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Small-time controllability on the group of
diffeomorphisms for Schrödinger equations

Karine Beauchard*, Eugenio Pozzoli†

October 3, 2024

Abstract

In this work, we establish a link between the small-time approximate controllability of
bilinear Schrödinger PDEs (posed on a boundaryless Riemannian manifold M ) and the con-
trol in the group Diff0

c(M) of the diffeomorphisms, isotopic to the identity and with compact
support, of the underlying manifold M .

More precisely, under a density assumption on the Lie algebra generated by the con-
trol potential and the Laplacian, we show that compositions |JP |1/2(ψ0 ◦ P ) of the initial
wavefunction ψ0 ∈ L2(M,C) with any diffeomorphism P ∈ Diff0

c(M) can be approximately
reached, in arbitrarily small times, by controlled solutions of the Schrödinger equation (here,
|JP | denotes the determinant of the Jacobian of P ). We illustrate this property on two exam-
ples, posed respectively on the torus Td and on the euclidean space Rd.

As a physical application, we obtain in particular the small-time approximate control of
the quantum particle’s averaged positions. This yields also new small-time approximate
controllability properties between families of eigenstates on Td.

To prove the result, we first construct solutions of the Schrödinger equation that approx-
imately evolve, arbitrarily fast, along any unitary transport flow on L2(M,C). In this way,
we control the composition with any diffeomorphism that can be decomposed as a product
of flows on M . We then combine this property with a result of Thurston on the simplicity of
the group Diff0

c(M) to conclude.

1 Introduction

1.1 The model
Let M be a boundaryless Riemannian manifold (for instance M = Td or Rd with d ∈ N∗).
We consider the initial value problem for Schrödinger equations of the form{

i∂tψ(t, x) =
(
−∆+ V (x) +

∑m
j=1 uj(t)Wj(x)

)
ψ(t, x), (t, x) ∈ (0, T )×M,

ψ(0, ·) = ψ0,
(1)

where ∆ is the Laplace-Beltrami operator of M , the functions V,W1, . . . ,Wm : M → R are
real valued potentials, and the functions u1, . . . , um : (0, T ) → R are real valued controls.
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The time-independent part −∆ + V is usually referred to as the drift. The time-dependent
potential

∑m
j=1 uj(t)Wj(x) is possibly unbounded on L2(M,C).

System (1) describes the dynamics of a quantum particle on the manifold M , with free
(kinetic plus potential) energy −∆ + V , in interaction with additional external fields with
potentials Wj that can be switched on and off. It is used to model a variety of physical
situations, such as atoms in optical cavities, and molecular dynamics.

When well defined, the solution of (1) at time t, associated with a time-dependent func-
tion u = (u1, . . . , um), and an initial state ψ0, is denoted by ψ(t;u, ψ0) and lives in the unitary
sphere S of L2(M)

S := {ψ ∈ L2(M,C) ; ∥ψ∥L2(M) = 1}. (2)

Our goal is to investigate where the system can be steered in arbitrarily small times, when
arbitrarily large controls are allowed. More precisely, we introduce the notion of small-time
(approximately) reachable states.

Definition 1 (Small timeH-approximate controllability). Let (H, ∥.∥H) be a normed space, sub-
set of L2(M,C).

For ψ0, ψ1 ∈ H ∩ S , we say that ψ1 is small-time H-approximately (resp. exactly) reachable
from ψ0 if for any ε > 0, there exist a time T ∈ [0, ε], a global phase θ ∈ [0, 2π) and a control
u : [0, T ]→ Rm such that

• the Cauchy problem (1) has a unique solution ψ ∈ C0([0, T ],H), and

• ∥ψ(T ;u, ψ0)− eiθψ1∥H < ε (resp. ψ(T ;u, ψ0) = eiθψ1).

We denote with AdhHReachst(ψ0) (resp. Reachst(ψ0)) the set of small-time H-approximately (resp.
exactly) reachable states from ψ0.

Note that the wavefunction is defined up to global phases, hence the state eiθψ1 for some
constant θ ∈ R, is physically the same as ψ1.

Since the beginning of quantum control, time-optimality has represented a challenge
both in physics and mathematics (see, e.g., the pioneering work [34]).

Our goal here is to provide insights on the sets AdhHReachst(ψ0), ψ0 ∈ S , which de-
scribes the states that can be reached instantaneously, i.e. in time approximately zero. More
generally, we wish to elucidate its relation with the Lie algebra generated by ∆−V,W1, . . . ,Wm.

1.2 A motivating example and a question
We consider a d-dimensional quantum harmonic oscillator, with tunable frequency and po-
sition of the quadratic potential. This system is governed by (1), with

M = Rd, V = 0, m = d+ 1, Wj(x) = xj for j = 1, . . . , d, Wd+1(x) = |x|2. (3)

Notice that we do not assume ud+1 to be positive. Classical and elementary arguments (see
Proposition 51 in the Appendix) prove that, for any ψ0 ∈ L2(Rd,C),

{σd/2ψ0(σ(x− q));σ > 0, q ∈ Rd} ⊂ AdhL2Reachst(ψ0). (4)

It is thus possible to reach in small time the compositions of the initial data by any diffeo-
morphism of Rd of the form Pσ,q(x) = σ(x− q). Physically, it corresponds to the small-time
control of the spread σ and the position q of the state ψ0. In short, we will say that it is
possible to ”control in small time the family of diffeomorphisms {Pσ,q;σ > 0, q ∈ Rd}”. A
natural question that we answer in this work is then the following.
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(Q) Are there equations of the form (1) for which it is possible to control, in small times,
the whole group of diffeomorphisms of the underlying manifold?

It is surely not possible for (3), as shown in [14] (see, in particular, Theorem 23 part 3). The
intuition behind this obstruction is that the Lie algebra generated by i∆, i|x|2, ix1, . . . , ixm is
finite-dimensional, and spanned e.g. as

SpanR{i∆, i|x|
2, ⟨x,∇⟩, ix1, . . . , ixd, ∂x1 , . . . , ∂xd

, i}.

1.3 Results
Definition 2 (Diff0

c(M)). We denote with Diff0
c(M) the group of diffeomorphisms, of a smooth

manifold M , which are C∞, isotopic to the identity, and with compact support (i.e. for every P ∈
Diff0

c(M) there exists K ⊂M compact such that P = Id on M \K).

Definition 3 (Unitary composition operator LP ). For P ∈ Diff0
c(M), we denote with LP the

unitary composition operator associated with P :

LP : ψ ∈ L2(M,C) 7→ |JP |1/2(ψ0 ◦ P ) ∈ L2(M,C). (5)

where JP is the determinant of the Jacobian matrix of P . This operator preserves the L2(M,C)-norm:
∥LPψ∥L2 = ∥ψ∥L2 .

A more precise formulation of the question we study in this work is then the following.

(Q’) Are there equations of the form (1) such that,

∀ψ0 ∈ L2(M,C) , {LPψ0;P ∈ Diff0
c(M)} ⊂ AdhL2Reachst(ψ0)? (6)

We shall furnish a positive answer to (Q’) for two examples of equations of the form (1).
We shall also highlight some physically relevant consequences of this property, such as the
control among particular steady states.

A system on M = Td. The first example is the following Schrödinger equationi∂tψ(t, x) =
(
−∆+ V (x) +

d∑
j=1

(u2j−1(t) sin+u2j(t) cos)⟨bj , x⟩
)
ψ(t, x), (t, x) ∈ (0, T )× Td,

ψ(0, ·) = ψ0,

(7)
where V ∈ L∞(Td,R), and

b1 = (1, 0, . . . , 0), b2 = (0, 1, . . . , 0), bd−1 = (0, . . . , 1, 0), bd = (1, . . . , 1). (8)

This system is inspired by the recent results obtained in [29]. In the one-dimensional case
d = 1, this system describes the orientation in the plane of a rigid molecule, controlled by
the dipolar interactions with two orthogonal electric fields of constant direction and time-
variable intensity. It is used in physics and chemistry as a model for rotational molecular
dynamics (see, e.g., [35] and reference therein). We obtain that compositions of the initial
wavefunction with any diffeomorphism are small-time approximately reachable states.
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Theorem 4. Let V ∈ L∞(Td,R). System (7) satisfies the following property: for every P ∈
Diff0(Td), ψ0 ∈ L2(Td,C) and ε > 0, there exist T ∈ [0, ε], θ ∈ R and u : [0, T ] → R2d piecewise
constant such that

∥ψ(T ;u, ψ0)− eiθLPψ0∥L2(Td) < ε.

In other words, for every ψ0 ∈ L2(Td,C) we have

{LPψ0;P ∈ Diff0(Td)} ⊂ AdhL2(Td)Reachst(ψ0).

For k ∈ Zd and J ⊂ {1, . . . , d}, the function fk,J : Td → R defined by

fk,J(x) := Πj∈J sin(kjxj)Πj∈Jc cos(kjxj). (9)

is an eigenfunction of the Laplacian operator ∆ with (degenerate) eigenvalue −|k|2.
As an application of Theorem 4, by choosing specific diffeomorphisms of the torus (i.e.

rotations), we obtain the following result of small-time approximate controllability between
particular eigenstates fk,J . Notice that eigenstates are particularly relevant in physics as
they represent quantum steady states.

Corollary 5. Let V ∈ L∞(Td,R). System (7) satisfies the following property: for any k ∈ Zd,
J1, J2 ⊂ {1, . . . , d}, and ε > 0, there exist T ∈ [0, ε], θ ∈ R and u : [0, T ] → R2d piecewise
constant such that

∥ψ(T ;u, fk,J1)− eiθfk,J2∥L2(Td) < ε.

In other words, for every k ∈ Zd and J ⊂ {1, . . . , d}, we have

{fk,J ′ , J ′ ⊂ {1, . . . , d}} ⊂ AdhL2(Td)Reachst(fk,J).

To prove Corollary 5, it suffices to apply Theorem 4 with initial state ψ0 = fk,J1 and
diffeomorphism P defined as{

xj 7→ xj + π/(2kj) if j ∈ (J1 \ J2) ∪ (J2 \ J1)
xj 7→ xj otherwise.

Under appropriate regularity assumptions on V , the L2-norm can be replaced by more
regular norms in the conclusions of Theorem 4 and Corollary 5 (see Theorem 35 and Corol-
lary 36).

A system on M = Rd. The second example is the following Schrödinger equationi∂tψ(t, x) =
(
−∆+ V (x) +

d∑
j=1

uj(t)xj + ud+1(t)e
−|x|2/2

)
ψ(t, x), (t, x) ∈ (0, T )× Rd,

ψ(0, ·) = ψ0,

(10)
where

V ∈ L2
loc(Rd,R) and ∃a, b ≥ 0, ∀x ∈ Rd, V (x) ≥ −a|x|2 − b. (11)

This system is inspired by the recent results obtained in [30]. It models the dipolar inter-
action of a quantum particle with controls coupling to its positions xj , and an additional
control concentrated around the origin as a Gaussian function. Analogously to Theorem 4,
we obtain the following result.
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Theorem 6. Let V satisfying (11). System (10) satisfies the following property: for every P ∈
Diff0

c(Rd), ψ0 ∈ L2(Rd,C) and ε > 0, there exist T ∈ [0, ε], θ ∈ R and u : [0, T ]→ Rd+1 piecewise
constant such that

∥ψ(T ;u, ψ0)− eiθLPψ0∥L2(Rd) < ε. (12)

In other words, for every ψ0 ∈ L2(Rd,C) we have

{LPψ0;P ∈ Diff0
c(Rd)} ⊂ AdhL2(Rd)Reachst(ψ0).

Definition 7 (Averaged position/momentum). For ψ ∈ H1(Rd,C) such that |x|ψ ∈ L2(Rd,C),
we define its averaged position ⟨x⟩ψ ∈ Rd and its average momentum ⟨p⟩ψ ∈ Rd by

⟨x⟩ψ =

∫
Rd

x|ψ(x)|2dx , ⟨p⟩ψ =

∫
Rd

i∇ψ(x)ψ(x)dx.

As an application of (the proof of) Theorem 6, we obtain the small-time approximate
simultaneous controllability of the quantum particle’s averaged position and momentum.

Corollary 8. Let ψ0 ∈ H1(Rd,C) be such that |x|ψ ∈ L2(Rd,C), x, p ∈ Rd and ε > 0. There exist
T ∈ [0, ε] and u : [0, T ]→ Rd+1 piecewise constant such that

|⟨x⟩ψ(T, u, ψ0)− x| < ε and |⟨p⟩ψ(T, u, ψ0)− p| < ε.

