing the regularity of the competitor. They also noticed that the
same algorithm with a different tuning is minimax for general convex losses.

In the statistical learning setting, the rate of convergence of aggregation of tree-based algorithms
have been analyzed mainly in the context of random forest, see Biau and Scornet [2016] for a survey.
Avoiding early-stopping and overfitting, the purely random forests of Arlot and Genuer [2014] are
minimax for (batch) nonparametric regression of functions. Closer to our setting, Mourtada et al.
[2017] aggregated Mondrian trees that are trained sequentially in a batch setting. This methods
adapt to the regularity of the unknown regression function in a well-specified setting but not to an
adversary.

1.1.2 Regret against Lipschitz competitors and local adaptivity

Ref. Assumptions Upper bound

This paper
(ℓt) exp-concave, L > 0 unknown min

{√
LT, L

2

3 T
1

3
}

(ℓt) convex, L > 0 unknown
√

LT

KCB20 (ℓt) square loss, L > 0 unknown
√

LT

HM07
(ℓt) absolute loss, L > 0 known L

1

3 T
2

3

(ℓt) square loss, L > 0 known
√

LT

GG15 (ℓt) square loss, L = 1 known T
1

3

CB3G17 (ℓt) convex, L = 1 known
√

T

Considering F as the set of Lipschitz functions
for any constant L > 0, Hazan and Megiddo
[2007] introduced the corresponding minimax
regret. They proved that for d = 1 the rate is

O(
√
LT ) for any convex losses motivating the

design of an algorithm that localizes at an opti-
mal rate depending on L. The knowledge of L
is crucial for their procedures to prevent from
growing linearly with L.
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Going one step further, Kuzborskij and Cesa-Bianchi [2020] proved the adaptability of tree-based
online algorithms by introducing the oracle pruning given a core tree in the regret analysis. Track-
ing the best pruning goes back to Helmbold and Schapire [1995] and Margineantu and Dietterich
[1997]. Kpotufe and Orabona [2013] also designed adaptive pruning algorithm based on trees to
partition optimally the instance space X . Competing with an oracle pruning in nonparametric re-
gression allows to adapt to the local regularities of Lipschitz functions. Indeed, the implicit multi-
resolution aspect of a pruning allows to adapt the depth of the leaves to the local Lipschitz constants.
The larger the constant the deeper the pruning because it is ready to pay to learn refined (potentially
smaller) Lipschitz constants.

However the existing methods require the knowledge of the local Lipschitz constants and do not
achieve the minimax regret rate in time. The question to design a polynomial minimax algorithm
that adapts to the local regularities remained open. One solution of that problem relies in applying
some online boosting approach on chaining trees.

1.1.3 (Online) Boosting algorithms

Proving the consistency of boosting algorithms in regression is a significant challenge. Earliest
and seminal works, such as those by Friedman [2001] and Collins et al. [2002], often lack explicit
convergence proofs. The minimax theory for boosting is sparse because of the importance of in-
troducing an early-stopping rule, that is sensitive to tune even in the easiest regression problem of
Bühlmann and Yu [2003]. To our knowledge, Zhang and Yu [2005] were the first to offer a con-
vergence bound for greedy boosting procedures in traditional statistical learning, without requiring
strong assumptions on the base learners.

Subsequent research endeavors have sought to expand the application of boosting to online learn-
ing scenarios. In the framework of online boosting, as introduced in Hazan and Singh [2021] and
Beygelzimer et al. [2015], the emphasis is on sequentially boosting a particular type of algorithm be-
longing to a specified class, known as weak online learners. These algorithms must satisfy specific
assumptions, typically contingent upon their regret and the associated loss functions.

1.2 Contributions and outline of the paper

Our contributions are threefold: first, we present a novel and generic online gradient boosting
method that employs sequential gradient based optimization to enhance strong learners that com-
bine weak learners. Second, we apply this boosting procedure on specific Chaining Trees to achieve
minimax regret over Hölder functions with global regularity. Finally, we introduce a core boosting
algorithm that competes with the oracle pruning tree. We demonstrate that it achieves an optimal
locally adaptive regret bound that scales with the local regularities of the competitor function. In
particular, we also prove that our algorithm adapts to the curvature of the loss functions, and re-
mains optimal with both general convex and exp-concave losses. Finally, we include numerical
experiments in the supplementary materials (Appendix F) to illustrate our results on a synthetic
dataset.

2 A new and generic online gradient boosting procedure

Setting and notations. We consider that data x1, x2, · · · ∈ X arrive in a stream. At each time

step t ≥ 1, the algorithm updates f̂t, receives xt ∈ X and predicts f̂t(xt) ∈ R. Then, a loss

function ℓt : R → R is disclosed. The learner incurs loss ℓt(f̂t(xt)) and considers gradients to
update strategies for time t + 1. We assume that (ℓt) are convex and G-Lipschitz, and that X is a

bounded subspace of Rd, d ≥ 1. We write |X ′| = supx,x′∈X ′ ‖x− x′‖∞ <∞ for any X ′ ⊂ X and

[N ] = {1, . . . , N} for N ≥ 1.

We introduce a new and generic boosting procedure designed specifically to the online learning
setting and some fundamental notions which are later used in our analysis.

3
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Figure 1: Boosting at time t.

Let W be a set of real-valued functions X → R and for some
N ≥ 1

spanN (W) =
{∑N

n=1 βnhn, hn ∈ W, βn ∈ R
}

(2)

which forms a linear function space based on N functions inW .

We want to find a sequence of function f̂t ∈ spanN (W), t ≥ 1,
such that it tends to minimize RegT (F) with F = spanN (W)
in (1). In Algorithm 1, we provide a generic form of the boosting
procedure considered in the paper based on an abstract gradient
step, along with a schematic diagram in Figure 1.

Algorithm 1: OGB - Boosting at time t

Input : (βn,t, hn,t)n∈[N ] and gradients gn,t, n ∈ [N ] (later specified).

1 for n = 1 to N do

2 Predict f̂t =
∑N

n=1 βn,thn,t
3 Find (βn,t+1, hn,t+1) ∈ R×W to approximately minimize

(βn, hn) 7→ ℓt(f̂−n,t(xt) + βnhn(xt)) with f̂−n,t(xt) = f̂t(xt)− βn,thn,t(xt) (3)

using gradient gn,t =
[

∇(βn,hn)ℓt
(
f̂−n,t(xt) + βnhn(xt)

)]

(βn,hn)=(βn,t,hn,t)
.

Output :(βn,t+1, hn,t+1)n∈[N ]

To keep things concise, the gradient minimization step in (3) is
expressed as:

(βn,t+1, hn,t+1)← grad-step((βn,t, hn,t), gn,t)

where the function grad-step((β, h), g) stands for any rule that updates (β, h) ∈ R × W from
time t to t+ 1 using some gradient g ∈ R.

Comparison with boosting in statistical learning. In statistical (batch) learning, the boosting
procedure would solve the greedy optimisation problem

(βn, hn) ∈ argmin
(β,h)∈R×W

∑T
t=1 ℓt(

∑n−1
l=1 βlhl(xt) + βh(xt)), n ≥ 1.

While classical gradient boosting relies on a stagewise strategy (Friedman [2001], Section 3.) intro-
ducing new terms as the number n ≥ 1 of boosts increase, our approach described in Algorithm 1
is stepwise with the sequential readjustment of the weak learners over time t ≥ 1. It is worth noting
that the risk of overfitting with boosting in online learning is not existing because the gradient step

uses past observed data {(xs, ℓs)}t−1
s=1 only. This is because new data arrives over time in online

learning, unlike in batch learning, where the risk of overfitting a given dataset is well-documented
(e.g. Grove and Schuurmans [1998], Vezhnevets and Barinova [2007]). As a note, defining the up-
date step according to the well-established online gradient descent method by Zinkevich [2003] is
analogous to gradient boosting as described by Friedman [2001], but adapted for an online setting
and without the risk of overfitting.

Online Gradient Boosting (OGB). From now on, we call OGB the procedure Algorithm 1 cou-
pled with some gradient-step rule grad-step. Our definition of OGB differs from the previous one
introduced in Beygelzimer et al. [2015]. We update sequentially the weak-learners using the gra-

dient at the strong learner f̂t whereas Beygelzimer et al. [2015] use an online algorithms based on

gradients evaluated at
∑n−1

l=1 βl,thl,t(xt), n = 1, . . . , N , t ≥ 1, stagewise combination of weak
learners associated to basic online algorithms. Once the latter satisfies some regret properties, their
approach apply to any type of weak learners. Our procedure can be applied to any weak learnerW
for which the gradient step can be specified. The sequential update rule (3) can be defined properly

4
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and efficiently introducing chaining tree as follows. In our algorithms, the gradient is evaluated at
∑N

l=1 βl,thl,t(xt) only, and the errors of the gradients at the stagewise functions
∑n−1

l=1 βl,thl,t(xt)
for n small do not propagate at every step t ≥ 1 of our algorithm.

3 Online gradient boosting in a chaining tree

We detail in this section our online boosting procedure Algorithm 1 with specific decision trees,
that we call chaining trees. In particular, we show that it achieves minimax regret in nonparametric
regression over the class of Hölder functions.

3.1 Chaining tree

Tree-based methods are conceptually simple yet powerful - see Breiman et al. [2017]. They consist
in partitioning the feature space into small regions and then fitting a simple model in each one.
Given X ⊂ R

d, a regular decision tree (T , X̄ , W̄) is composed of the following components:
• a finite rooted ordered regular tree T of degree deg(T ), with nodes N (T ) and leaves or

terminal nodes L(T ) ⊂ N (T ). The root and depth of T are respectively denoted by
root(T ) and d(T ). Each interior node n ∈ N (T )\L(T ) has deg(T ) childs. The parent of
a node is referred to as p(n) and its depth as d(n);

• a family of sub-regions X̄ = {Xn, n ∈ N (T )} consisting of subsets of X such that for any
interior node n, {Xm : p(m) = n} forms a partition of Xn;

• a family of weak prediction functions W̄ = {hn : X → R, n ∈ N (T )} associated to each
node such that hn(x) = 0 for all x /∈ Xn.