The latter corollary is obtained in particular by using as specific diffeomorphisms the
translations along the xj-axis: such diffeomorphisms do not have compact support, but we
can nevertheless reach them, as it will be clear from the proof of Theorem 6.

Under appropriate regularity assumptions on V , the L2-norm can be replaced by more
regular norms in the conclusions of Theorem 6, see Theorem 44.

1.4 Proof strategy
We will use the following notation for flows.

Definition 9 (Flows ϕsf ). For a smooth (time-independent) vector field f on M , then ϕsf denotes
the flow associated with f at time s: for every x0 ∈ M , x(s) = ϕsf (x0) is the solution (when well
defined) of {

dx
ds (s) = f(x(s)),
x(0) = x0.

The main novelty of this paper, from the point of view of the technique, is in linking the
problem of small-time global approximate controllability of Schrödinger PDEs (on a mani-
fold M ) with the problem of global controllability in the group of diffeomorphisms of M .

Roughly speaking, the strategy consists first in showing that, given any smooth and
compactly supported real valued function φ = φ(x) on M , there exists a control function
u = u(t) such that the solution ψ to the Schrödinger equation (7) or (10) is approximately
solving a unitary (i.e., L2-norm-preserving) transport equation along the gradient vector
field f = ∇φ, of the form (for a rigorous statement, we refer to Propositions 23 and 31){

∂tψ(t, x) = ⟨f(x),∇xψ(t, x)⟩+ 1
2divf(x)ψ(t, x),

ψ(0, ·) = ψ0.

The dynamics can then be reinitialized from a new initial state of the form LPψ0, where
P = ϕ1f , and then controlled again along another arbitrary gradient vector field, and so on.
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The arbitrariness of the potential function φ is a consequence of the local phase control
proved in the recent works [29, 30]: i.e., the small-time approximate reachability from ψ0 of
any state of the form eiφψ0, φ ∈ L2(M,C) (we recalled it in Propositions 22 and 30). This
fact is itself a consequence of a property of density (in an appropriate functional space) of a
particular subspace of Lie{∆− V,W1, . . . ,Wm}, shared by both systems (7) and (10) (for the
rigorous definition of this property, we refer to the proofs of Propositions 22, 30).

Once we have proved the reachability of gradient vector fields, we also show the reacha-
bility of their Lie brackets (Propositions 24, 32); then, the Lie algebra generated by gradient
vector fields turns out to be dense in the algebra of all smooth compactly supported vector
fields (as we prove in Propositions 26, 34). This means that, for any smooth vector field f on
M with compact support (not necessarily a gradient), we can approximately reach in small
times the state LPψ0 for P = ϕ1f , and analogously for products of them. Hence, given any
diffeomorphism P that can be written as a finite product of flows of vector fields, we can
approximate in small time the state LPψ0.

Thanks to a result of Thurston on the simplicity of the group Diff0
c(M) [46], every diffeo-

morphism isotopic to the identity and with compact support can be decomposed as a finite
product of flows of vector fields, hence Theorems 4 and 6 follow.

1.5 Literature review
The mathematical control theory of bilinear Schrödinger PDEs has undergone a vast de-
velopment in the last two decades. Such theoretical problems find in fact their origins in
applications of quantum control, originally in physics and chemistry (e.g. absorption spec-
troscopy), and more lately in informatics and engineering (e.g. quantum computation). We
report here on the mathematical advances on this subject.

1.5.1 Obstruction to exact controllability

Since the seminal work [7] of Ball, Marsden and Slemrod on the bilinear control of PDEs,
it is known that if the drift generates a group of bounded operators on an Hilbert space,
where the control operators are bounded, then exact controllability is never achieved. This
obstruction is due to the fact that the reachable set has empty interior (see also [19,26,27] for
recent developments). This obstruction holds e.g. for the system (7), in any Hs(Td,C), s ∈ N
with controls in L1

loc(R,Rm). Different notions of controllability have then been investigated,
such as exact controllability in more regular spaces, or approximate controllability. In this
paper we analyse the latter one.

1.5.2 Exact controllability in more regular spaces

The case of a 1D Schrödinger equation with Dirichlet boundary conditions was the first one
where positive results were obtained: local exact controllability was first proved in [8, 9]
with Nash-Moser techniques, and then in [13] with a classical inverse mapping theorem.
Other results of global (resp. local) exact controllability in regular spaces have followed, for
different models, in [40, 42] (resp. [18]).

1.5.3 Approximate controllability

Global approximate controllability of bilinear Schrödinger equations were firstly obtained
in [24,32,41]. If the drift −∆+ V has compact resolvent, (1) is known to be globally approx-
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imately controllable in large times, generically w.r.t. the potentials V,W0, . . . ,Wm [36], for a
manifold M of arbitrary dimension.

E.g., in the one-dimensional case, global approximate controllability in large times of
(7) with V = 0 was established in particular in [16]. Concerning (10), global approximate
controllability (even in large times) is an open problem (in fact, its Hamiltonian has not a
compact resolvent). When the Hamiltonian presents continuous parts in the spectrum, some
results of large-time approximate controllability between bound states are also available
[10, 23, 38].

1.5.4 Small-time approximate controllability

The first positive mathematical results of small-time control of Schrödinger equations are
very recent [14, 17, 25, 28–30].

Obstructions where previously known when the potentials are all (sub)quadratic [11,12],
due to the conservation of Gaussian states for small times (we refer also to [15] for differ-
ent semi-classical obstructions). Also, an example of a small-time globally approximately
controllable conservative PDE was obtained in [20], where the Laplacian is replaced with
|∆|α, α > 5/2, in (7) for d = 1, V = 0.

A renewed interest in this subject has arrived after the work [29], where small-time ap-
proximate control of local phases was proved for (a state-nonlinear version of) system (7).
Similar conclusions are obtained in [30] for a system similar to (a state-nonlinear version of)
(10). These results were inspired by saturation and low mode forcing strategies previously
used for controlling Navier-Stokes and Euler systems in the pioneering articles [3, 5]. We
also mention the recent contributions on the small-time control, with similar techniques, of
other bilinear PDEs [31, 43].

Recently, using finite-dimensional geometric techniques, we showed the existence of
small-time globally approximately controllable equations of the form (1) [14]. In particu-
lar, we showed that it is possible in the presence of a quadratic control potential. In the
present work we develop a new infinite-dimensional geometric approach, and we apply it
to get results in the presence of more general (i.e., not quadratic) control potentials. The
capability of globally approximately controlling in small times systems (7) and (10) remains
an open question.

1.5.5 Approximate controllability in the group of diffeomorphisms

Related infinite-dimensional geometric methods have been also reintroduced recently to
study the problem of approximate controllability in the group of diffeomorphisms [1, 4, 6],
as a natural extension of control problems for ensembles of particles (see also [2]).

With respect to this recent literature, the contribution of our work is in showing the rela-
tion between the two problems of approximately controlling bilinear Schrödinger PDEs on
L2(M,C) and diffeomorphisms on M .

1.6 Structure of the paper
In Section 2 we introduce some control notions and recall some tools from functional analy-
sis. In Section 3, we show Theorem 4 and Corollary 5. In Section 4, we prove Theorem 6. In
Section 5, we adapt Theorem 4 and Corollary 5 to higher regularities. In Section 6, we adapt
Theorem 6 to higher regularities and prove Corollary 8.
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2 Preliminaries
In this section, we introduce the set of small-time reachable operators, prove its semi-group
structure and its closure. We also recall some classical tools of functional analysis that we
shall need in the rest of the paper.

2.1 Well posedness for piecewise constant controls
For the scope of this work it is sufficient to consider, as control space, the space PWC of
piecewise constant functions. We recall the operation of concatenation: for every T1, T2 > 0,
u1 ∈ PWC(0, T1) and u2 ∈ PWC(0, T2) then u1♯u2 ∈ PWC(0, T1 + T2), where, for every
t ∈ (0, T1 + T2),

u1♯u2(t) =

{
u1(t) if t ∈ (0, T1),
u2(t− T1) if t ∈ (T1, T1 + T2).

Proposition 10. [45, Corollary page 199] Let V satisfying (11). Then −∆ + V is essentially self-
adjoint on C∞

c (Rd,C).

Definition 11. Given two densely defined linear operators A and B with domains D(A) and D(B)
on an Hilbert spaceH, B is said to be A-bounded if D(A) ⊂ D(B) and there exist a, b ≥ 0 such that
for all ψ ∈ D(A)

∥Bψ∥ < a∥Aψ∥+ b∥ψ∥.

The infimum of such a is called the relative bound of B.

Proposition 12. (Kato-Rellich Theorem) [45, Theorem X.12] If A is self-adjoint and B is symmetric
and A-bounded with relative bound a < 1, then A + B is self-adjoint on D(A) and essentially
self-adjoint on any core of A.

In light of Propositions 10 and 12, we can define the solutions of the two systems (7), (10),
associated with piecewise constant controls, by composition of time-independent unitary
propagators associated with self-adjoint operators (see, e.e., [44, Definition p.256 & Theorem
VIII.7]). For instance, for system (10), given a subdivision 0 = t0 < · · · < tN = T , a piecewise
constant control u : [0, T ]→ Rd+1 defined as u(t) = (uj1, . . . , u

j
d+1) ∈ Rd+1 when t ∈ [tj−1, tj ],

and an initial condition ψ0 ∈ L2(Rd,C), the solution ψ ∈ C0([0, T ], L2(Rd,C)) of (10) is
defined by

ψ(t;u, ψ0)

= ei(t−tj−1)(∆−V−
∑d

k=1 u
j
kxk−uj

d+1e
−|x|2/2)eiτj−1(∆−V−

∑d
k=1 u

j−1
k xk−uj−1

d+1e
−|x|2/2)

. . . eiτ1(∆−V−
∑d

k=1 u
1
kxk−u1

d+1e
−|x|2/2)ψ0.

where τl = (tl − tl−1) for l = 1, . . . , N .

2.2 Small-time approximately reachable operators
We introduce the notion of small-time approximately reachable operators.

Definition 13 (Small-time H-approximately reachable operator, H-STAR). Let (H, ∥.∥H) be a
normed C-vector space, subset of L2(M,C).

• For T > 0, an operator L ∈ L(H)∩ Isom(L2(M,C)) isH-approximately (resp. H-exactly)
reachable in time T if, for every ψ0 ∈ H ∩ S and ε > 0, there exists θ ∈ R and u ∈
PWC(0, T ) such that ∥ψ(T ;u, ψ0)− eiθLψ0∥H < ε (resp. ψ(T ;u, ψ0) = eiθLψ0).

8



• Given T ≥ 0, the operator L is H-approximately (resp. H-exactly) reachable in time T+

if, for every ψ0 ∈ H ∩ S and ε > 0, there exists T1 ∈ [T, T + ε], θ ∈ R and u ∈ PWC(0, T1)
such that ∥ψ(T1;u, ψ0)− eiθLψ0∥H < ε (resp. ψ(T1;u, ψ0) = eiθLψ0).

• The operator L is small-time H-approximately (resp. H-exactly) reachable if it is H-
approximately (resp. H-exactly) reachable in time 0+. Then, we use the abbreviation: “the
operator L isH-STAR ”.

As an example, our main results (Theorem 4 with M = Td and Theorem 6 with M =
Rd) state that for every P ∈ Diff0

c(M), the unitary composition operator LP (see (5)) is L2-
STAR. The following Lemma will be largely used in this work. It states that the set of H-
STAR operators is a subsemigroup of L(H) ∩ Isom(L2(M,C)) closed for the topology of the
pointwise convergence. It already appeared in [14] (we prove it also here for the sake of
completeness).

Lemma 14. 1. If the operator L1 (resp. L2) is H-approximately (resp. H-exactly) reachable in
time T1 (resp. T2), then L2L1 isH-approximately (resp. H-exactly) reachable in time T1 + T2.

2. Let T ≥ 0 and (Ln)n∈N be a sequence of operators that are H-approximately reachable in time
T+ and L ∈ L(H) ∩ Isom(L2(M,C)) such that, for every ψ ∈ H, ∥(Ln − L)ψ∥H → 0. Then
the operator L isH-approximately reachable in time T+.