The standard method of Breiman et al. [2017] for predicting with a decision tree is to use the par-
tition induced by the leaves

∑

n∈L(T ) hn(x), x ∈ X . On the contrary, the chaining tree that

we define below, preforms multi-scale predictions by combining the predictions from all nodes.

+

+ +

θ1

θ4
θ5

θ2
θ3

θ6 θ7

X

Figure 2: Prediction
of a CT over X ⊂ R.

Definition 1 (Chaining-Tree). A Chaining-Tree (CT) prediction function f̂
is defined as

f̂(x) =
∑

n∈N (T )

hn(x) , x ∈ X ⊂ R
d ,

where the regular prediction tree (T , X̄ , W̄) satisfies:
• the weak prediction functions hn are constant hn(x) = θn1x∈Xn ,
θn ∈ R. We denote them by θn by abuse of notation;

• the degree deg(T ) = 2d and for any interior node n, {Xm :
p(m) = n} forms a regular partition of Xn in infinite norm. In
particular, this implies |Xm| = |Xp(m)|/2.

Chaining technique in Dudley [1967] is at the core of algorithms addressing function approximation
tasks, and was first introduced to design concrete online learning algorithm with optimal rates by
Gaillard and Gerchinovitz [2015]. This method involves a sequential refinement process, that is -
roughly speaking - growing a sequence of refining approximations over a function space.

3.2 Online boosting procedure in a chaining-tree

The goal is to use our boosting procedure (Alg. 1) for sequentially training CT by tuning the family
W̄ over time. In this section, we will make our OGB procedure explicit over CT, that corresponds to
the class of weak learners:

W = {hn : x 7→ θn1x∈Xn , θn ∈ R, n ∈ N (T )} . (4)

For such a class of weak learner W we fix βn = 1 and N = |N (T )|. Thus span(W) =
{∑n∈N (T ) θn1x∈Xn , θn ∈ R} and any CT prediction can be written as an additive model of weak

learners inW .

5
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To sequentially learn a family W̄t = {hn,t = θn,t1Xn , n ∈ N (T )} ⊂ W , the gradient step in
Equation (3) of the OGB procedure (Alg. 1) reduces to

θn,t+1 ← grad-step(θn,t, gn,t) . (5)

Here gn,t is the subgradient of the last loss in θn,t, i.e.,

gn,t =

[

∂ℓt(f̂−n,t(xt) + θ1xt∈Xn)

∂θ

]

θ=θn,t

with f̂−n,t =
∑

m∈N (T )\{n}

hm,t . (6)

By the chain rule, we further simplify

gn,t = ℓ′t
(
f̂t(xt)

)
1xt∈Xn , n ∈ N (T ) , (7)

making the computation of subgradients extremely simple, as the dependence on n only involves
the indicator function. More precisely, the subroutine grad-step, detailed below, will not perform
any update (i.e., θn,t+1 = θn,t) when the gradients are zero (i.e., xt /∈ Xn). All non-zero updates

use the same subgradient gt = ℓ′t
(
f̂t(xt)

)
based on the derivative of the loss of the strong learner

prediction.

Online gradient optimization subroutine. We now detail the subroutine grad-step, which, in
our analysis, can be any online optimization algorithm satisfying the following regret upper-bound.

Assumption 1. Let gn,1, . . . , gn,T ∈ [−G,G] for T ≥ 1, G > 0, and n ∈ N (T ). We assume that
the parameters θn,t starting at θn,1 ∈ R and following the update (5) satisfy the linear regret bound:
∑

t∈Tn

gn,t(θn,t − θn) ≤ G|θn − θn,1|(C1

√

|Tn|+ C2) , with Tn = {1 ≤ t ≤ T, gn,t 6= 0} ,

for some C1, C2 > 0 and every θn ∈ R.

Such an assumption is satisfied by so-called parameter-free online convex optimization algo-
rithms, such as those described in Cutkosky and Orabona [2018], Mhammedi and Koolen [2020],
Orabona and Pál [2016], by considering only the time steps where gn,t 6= 0 in their procedures.
Note that the constants C1, C2 often hide logarithmic factors in T,G or |θn|. These algorithms
require no parameter tuning (though some need prior knowledge of G) and provide a regret upper
bound that automatically scales with the parameter norm |θn|. This property is crucial in analyzing
our CT, where each node is tasked with correcting the errors of its ancestors in a more refined subre-
gion of the input space. This multi-resolution aspect of the predictions leads us to consider θn that
approach zero as d(n) increases.

In the theorem below, we prove, when resorting to such a subroutine into Algorithm 1, a regret upper
bound with respect to the class of Hölder functions over X defined for any L > 0 and α ∈ (0, 1] as

LipαL(X ) =
{
f : X → R : |f(x)−f(x′)| ≤ L‖x−x′‖α∞ x, x′ ∈ X

}
, and sup

x∈X
|f(x)| ≤ B ,

withB > 0 such that ℓt has minimum lying in [−B,B]. We will refer to L as the Lipschitz constant.

Theorem 1. Let T ≥ 1, (T , X̄ , W̄1) be a CT with Xroot(T ) = X , θn,1 = 0 for all n ∈ N (T ) and

d(T ) = 1
d log2 T . Then, Algorithm 1 applied with a grad-step procedure satisfying Assumption 1

achieves the regret upper bound

sup
f∈LipαL(X )

RegT (f) ≤ GB(C1

√
T+C2)+GL|X |α







(
Φ(d2 − α)C1 + 4C2 + 1

)√
T if d < 2α ,

(
C1
d log2 T + 4C2 + 1

)√
T if d = 2α ,

(
Φ(d2 − α)C1 + 4C2 + 1

)
T 1−α

d if d > 2α ,

for any L > 0 and α ∈ (0, 1], where Φ(u) = |2u − 1|−1.

The proof of Theorem 1 is postponed to Appendix A.

6
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Minimax optimality and adaptivity to L and α. Note that the above rates are minimax
optimal for online nonparametric regression with convex losses over LipαL(X ), as shown by
Rakhlin and Sridharan [2015] that provides a non-constructive minimax analysis for this problem
(see also Rakhlin and Sridharan [2014]). For the case of low-dimensional settings, where d ≤ 2α,

our bound is in O((B + L)
√
T ). However, it has been demonstrated in Rakhlin and Sridharan

[2015] that faster rates O(T
1
3 ) can be attained when dealing with exp-concave losses. In the next

section, we will address this by making our algorithm adaptive to the curvature of the loss func-
tions. A similar chaining technique was applied by Gaillard and Gerchinovitz [2015] to design an
algorithm with minimax rates for the square loss or Cesa-Bianchi et al. [2017] in the partial infor-
mation setting. However, unlike these works, our Algorithm 1 over a CT does not require prior
knowledge of neither L nor α and automatically adapts to them. This is achieved through the use of
parameter-free subroutines that satisfy Assumption 1 and automatically adapt to the norm of θn.

Complexity. Although the formal definition of our algorithm requires constructing a decision

tree with |N (T )| = 2d(T )d = T nodes, it remains tractable, similar to the approach in
Gaillard and Gerchinovitz [2015]. At each round, the input xt falls into one node per level of
the tree constituting path(xt), since {Xn,d(n) = m} forms a partition of X for any depth
1 ≤ m ≤ d(T ). Consequently, most subgradients in (6) are zero, and grad-step only needs

to be called d(T ) = 1
d log2 T times per round, each using the same gradient gt. The overall space

complexity is at most O(|N (T )|) = O(T ). It can be improved noticing that nodes in the tree do
not need to be created until at least one input falls into that node.

Unknown input space. In practice our procedure can be easily extended to the case where X
is unknown beforehand and is sequentially revealed through new inputs xt ∈ R

d (similarly to
Kuzborskij and Cesa-Bianchi [2020]). This can be done either through a doubling trick (starting
with X = [−1, 1]d and restarting the algorithm with an increased diameter by at least a factor of 2
each time an input falls outside of the current tree) or by creating a new CT around xt that runs in
parallel, whenever a new point xt falls outside the existing trees.

3.3 Optimal and locally adaptive regret in online nonparametric regression

In the previous section, we demonstrated that our boosting procedure applied to CT achieves mini-

max regret O(LT (d−1)/d) compared to Hölder functions. This bound scales linearly with the con-
stant L. This raises the question of whether our boosting-approximation method could be adapted
to fit subregions with lower variation. Our second contribution is an algorithm that adapts on the
local Hölder profile of the competitor. For any f ∈ LipαL(X ), α ∈ (0, 1], and some subset Xn ⊂ X ,
the local Hölder constant Ln(f) satisfies

|f(x)− f(x′)| ≤ Ln(f)‖x− x′‖α∞, x, x′ ∈ Xn . (8)

Recall that we assume that for any f ∈ LipαL(X ), supx∈X |f(x)| ≤ B. We define [·]B :=
min(B,max(−B, ·)) the clipping operator in [−B,B] and a uniform discretization grid with preci-

sion ε = T− 1
2 as the set of K = ⌈2B/ε⌉ constants

Γ := {γk = −B + (k − 1)ε , k = 1, . . . ,K} ⊂ [−B,B].