Proof. 1. Let ψ0 ∈ H ∩ S and ε > 0. There exists u2 ∈ PWC(0, T2) such that

∥ψ(T2;u2, L1ψ0)− L2L1ψ0∥H <
ε

2
. (13)

There exists u1 ∈ PWC(0, T1) such that

∥ψ(T1;u1, ψ0)− L1ψ0∥H <
ε

2∥ψ(T2;u2, .)∥Lc(H)
. (14)

Then u := u1♯u2 ∈ PWC(0, T1 + T2). Moreover, by using the triangular inequality, (13) and
(14), we obtain

∥ψ(T1 + T2;u, ψ0)− L2L1ψ0∥H
≤∥ψ(T2;u2, ψ(T1;u1, ψ0))− ψ(T2;u2, L1ψ0)∥H + ∥ψ(T2;u2, L1ψ0)− L2L1ψ0∥H
≤∥ψ(T2;u2, .)∥L(H)∥ψ(T1;u1, ψ0)− L1ψ0∥H + ε/2 < ε.

2. Let ψ0 ∈ H∩S and ε > 0. There exists n ∈ N such that ∥(Ln−L)ψ0∥H < ε/2. There exists
T1 ∈ [T, T + ϵ], and u ∈ U(0, T1) such that ∥ψ(T1;u, ψ0)−Lnψ0∥H < ε/2. Then, by triangular
inequality and homogeneity

∥ψ(T1;u, ψ0)− Lψ0∥H ≤ ∥ψ(T1;u, ψ0)− Lnψ0∥H + ∥(Ln − L)ψ0∥H < ε.

2.3 Some useful tools
The proof of the following proposition can be found in [14].

Proposition 15. Let A,B be self-adjoint operators on the Hilbert space H, and suppose that eiB is
an isomorphism of D, where D is a core for A. Then, for any t ∈ R,

e−iBeitAeiB = exp(e−iBitAeiB).

9



Proposition 16. [44, Theorem VIII.21 & Theorem VIII.25(a)] Let (An)n∈N, A be self-adjoint oper-
ators on an Hilbert space H, with a common core D. If ∥(An − A)ψ∥H −→

n→∞
0 for any ψ ∈ D, then

∥(eiAn − eiA)ψ∥H −→
n→∞

0 for any ψ ∈ H.

Proposition 17. (Trotter-Kato product formula) [44, Theorem VIII.31] Let A,B be self-adjoint op-
erators on the Hilbert space H such that A + B is essentially self-adjoint on D(A) ∩ D(B). Then,
for every ψ0 ∈ H, ∥∥∥(eiAn eiBn )n ψ0 − ei(A+B)ψ0

∥∥∥
H
−→

n→+∞
0.

3 Transport equations on Td

In this section, we consider the system (7) on the torus Td and we prove Theorem 4 and
Corollary 5. The proof strategy is presented in Subsection 3.1. It relies on the simplicity of
the group Diff0

c(M) proved by Thurston [46], and the small-time approximate reachability
of transport operators along vector fields.

To prove this last property, the first step is the small-time approximate control of the
phase, developped in Subsection 3.2. It allows to obtain the small-time approximate reach-
ability of transport operators along smooth gradient vector fields in Subsection 3.3. Finally,
in Subsection 3.4, we obtain the same property for any smooth vector field.

3.1 Proof strategy: from transport operators to diffeomorphisms
In this section we outline the strategy for proving Theorem 4, and give a proof of Corollary
5.

Definition 18 (Unitary transport operator associated with a vector field). For f ∈ C∞(Td,Rd),
the unitary transport operator associated with f is defined by

D(Tf ) := {φ ∈ L2(Td,C); ⟨f,∇φ⟩ ∈ L2(Td,C)}, Tfφ = ⟨f,∇φ⟩+ 1

2
div(f)φ. (15)

In the first expression, ∇φ denotes the distributional derivative in D′(Td). Tf is skew
adjoint, thus the group (etTf )t∈R is well defined on L2(Td,C).

Lemma 19. Let f ∈ C∞(Td,Rd) a vector field and P := ϕ1f be the associated flow at time 1 (see
Definition 9). Then the unitary composition operator associated with P (see (5)) satisfies LP = eTf .
Moreover for every t ∈ R and φ ∈ L2(Td,C),(

etTfφ
)
(x) = φ(ϕtf (x))e

1
2

∫ t
0 divf(ϕs

f (x))ds. (16)

Proof. Let φ ∈ L2(Td,C). Then etTfφ = ψ(t, .) where ψ is the solution of the transport
equation {

∂tψ(t, x) = ⟨f(x),∇xψ(t, x)⟩+ 1
2(divf)(x)ψ(t, x), (t, x) ∈ R× Td,

ψ(0, .) = φ.

The characteristic method proves that ψ(t, x) is given by the right hand side of (16).
By definition ofP , for every x ∈ Td, dP (x) = R(1) where the resolventR ∈ C0(R,Md(R))

solves the linear equation {
dR
dt (t) = Df(ϕtf (x))R(t)

R(0) = Id.

10



By Liouville formula

JP (x) = det(dP (x)) = det(R(1)) = e
∫ 1
0 trDf(ϕs

f (x)ds = e
∫ 1
0 divf(ϕs

f (x))ds

therefore, for every φ ∈ L2(Td,C),

(LPφ)(x) = |JP (x)|1/2φ ◦ P (x) = e
1
2

∫ 1
0 divf(ϕs

f (x))dsφ(ϕ1f (x)) = (eTfφ)(x).

To get Theorem 4 and Corollary 5, we use the following key property: any diffeomor-
phism of Td isotopic to the identity, can be decomposed into a finite product of flows. This
is a straightforward consequence of a deep result by Thurston [46], about the simplicity of
the group Diff0

c(M) (see Definition 2); we recall this property in the following statement.

Proposition 20. Let M be a boundaryless connected smooth manifold and P ∈ Diff0
c(M). Then,

there exist n ∈ N∗ and smooth vector fields f1, . . . , fn with compact support on M such that P =
ϕ1fn ◦ · · · ◦ ϕ

1
f1

. As a consequence, LP = Lϕ1
fn
◦ · · · ◦ Lϕ1

f1

.

Proof. By [46] (see also [33,37]), the group Diff0
c(M) is simple. Thus, in order to get Proposi-

tion 20, it suffices to prove that Fc(M) is a normal subgroup of Diff0
c(M), where

Fc(M) := {ϕ1fn ◦ · · · ◦ ϕ
1
f1 ;n ∈ N, fj smooth compactly supported vector field on M}.

Let P ∈ Diff0
c(M) and X ∈ Fc(M): there exist n ∈ N and f1, . . . , fn smooth compactly

supported vector fields on M such that X = ϕ1fn ◦ · · · ◦ ϕ
1
f1

. Consider the smooth compactly
supported vector field defined as the pushforward of fj by P :

gj(x) := (P ⋆ fj)(x) = DP (P−1(x)) fj(P
−1(x)), x ∈M.

Then
ϕ1gj (x) = P (ϕ1fj (P

−1(x))), x ∈M.

Hence, PXP−1 = ϕ1gn ◦ · · · ◦ ϕ
1
g1 ∈ Fc(M).

Taking into account Proposition 20 and Lemma 14, in order to get Theorem 4, it suffices
to prove the following statement.

Proposition 21. Let V ∈ L∞(Td,R). System (7) satisfies the following property: for every f ∈
C∞(Td,Rd), the unitary transport operator eTf is L2-STAR.

Therefore, the goal of the following subsections is to prove Proposition 21.

3.2 Pre-requisite: small-time control of the phase
To prove Proposition 21, we use the small-time approximate control of the phase.

Proposition 22. Let V ∈ L∞(Td,R). System (7) satisfies the following property: for every φ ∈
L2(Td,R), the operator eiφ is L2-STAR.

For the sake of completeness, we propose below a proof of Proposition 22, which is an
adaptation to our functional framework of the one of [29, Theorem A]. It relies on a satu-
rating argument introduced in [3] for studying the additive controllability of Navier-Stokes
systems, and readapted to the bilinear control of Schrödinger equations in [29].
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Proof. Step 1: We prove that, for every φ ∈ H0 := spanR{sin⟨bj , x⟩, cos⟨bj , x⟩; j ∈ {1, . . . , d}},
the operator eiφ is L2-STAR. Let α ∈ R2d and φ : x ∈ Td 7→

∑d
j=1(α2j−1 sin+α2j cos)⟨bj , x⟩.

For any τ > 0, the operator Lτ := eiτ(∆−V )+iφ is L2-exactly reachable in time τ , because
associated with the constant controls uj(t) = −αj/τ . For τ > 0, the operator Aτ := τ(∆ −
V ) + φ is self-adjoint on D(Aτ ) := H2(Td,C), because V, φ ∈ L∞(Td,R). The multiplicative
operator A0 := φ is self-adjoint on L2(Td,C). H2(Td,C) is a common core of Aτ and A0. For
every ψ ∈ H2(Td,C), ∥(Aτ −A0)ψ∥L2 = τ∥(∆−V )ψ∥L2 → 0 as τ → 0. Thus, by Proposition
16, for every ψ ∈ L2(Td,C), ∥(Lτ − eiφ)ψ∥L2 = ∥(eiAτ − eiA0)ψ∥L2 → 0 as τ → 0. By Lemma
14, this proves that eiφ is L2-STAR.

Step 2: We prove that, if φ ∈ C2(Td,R) and eiλφ is L2-STAR for every λ ∈ R then e−i|∇φ|2 is
L2-STAR. Let τ > 0. By Lemma 14, the operator

L̃τ := e
i φ√

τ eiτ(∆−V )e
−i φ√

τ

is L2-approximately reachable in time τ+.
The operator τ(∆ − V ) is self-adjoint on H2(Td,C). The multiplicative operator φ/

√
τ

is self-adjoint on L2(Td,C). eiφ/
√
τ is an isomorphism of H2(Td,C) because φ ∈ C2(Td,R).

Thus, by Lemma 15 and standard computations

L̃τ = exp
(
iτe

i φ√
τ (∆− V )e

−i φ√
τ

)
= exp

(
iτ(∆− V )−

√
τ(2⟨∇φ,∇⟩+∆φ)− i|∇φ|2

)
.

The operator

Ãτ := τe
i φ√

τ (∆− V )e
−i φ√

τ = τ(∆− V ) + i
√
τ(2⟨∇φ,∇⟩+∆φ)− |∇φ|2

is self-adjoint on H2(Td,C). The multiplicative operator Ã0 := −|∇φ|2 is self-adjoint on
L2(Td,C) because ∇φ ∈ L∞(Td,R). H2(Td,C) is a common core of Ãτ and Ã0. For every
ψ ∈ H2(Td,C),

∥(Ãτ − Ã0)ψ∥L2 = ∥τ(∆− V )ψ + i
√
τ(2⟨∇φ,∇⟩+∆φ)ψ∥L2 −→

τ→0
0.

Thus, by Proposition 16, for every ψ ∈ L2(Td,C),

∥(L̃τ − e−i|∇φ|2)ψ∥L2 = ∥(eiÃτ − eiA0)ψ∥L2 −→
τ→0

0.

By Lemma 14, this proves that e−i|∇φ|2 is L2-STAR.

Step 3: Iteration. We define by induction an increasing sequence of sets (Hj)j∈N: H0 is defined
in Step 1 and, for every j ∈ N∗,Hj is the largest vector space whose elements can be written
as

φ0 −
N∑
k=1

|∇φk|2;N ∈ N, φ0, . . . , φN ∈ Hj−1.

Let H∞ := ∪j∈NHj . Thanks to Lemma 14, Steps 1 and 2, for every φ ∈ H∞, the operator
eiφ is L2-STAR. Moreover, the proof of [29, Proposition 2.6] shows that H∞ contains any
trigonometric polynomial, in particular,H∞ is dense in L2(Td,R).

Step 4: Conclusion. Let φ ∈ L2(Td,R). There exists (φn)n∈N ⊂ H∞ such that ∥φn − φ∥L2 → 0
as n → ∞. Up to an extraction, one may assume that φn → φ almost everywhere on Td,
as n → ∞. The dominated convergence theorem proves that, for every ψ ∈ L2(Td,C),
∥(eiφn − eiφ)ψ∥L2 → 0 as n → ∞. Finally, Step 3 and Lemma 14 prove that the operator eiφ

is L2-STAR.
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3.3 Small-time reachability of transport operators along gradient
vector fields
In this section, we prove Proposition 21 for gradient vector fields: this is the content of the
next result.

Proposition 23. Let V ∈ L∞(Td,R). System (7) satisfies the following property: if φ ∈ C∞(Td,R)
and f = ∇φ then the unitary transport operator eTf is L2-STAR.

Proof. Let φ ∈ C∞(Td,R) and f := 2∇φ. Let n ∈ N∗ and τ > 0.

Step 1: We prove that the operator Lτ,n is L2-approximately reachable in time τ+, where

Lτ,n :=

(
e

i|∇φ|2
τn ei

φ
τ ei

τ
n
(∆−V )e−iφ

τ

)n

.

By Proposition 22, the operators e
i|∇φ|2

τn , and e±iφ
τ , areL2-STAR becauseφ, |∇φ|2 ∈ L2(Td,R).

Moreover the operator ei
τ
n
(∆−V ) is exactly reachable in time τ/n because associated with the

constant control u = 0. Thus, Lemma 14 proves that Lτ,n is L2-approximately reachable in
time τ+.

Step 2: We prove that Lτ is L2-approximately reachable in time τ+, where

Lτ := exp (iτ(∆− V ) + 2⟨∇φ,∇⟩+∆φ) = exp (iτ(∆− V ) + Tf ) .

The operator τ
n(∆ − V ) is self-adjoint on H2(Td,C). The multiplicative operator φ

τ is self-
adjoint onL2(Td,C) becauseφ ∈ L∞(Td,C). The operator ei

φ
τ is an isomorphism ofH2(Td,C)

thus, by Lemma 15

Lτ,n =

(
e

i|∇φ|2
τn exp

(
i
τ

n
ei

φ
τ (∆− V )e−iφ

τ

))n

.

The operator τei
φ
τ (∆−V )e−iφ

τ is self-adjoint onH2(Td,C). The multiplicative operator |∇φ|2
τn

is self-adjoint on L2(Td,C) because ∇φ ∈ L∞(Td,C). Their sum is self-adjoint on H2(Td,C)
by Proposition 12. Thus, by Proposition 17,

∀ψ ∈ L2(Rd,C), ∥(Lτ,n − L̃τ )ψ∥L2 −→
n→∞

0, (17)

where

L̃τ := exp

(
i|∇φ|2

τ
+ iτei

φ
τ (∆− V )e−iφ

τ

)
.

Standard computations prove that

iτei
φ
τ (∆− V )e−iφ

τ = iτ(∆− V ) + 2⟨∇φ,∇⟩+∆φ− i|∇φ|2

τ

thus L̃τ = Lτ . Then Step 1, (17) and Lemma 14 prove that Lτ is L2-approximately reachable
in time τ+.

Step 3: We prove that eTf is L2-STAR. The operator Aτ := τ(∆ − V ) − iTf is self-adjoint on
H2(Td,C). The operator A0 := −iTf is self-adjoint. H2(Td,C) is a common core of Aτ and
A0. For every ψ ∈ H2(Td,C), ∥(Aτ − A0)ψ∥L2 = τ ∥(∆− V )ψ∥L2 → 0 as τ → 0. Thus, by
Proposition 16, for every ψ ∈ L2(Td,C), ∥(Lτ − eTf )ψ∥L2 = ∥(eiAτ − eiA0)ψ∥L2 → 0 as τ → 0.
This convergence, Step 2 and Lemma 14 prove that eTf is L2-STAR.
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3.4 Small-time reachability of transport operators along any vector
fields
We introduce the set

L := {f ∈ C∞(Td,Rd);∀t ∈ R, etTf is L2-STAR}, (18)

the set G of gradient vector fields and the Lie algebra L0 generated by G in C∞(Td,C)

G := {∇φ;φ ∈ C∞(Td,R)}, L0 := Lie(G).

By Proposition 23, G ⊂ L. The goal of this section is to prove the following result.

Proposition 24. L is a Lie algebra, thus L0 ⊂ L.

Proof. Clearly, if f ∈ L and λ ∈ R then λf ∈ L. Thus, it suffices to prove that L is stable by
summation and Lie bracket.

Step 1: L is stable by summation. It suffices to prove that (f, g ∈ L =⇒ eTf+g is L2-STAR )
because, for every t ∈ R, tf, tg ∈ L and tTf+g = Ttf+tg. Let f, g ∈ L. By Lemma 14, for every
n ∈ N∗, the operator (e

1
n
Tf e

1
n
Tg)n is L2-STAR. The operators Tf and Tg are skew adjoint on

L2(Td,C) and the operator Tf + Tg = Tf+g is essentially skew adjoint on D(Tf ) ∩ D(Tg).
Thus, by Proposition 17, for every φ ∈ L2(Td,C), ∥(e

1
n
Tf e

1
n
Tg)nφ− eTf+gφ∥L2 → 0 as n→∞.

By Lemma 14, the operator eTf+g is L2-STAR.

Step 2: L is stable by Lie bracket, i.e. (f, g ∈ L =⇒ [f, g] := (Dg)f − (Df)g ∈ L). It suffices
to prove that (f, g ∈ L =⇒ eT[f,g] is L2-STAR), because, for every t ∈ R, tf ∈ L and tT[f,g] =
T[tf,g]. For t ∈ R∗ and n ∈ N∗, the operator

Lt,n :=
(
e

−1
tn

Tf e−tTge
1
tn

Tf etTg
)n

is L2-STAR thanks to Lemma 14. The transport operators Tf , Tg are skew-adjoint. By (16),
etTg is an isomorphism of C∞(Td,C).Thus by applying Lemma 15 we get

Lt,n =

(
e

−1
tn

Tf exp

(
e−tTg 1

tn
TfetTg

))n

.

By Proposition 17,
∀φ ∈ L2(Rd,C), ∥(Lt,n − Lt)φ∥L2 −→

n→∞
0,

where

Lt = exp

(
−1
t
Tf + e−tTg 1

t
TfetTg

)
.

By Lemma 14, this proves that Lt is L2-STAR. By combining Lemma 25 below, with Proposi-
tion 16, we obtain, for every φ ∈ L2(Td,C), ∥(Lt − eT[f,g])φ∥L2 → 0 as t→ 0. Finally, Lemma
14 proves that the operator eT[f,g] is L2-STAR.

Lemma 25. Let f, g ∈ C∞(Td,Rd) vector fields and φ ∈ C∞(Td,C). Then∥∥(e−tTg Tf etTg − Tf − t T[f,g]
)
φ
∥∥
L2 = o

t→0
(t).
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Proof. Step 1: We prove

(e−tTg Tf etTgφ)(x) = ⟨(ϕtg ⋆ f)(x),∇φ(x)⟩+
1

2

(
divf(ϕ−t

g (x)) + tG(t, x)
)
φ(x)

where (ϕtg ⋆ f) is the push forward of the vector field f by the diffeomorphism ϕtg, i.e.

(ϕtg ⋆ f)(x) := Dϕtg(ϕ
−t
g (x))f(ϕ−t

g (x)) = (Dϕ−t
g (x))−1f(ϕ−t

g (x))

and

G(t, x) :=

∫ 0

−1
D(divg)(ϕtθg (x))Dϕ

tθ
g (ϕ

−t
g (x))(ϕtg ⋆ f)(x)dθ.

Using (16) and (35), we obtain

(e−tTg Tf etTgφ)(x) = (Tf etTgφ)(ϕ−t
g (x))e

1
2

∫−t
0 divg(ϕs

g(x))ds

=

(
⟨f,∇(etTgφ)⟩+ 1

2
div(f)(etTgφ)

)
(ϕ−t

g (x))e−
1
2

∫ 0
−t divg(ϕ

s
g(x))ds.

(19)

We deduce from the expression (16) that

(etTgφ)(ϕ−t
g (x)) = φ(x)e

1
2

∫ 0
−t divg(ϕ

s
g(x)ds. (20)

We deduce from (16) and the chain rule that

⟨f(x),∇(etTgφ)(x)⟩ = D(etTgφ)(x)f(x) (21)

=

(
Dφ(ϕtg(x))Dϕ

t
g(x)f(x) +

1

2

∫ t

0
D(divg)(ϕsg(x))Dϕ

s
g(x)f(x)dsφ(ϕ

t
g(x))

)
e

1
2

∫ t
0 divg(ϕs

g(x))ds.

(22)

We deduce from the resolvent relation Dϕsg(y)(Dϕtg(y))−1 = Dϕs−t
g (y) that

⟨f,∇(etTgφ)⟩(ϕ−t
g (x)) =

(
Dφ(x)(ϕtg ⋆ f)(x)

+
1

2

∫ t

0
D(divg)(ϕs−t

g (x))Dϕs−t
g (ϕ−t

g (x))(ϕtg ⋆ f)(x)dsφ(x)
)
e

1
2

∫ 0
−t divg(ϕ

s
g(x))ds.

(23)

We conclude Step 1 by gathering (19), (20) and (23), in which we use the change of variable
s− t = tθ.

Step 2: Conclusion. We deduce from Step 1 and the relation

T[f,g] = ⟨[f, g],∇⟩+
1

2
(D(divg)f −D(divf)g)

that(
e−tTg Tf etTg − Tf − t T[f,g]

)
φ =

〈
ϕtg ⋆ f − f − t[f, g],∇φ

〉
+
t

2
(G(t, .)−G(0, .))φ

+
1

2

(
divf ◦ ϕ−t

g − divf + tD(divf)g
)
φ.

(24)

Thus

∥
(
e−tTg Tf etTg − Tf − t T[f,g]

)
φ∥L2 ≤∥ϕtg ⋆ f − f − t[f, g]∥L∞∥∇φ∥L2

+
t

2
∥G(t, .)−G(0, .)∥L∞∥φ∥L2

+
1

2
∥divf ◦ ϕ−t

g − divf + tD(divf)g∥L∞∥φ∥L2 .

(25)
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The expression F (t, x) := (ϕtg⋆f)(x) defines F ∈ C∞(R×Td,Rd) thus, by Taylor formula,
for every (t, x) ∈ R× Td,∣∣∣∣F (t, x)− F (0, x)− t∂F∂t (0, x)

∣∣∣∣ ≤ |t|22 sup

{∣∣∣∣∂2F∂τ2 (τ, y)
∣∣∣∣ ; (τ, y) ∈ [0, t]× Td

}
.

Moreover, the chain rule and the resolvent relation

∂

∂t
Dϕtg(x) = Dg(ϕtg(x))Dϕ

t
g(x)

prove that

∂F

∂t
(t, x) = (Dϕ−t

g (x))−1Dg
(
ϕ−t
g (x)

)
f(ϕ−t

g (x))− (Dϕ−t
g (x))−1Df(ϕ−t

g (x))g(ϕ−t
g (x))

thus
∂F

∂t
(0, x) = [f, g](x).

The continuous function (t, x) 7→ ∂2t F (t, x) is bounded on the compact set [0, 1]× Td, thus

∥ϕtg ⋆ f − f − t[f, g]∥L∞ = o
t→0

(t). (26)

The same argument applied to the expression F (t, x) := divf(ϕ−t
g (x)) gives∥∥divf ◦ ϕ−t

g − divf + tD(divf)g
∥∥
L∞ = o

t→0
(t). (27)

The same argument applied to G proves

∥G(t, .)−G(0)∥L∞ = o
t→0

(1). (28)

The estimates (25), (26), (27),(28) give the conclusion.

Proposition 26. L0 contains any linear combination of vector fields of the form

f(x) = Π
i∈I

cos(ℓixi) Π
i∈Ic

sin(ℓixi)ek (29)

where I is a subset of {1, . . . , d}, k ∈ {1, . . . , d}, (ℓ1, . . . ℓd) ∈ Nd, and ek = ∂xk
. As a consequence,

Proposition 21 holds.

The proof is inspired by [6, Lemma 6.5]: the main difference and difficulty here, is that
we only have access to gradient vector fields.

Proof. Step 1: L0 contains any vector field of the form f(x) = cos(ℓxj)ej (resp. sin(ℓxj)ej) for
j ∈ {1, . . . , d} and ℓ ∈ N∗. Indeed f = ∇φ where φ(x) = sin(ℓxj)/ℓ (resp. cos(ℓxj)/ℓ).

Step 2: L0 contains f(x) = ej for any j ∈ {1, . . . , d}. By Step 1, L0 contains

[cos(xj)ej , sin(xj)ej ] = cos(xj)
∂

∂xj
(sin(xj)ej)− sin(xj)

∂

∂xj
(cos(xj)ej) (30)

= (cos2(xj) + sin2(xj))ej = ej . (31)

Step 3: L0 contains f(x) = cos(xj)ek (resp. sin(xj)ek) for any j ̸= k ∈ {1, . . . , d}. Indeed, L0

contains

−1

2
[∇ sin(xj) sin(xk),∇ cos(xk)] +

1

2
[∇ sin(xj) cos(xk),∇ sin(xk)] = sin(xj)ek
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(resp.
1

2
[∇ cos(xj) cos(xk),∇ sin(xk)]−

1

2
[∇ cos(xj) sin(xk),∇ cos(xk)] = cos(xj)ek).

These elementary calculations can be carried out as in Step 2.