Locally adaptive boosting. We base our predictions on a combination of several regular decision
tree predictions (see Section 3.1). The latter are sitting in nodes of a core tree (T0, X̄ , W̄), with

W̄ = {(f̂n,k)Kk=1, n ∈ N (T0)}. In our main Algorithm 2, referred to as LocAdaBoost for Locally
Adaptive Boosting, the core tree T0 provides an average prediction at each time step t ≥ 1 as follows:

f̂t(xt) =
∑

n∈N (T0)

∑K
k=1wn,k,tf̂n,k,t(xt) ,

where, for each pair (n, k) ∈ N (T0)× [K]

7
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• f̂n,k,· is a clipped predictor associated with a CT Tn,k (see Definition 1), rooted at

Xroot(Tn,k) = Xn ∈ X̄ and with θroot(Tn,k),1 = γk ∈ Γ, θn′,1 = 0 for n′ ∈ N (Tn,k) \
{root(Tn,k)};

• the weightwn,k,t adjust the contribution of the predictor f̂n,k such that the sum of all weights
over the tree satisfies

∑

n∈N (T0)

∑

k∈[K]wn,k,t = 1 at any time t ≥ 1.

First, LocAdaBoost (Algorithm 2) leverages OGB (Algorithm 1) to sequentially train the weights
(wn,k)(n,k)∈N (T0)×[K] using a particular grad-step function combining two subroutines: weight

and sleeping, both inspired by classical expert aggregation methods. Specifically, the weight

subroutine refers to any general algorithm satisfying the following Assumption 2.

Assumption 2. Let g̃1, . . . , g̃T ∈ [−G,G]K×|N (T0)|, for T ≥ 1 and G > 0. We assume that the
weight vectors w̃t, initialized with a uniform distribution w̃1 and updated via weight in line Alg. 2,
satisfy the following linear regret bound:

∑T
t=1 g̃

⊤
t w̃t − g̃n,k,t ≤ C3

√

log(K|N (T0)|)
∑T

t=1

(
g̃
⊤
t w̃t − g̃n,k,t

)2
+ C4G,

for some constants C3, C4 > 0 and for every n ∈ N (T0), k ∈ [K].

Well-established aggregation algorithms, such as those from Gaillard et al. [2014],
Koolen and Van Erven [2015], and Wintenberger [2017], exhibit such second-order linear
regret bounds.

Second, LocAdaBoost also employs the OGB procedure to independently train the CTs
{Tn,k , (n, k) ∈ N (T0)× [K]}

that reside within T0. For each (n, k) ∈ N (T0) × [K], Tn,k is initialized with θroot(Tn,k),1 = γk
and θn′,1 = 0 for all n′ ∈ N (Tn,k) \ {root(Tn,k)}, and is then boosted at each time t ≥ 1 via the
boosting subroutine, line 10, in the same manner as described in Section 3.2.

Algorithm 2: LocAdaBoost

Input :A core regular tree (T0, X̄ , W̄) with root X , bounds G,B > 0.

Initial prediction functions f̂n,k,1 = f̃n,k,1 = θroot(Tn,k),11x∈Xn associated to CT

Tn,k, k ∈ [K], n ∈ N (T0).
Initial uniform weights w̃1 = (w̃n,k,1)n∈N (T0),k∈[K].

1 for t = 1 to T do
2 Receive xt;
3 Nt ← path(xt);
4 wt ← sleeping(w̃t,Nt);

5 Predict f̂t(xt) =
∑

n∈N (T0)

∑K
k=1wn,k,tf̂n,k,t(xt) ;

6 Observe yt;
7 Udpate w̃t+1 ← weight(w̃t, g̃t) with

g̃t = ∇w̃tℓt(
∑

n∈Nt

∑K
k=1 w̃n,k,tf̂n,k,t(xt) +

∑

n/∈Nt

∑K
k=1 w̃n,k,tf̂t(xt));

8 for n ∈ N (T0), k ∈ [K] do

9 Reveal gradients gn,k,t = ℓ′t(f̃n,k,t(xt)) ;
10 Boost node expert as: (hl,t+1)l∈N (Tn,k) ← boosting((hl,t)l∈N (Tn,k), gn,k,t) ;

11 Compute local predictors f̃n,k,t+1 =
∑

l∈N (Tn,k)
hl,t+1;

12 Clip local predictors f̂n,k,t+1 =
[
f̃n,k,t+1

]

B
;

Output : f̂T+1 =
∑

n,k wn,k,T+1f̂n,k,T+1

Since T0 partitions the input space X , only a subsetNt of the nodes inN (T0) contributes predictions
at each round t ≥ 1. The set of active nodes is determined by path(xt), which maps the data point
xt to the nodes {n ∈ N (T0) : xt ∈ Xn}. This structure mirrors the sleeping experts framework

8
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introduced by Freund et al. [1997] and Gaillard et al. [2014], and we incorporate the sleeping

subroutine in line 4. The weights are updated as follows, for each k ∈ [K]:

wn,k,t = 0 if n /∈ Nt , wn,k,t =
w̃n,k,t

∑

n′∈Nt

∑K
k′=1 w̃n′,k′,t

otherwise. (9)

This ensures that only the active nodes are boosting (by contributing to) the average prediction.

Pruning as local adaptivity. Pruning techniques are frequently employed in traditional statistical
learning involving subtrees to reduce overfitting or simplify models. In this context, each pruned
tree represents a localized profile corresponding to a partition of X . Our Algorithm 2 strives to learn
the oracle pruning strategy to compete effectively against any Hölder function.

Definition 2 (Pruning). Let (T0, X̄ , W̄) be some regular tree with W̄ = {(f̂n,k)k∈[K], n ∈ N (T0)}.
A pruning or pruned regular decision tree (T , X̃ , W̃) consists in a subtree, i.e. N (T ) ⊂ N (T0),
with root Xroot(T ) = Xroot(T0) and prediction functions W̃ = {f̂n,kn , n ∈ N (T ), kn ∈ [K]} ⊂ W̄ .
It predicts, at each time t ≥ 1,

f̂T ,t(x) =
∑

n∈L(T ) f̂n,kn,t(x), x ∈ X .
We denote P(T0) the set of all prunings of T0.

Note that a pruning is a decision tree whose predictions are induced by its leaves, contrary to the
core tree T0. In particular, a prediction made by a leaf of a pruning is inherited from the associated
node in T0 before pruning. We provide some illustration in Figure 3.

{f̂1,k}K
k=1

{f̂2,k}K
k=1

{f̂4,k}K
k=1

{f̂5,k}K
k=1

{f̂3,k}K
k=1

{f̂6,k}K
k=1

{f̂7,k}K
k=1

(a) Core tree T0

·

f̂2,k2

✗ ✗

f̂3,k3

✗ ✗

f1

X

(b) T1 ∈ P(T0), f1 ∈ Lipα
L(X )

·

f̂2,k2

✗ ✗

·

f̂6,k6 f̂7,k7

f2

X

(c) T2 ∈ P(T0), f2 ∈ Lipα
L(X )

Figure 3: Example of a core tree T0 with depth d(T0) = 3, d = 1, in Fig. 3a. We give 2 pruned tree
instances T1 for a given Hölder function f1 in Fig. 3b and T2 for a second profile f2 in Fig. 3c. In
Fig. 3a all nodes N (T0) are awaken and predictive while T1 in Fig. 3b (resp. T2 in Fig. 3c) predicts

with f̂2,k2 , f̂3,k3 sitting in its leaves L(T1) (resp. with f̂2,k2 , f̂6,k6 , f̂7,k7 sitting in its leaves L(T2)).
✗ represents a pruned node.

Complexity. Similar to before, even though our core tree T0 involves at most O(|N (T0)|) =

O(
√
T2d(T0)d) = O(T

3
2 ) predictors after T iterations, our algorithm remains computationally feasi-

ble, since at a time t, only a subset of d(T0) nodes are active and boosted with the weight subroutine.

The resulting overall complexity is of order 1
d2

√
T log2(T )

2 per step.

Main result. In our main result (Theorem 2), we prove that Algorithm 2 achieves a locally adap-
tive regret with respect to any Hölder function. Indeed, we show an upper-bound regret that scales
with the local regularities of the competitor. Meanwhile, we show that LocAdaBoost also adapts to
the curvature of the losses: its regret performances improve when facing exp-concave losses (i.e.,

when y 7→ e−ηℓt(y) are concave for some η > 0), as shown in the second part of Theorem 2. Exp-
concave losses include the squared, logistic or logarithmic losses. Note that for Assumption 2 to

9



A PREPRINT - OCTOBER 3, 2024

hold, the gradients g̃t must be bounded by G in the sup-norm. The Hölder assumption on f and the

boundedness condition on X alone are not sufficient. It is also essential that all predictions f̂n,k,t(xt)
are bounded, which is achieved through clipping in Alg. 2 — see e.g., Gaillard and Gerchinovitz
[2015], Cutkosky and Orabona [2018]." To simplify the presentation, we state the theorem here only
for the case d = 1 and α > 1/2. The complete result, which covers more general cases, is available
in Appendix B.

Theorem 2. Let α ∈ (12 , 1], d = 1, T ≥ 1 and (T0, X̄ , W̄) be a core regular tree with Xroot(T0) = X
and CT {Tn,k : (n, k) ∈ N (T0)× [K]} satisfying the same assumptions as in Theorem 1 and whose
nodes root are initialized as θroot(Tn,k),1 = γk ∈ Γ, for all (n, k) ∈ N (T0)×[K]. Then, Algorithm 2

with a weight subroutine as in Assumption 2, achieves the regret upper-bound with respect to any
f ∈ LipαL(X ), L > 0,

RegT (f) . infT ∈P(T0)

{
√

|L(T )|T + |L(T )|+ |X |α∑n∈L(T ) Ln(f)2
−α(d(n)−1)

√

|Tn|
}

,

where . is a rough inequality depending on Ci, i = 1, . . . , 4, G and Ln(f) ≤ L, n ∈ L(T ), are the
local Hölder constants (8) of f , and Tn = {1 ≤ t ≤ T : xt ∈ Xn}.
Moreover, if ℓ1, . . . , ℓT are exp-concave, one has:

RegT (f) . infT ∈P(T0)

{

|L(T )|+ |X |α∑n∈L(T ) Ln(f)2
−α(d(n)−1)

√

|Tn|
}

where . also depends on the exp-concavity constant.