Step 4: We prove by induction on ℓ ∈ N that L0 contains f(x) = cos(ℓxj)ek (resp. sin(ℓxj)ek) for
every j ̸= k ∈ {1, . . . , d} and ℓ ∈ N∗. The initialization for ℓ = 1 is given by Step 3. We assume
the property proved up to ℓ. By Step 1 and the induction assumption, L0 contains

1

ℓ
[sin(xj)ej , cos(ℓxj)ek] +

1

ℓ
[cos(xj)ej , sin(ℓxj)ek] = cos((ℓ+ 1)xj)ek,

1

ℓ
[sin(xj)ej , sin(ℓxj)ek]−

1

ℓ
[cos(xj)ej , cos(ℓxj)ek] = sin((ℓ+ 1)xj)ek.

Step 5: We prove the first statement of Proposition 26 by induction on the degree of f , defined by
d(f) := ♯{i ∈ {1, . . . , d}; ℓi ̸= 0}. The initialization for d(f) = 1 is given by Step 4. Let s ∈ N∗.
We assume the property proved for any monomial of degree ≤ s. Let f be a monomial with
degree (s+1). Then f(x) = g(x) cos(ℓαxα)ek or g(x) sin(ℓαxα)ek where g is a monomial with
degree s independent of xα.

First case: g(x) does not depend on xk. By the induction assumption and Step 4, L0 contains

1

ℓα
[g(x)eα, sin(ℓαxα)ek] = g(x) cos(ℓαxα)ek,

− 1

ℓα
[g(x)eα, cos(ℓαxα)ek] = g(x) sin(ℓαxα)ek.

Second case: g(x) depends on xk. Then α ̸= k. Thus there exists a monomial g1(x) of degree s
such that g(x) = ∂xk

g1(x). By induction assumption and Step 4, L0 contains

[cos(ℓαxα)ek, g1(x)ek] = cos(ℓα)g(x)ek,

[sin(ℓαxα)ek, g1(x)ek] = sin(ℓα)g(x)ek.

Step 6: We prove the last statement of Proposition 26. Let f ∈ C∞(Td,Rd) a vector field. By
applying Fejer theorem to f and ∇f , we obtain a sequence (fk)k∈N of trigonometric poly-
nomials vector fields such that ∥fk − f∥W 1,∞ → 0 as k → ∞. By the first statement of
Proposition 26 and Proposition 24, for every k ∈ N, the operator eTfk is L2-STAR. By Lemma
14, to prove that eTf is L2-STAR, it suffices to prove that

∀ψ ∈ L2(Td,C), ∥(eTfk − eTf )ψ∥L2 −→
ϵ→0

0. (32)

It suffices to prove (32) for every ψ in a dense subset of L2(Td,C). So we consider ψ ∈
L∞(Td,C) . Gronwall Lemma proves that

∀t ∈ R, ∥ϕtf − ϕtfk∥L∞ ≤ t∥f − fk∥L∞et∥f∥C1 . (33)

Thus, for every x ∈ Td,∫ 1

0

∣∣divf(ϕsf (x))− divfk(ϕ
s
fk
(x))

∣∣ ds ≤ ∥f∥C2∥f − fk∥L∞e∥f∥C1 + ∥f − fk∥W 1,∞ −→
k→∞

0. (34)

For almost every x ∈ Td, we have the convergence eTfkψ(x) → eTfψ(x) as k → ∞ and the
domination, for k large enough |eTfkψ(x)| ≤ ∥ψ∥L∞e∥f∥C1+1. The dominated convergence
theorem proves that ∥(eTfk − eTf )ψ∥L2 → 0 as ϵ→ 0.
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4 Transport equations on Rd

In this section, we consider the system (10) on the whole space Rd and we prove Theorem 6.

4.1 Proof strategy for Theorem 6
Definition 27 (Unitary transport operator associated with a vector field). For f ∈ C∞(Rd,Rd),
the unitary transport operator associated with f is defined by

Tfφ = ⟨f,∇φ⟩+ 1

2
div(f)φ, D(Tf ) := {φ ∈ L2(Rd,C); Tfφ ∈ L2(Rd,C)} . (35)

Note that Tfφ is well defined in D′(Rd), which gives a sense to this definition.

Lemma 28. Let f ∈ C∞(Rd,Rd) be a globally Lipschitz vector field and P := ϕ1f be the associated
flow at time 1 (see Definition 9). Then the unitary composition operator associated with P (see (5))
satisfies LP = eTf . Moreover for every t ∈ R and φ ∈ L2(Rd,C), (16) holds.

Lemma 28 can be proved as Lemma 19. Since f is globally Lipschitz, the flow ϕtf is well
defined on Rd for every t ∈ R and divf is bounded on Rd.

The proof strategy for Theorem 6 is the same as for Theorem 4 in the previous section:
taking into account Thurston’s result (i.e. Proposition 20 with M = Rd) and Lemma 14, it
suffices to prove the following result.

Proposition 29. Let V satisfying (11). System (10) satisfies the following property: for every f ∈
C∞
c (Rd,Rd), the operator eTf is L2-STAR.

To prove Proposition 29, the first step is the small-time approximate control of the phase,
developed in Subsection 4.2. It allows to obtain the small-time approximate reachability of
transport operators along gradient vector fields in Subsection 4.3. Finally, in Subsection 4.4,
we obtain the same property for any vector field.

4.2 Pre-requisite: small-time control of the phase
Proposition 30. Let V satisfying (11). System (10) satisfies the following properties:

• for every j ∈ {1, . . . , d} and u ∈ R, the operator eu∂xj is L2-STAR,

• for every φ ∈ L2(Rd,R), the operator eiφ is L2-STAR

The proof of Proposition 30 is an adaptation to our framework of the one given in [30,
Theorem 1] for a similar system.

Proof. Step 1: We prove that, for every φ ∈ span{x1, . . . , xd, e−|x|2/2}, the operator eiφ is L2-
STAR. Let α ∈ Rd+1 and φ : x ∈ Rd 7→ α1x1 + · · · + αdxd + αd+1e

−|x|2/2. For any τ >
0, the operator eiτ(∆−V )+iφ is L2-exactly reachable in time τ because associated with the
constant controls uj = −αj/τ . The operator τ(∆ − V ) + φ is essentially self-adjoint on
C∞
c (Rd,C) thus its closure Aτ is self-adjoint. The multiplicative operator φ is self-adjoint

on {ψ ∈ L2(Rd,C);φψ ∈ L2(Rd,C)}. C∞
c (Rd,C) is a common core of Aτ and φ. For every

ψ ∈ C∞
c (Rd,C), ∥(Aτ −φ)ψ∥L2 = τ∥(∆−V )ψ∥L2 → 0 as τ → 0. Thus, by Proposition 16, for

every ψ ∈ L2(Rd,C), ∥(eiτ(∆−V )+iφ − eiφ)ψ∥L2 → 0 as τ → 0. Therefore, by Lemma 14, the
operator eiφ is L2-STAR.
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Step 2: We prove that, for every j ∈ {1, . . . , d} and u ∈ R, the operator eu∂xj is L2-STAR. Let
j ∈ {1, . . . , d}, u ∈ R∗. By Step 1 and Lemma 14, for every τ > 0, the operator

Lτ := e
iuxj
2τ eiτ(∆−V )e−

iuxj
2τ

is L2-approximately reachable in time τ+ . The operator τ(∆− V ) is essentially self-adjoint
onC∞

c (Rd,C) by Proposition 10 thus its closureA is self-adjoint. The operatorB := uxj/(2τ)
is self-adjoint on D(B) := {ψ ∈ L2(Rd,C);xjψ ∈ L2(Rd,C)}. C∞

c (Rd,C) is a core of A.
The operator eiB is an isomorphism of C∞

c (Rd,C). Thus, by Proposition 15 and standard
computations

Lτ = exp

(
iτe

iuxj
2τ (∆− V )e−

iuxj
2τ

)
= exp

(
iτ(∆− V ) + u∂xj − i

u2

2τ

)
. (36)

By Definition 13,

L′
τ := ei

u2

2τ Lτ = exp
(
iτ(∆− V ) + u∂xj

)
is also L2-approximately reachable in time τ+. The operator

τe
iuxj
2τ (∆− V )e−

iuxj
2τ +

u2

2τ
= τ(∆− V )− iu∂xj

is essentially self-adjoint on C∞
c (Rd,C) by Proposition 10, thus its closure Aτ is self-adjoint.

The operator A0 := −iu∂xj is self-adjoint on D(A0) := {ψ ∈ L2(Rd,C); ∂xjψ ∈ L2(Rd,C)}.
C∞
c (Rd;C) is a common core of Aτ and A0. For every ψ ∈ C∞

c (Rd,C), ∥(Aτ − A0)ψ∥L2 =
τ∥(∆ − V )ψ∥L2 → 0 as τ → 0. Thus, by Proposition 16, for every ψ ∈ L2(Rd,C), ∥(L′

τ −
eu∂xj )ψ∥L2 = ∥(eiAτ − eiA0)ψ∥L2 → 0 as τ → 0. By Lemma 14, this proves that the operator
eu∂xj is L2-STAR.

Step 3: We prove that, if φ ∈ C1(Rd,R) and eiλφ is L2-STAR for every λ ∈ R then the operator
e−i∂xjφ is L2-STAR. Let τ > 0. The assumption on φ, Step 2 and Lemma 14 prove that the
operator

L̃τ := ei
φ
τ eτ∂xj e−iφ

τ

is L2-STAR. The characteristic method proves that, for every ψ ∈ L2(Rd,C),

L̃τψ : x ∈ Rd 7→ ψ(x+ τej)e
−i

φ(x+τej)−φ(x)

τ ∈ C.

The continuity of the translation on L2(Rd,C) and the dominated convergence theorem
prove that, for every ψ ∈ L2(Rd,C), ∥(L̃τ − e−i∂xjφ)ψ∥L2 → 0 as τ → 0. Finally, by Lemma
14, the operator e−i∂xjφ is L2-STAR.

Step 4: Iteration. We define by induction an increasing sequence of sets (Hj)j∈N by H0 =

span{e−|x|2/2} and, for every j ∈ N∗,

Hj := spanR

{
φ0 −

d∑
k=1

∂xk
φk;φ0, . . . , φd ∈ Hj−1

}
andH∞ := ∪j∈NHj . Thanks to Lemma 14, Steps 1 and 3, for every φ ∈ H∞, the operator eiφ

is L2-STAR. Moreover, by the proof of [30, Lemma 5.2], H∞ is dense in L2(Rd,C) because it
contains the linear combinations of Hermite functions.

Step 5: Conclusion. Let φ ∈ L2(Rd,R). There exists (φn)n∈N ⊂ H∞ such that ∥φn − φ∥L2 → 0
as n → ∞. Up to an extraction, one may assume that φn → φ almost everywhere on Rd,
as n → ∞. The dominated convergence theorem proves that, for every ψ ∈ L2(Rd,C),
∥(eiφn − eiφ)ψ∥L2 → 0 as n → ∞. Finally, Step 4 and Lemma 14 prove that the operator eiφ

is L2-STAR.
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4.3 Small-time reachability of transport operators along gradient
vector fields
Proposition 31. Let V satisfying (11). System (10) satisfies the following property: if φ ∈ C∞ ∩
L2(Rd,R) and f := ∇φ ∈W 1,∞∩L4(Rd,Rd) then the unitary transport operator eTf is L2-STAR.

Proof. Let φ ∈ C∞ ∩ L2(Rd,R) be such that ∇φ ∈ W 1,∞ ∩ L4(Rd,Rd) and f := 2∇φ. Let
n ∈ N∗ and τ > 0. Proposition 30 and Lemma 14 prove that the operator

Lτ,n :=

(
ei

|∇φ|2
nτ ei

φ
τ ei

τ
n
(∆−V )e−iφ

τ

)n

is L2-approximately reachable in time τ+, because φ, |∇φ|2 ∈ L2(Rd,R).

Step 1: We prove that

Lτ,n =

(
ei

|∇φ|2
nτ exp

(
i
τ

n
ei

φ
τ (∆− V )e−iφ

τ

))n

. (37)

The operator (∆ − V ) is essentially self-adjoint on C∞
c (Rd,C) by Proposition 10, because

V satisfies (11), thus its closure A is self-adjoint. The operator B := φ/τ is self-adjoint
on D(B) := {ψ ∈ L2(Rd,C);φψ ∈ L2(Rd,C)}. The operator eiB is an isomorphism of
C∞
c (Rd,R) because φ ∈ C∞(Rd). Thus, Lemma 15 proves (37).