We state and prove a complete version of Theorem 2 in Appendix B, for all α ∈ (0, 1], d ≥ 1. For
a more practical interpretation of the results, refer to the experiments in Appendix F. As a remark,
Algorithm 2 is not only adaptive to the local Hölderness of f (via Ln(f)), but also to the smoothness
rate α ∈ (0, 1]. One could extend the previous results in Theorem 2 with some local constants (αn)
associated to the regularity of the function over the pruned leaves at the price of the interpretability
of the bound in specific situations as below.

Minimax optimality and adaptivity to the loss curvature. Moreover, Theorem 2 yields the
following corollary, which demonstrates that our algorithm simultaneously achieves optimal rates
for generic convex losses (i.e., similar rates to Theorem 1) and for exp-concave losses, while also
adapting locally to the Hölder profile of the functions f . Importantly, our algorithm does not require
prior knowledge of the curvature of the losses.

Corollary 1. Let d = 1 and α ∈ (12 , 1]. Under assumptions of Theorem 2, Algorithm 2 achieves a
regret with respect to any f ∈ LipαL(X ), L > 0, and any pruning T ∈ P(T0),

RegT (f) . infT ∈P(T0)

{
∑

n∈L(T )

(
Ln(f)|Xn|α

) 1
2α
√

|Tn|
}

.

Moreover, if ℓ1, . . . , ℓT are exp-concave, one has:

RegT (f) . infT ∈P(T0)

{
∑

n∈L(T )

(
Ln(f)|Xn|α

) 2
2α+1 |Tn|

1
2α+1

}

.

The proof of Corollary 1 is postponed to Appendix C. In particular, upper-bounding the infimum

over all prunings by the root, our regret becomesO(L2/(2α+1)T 1/(2α+1)) andO(L1/(2α)
√
T ) for the

exp-concave and general case respectively. This achieves the same optimal regret to that obtained
in Gaillard and Gerchinovitz [2015], for any sequence of exp-concave losses, without the prior-
knowledge of the scale-parameter γ that they require, and adapting to the regularity while they
consider L = 1. Our algorithm is also nearly minimax in term of the constants (L,α) as shown
by Tsybakov [2003], Hazan and Megiddo [2007] or Bach [2021]. We provide some experimental
illustrations of the results from Corollary 1 in Appendix F.

10
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We note that the fast rate in T obtained under exp-concavity is not optimal in L. Thus a compromise
is made by our algorithm which competes with more complex oracle trees when L is large to im-

prove and obtain the rate
√
L by decreasing the rate in T . Such trade-off is classical in parametric

online learning as bearing resemblances with the comparison between first and second order algo-
rithms, the first ones being optimal in the dimension, the second ones in T . Remarkably, our unique
algorithm achieves both regret bounds which opens the door to a minimax theory on rates in L and
T and not solely on fast rates in T .

Adaptivity to local regularities. Theorem 2 improves the optimal regret bound established in
Theorem 1 by making it adaptive to the local regularities of the Hölder function f . To illustrate this
better, applying Hölder’s inequality entails - see Appendix D: for any pruning T

RegT (f) .

{

(|X |αL̄(f)) 2
2α+1T

1
2α+1 if ℓt are exp-concave ,

(|X |αL̄(f)) 1
2α

√
T ,

(10)

where L̄(f) =
(

1
|X |

∑

n∈L(T ) |Xn|Ln(f)
1/α
)α

is an averaged of the local Hölder constants

Ln(f) weighted by the size of the sets Xn over T . This result is in the same spirit as that of
Kuzborskij and Cesa-Bianchi [2020], that focus on adapting to tree-based local Hölder profiles.

However, contrary to us, they need to assume the prior knowledge of bounds (M (k))1≤k≤d(T0) such

that M (k) ≥ Ln for any n ∈ N (T0),d(n) = k. Doing so, for any pruning T , when α = 1 and
ignoring the dependence on X , for the squared loss (which is exp-concave), they prove a bound of
order

O
(

(M̄(f)T )
1
2 +

∑

k(M
(k)|T (k)|)1/2

)

where M̄(f) =
∑d(T )

k=1 w
(k)M (k) ,

where w(k) is the proportion of leaves at depth k in the pruning; and T (k) the number of rounds
in which xt belongs to a leaf at level k. By grouping our leaves n by their respective depths and
applying Hölder’s inequality, our results recover theirs with two key improvements - see Appendix

E: 1) the prior-knowledge of the M (k) is not required in our case and they are replaced with the true

Hölder constants Ln(f) that are smaller; 2) the rate in T is improved from
√
T to T 1/3. Note that,

similarly to us, the results of Kuzborskij and Cesa-Bianchi [2020] hold for general dimensions and
convex losses as well.

4 Conclusion and future work

In this paper, we introduced a new and generic online boosting approach. We instantiated the
procedure on chaining-trees and proved that we reach minimax regret for the Hölder nonparametric
regression problem. We designed a general and computationally tractable algorithm based on a core
tree that incorporates our boosting procedure to perform an optimal local approximation of Hölder
functions. In addition, we showed that our algorithm also adapts to the curvature of losses revealed
by the environment, while remaining optimal in a minimax sense.

The limitation of our approach is the non adaptivity of its tree structures to the data (xt)1≤t≤T .
Actually, tree structures can also be learned online as in Kuzborskij and Cesa-Bianchi [2020],
Kpotufe and Orabona [2013]. Another point is that the smoothness parameter α is restricted to
be smaller than one. However combinations of trees such as the forests in Arlot and Genuer [2014]
and Mourtada et al. [2020] can achieve minimax rates for α ∈ (1, 2] as well. Their framework is
batch i.i.d. and it is an open question whether combinations of trees can also be minimax in an
adversarial setting for α ∈ (1, 2].

As future work, our boosting method could also be applied with alternative types of weak learn-
ers, such as shallow networks, which are recognized for their effectiveness in regression tasks. In
particular, this could address a nonparametric regression problem with respect to richer classes of
functions.
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A Proof of Theorem 1

Let f∗ ∈ argminf∈LipαL
∑T

t=1 ℓt(f(xt)). We define the function

f∗W =
∑

n∈L(T )

f∗(xn)1Xn ∈ span(W) , (11)

where Tn = {1 ≤ t ≤ T : xt ∈ Xn}, xn the center of hyper region Xn (i.e. for any x ∈
Xn, ‖x − xn‖ ≤ 2−1|Xn|) and W = {hn : x 7→ θn1x∈Xn , θn ∈ R, n ∈ N (T )} is the class of
weak learners defined in Equation 4. The proof starts with the following regret decomposition

RegT (Lip
α
L) =

T∑

t=1

ℓt(f̂t(xt))− ℓt(f∗W(xt))

︸ ︷︷ ︸

R1

+

T∑

t=1

ℓt(f
∗
W(xt))− ℓt(f∗(xt))

︸ ︷︷ ︸

R2

. (12)

We will refer toR1 as the estimation error, which consists of the error incurred by sequentially learn-
ing the best Chaining-Tree. R2 will refer to the approximation error, which involves approximating
Hölder functions in LipαL(X ) by functions in span(W).

Step 1: Upper-bounding the approximation error R2. Note that by definition of the Chaining-
Tree T (see Definition 1), {Xn, n ∈ L(T )} forms a partition of X = Xroot(T ) and for any leaf

n ∈ L(T )
|Xn| =

|Xroot(T )|
2d(n)−1

=
|X |

2d(T )−1
. (13)

Then,

R2 =
T∑

t=1

ℓt(f
∗
W(xt))− ℓt(f∗(xt))

≤
T∑

t=1

G|f∗W(xt)− f∗(xt)| ← ℓt is G-Lipschitz

= G

T∑

t=1

∣
∣
∣

∑

n∈L(T )

f∗(xn)1xt∈Xn − f∗(xt)
∣
∣
∣ ← by (11)

= G
∑

n∈L(T )

∑

t∈Tn

|f∗(xn)− f∗(xt)| ← {Xn, n ∈ L(T )} partitions X

≤ G
∑

n∈L(T )

∑

t∈Tn

L‖xn − xt‖α∞ ← f∗ ∈ LipαL

≤ G
∑

n∈L(T )

L2−α|Xn|α|Tn| ← xn center of Xn

≤ GL2−αd(T )|X |αT , (14)

where the last inequality is by (13) and because the leaves form a partition of X , which implies
∑

n∈L(T ) |Tn| = T .

Step 2: Upper-bounding the estimation error R1. We now turn to the bound of the estimation
error, that is the regret with respect to f∗W ∈ span(W).

Step 2.1: Parametrization of f∗W in terms of θn. Note that the parametrization of f∗W in terms of θn
is non-unique. We design below a parametrization such that for any x ∈ X

f∗W(x) =
∑

n∈N (T )

θn1x∈Xn , (15)
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and which will allow us to leverage the chaining structure of our Chaining-Tree. We define,

θroot(T ) = f∗(xroot(T )) and θn = f∗(xn)− f∗(xp(n)), for n 6= root(T ) , (16)

where Tn = {1 ≤ t ≤ T : xt ∈ Xn} and xn stands for the center of subregion Xn for any
n ∈ N (T ).
Let us show that the above construction (16) indeed satisfies (15). To do so, we fix x ∈ X and
proceed by induction on m = 1, . . . ,d(T ), by proving that

∑

n∈N (T )

θn1x∈Xn1d(n)≤m =
∑

n∈N (T )

f∗(xn)1x∈Xn1d(n)=m . (Hm)

First, note that (H1) is true by definition of θroot(T ). Then, let m ≥ 1, and assume that (Hm) is
satisfied, we have

∑

n∈N (T )

θn1x∈Xn1d(n)≤m+1

=
∑

n∈N (T )

θn1x∈Xn1d(n)≤m +
∑

n∈N (T )

θn1x∈Xn1d(n)=m+1

=
∑

n∈N (T )

f∗(xn)1x∈Xn1d(n)=m +
∑

n∈N (T )

θn1x∈Xn1d(n)=m+1 ← by (Hm)

=
∑

n∈N (T )

f∗(xn)1x∈Xn1d(n)=m

+
∑

n∈N (T )

(f∗(xn)− f∗(xp(n)))1x∈Xn1d(n)=m+1 ← by (16)

=
∑

n∈N (T )

f∗(xn)1x∈Xn1d(n)=m+1 ,

which concludes the induction. In particular, for m = d(T ), (Hm) yields
∑

n∈N (T )

θn1x∈Xn =
∑

n∈L(T )

f∗(xn)1x∈Xn = f∗W(x) ,

where the last equality is by definition of f∗W in (11).

Step 2.2: Upper-bounding |θn|. The key advantage of the parametrization θn in (16) is that it
leverages the chaining structure of our tree. Each node aims to correct the error made by its parent,
and as we show below, this error decreases significantly with the depth d(n) of the node n. Let
n ∈ N (T ) \ {root(T )},

|θn| = |f∗(xn)− f∗(xp(n))| ≤ L‖xn − xp(n)‖α∞ = L2−α|Xn|α = L|X |α2−αd(n) (17)

where the last equalities are because Xn ⊂ Xp(n) and |Xn| = |X |2−(d(n)−1), from Defini-

tion 1. Furthermore, by definition of LipαL(X ), |f∗(x)| ≤ B for any x ∈ X , hence |θroot(T )| =
|f∗(xroot(T ))| ≤ B.

Step 2.3: Proof of the regret upper bound. We are now ready to upper bound the estimation error
in (12). We have

R1 =

T∑

t=1

ℓt(f̂t(xt))− ℓt(f∗W(xt))

=

T∑

t=1

ℓt
(∑

n∈N (T ) θn,t1xt∈Xn

)
− ℓt

(∑

n∈N (T ) θn1xt∈Xn

)

≤
T∑

t=1

∑

n∈N (T )

gn,t(θn,t − θn) (18)
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by convexity of ℓt, where gn,t is the partial subgradient in θn,t as defined in Equation (6). Now, from
Assumption 1 on the grad-step procedure to optimize θn,t and with θn,1 = 0, we further have

R1 ≤ G
∑

n∈N (T )

|θn|(C1

√

|Tn|+ C2)

= G

d(T )
∑

m=1

∑

n:d(n)=m

|θn|(C1

√

|Tn|+ C2)

≤ BG(C1

√
T + C2) + LG|X |α

d(T )
∑

m=2

∑

n:d(n)=m

(C1

√

|Tn|+ C2)2
−αm ← by (17)

(19)

Now, because in a d-regular decision tree, the number of nodes with depth m equals |{n : d(n) =

m}| = 2d(m−1) (recall that the depth of the root is 1), and because {Xn : d(n) = m} forms a
partition of X , we have

∑

n:d(n)=m Tn = T and by Cauchy-Schwarz inequality

∑

n:d(n)=m

√

Tn ≤
√

2d(m−1)
∑

n:d(n)=mTn =
√

2d(m−1)T ,

which substituted into the previous upper bound entails

R1 ≤ BG(C1

√
T + C2) + LG|X |α

d(T )
∑

m=2

(

C12
d(m−1)

2
−αm
√
T + C22

d(m−1)−αm
)

= BG(C1

√
T + C2) + LG|X |α

(

2−
d
2C1

√
T

d(T )
∑

m=2

2m(d
2
−α) + 2−dC2

d(T )
∑

m=2

2m(d−α)

)

. (20)

Step 3: Conclusion and optimization of d(T ). To conclude the proof, we consider three cases
according to the sign of d− 2α:

• Case 1: if d < 2α. Then

2−
d
2

d(T )
∑

m=2

2m(d
2
−α) ≤ 1

1− 2
d
2
−α

and 2−d

d(T )
∑

m=2

2m(d−α) ≤ 2−d

d(T )
∑

m=0

2mα ≤ 2−d 2
α(d(T )+1)

2α − 1

(2α≥1)

≤ 2αd(T )+2 ,

and (20) yields

R1 ≤ BG(C1

√
T + C2) + LG|X |α

(
C1

√
T

1− 2
d
2
−α

+ C22
αd(T )+2

)

;

Therefore, combining with (12) and (14), the regret is upper-bounded as

RegT (Lip
α
L) ≤ BG(C1

√
T + C2) + LG|X |α

( C1

√
T

1− 2
d
2
−α

+ C22
αd(T )+2 + T2−αd(T )

)

.

The choice d(T ) = 1
d log2 T entails

RegT (Lip
α
L) ≤ BG(C1

√
T + C2) + LG|X |α

( C1

1− 2
d
2
−α

+ 4C2 + 1
)√

T . (21)

• Case 2: if d = 2α. Then

2−
d
2

d(T )
∑

m=2

2m(d
2
−α) ≤ d(T ) and 2−d

d(T )
∑

m=2

2m(d−α) = 2−d

d(T )
∑

m=2

2mα ≤ 2αd(T )+2 ,

16
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and (20) yields

R1 ≤ BG(C1

√
T + C2) + LG|X |α

(

C1

√
Td(T ) + C22

αd(T )+2
)

;

Therefore, combining with (12) and (14), the regret is upper-bounded as

RegT (Lip
α
L) ≤ BG(C1

√
T + C2) + 2αLG|X |α

(

C1

√
Td(T ) + C22

αd(T )+2 + T2−αd(T )
)

.

The choice d(T ) = 1
d log2 T entails

RegT (Lip
α
L) ≤ BG(C1

√
T + C2) + 2αLG|X |α

(C1

d
log2 T + 4C2 + 1

)√
T . (22)

• Case 3: if d > 2α. Then

2−
d
2

d(T )
∑

m=2

2m(d
2
−α) ≤ 2(

d
2
−α)d(T )

2
d
2
−α − 1

and 2−d

d(T )
∑

m=2

2m(d−α) ≤ 2(d−α)d(T )

2d−α − 1
≤ 2(d−α)d(T )+2 ,

where the last inequality is because (2d−α − 1)−1 ≤ (2d/2 − 1)−1 ≤ (
√
2 − 1)−1 ≤ 4. And (20)

yields

R1 ≤ BG(C1

√
T + C2) + LG|X |α

(

C1

√
T
2(

d
2
−α)d(T )

2
d
2
−α − 1

+C22
(d−α)d(T )+2

)

.

Therefore, combining with (12) and (14), the regret is upper-bounded as

RegT (Lip
α
L) ≤ BG(C1

√
T+C2)+LG|X |α

(

C1

√
T
2(

d
2
−α)d(T )

2
d
2
−α − 1

+C22
(d−α)d(T )+2+T2−αd(T )

)

.

The choice d(T ) = 1
d log2 T entails

RegT (Lip
α
L) ≤ BG(C1

√
T + C2) + LG|X |α

(
C1

2
d
2
−α − 1

+ 4C2 + 1

)

T 1−α
d . (23)

Conclusion. Combining the three cases (21), (22), and (23) concludes the proof of the regret bound,
which we summarize below

RegT (Lip
α
L) ≤ BG(C1

√
T + C2) +GL|X |α







(
Φ(d2 − α)C1 + 4C2 + 1

)√
T if d < 2α

(
C1
d log2 T + 4C2 + 1

)√
T if d = 2α

(
Φ(d2 − α)C1 + 4C2 + 1

)
T 1−α

d if d > 2α ,

where Φ(u) = |2u − 1|−1.
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B Proof of Theorem 2

We state here the full version of Theorem 2 that we prove right after.

Theorem 3. Let T, d ≥ 1 and (T0, X̄ , W̄) be a core regular tree with CT {Tn,k, (n, k) ∈
N (T0) × [K]} satisfying the same assumptions as in Theorem 1 and root nodes initialized as
θroot(Tn,k),1 = γk ∈ Γ, for all (n, k) ∈ N (T0)× [K]. Then, Algorithm 2 with a weight subroutine

as in Assumption 2, achieves the regret upper-bound with respect to any f ∈ LipαL(X ), L > 0,

RegT (f) ≤ inf
T ∈P(T0)

{

β1
√

T |L(T )|+ β2|L(T )|

+G|X |α
∑

n∈L(T )

Ln(f)2
−α(d(n)−1)







ψ1

√

|Tn| if d < 2α

ψ2 log2 |Tn|
√

|Tn| if d = 2α

ψ1|Tn|1−
α
d if d > 2α,

}

,

with β1 = 2C3G
√

log
(
2BT |N (T0)|) and β2 = G(2−1C1 + C22

−1T− 1
2 + C4), local Lipschitz

constants Ln(f) ≤ L as in (8), ψ1 = Φ(d/2 − α)C1 + 4C2 + 1, ψ2 = C1/d + 4C2 + 1, and
Φ, C1, C2 as in Theorem 1.