Step 2: We prove that Lτ is L2-reachable in time τ+, where

Lτ := exp (iτ(∆− V ) + Tf ) .

The operator ei
φ
τ (∆ − V )e−iφ

τ is essentially self-adjoint on C∞
c (Rd,C) by Proposition 10,

thus its closure A1 is self-adjoint. The multiplicative operator B1 := |∇φ|2/τ is self-adjoint
on L2(Rd,C) because |∇φ|2 ∈ L∞(Rd,R). A1 + B1 is self-adjoint on D(A1) because B1 is
bounded. Thus, by Proposition 17, for every ψ ∈ L2(Rd,C), ∥(Lτ,n − L′

τ )ψ∥L2 −→
n→∞

0 where

L′
τ := exp

(
i

{
|∇φ|2

τ
+ τei

φ
τ (∆− V )e−iφ

τ

})
and standard computations prove that

τei
φ
τ (∆− V )e−iφ

τ +
|∇φ|2

τ
= τ(∆− V )− 2i⟨∇φ,∇⟩ − i∆φ = τ(∆− V )− iTf (38)

thus L′
τ = Lτ . By Lemma 14, the operator Lτ is L2-approximately reachable in time τ+.

Step 3: We prove that the operator eTf is L2-STAR. The operator (38) defined on C∞
c (Rd,C)

has a self-adjoint closure Aτ by Propositions 10 and 12. The operator A0 := −iTf is self-
adjoint because f ∈ W 1,∞(Rd,Rd). C∞

c (Rd,C) is a common core of Aτ and A0. For every
ψ ∈ C∞

c (Rd,C), ∥(Aτ − A0)ψ∥L2 = τ ∥(∆− V )ψ∥L2 → 0 as τ → 0. Thus, by Proposition 16,
for every ψ ∈ L2(Rd,C), ∥(Lτ − eTf )ψ∥L2 = ∥(eiAτ − eiA0)ψ∥L2 → 0 as τ → 0. Finally, by
Lemma 14, the operator eTf is L2-STAR.

4.4 Small-time reachability of transport operators along any vector
field
Let (e1, . . . , ed) be the canonical basis of Rd. We introduce the sets

L := {f ∈ C∞(Rd,Rd) globally Lipschitz ; ∀t ∈ R, etTf is L2-STAR} ,
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G := {e1, . . . , ed} ∪ {∇φ;φ ∈ C∞ ∩ L2(Rd,R),∇φ ∈W 1,∞ ∩ L4(Rd,Rd)}

and the Lie subalgebra of C∞(Rd,Rd) generated by G,

L0 := Lie(G).

By the first conclusion of Proposition 30 and Proposition 31, G ⊂ L.

Proposition 32. L is a Lie algebra thus L0 ⊂ L.

The proof is the same as for Proposition 24. Only Lemma 25 requires the following adap-
tation.

Lemma 33. Let f, g ∈ C∞(Rd,Rd) globally Lipschitz and φ ∈ C∞
c (Rd,C). Then∥∥(e−tTg Tf etTg − Tf − t T[f,g]

)
φ
∥∥
L2 = o

t→0
(t).

The proof of Lemma 33 is the same as for Lemma 25, with L∞(K)-norms in the estimate
(25), where K ⊂ Rd is the compact set defined by K = Supp(φ).

Proposition 34. L0 contains any linear combination of vector fields of the form

∂n1
x1
. . . ∂nd

xd
e−|x|2/2ej (39)

where n = (n1, . . . , nd) ∈ Nd and j ∈ {1, . . . , d}. Thus Proposition 29 holds.

Proof. Step 1: We prove the first statement. Let n ∈ Nd and j ∈ {1, . . . , d}. By definition of L0,
this Lie algebra contains the following vector fields

hj := −4[∇xje−|x|2/4,∇e−|x|2/4] = (2 + |x|2)e−|x|2/2ej ,

kj := −8[∇
x2j
2
e−|x|2/4,∇xje−|x|2/4] = (8− 2x2j + x2j |x|2)e−|x|2/2ej ,

ad2ejhj = (−2x2j − |x|2 + x2j |x|2)e−|x|2/2ej ,

ℓj := kj − ad2ejhj = (8 + |x|2)e−|x|2/2ej ,

mj := (ℓj − hj)/6 = e−|x|2/2ej ,

adn1
e1 . . . ad

nd
ed
mj = ∂n1

x1
. . . ∂nd

xd
e−|x|2/2ej .

Step 2: Density of L0. By Step 1,

Span{ψn(x)ej ; n ∈ Nd, j ∈ {1, . . . , d}} ⊂ L0,

where the ψn are the Hermite functions on Rd. Thus L0 is dense in L2(Rd), but it is also, for
any s ≥ 0, dense in L2((1 + |x|2)sdx) and in Hs(Rd) (by Plancherel, because ψ̂n = (i)|n|ψn).

Step 3: We prove Proposition 29. Let f ∈ C∞
c (Rd,Rd). By Step 2, there exists a sequence

(fk)k∈N ⊂ L0 such that ∥f − fk∥W 1,∞ → 0 as k → ∞. By Proposition 32, for every k ∈ N,
the operator eTfk is L2-STAR. By Lemma 14, to prove that eTf is L2-STAR, it suffices to prove
that

∀ψ ∈ L2(Rd,C) , ∥(eTfk − eTf )ψ∥L2 −→
ϵ→0

0. (40)

It suffices to prove (40) for any ψ in a dense subset of L2 because the operators (eTfk − eTf )
are bounded uniformly with respect to k (by 2). So we consider ψ ∈ C∞

c (Rd,C). By (33)
and (34), for almost every x ∈ Rd, we have the convergence eTfkψ(x) → eTfψ(x) as k → ∞
and the domination |eTfkψ(x)| ≤ ∥ψ∥∞e∥f∥∞+11K(x) whereK is a compact subset of Rd that
contains ∪k∈Nϕ1fk(Supp(ψ)). The dominated convergence theorem gives the conclusion.
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5 Composition by diffeomorphism on Td at higher reg-
ularity

In this section, we consider system (7) with state-space H = H2s(Td,C) where s ∈ N∗. The
goal of this section is to prove the following regular versions of Theorem 4 and Corollary 5.

Theorem 35. Let s ∈ N∗ and V ∈ W 2(s+1),∞(Td,R). System (7) satisfies the following property:
for every ψ0 ∈ H2s(Td,C),

{LPψ0;P ∈ Diff0(Td)} ⊂ AdhH2s(Td)Reachst(ψ0).

Corollary 36. Let s ∈ N∗ and V ∈ W 2(s+1),∞(Td,R). System (7) satisfies the following property:
for any k ∈ Zd, J1, J2 ⊂ {1, . . . , d}, and ε > 0, there exist T ∈ [0, ε], θ ∈ R and u : [0, T ] → R2d

piecewise constant such that

∥ψ(T ;u, fk,J1)− eiθfk,J2∥H2s(Td) < ε,

where the functions fk,Ji , i = 1, 2, are defined as in (9).

The proof of Theorem 35 follows the same strategy as the proof of Theorem 4: each time
we obtain anL2(Td,C)-convergence result, we prove an additionalH2(s+1)(Td,C)-bound, so
that an interpolation argument provides the H2s(Td,C)-convergence. Corollary 36 follows
from Theorem 35 exactly as Corollary 5 does from 4 (see end of Sec. 3.1). In Section 5.1 we
estimate the growth of the Sobolev norms of the solution. In Section 5.2, we prove a regular
version of the small-time control of the phase. In Section 6.3, we prove a regular version of
the small-time control of transport operators, and consequently Theorem 35 and Corollary
36.

5.1 Growth of Sobolev norms
Let us start by recalling the following well-posedness result.

Proposition 37. Let s ∈ N∗, V ∈ W 2s,∞(Td,R), T > 0, u = (u1, . . . , u2d) : (0, T ) → R2d

piecewise constant and ψ0 ∈ H2s(Td,C). The solution ψ of the Cauchy problem (7) belongs to
C0([0, T ], H2s(Td,C)). Moreover, there exists C = C(s, V, ∥u∥L1) > 0 such that, for every t ∈
[0, T ], ∥ψ(t;u, .)∥L(H2s) ≤ C.

Proof. When ∥u∥L1 is small enough, this can be proved by applying a fixed point argument
in C0([0, T ], H2s(Td,C)) on the Duhamel formula

ψ(t) = ei∆ψ0 − i
∫ t

0
ei∆(t−s)

V +
d∑

j=1

(u2j−1(s) sin+u2j(s) cos)⟨bj , x⟩

ψ(s)ds

because the multiplicative operators V , sin⟨bj , x⟩, cos⟨bj , x⟩ are bounded on H2s(Td,C).
When ∥u∥L1 is not small enough, we iterate the previous result. The estimate is a conse-
quence of Gronwall Lemma.

We shall need the following regular version of the Trotter-Kato formula, whose proof can
be found in [14].
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Proposition 38. LetA,B,H be as in Proposition 17 andX be a dense vector subspace ofH equipped
with a norm ∥.∥X . We assume there exists C > 0 such that, for every t ∈ [0, 1], eitA, eitB, ei(A+B)

are uniformly bounded operators on X and

∥etA∥L(X), ∥etB∥L(X) ≤ eCt. (41)

Then, for every (strict) interpolation space Y betweenH and X , and for every ψ0 ∈ Y ,∥∥∥(eiBn eiAn )n ψ0 − ei(A+B)ψ0

∥∥∥
Y
−→

n→+∞
0

We conclude this section with an estimate on the growth of Sobolev norms.

Proposition 39. Let s ∈ N∗, V, g ∈ C2s,∞(Td,R) be such that ∇V,∇g ∈ W 2s−1,∞(Td,Rd). Let
f ∈ W 2s+1,∞(Td,Rd) be a vector field, and a, b, c ∈ R. For τ ∈ (0, 1], consider the self-adjoint
operator

D(Aτ ) = H2(Td,C), Aτ = τa(∆− V ) + iτ bTf + τ cg.

There exists C = C(s,∇V, f,∇g) > 0 such that for every (τ, t) ∈ (0, 1] × [0, 1], ∥eitAτ ∥L(H2s) ≤
eC(τa+τb+τc)t.

Proof. For smooth data, v(t) := eitAτψ0 satisfies

i∂tv = −τa(∆− V )v − iτ bTfv − τ cgv,

Im⟨∆v, v⟩Hs′ = Im⟨V ∂αx v, ∂αx v⟩ = Im⟨g∂αx v, ∂αx v⟩ = 0, thus for any multi-index α ∈ Nd with
|α| ≤ 2s we have

∂t∥∂αx v∥2L2 ≤ τa|⟨V v, ∂2αx v⟩L2 |+ τ b|⟨Tfv, ∂2αx v⟩L2 |+ τ c|⟨gv, ∂2αx v⟩L2 |
≤ C(τa + τ b + τ c)∥v∥2H2s ,

where C = C(∥∇V ∥W 2s−1,∞ , ∥f∥W 2s+1,∞ , ∥∇g∥W 2s−1,∞). Hence, we deduce that

∥v(t)∥H2s ≤ eC(τa+τb+τc)t∥ψ0∥H2s . (42)

5.2 Small-time H2s-control of the phase on Td

Proposition 40. Let V ∈ W 2(s+1),∞(Td,R). System (7) satisfies the following property: for every
φ ∈ C2s(Td,R), the operator eiφ is H2s-STAR.

Proof. We follow the proof of Proposition 22, with the same notations.

Step 1: We prove that, for every φ ∈ H0 = spanR{sin⟨ej , x⟩, cos⟨ejx⟩; j ∈ {1, . . . , d}}, the operator
eiφ is H2s-STAR. For any τ > 0, the operator Lτ = eiτ(∆−V )+iφ is H2s-exactly reachable in
time τ . Let ψ ∈ H2s(Td,C). In the proof of Proposition 22, we proved that ∥(Lτ−eiφ)ψ∥L2 →
0 as τ → 0. Since V, φ ∈W 2(s+1),∞(Td,R), Proposition 39 providesC > 0 such that, for every
τ ∈ [0, 1], ∥Lτ∥L(H2(s+1)) ≤ C. Thus, by interpolation ∥(Lτ − eiφ)ψ∥H2s → 0 as τ → 0. By
Lemma 14, this proves that eiφ is H2s-STAR.