Moreover, if ℓ1, . . . , ℓT are η-exp-concave with some η > 0, one has:

RegT (f) ≤ inf
T ∈P(T0)

{

β3|L(T )|+G|X |α
∑

n∈L(T )

Ln(f)2
−α(d(n)−1)







ψ1

√

|Tn| if d < 2α

ψ2 log2 |Tn|
√

|Tn| if d = 2α

ψ1|Tn|1−
α
d if d > 2α,

}

with β3 =
C2

3 log
(
2BT |N (T0)|

)

2µ + C4G+ 2−1G(C1 + C2T
− 1

2 ) and 0 < µ ≤ min{1/G, η}.

Proof. Let L > 0, α ∈ (0, 1], f∗ ∈ LipαL(X ) and ε > 0 be the precision of the grid Γ,K = ⌊2B/ε⌋
the number of experts in each node inN (T0). Let T ∈ P(T0) be some pruned tree from (T0, X̄ , W̄)

with prediction functions W̄ = {(f̂n,k)k∈[K], n ∈ N (T0)} on subsets X̄ = {Xn, n ∈ N (T0)}.
We call f̂T the associated prediction function of pruning T (see Definition 2) such that at any time
t ≥ 1,

f̂T ,t(x) =
∑

n∈L(T )

f̂n,kn,t(x) , x ∈ X ,

with kn = argmink∈[K] |(−B + (k − 1)ε) − f∗(xn)| the best approximating constant of f∗(xn)

where xn ∈ Xn is the center of the sub-region Xn, i.e. for any x ∈ Xn, ‖x− xn‖∞ ≤ 2−1|Xn|. We
have a decomposition of regret as:

RegT (f) =

T∑

t=1

ℓt(f̂t(xt))− ℓt(f̂T ,t(xt))

︸ ︷︷ ︸

=:R1

+

T∑

t=1

ℓt(f̂T ,t(xt))− ℓt(f∗(xt))
︸ ︷︷ ︸

=:R2

, (24)

R1 is the regret related to the estimation error of the core expert tree T0 compared to some pruning
T from it. On the other hand, R2 is related to the error of the pruning tree T against some function
f∗.

Step 1: Upper-bounding R2 as local chaining tree regrets. Recall that according to Definition
2, pruning subsets {Xn, n ∈ L(T )} form a partition of X = Xroot(T0). Hence, for any xt ∈ X ,

prediction from pruning T at time t is f̂T ,t(xt) = f̂n,kn,t(xt) with n ∈ L(T ) the unique leaf such

18
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that xt ∈ Xn at time t. Then, R2 can be written as follows:

R2 =

T∑

t=1

∑

n∈L(T )

(ℓt(f̂T ,t(xt))− ℓt(f∗(xt)))1xt∈Xn

=
∑

n∈L(T )

∑

t∈Tn

ℓt(f̂n,kn,t(xt))− ℓt(f∗(xt))

≤
∑

n∈L(T )

∑

t∈Tn

ℓt(f̃n,kn,t(xt))− ℓt(f∗(xt)), (25)

where we set Tn = {1 ≤ t ≤ T : xt ∈ Xn}, n ∈ L(T ) and (25) is because f̂n,kn,t = [f̃n,kn,t]B ≤
f̃n,kn,t and ℓt is convex and has minimum in [−B,B].

The decomposition in (25) represents a sum of local error approximations of the function f∗ over the

partition {Xn, n ∈ L(T )}, using predictors f̃n,kn located at the leaves of the pruned tree T . Recall

that for every n ∈ N (T0), f̃n,kn is a prediction function associated with a CT Tn,kn, where the root
node starts from θroot(Tn,kn ),1

= −B + (kn − 1)ε ∈ Γ on Xn. In proof of Theorem 1 (Appendix

A) we study a regret bound (12) decomposed into two terms: estimation and approximation. In
particular, we showed that any CT adapts to any regularity (L,α) ∈ R+ × (0, 1] of f∗. Thus, the

approximation error of CT f̃n,kn with respect to f∗ remains similar to that in (14), but now with
regard to an Hölder function with a constant Ln(f

∗) ≥ 0 over Xn. Specifically, from (25), we get:

R2 ≤
∑

n∈L(T )










G

d(Tn,kn )
∑

m=1

∑

n′:d(n′)=m

|θn′ − θn′,1|(C1

√

|Tn′ |+ C2)

︸ ︷︷ ︸

estimation error as in (19)

+GLn(f
∗)|Xn|α|Tn|2−α(d(Tn,kn ))

︸ ︷︷ ︸

approximation error (14) over Xn




 , (26)

with C1, C2 as in Assumption 1 and where we set in (16),

θroot(Tn,kn )
= f∗(xroot(Tn,kn )

) and θn′ = f∗(xn′)−f∗(xp(n′)), n′ ∈ N (Tn,kn)\{root(Tn,kn)}.
In particular, we have for n′ = root(Tn,kn),

|θn′ − θn′,1| =
∣
∣
∣f∗(xroot(Tn,kn )

)− (−B + (kn − 1))ε
∣
∣
∣ ≤ ε

2
, (27)

by definition of kn and since Γ = {−B + (k − 1)ε}k∈[K] is an ε-discretization of the y-axis.

Moreover, if n′ ∈ N (Tn,kn),d(n′) ≥ 2, one has θn′,1 = 0 and

|θn′ − θn′,1| = |θn′ | ≤ Ln(f
∗)|Xn|α2−αd(n′), (28)

according to (17) with f∗ ∈ LipαLn
(Xn).

Then, following the same optimization steps as for Theorem 1, in each d(Tn,kn), n ∈ L(T ) of (26),
we get:

R2 ≤ G
∑

n∈L(T )

ε

2
(C1

√

|Tn|+ C2)

+G|X |α
∑

n∈L(T )

Ln(f
∗)2−α(d(n)−1)







ψ1

√

|Tn| if d < 2α

ψ2 log2 |Tn|
√

|Tn| if d = 2α

ψ1|Tn|1−
α
d if d > 2α

19
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with ψ1 = Φ(d/2− α)C1 + 4C2 + 1, ψ2 = C1/d+ 4C2 + 1, and Φ defined in Theorem 1.

Cauchy-Schwarz inequality gives
∑

n∈L(T )

(C1

√

|Tn|+ C2) ≤ C1

√

|L(T )|T + C2|L(T )|

Finally,

R2 ≤
ε

2
G
(

C1

√

|L(T )|T + C2|L(T )|
)

+G|X |α
∑

n∈L(T )

Ln(f
∗)2−α(d(n)−1)







ψ1

√

|Tn| if d < 2α

ψ2 log2 |Tn|
√

|Tn| if d = 2α

ψ1|Tn|1−
α
d if d > 2α

(29)

Step 2: Upper-bounding the pruning estimation error R1. We aim at bounding the estimation
error R1 due to the error incurred by sequentially learning the best pruned tree prediction and the
best root node in Γ inside each pruned leaves. Note that at each time t, only a subset of nodes of T0
are active and output predictions: for any time t ≥ 1, let us denote Nt ⊂ N (T0) the set of active
nodes (i.e. making a prediction) at time t. Remark that

f̂t(xt) =
∑

n∈N (T0)

K∑

k=1

wn,k,tf̂n,k,t(xt) (30)

=
∑

n∈Nt

K∑

k=1

w̃n,k,tf̂n′,k′,t(xt) +
∑

n 6∈Nt

K∑

k=1

w̃n,k,tf̂t(xt), (31)

by definition of f̂t and the so called trick of prediction with sleeping experts, e.g. in Gaillard et al.

[2014]. Recall that g̃t = ∇w̃tℓt
(∑

n∈Nt

∑K
k=1 w̃n,k,tf̂n,k,t(xt) +

∑

n 6∈Nt

∑K
k=1 w̃n,k,tf̂t(xt)

)
∈

R
|N (T0)|×K , for all t ≥ 1. Then, for all n ∈ N (T0), k ∈ [K],

g̃n,k,t =

{

ℓ′t(f̂t(xt))f̂n,k,t(xt) if n ∈ Nt,

ℓ′t(f̂t(xt))f̂t(xt) if n 6∈ Nt.
(32)

For any t ≥ 1, n ∈ L(T ) and k ∈ [K], one has:

g̃
⊤
t wt − g̃n,k,t =

∑

n′∈N (T0)

K∑

k′=1

wn′,k′,tg̃n′,k′,t − g̃n,k,t

= ℓ′t(f̂t(xt))
∑

n′∈Nt

K∑

k′=1

wn′,k′,tf̂n′,k′,t(xt)

︸ ︷︷ ︸

=f̂t(xt)

−g̃n,k,t

= ℓ′t(f̂t(xt))
( ∑

n′∈Nt

K∑

k′=1

w̃n′,k′,tf̂n′,k′,t(xt) +
∑

n′ 6∈Nt

K∑

k′=1

w̃n′,k′,tf̂t(xt)
)

− g̃n,k,t

= ℓ′t(f̂t(xt))

×
{

(f̂t(xt)− f̂t(xt)) if n 6∈ Nt ,
(∑

n′∈Nt

∑K
k′=1 w̃n′,k′,tf̂n′,k′,t(xt) +

∑

n′ 6∈Nt

∑K
k′=1 w̃n′,k′,tf̂t(xt)− f̂n,k,t(xt)

)
else ,

=

{
0 if n 6∈ Nt ,

g̃
⊤
t w̃t − g̃n,k,t else ,

= (g̃⊤
t w̃t − g̃n,k,t)1xt∈Xn , (33)
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where the second equality follows from (30), the third from (31), and the fourth from (32). Finally,
we obtain

(ℓt(f̂t(xt))− ℓt(f̂n,k,t(xt)))1xt∈Xn ≤ ℓ′t(f̂t(xt))(f̂t(xt)− f̂n,k,t(xt))1xt∈Xn ← by convexity of ℓt

= (g̃⊤
t w̃t − g̃n,k,t)1xt∈Xn

= g̃
⊤
t wt − g̃n,k,t ← by (33),

(34)

and setting Tn = {1 ≤ t ≤ T : xt ∈ Xn}, n ∈ L(T ):

R1 =
T∑

t=1

∑

n∈L(T )

(ℓt(f̂t(xt))− ℓt(f̂n,kn,t(xt))1xt∈Xn ← {Xn, n ∈ L(T )} partition of X

≤
∑

n∈L(T )

T∑

t=1

(g̃⊤
t wt − g̃n,kn,t) ← by (34)

≤
∑

n∈L(T )

(

C3

√

log
(
K|N (T0)|

)

√
√
√
√

T∑

t=1

(
g̃
⊤
t wt − g̃n,kn,t)2 + C4G

)

← by Assumption 2

= C4G|L(T )|+ C3

√

log
(
K|N (T0)|

) ∑

n∈L(T )

√
∑

t∈Tn

(
g̃
⊤
t wt − g̃n,kn,t)2, (35)

where last equality holds because for any n ∈ L(T ), g̃⊤
t wt − g̃n,kn,t = 0 if xt 6∈ Xn.

• Case 1: (ℓt)1≤t≤T convex.

Since ‖g̃t‖∞ ≤ G, ‖wt‖∞ ≤ 1, t ∈ [T ] by Assumption 2 and using Cauchy-Schwartz inequality
we get from Equation (35):

R1 ≤ C4G|L(T )|+ 2C3

√

log
(
K|N (T0)|

)
G

∑

n∈L(T )

√

|Tn|

≤ C4G|L(T )|+ 2C3G

√

log
(
K|N (T0)|

)
|L(T )|

∑

n∈L(T )

|Tn|

= C4G|L(T )|+ 2C3G
√

log
(
K|N (T0)|

)
|L(T )|T . (36)

In case of convex losses, we finally have by (24), (29) and (36) :

RegT (f) ≤ 2C3G
√

log
(
K|N (T0)|

)
|L(T )|T +

(

C2
ε

2
+ C4

)

G|L(T )|+ ε

2
GC1

√

|L(T )|T

+G|X |α
∑

n∈L(T )

Ln(f)2
−α(d(n)−1)







ψ1

√

|Tn| if d < 2α ,

ψ2 log2 |Tn|
√

|Tn| if d = 2α ,

ψ1|Tn|1−
α
d if d > 2α ,

with ψ1, ψ2 defined in (29). Taking ε = T− 1
2 ,K = ⌊2BT 1

2 ⌋ ≤ 2BT , we get:

RegT (f) ≤ 2C3G
√

log
(
2BT |N (T0)|)

√

L(T )|T + (2−1C1 + C22
−1T− 1

2 + C4)G|L(T )|

+G|X |α
∑

n∈L(T )

Ln(f)2
−α(d(n)−1)







ψ1

√

|Tn| if d < 2α ,

ψ2 log2 |Tn|
√

|Tn| if d = 2α ,

ψ1|Tn|1−
α
d if d > 2α ,
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Since this inequality holds for all pruning T ∈ P(T0), one can take the infimum over all pruning in
P(T0) to get the desired upper-bound:

RegT (f) ≤ inf
T ∈P(T0)

{

β1
√

L(T )|T + β2|L(T )|

+G|X |α
∑

n∈L(T )

Ln(f)2
−α(d(n)−1)







ψ1

√

|Tn| if d < 2α ,

ψ2 log2 |Tn|
√

|Tn| if d = 2α ,

ψ1|Tn|1−
α
d if d > 2α ,

}

,

with β1 = 2C3G
√

log
(
2BT |N (T0)|) and β2 = G(2−1C1 + C22

−1T− 1
2 + C4).

• Case 2: (ℓt)1≤t≤T η-exp-concave.

If the sequence of loss functions (ℓt) is η-exp-concave for some η > 0, then thanks to a Lemma in

Hazan et al. [2016] we have for any 0 < µ ≤ 1
2 min{ 1

G , η} and all t ≥ 1, n ∈ L(T ), k ∈ [K]:

(ℓt(f̂t(xt))− ℓt(f̂n,k,t(xt)))1xt∈Xn ≤
(
g̃
⊤
t w̃t − g̃n,k,t −

µ

2

(
g̃
⊤
t w̃t − g̃n,k,t

)2)
1xt∈Xn

= g̃
⊤
t wt − g̃n,k,t −

µ

2

(
g̃
⊤
t wt − g̃n,k,t

)2 ← by (33) .

(37)

Summing (37) over t ∈ [T ] and n ∈ L(T ), we get:

R1 ≤
∑

n∈L(T )

∑

t∈Tn

g̃
⊤
t w̃t − g̃n,k,t −

µ

2

∑

n∈N (P)

∑

t∈Tn

(
g̃
⊤
t wt − g̃n,k,t

)2

≤ C4G|L(T )|+ C̃3

∑

n∈L(T )

√
∑

t∈Tn

(
g̃
⊤
t wt − g̃n,k,t)2 −

µ

2

∑

n∈L(T )

∑

t∈Tn

(
g̃
⊤
t wt − g̃n,k,t

)2 ← by (35) ,

(38)

where we set C̃3 = C3

√

log
(
K|N (T0)|

)
. Young’s inequality gives, for any ν > 0, the following

upper-bound:
√
∑

t∈Tn

(
g̃
⊤
t wt − g̃n,k,t)2 ≤

1

2ν
+
ν

2

∑

t∈Tn

(
g̃
⊤
t wt − g̃n,k,t)2 . (39)

Finally, plugging (39) with ν = µ/C̃3 > 0 in (38), we get

R1 ≤ C4G|L(T )|+ C̃3

∑

n∈L(T )

(

C̃3

2µ
+

µ

2C̃3

∑

t∈Tn

(
g̃
⊤
t wt − g̃n,k,t)2

)

− µ

2

∑

n∈L(T )

∑

t∈Tn

(
g̃
⊤
t wt − g̃n,k,t

)2

=

(

C2
3 log

(
K|N (T0)|

)

2µ
+ C4G

)

|L(T )|. (40)

To conclude, if (ℓt) are η-exp-concave, one has via (24), (29) and (40)

RegT (f) ≤ β3|L(T )|+G|X |α
∑

n∈L(T )

Ln(f)2
−α(d(n)−1)







ψ1

√

|Tn| if d < 2α ,

ψ2 log2 |Tn|
√

|Tn| if d = 2α ,

ψ1|Tn|1−
α
d if d > 2α ,

with β3 =
C2

3 log
(
2BT |N (T0)|

)

2µ + C4G + 2−1G(C1 + C2T
− 1

2 ), 0 < µ < 1
2 min{ 1

G , η} and ψ1, ψ2

defined in (29). Again, taking infimum over T ∈ P(T0) gives the result.
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Worst case regret bound Note that since we assume that ‖f‖∞ ≤ B, and that all local predictors

f̂n,k, n ∈ N (T0), k ∈ [K] in Algorithm 2 are clipped in [−B,B], we first have for any x ∈ X ,

|f̂t(x)| =
∑

n∈N (T0)

K∑

k=1

wn,k,t|f̂n,k,t(x)| ≤ B
∑

n∈N (T0)

K∑

k=1

wn,k,t = B.

Thus,

RegT (f) =

T∑

t=1

ℓt(f̂t(xt))− ℓt(f∗(xt))

≤
T∑

t=1

G|f̂t(xt)− f∗(xt)| ← ℓt is G-Lipschitz

≤ G
T∑

t=1

(|f̂t(xt)|+ |f∗(xt)|)

= 2BGT (41)
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C Proof of Corollary 1

We state here a complete version of Corollary 1.

Corollary 2. Let α ∈ (0, 1], 1 ≤ d ≤ 2α. Under the same assumptions as in Theorem 2, Algo-
rithm 2 achieves a regret with respect to any f ∈ LipαL(X ), L > 0:

RegT (f) . inf
T ∈P(T0)







∑

n∈L(T )

min

(

1 + Ln(f)|Xn|α,
(

Ln(f)|Xn|α
) 1

2α

)
√

Tn






,

where . is a rough inequality that depends on Ci, i = 1, . . . , 4 but is independent of L,X, T .
Moreover, if (ℓt) are exp-concave:

RegT (f) . inf
T ∈P(T0)







∑

n∈L(T )

min
(

Ln(f)|Xn|α
√

|Tn|,
(
Ln(f)|Xn|α

) 2
2α+1 |Tn|

1
2α+1

)






,

where . also depends on the exp-concavity constant.

Proof.

We consider 2 cases:

1. Case d < 2α (i.e. d = 1, α ∈ (12 , 1]).

Let f ∈ LipαL(X ) and L > 0 and fix any pruning T ∈ P(T0). We will apply Theorem 2
to an extended pruning T ′, in which we extend each leaf n ∈ L(T ) by a regular tree of
depth hn ∈ N to be optimized later in the proof. In particular, for each leaf n in the original
pruning T , T ′ has 2hn leaves m at depth d(m) = d(n)+hn ≥ d(n) with Lm(f) ≤ Ln(f).
In particular, when hn = 0, the original pruning T is recovered.