Step 2: We prove that, if φ ∈ C∞(Td,R) and eiλφ is H2s-STAR for every λ ∈ R then e−i|∇φ|2 is
H2s-STAR. For any τ > 0, the operator L̃τ = exp

(
iτ(∆− V )−

√
τ(2⟨∇φ,∇⟩+∆φ)− i|∇φ|2

)
is H2s-approximately reachable in time τ+. Let ψ ∈ H2s(Td,C). In the proof of Proposi-
tion 22, we proved that ∥(L̃τ − e−i|∇φ|2)ψ∥L2 → 0 as τ → 0. Since V ∈ W 2s+2,∞(Td,R)
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and φ ∈ W 2s+4,∞(Td,R), Proposition 39 provides C > 0 such that, for every τ ∈ [0, 1],
∥L̃τ∥L(H2(s+1)) ≤ C. Thus, by interpolation ∥(L̃τ − e−i|∇φ|2)ψ∥H2s → 0 as τ → 0. By Lemma
14, this proves that e−i|∇φ|2 is H2s-STAR.

Step 3: Iteration. For every φ ∈ H∞, eiφ is H2s-STAR. Moreover, the set H∞ is dense in
C2s(Td,R).

Step 4: Conclusion. Let φ ∈ C2s(Td,R). There exists (φn)n∈N ⊂ H∞ such that ∥φn−φ∥C2s → 0
as n → ∞. Then, for every ψ ∈ H2s(Td,C), ∥(eiφn − eiφ)ψ∥H2s → 0 as n → ∞. Finally, Step
3 and Lemma 14 prove that the operator eiφ is H2s-STAR.

5.3 Small time H2s-reachability of transport operators on Td

Theorem 35 is a consequence of Lemma 14 and the following regular version of Proposition
23.

Proposition 41. Let V ∈ W 2(s+1),∞(Td,R). System (7) satisfies the following property: if φ ∈
C∞(Td,R) and f := ∇φ then the operator eTf is H2s-STAR.

Proof. We follow the proof of Proposition 23, with the same notations.

Step 1: The operator Lτ,n is H2s-approximately reachable in time τ+. This is a consequence of
Proposition 40.

Step 2: We prove that Lτ is H2s-approximately reachable in time τ+. In the application of Propo-
sition 38 (instead of Proposition 17), the bounds (41) are given by Proposition 39.

Step 3: We prove that eTf is H2s-STAR. Let ψ ∈ H2s(Td,C). In the proof of Proposition 23,
we have proved that ∥(Lτ − eTf )ψ∥L2 → 0 as τ → 0. Since φ ∈ C∞(Td,R), Proposition 39
provides C > 0 such that, for every τ ∈ [0, 1], ∥Lτ∥L(H2(s+1)) ≤ C. Thus by interpolation,
∥(Lτ − eTf )ψ∥H2s → 0 as τ → 0. By Lemma 14, this proves that the operator eTf is H2s-
STAR.

Proposition 42. Let V ∈ W 2(s+1),∞(Td,R). System (7) satisfies the following property: for every
vector field f ∈ C∞(Td,Rd), the operator eTf is H2s-STAR.

To prove Proposition 42, we introduce the set

Ls := {f ∈ C∞(Td,Rd);∀t ∈ R, etTf is H2s-STAR}, (43)

By Proposition 41, G ⊂ Ls.

Proposition 43. Ls is a Lie algebra, thus L0 ⊂ Ls.

Proof. We follow the proof of Proposition 24.

Step 1: We prove that Ls is stable by summation, i.e. (f, g ∈ Ls =⇒ eTf+g is H2s-STAR). When
using Trotter-Kato formula, we apply Proposition 38 instead of Proposition 17. Since f, g ∈
W 2(s+1),∞(Td,Rd), Proposition 39 provides C > 0 such that, for every t ∈ [0, 1], ∥etTf ∥L(H2s),
∥etTf ∥L(H2s) ≤ eCt, which corresponds to the assumption (41).

Step 2: We prove that Ls is stable by Lie bracket i.e. (f, g ∈ Ls =⇒ eT[f,g] is H2s-STAR). Let
t ∈ R∗. For every n ∈ N∗, the operator Lt,n is H2s-STAR. When using Trotter-Kato formula,
instead of Proposition 17, we apply Proposition 38 withA← 1

t Tf andB ← 1
t e

−tTgTgetTg . An
explicit expression for B is given in the proof of Lemma 25 (Step 1). An energy argument (as
in the proof of Proposition 39) proves the existence of C > 0 such that, for every θ ∈ [0, 1],
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∥eθB∥L(H2(s+1) ≤ C. Here, the equation has time-depending coefficients, but this dependence
is smooth, which allows the energy argument. Thus, for every ψ ∈ H2s(Td,C), ∥(Lt,n −
Lt)ψ∥H2s → 0 as n→∞ and Lemma 14 proves that Lt is H2s-STAR.

The explicit expression given in the Step 1 of the proof of Lemma 25 proves that (writing
Lt = eAt)

At = ⟨Ft,∇⟩+ at where Ft :=
1

t
(ϕtg ⋆ f − f), at =

1

2t

(
divf ◦ ϕ−t

g − divf
)
+

1

2
G(t, .).

Since the vector fields f, g are smooth, there exists C > 0 such that, for every t ∈ [0, 1],
∥Ft∥W 2s+3,∞ , ∥at∥W 2s+2,∞ ≤ C. Thus, by Proposition 39, there exists C > 0 such that, for
every t ∈ [0, 1], ∥Lt∥L(H2(s+1)) ≤ C.

Forψ ∈ H2s(Td,C), we have proved in the proof of Proposition 24 that ∥(Lt−eT[f,g])ψ∥L2 →
0 as t → 0, thus an interpolation argument proves that ∥(Lt − eT[f,g])ψ∥H2s → 0 as t → 0.
Finally Lemma 14 proves that eT[f,g] is H2s-STAR.

Proof of Proposition 42: Let f ∈ C∞(Td,Rd) a vector field. There exists a sequence (fϵ)ϵ>0

of trigonometric polynomials such that ∥fϵ − f∥C2s+1 → 0 as ϵ → 0. Propositions 26 and 43
prove that, for every ϵ > 0, eTfϵ isH2s-STAR. For every ψ ∈ H2s(Td,C), ∥(eTfϵ−eTf )ψ∥H2s →
0 as ϵ→ 0. Thus, by Lemma 14, the operator eTf is H2s-STAR.

Proof of Theorem 35. It suffices to combine Propositions 20, 42 and Lemma 14.

6 Composition by diffeomorphism on Rd at higher reg-
ularity
The goal of this section is to prove Corollary 8 and the following higher regular versions of
Theorem 6.

Theorem 44. Let s ∈ N and V ∈ W 2(s+1),∞(Rd,R). For every ψ0 ∈ H2s(Rd,C), system (7)
satisfies

{LPψ0;P ∈ Diff0
c(Rd)} ⊂ AdhH2sReachst(ψ0).

6.1 Well-posedness
We point out one difference w.r.t. the previous section on Td, concerning the proof of the
well-posedness of system (10) in H2s(Rd,C). This is due to the fact that, contrarily to system
(7), system (10) has unbounded control operators xj , hence the proof of Proposition 37 does
not work. Anyways, this difficulty can be handled, since∇xj is bounded (see, e.g., [22]). We
recall this fact in the following proposition.

Proposition 45. Let s ∈ N, V ∈ W 2s,∞(Rd,R), T > 0, u = (u0, . . . , ud) : (0, T ) → Rd+1

piecewise constant and ψ0 ∈ H2s(Rd,C). The solution ψ of the Cauchy problem (10) belongs to
C0([0, T ], H2s(Rd,C)). Moreover, there exists C = C(s, V, u) > 0 such that, for every t ∈ [0, T ],
∥ψ(t;u, .)∥L(H2s) ≤ C.

Proof. It suffices to prove the result when u = (u0, u1, . . . , ud+1) ∈ Rd+1 is constant. Let
v := (u1, . . . , ud) ∈ Rd. For every T > 0, there exists C = C(T, v) such that for every
t ∈ [0, T ], ∥eit(∆+⟨v,x⟩)∥L(H2s) ≤ C; indeed,

∥eit(∆+⟨v,x⟩)ψ0∥2Ḣs =

∫
Rd

|ξ|2s|ψ̂0(ξ − vt)|2dξ =
∫
Rd

|ξ + vt|2s|ψ̂0(ξ)|2dξ. (44)
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Thus, a fixed point argument in C0([0, T ], H2s(Rd,C)) inspired by the Duhamel formula

ψ(t) = eit(∆+⟨v,x⟩)ψ0 +

∫ t

0
ei(t−s)(∆+⟨v,x⟩)(V + ud+1e

−|x|2/2)ψ(s)ds

proves the well-posedness in H2s(Rd,C).

6.2 Small-time H2s-control of the phase on Rd

Proposition 46. Let V ∈W 2(s+1),∞(Rd,R). System (10) satisfies the following properties:

• for every j ∈ {1, . . . , d} and u ∈ R, the operator eu∂xj is H2s-STAR,

• for every φ ∈ Hσ(Rd,R), σ > 2s+ d/2, the operator eiφ is H2s-STAR

Proof. We follow the proof of Proposition 30, with the same notations.

Step 1: We prove that, for every φ ∈ span{x1, . . . , xd, e−|x|2/2}, the operator eiφ is H2s-STAR.
Let α ∈ Rd+1 and φ : x ∈ Rd 7→ α1x1 + · · · + αdxd + αd+1e

−|x|2/2. For any τ > 0, the
operator Lτ = eiτ(∆−V )+iφ is H2s-exactly reachable in time τ . Let ψ ∈ H2s(Td,C). In the
proof of Proposition 30, we proved that ∥(Lτ − eiφ)ψ∥L2 → 0 as τ → 0. Since ∇V,∇φ ∈
W 2(s+1),∞(Rd,R), Proposition 39 (where the only change is that Td is replaced with Rd)
provides C > 0 such that, for every τ ∈ [0, 1], ∥Lτ∥L(H2(s+1)) ≤ C. Thus, by interpolation
∥(Lτ − eiφ)ψ∥H2s → 0 as τ → 0. By Lemma 14, this proves that eiφ is H2s-STAR.

Step 2: We prove that, for every j ∈ {1, . . . , d} and u ∈ R, the operator eu∂xj is H2s-STAR. Let
j ∈ {1, . . . , d}, u ∈ R∗. By Step 1 and Lemma 14, for every τ > 0, L′

τ is H2s-approximately
reachable in time τ+. Let ψ ∈ H2s(Rd,C). In the proof of Proposition 30 we proved that
∥(L′

τ − e
u∂xj )ψ∥L2 → 0 as τ → 0. Since V ∈ W 2(s+1),∞(Rd,R), Proposition 39 (where the

only change is that Td is replaced with Rd) provides C > 0 such that, for every τ ∈ [0, 1],
∥Lτ∥L(H2(s+1)) ≤ C. Thus, by interpolation ∥(L′

τ − e
u∂xj )ψ∥H2s → 0 as τ → 0. By Lemma 14,

this proves that eu∂xj is H2s-STAR.

Step 3: We prove that, if φ ∈ W 2s+3,∞(Rd,R) and eiλφ is H2s-STAR for every λ ∈ R then
e−i∂xjφ is H2s-STAR. For any τ > 0, the operator L̃τ = exp

(
τ∂xj − i∂xjφ

)
is small-time H2s-

approximately reachable. Let ψ ∈ H2s(Rd,C). In the proof of Proposition 30, we proved that
∥(L̃τ − e−i∂xjφ)ψ∥L2 → 0 as τ → 0. Since V, ∂xjφ ∈ W 2s+2,∞(Rd,R), Proposition 39 (where
the only change is that Td is replaced with Rd) provides C > 0 such that, for every τ ∈ [0, 1],
∥L̃τ∥L(H2(s+1)) ≤ C. Thus, by interpolation ∥(L̃τ − e−i∂xjφ)ψ∥H2s → 0 as τ → 0. By Lemma

14, this proves that the operator e−i∂xjφ is H2s-STAR.

Step 4: Iteration. For every φ ∈ H∞, eiφ is H2s-STAR. Moreover, the set H∞ is dense in
H2s(Td,R) for any s > 0.

Step 5: Conclusion. Let φ ∈ Hσ(Td,R) with σ > 2s + d/2. There exists (φn)n∈N ⊂ H∞ such
that ∥φn − φ∥Hσ → 0 as n → ∞ (and, in particular, ∥φ(k)

n − φ(k)∥L∞ → 0, as n → ∞, for
any k ≤ 2s, being Hσ−k(Rd) ⊂ L∞(Rd) for σ − k > d/2). Then, for every ψ ∈ H2s(Td,C),
∥(eiφn − eiφ)ψ∥H2s → 0 as n→∞. Finally, Step 4 and Lemma 14 prove that the operator eiφ

is H2s-STAR.
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6.3 Small time H2s-reachability of transport operators on Rd

Theorem 44 is a consequence of Lemma 14 and the following regular version of Proposition

Proposition 47. Let V ∈W 2(s+1),∞(Rd,R). System (7) satisfies the following property: ifφ, |f |2 ∈
Hσ(Rd,R), σ > 2s+ d/2, where f := ∇φ, then the operator eTf is H2s-STAR.