(a) Case (ℓt) convex:

Thanks to Theorem 2 (without applying Inequality (36) in the term depending on C3),
one has for d = 1 < 2α:

RegT (f) ≤ 2C3

√

log
(
K|N (T0)|

) ∑

m∈L(T ′)

√

|Tm|+ C4G|L(T1)|

+Gψ1

∑

m∈L(T ′)

Lm(f)|Xm|α
√

|Tm|,

≤ min
hn∈N






C

∑

n∈L(T )

(√

2hn |Tn|+ 2hn + Ln(f)|Xn|α2−αhn

√

2hn |Tn|
)







(42)

where C > 0 is some constant that depends on C3, C4, G,X, log(T ), B and ψ1 (de-
fined in Theorem 2) but independent of other quantities Ln(f), T, Tn, that is used to
simplify the presentation and may change from a display to another along the proof.
Then, optimizing over hn so that

√

2hn |Tn| = Ln(f)|Xn|α2−αhn

√

2hn |Tn| ,
we set

hn = max

{

0,
1

α
log2 (Ln(f)|Xn|α)

}

≥ 0

which yields

RegT (f) ≤ C
∑

n∈L(T )

min

{

1 + Ln(f)|Xn|α,
(

Ln(f)|Xn|α
) 1

2α

}
√

|Tn| .
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(b) Case (ℓt) exp-concave:

Since (ℓt) are exp-concave, Theorem 2 (with Inequality (40)) gives, for d < 2α, for
any extension T1 of pruning T ∈ P(T0):

RegT (f) ≤ C



|L(T1)|+
∑

m∈L(T1)

Lm(f)|Xm|α
√

|Tm|



 , (43)

≤ C
∑

n∈L(T )

(

2hn + Ln(f)|Xn|α2−αhn

√

2hn |Tn|
)

, (44)

where again C > 0 is a constant independent of L, Ln(f), |Tn| and hn that may change
from a display to another. Optimizing over hn by equalizing the terms:

2hn = Ln(f)|Xn|α2−αhn

√

2hn |Tn|
leads to

hn = max

{

0,
2

2α+ 1
log2

(
Ln(f)|Xn|α|Tn|

1
2
)
}

,

which yields and concludes the proof:

RegT (f) ≤ C
∑

n∈L(T )

min
{

Ln(f)|Xn|α
√

|Tn|,
(
Ln(f)|Xn|α

) 2
2α+1 |Tn|

1
2α+1

}

2. Case d = 2α.

The proof is the same as for the case d < 2α but with C now depending on ψ2 (also defined
in Theorem 1) rather than ψ1. We get the same result.
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D Proof of Equation (10)

One has, for any pruning T ∈ P(T0) and some f ∈ LipαL(X ):

RegT (f) .
∑

n∈L(T )

(
Ln(f)|Xn|α

) 2
2α+1 |Tn|

1
2α+1 =

∑

n∈L(T )

(
Ln(f)

1
α |Xn|

) 2α
2α+1 |Tn|

1
2α+1

≤
( ∑

n∈L(T )

Ln(f)
1
α |Xn|

) 2α
2α+1

∣
∣
∣

∑

n∈L(T )

Tn

∣
∣
∣

1
2α+1

=
( ∑

n∈L(T )

Ln(f)
1
α |Xn|

) 2α
2α+1 |T | 1

2α+1

where inequality is obtained with Hölder’s inequality with p = (2α+ 1)/2α and q = 2α+ 1.

One could also write:

( ∑

n∈L(T )

Ln(f)
1
α |Xn|

) 2α
2α+1

=



|X |
∑

n∈L(T )

Ln(f)
1
α
|Xn|
|X |





2α
2α+1

:=
(

|X |α‖f‖L(T ), 1
α

) 2
2α+1

,

where f 7→ ‖f‖L(T ), 1
α

is some 1
α -norm (or expectation) of f over leaves n ∈ L(T ) with probability

|Xn|/|X | = 2−d(n), n ∈ L(T ).
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E Comparison with Kuzborskij and Cesa-Bianchi [2020]

Let f ∈ LipαL(X ), (M (k))1≤k≤d(T0) such that M (k) ≥ Ln(f) for any n ∈ N (T0),d(n) = k and

T (k) = {1 ≤ t ≤ T : xt ∈ Xn,d(n) = k}. Let T be any pruning and let α = 1, d = 1. We have
for the squared (exp-concave) loss, according to Corollary 1:

RegT (f) .
∑

n∈L(T )

min

{(

Ln(f)
|Xn|
|X |

) 2
3

|Tn|
1
3 ,

(

Ln(f)
|Xn|
|X |

) 1
2

|Tn|
1
2

}

=

d(T )
∑

k=1

∑

n∈L(T ):d(n)=k

min

{(

Ln(f)
|Xn|
|X |

) 2
3

|Tn|
1
3 ,

(

Ln(f)
|Xn|
|X |

) 1
2

|Tn|
1
2

}

≤
d(T )
∑

k=1

min










∑

n∈L(T ):d(n)=k

Ln(f)2
−k





2
3

|T (k)| 13 ,




∑

n∈L(T ):d(n)=k

Ln(f)2
−k





1
2

|T (k)| 12







(45)

≤
d(T )
∑

k=1

min

{(

M (k)w(k)
) 2

3 |T (k)| 13 ,
(

M (k)w(k)
) 1

2 |T (k)| 12
}

≤ min
{(
M̄(f)

) 2
3 T

1
3 ,
(
M̄(f)T

) 1
2

}

(46)

where M̄(f) =
∑d(T )

k=1 w
(k)M (k) with w(k) =

∑

n∈L(T ):d(n)=k
|Xn|
|X | = 2−k|{n ∈ L(T ) : d(n) =

k}| proportion of leaves inL(T ) at level k inN (T0) and where we applied Hölder’s inequality to get
(45) and (46). The last upper-bound recovers and improves the one of Kuzborskij and Cesa-Bianchi
[2020] for dimension d = 1, as described in the main part of the paper. For higher dimension d ≥ 2,
both for exp-concave and convex losses, Theorem 2 gives for any pruning T and any function
f ∈ Lip1L(X ) (ignoring the dependence on X ):

RegT (f) .
∑

n∈L(T )

Ln(f)|Tn|1−
1
d =

d(T )
∑

k=1

∑

n∈L(T ):d(n)=k

Ln(f)|Tn|
d−1
d

≤
d(T )
∑

k=1

M (k)|{n : d(n) = k}| 1d |T (k)| d−1
d ,

which grows as O
(∑

kM
(k)|T (k)| d−1

d

)
compared to O

(∑

k(M
(k)|T (k)|) d

d+1
)

in

Kuzborskij and Cesa-Bianchi [2020]. As a consequence, if for every level k = 1, . . . ,d(T ),
M (k)|T (k)| d−1

d ≥ (M (k)|T (k)|) d
d+1 it turns out that M (k) ≥ |T (k)| 1d which leads to an equivalent

bound O(
∑

k |T (k)|) = O(T ) which corresponds to the worst case regret bound (41). As a
conclusion, our bound recovers and improves their results in particular with a dependence to lower

constants Ln(f) and lower time rate |Tn|1−
1
d .
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F Experiments

The following presents experimental results in a synthetic regression setting for both the Chaining
Tree method and LocAdaBoost. We consider the model yt = f(xt) + εt, where εt ∼ N (0, σ2)
with σ = 0.5, f(x) = sin(10x) + cos(5x) + 5, for x ∈ X = [0, 1] and supx |f ′(x)| ≤ 15 =: L.
Furthermore, we assume that xt is independently drawn from the uniform distribution U(X ).
Refer to Theorem 1, Theorem 2 and Corollary 1 in the paper to compare experimental results to
theoretical guarantees. Code will be available on Github for the final version.

Key observations:

• For the squared loss, ℓt(ŷ) = (ŷ − yt)2, LocAdaBoost achieves a time rate of O(T
1
3 ) com-

pared to O(
√
T ) for Chaining Tree - see Figure 4a. However, the trade-off is an increased

dependence on the smoothness L, shifting from O(L
1
2 ) to O(L

2
3 );

• We observe in Figure 5 that LocAdaBoost reduces regret with respect to L: it achieves

O(
√
L) for absolute loss in Fig. 5b and O(L

2
3 ) for square loss in Fig. 5a;

• In Figure 5a and Figure 5b, we observe that both the experimental and theoretical curves
level off once L increases beyond a certain threshold L0 & BT . Indeed, we demonstrated
that for any f ∈ LipαL,

RegT (f) . min

{

BT,
∑

n

Ln(f)|Tn|1−
1
d

}

.

See Appendix B and Equation (41) for more details.
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Figure 4: Comparison of regret as a function of T for square and absolute loss functions. The dotted
lines represent the theoretical results (where O hides terms in log T ), while the solid lines show the
actual performance of our algorithms (averaged over 10 experiments).
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Figure 5: Regret as a function of L for square and absolute loss functions, with a fixed horizon
of T = 2000. The analysis uses 20 equally spaced constants l ∈ [2−6, 25], which define the
different Lipschitz functions where we apply our algorithms, given by fl(x) = f(lx) such that
supx∈X |f ′l (x)| ≤ 15l =: L.
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Figure 6: Predictions for Chaining Tree and LocAdaBoost after T = 1000 data. For illustration
purposes, we set the depth of the Chaining Trees to 5 and that of the Core Tree to 3.

Note: A minor adjustment has been made to the implementation of our LocAdaBoost (Algorithm
2). Rather than performing a grid search to determine the root nodes of the CT in Core Tree T0,
we employ a Follow the Leader (or best expert) strategy. For squared losses, this method offers a

similar benefit, that is reducing the regret for learning the root nodes fromO(B
√
T ) toO(B log(T ))

- see Cesa-Bianchi and Lugosi [2006, Chap 3.2]. Consequently, the overall performance bound is
improved, especially in low-dimensional cases (see Corollary 1, exp-concave case).
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