Proof. We follow the proof of Proposition 31, with the same notations.

Step 1: The operator Lτ,n is H2s-approximately reachable in time τ+. This is a consequence of the
second statement of Proposition 46.

Step 2: We prove that Lτ is H2s-approximately reachable in time τ+. In the application of Propo-
sition 38 (instead of Proposition 17), the bounds (41) are given by Proposition 39 (where the
only change is that Td is replaced with Rd). Notice that the hypothesis of Proposition 39 are
satisfied since Hσ(Rd) ⊂W 2s+1,∞(Rd) for σ > 2s+ d/2.

Step 3: We prove that eTf is H2s-STAR. Let ψ ∈ H2s(Td,C). In the proof of Proposition 31, we
have proved that ∥(Lτ − eTf )ψ∥L2 → 0 as τ → 0. Since φ, f ∈ W 2s+1,∞(Rd), Proposition 39
(where the only change is that Td is replaced with Rd) provides C > 0 such that, for every
τ ∈ [0, 1], ∥Lτ∥L(H2(s+1)) ≤ C. Thus by interpolation, ∥(Lτ − eTf )ψ∥H2s → 0 as τ → 0. By
Lemma 14, this proves that the operator eTf is H2s-STAR.

Proposition 48. Let V ∈ W 2(s+1),∞(Td,R). System (7) satisfies the following property: for every
vector field f ∈ C∞

c (Rd,Rd), the operator eTf is H2s-STAR.

To prove Proposition 48, we introduce the sets

Ls := {f ∈ C∞(Rd,Rd);∇f ∈ S(Rd,Rd), ∀t ∈ R, etTf is H2s-STAR}, (45)

G := {e1, . . . , ed} ∪ {∇φ;φ ∈ S(Rd,R)}

where S(Rd,R) denotes the Schwartz class, and the Lie subalgebra of C∞(Rd,Rd) generated
by G,

L0 := Lie(G).

By Proposition 47, G ⊂ Ls.

Proposition 49. Ls is a Lie algebra, thus L0 ⊂ Ls.

The proofs of Propositions 49 and 48 are completely analogous to the proofs of Proposi-
tion 43 and 42, so we omit the details.

Proof of Theorem 44. It suffices to combine Propositions 20, 48 and Lemma 14.

6.4 Proof of Corollary 8
We introduce the normed space H1

h(Rd) defined by

H1
h(Rd) = {f ∈ H1(Rd,C); |x|f ∈ L2(Rd,C)}, ∥f∥H1

h
= (∥∇f∥2L2 + ∥xf∥L2)1/2.

Let ψ0 ∈ H1
h(Rd), p, q ∈ Rd. We define p′, q′ ∈ Rd by q′ = q − ⟨x⟩ψ0 and p′ = p − ⟨p⟩ψ0. The

function ψ1 ∈ H1
h defined by

ψ1(x) = ψ0(x− q′)e−i⟨p′,x⟩
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satisfies, for every θ ∈ R ⟨x⟩ψ1e
iθ = q and ⟨p⟩ψ1e

iθ = p. Then, for every T > 0, θ ∈ R and
u : (0, T )→ R piecewise constant

|⟨x⟩ψ(T ;u, ψ0)− q| ≤ ∥ψ(T ;u, ψ0)− ψ1e
iθ∥L2 (∥xψ(T ;u, ψ0)∥L2 + ∥xψ1∥L2) ,

|⟨p⟩ψ(T ;u, ψ0)− p| ≤ ∥ψ(T ;u, ψ0)− ψ1e
iθ∥L2 (∥∇ψ(T ;u, ψ0)∥L2 + ∥∇ψ1∥L2) .

To conclude, it suffices to prove the existence ofM > 0 such that, for every ϵ > 0, there exists
T ∈ [0, ϵ], θ ∈ R and u : [0, T ]→ Rd+1 piecewise constant such that

∥ψ(T ;u, ψ0)− ψ1e
iθ∥L2 < ϵ and ∥ψ(T ;u, ψ0)∥H1

h
≤M.

Given ϵ > 0 we fix τ ∈ [0, ϵ/4) such that

∥e
i⟨q′,x⟩

2τ eiτ(∆−V )e−
i⟨q′,x⟩

2τ − e
i|q|2
2τ ψ0(x− q′)∥H1 <

ϵ

4∥e−i⟨p′,x⟩∥L(H1)

. (46)

Notice that this is possible because ∥e
i⟨q′,x⟩

2τ eiτ(∆−V )e−
i⟨q′,x⟩

2τ −e
i|q|2
2τ ψ0(x−q′)∥L2 → 0 as τ → 0

(cf. first statement of Proposition 30) and ∥e
i⟨q′,x⟩

2τ eiτ(∆−V )e−
i⟨q′,x⟩

2τ ∥L(H2) is bounded uni-
formly w.r.t. τ ∈ [0, 1] (which can be seen by combining (36) and Proposition 39), hence
(46) follows from an interpolation argument.

Fix then σ ∈ [0, τ) such that

∥eiσ(∆−V− ⟨q′,x⟩
2στ

)ψ0 − e
−i⟨q′,x⟩

2τ ψ0∥H1 <
ϵ

4∥e−i⟨p′,x⟩ei
⟨q′,x⟩
2τ eiτ(∆−V )∥L(H1)

,

and δ ∈ [0, τ) such that

∥eiδ(∆−V+
⟨q′,x⟩
2τδ

)eiτ(∆−V )eiσ(∆−V− ⟨q′,x⟩
2τσ

)ψ0−ei
⟨q′,x⟩
2τ eiτ(∆−V )eiσ(∆−V− ⟨q′,x⟩

2τσ
)ψ0∥H1 <

ϵ

4∥e−i⟨p′,x⟩∥L(H1)

(these estimates are possible thanks to L2-convergence and L(H2)-uniform boundedness, as
recalled for (46)).

Fix finally γ ∈ [0, τ) such that

∥eiγ(∆−V− ⟨p′,x⟩
γ

)
eiδ(∆−V+

⟨q′,x⟩
2τδ

)eiτ(∆−V )eiσ(∆−V− ⟨q′,x⟩
2τσ

)ψ0

− e−i⟨p′,x⟩eiδ(∆−V+
⟨q′,x⟩
2τδ

)eiτ(∆−V )eiσ(∆−V− ⟨q′,x⟩
2τσ

)ψ0∥H1 < ϵ/4.

By defining the control

uτ,δ,σ,γ := (
−p′

γ
)|[0,γ] ♯ (

q′

2τδ
|[0,δ]) ♯ 0|[0,τ ] ♯ (−

q′

2τσ
|[0,σ]),

on the time interval [0, T ], with T := σ + τ + δ + γ < ϵ, (notice that ψ(T ;uτ,δ,σ,γ , ψ0) =

e
iγ(∆−V− ⟨p′,x⟩

γ
)
eiδ(∆−V+

⟨q′,x⟩
2τδ

)eiτ(∆−V )eiσ(∆−V− ⟨q′,x⟩
2τσ

)ψ0) we obtain that

∥ψ(T ;uτ,δ,σ,γ , ψ0)− eiθψ1∥H1 < ϵ,

where θ = |q2|/(2τ). We are left to show the uniform boundedness of ∥xψ(T ;uτ,δ,σ,γ , ψ0)∥L2

w.r.t. γ, σ, δ < τ < ϵ/4 < 1. We shall need the following elementary estimates.
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Lemma 50. There exists C = C(∥∇V ∥L∞) such that for any ψ0 ∈ H1
h(Rd), u ∈ Rd, t ≥ 0,

∥eit(∆−V+⟨u,x⟩)ψ0∥H1 ≤ ∥ψ0∥H1 + t(C + |u|)∥ψ0∥L2 , (47)

∥xjeit(∆−V+⟨u,x⟩)ψ0∥L2 ≤ ∥xψ0∥L2 + t∥ψ0∥H1 +
C + |u|

2
t2∥ψ0∥L2 . (48)

Proof. Denote Au = ∆− V + ⟨x, u⟩. Define w(t) := ∂xje
itAuψ0, we have

i∂tw = Auw − [Au, ∂xj ]e
itAuψ0 = Auw + (∂xjV + u)eitAuψ0.

We obtain (47) using Duhamel’s formula

w(t) = eitAu∂xjψ0 − i
∫ t

0
ei(t−s)Au(∂xjV + u)eisAuψ0ds,

and the unitarity of eitAu in L2(Rd). Define then v(t) := xje
itAuψ0, we have

i∂tv = Auv − [Au, xj ]e
itAuψ0 = Auv − ∂xje

itAuψ0.

We finally obtain (48) using Duhamel’s formula, the unitarity of eitAu inL2(Rd), and (47).

Applying repeatedly Lemma 50 we finally obtain the existence of M > 0 such that

∥xjψ(T ;uτ,δ,σ,γ , ψ0)∥L2 = ∥xjeiγ(∆−V− ⟨p′,x⟩
γ

)
eiδ(∆−V+

⟨q′,x⟩
2τδ

)eiτ(∆−V )eiσ(∆−V− ⟨q′,x⟩
2τσ

)ψ0∥L2 ≤M

for all 0 < γ, σ, δ < τ < ϵ/4 < 1, which concludes the proof of Corollary 8.

Appendix: toy model

Proposition 51. Let ψ0 ∈ L2(Rd,C), q ∈ Rd, σ, T, ϵ > 0 and ψ1 ∈ L2(Rd,C) be defined by
ψ1(x) := σd/2ψ0(σ(x − q)). There exist u ∈ C∞([0, T ],Rd), u0 ∈ C∞([0, T ],R) and θ ∈ R such
that the solution of{

i∂tψ(t, x) =
(
−∆− u0(t)|x|2 − ⟨u(t), x⟩

)
ψ(t, x) , (t, x) ∈ (0, T )× Rd ,

ψ(0, .) = ψ0 ,
(49)

satisfies ∥ψ(T )− ψ1e
iθ∥L2 < ϵ.

The proof relies on the explicit representation formula (57) inspired by [21, Section 4].
This strategy is also used in [39].

Proof. First, there exists δ > 0 such that,

∀ζ ∈ [0, δ] , ∥eiζ(∆−|x|2)ψ0 − ψ0∥L2 < ϵ. (50)

Let A ∈ C∞([0, T ], (0,∞)) be such that

A(0) = 1 , A(T ) = σ2 , A′(0) = A′(T ) = 0 ,

∫ T

0
A(t)dt < δ. (51)

We define a, b, ζ, u0 ∈ C∞([0, T ],R) by

a(t) = −1

8

A′(t)

A(t)
, b(t) =

1√
A(t)

, ζ(t) =

∫ t

0
A(s)ds , u0(t) = −4a(t)2 +

1

b(t)4
− a′(t) .

(52)

29



By (51) and (52) the function (a, b, ζ) solves the following ODE on [0, T ]
a′(t) = −4a(t)2 + 1

b(t)4
− u0(t),

b′(t) = 4a(t)b(t),
ζ ′(t) = 1

b(t)2
,

(a, b, ζ)(0) = (0, 1, 0),
(a, b)(T ) = (0, 1σ ) ,
ζ(T ) ∈ [0, δ].

(53)

Let p ∈ C∞
c ((0, T ),Rd) be such that ∫ T

0
p(t)dt = q. (54)

We define q, u ∈ C∞([0, T ],Rd) by

q(t) =

∫ t

0
p(s)ds , u(t) = −2u0(t)q(t)−

1

2
p′(t). (55)

By (54) and (55), the function (q, p) solves the following ODE on [0, T ]{
q′(t) = p(t) ,
p′(t) = −4u0(t)q(t)− 2u(t) ,

(q, p)(0) = 0 ,
(q, p)(T ) = (q, 0) .

(56)

Basic computations and the ODEs (53), (56) prove that the solution of (49) satisfies

ψ(t, x) = ϕ

(
ζ(t),

x− q(t)
b(t)

)
1

b(t)d/2
ei(a(t)|x−q(t)|2+ 1

2
⟨p(t),x⟩+θ(t)) (57)

where ϕ(s, ·) = eis(∆−|x|2)ψ0 and θ ∈ C∞([0, T ],R) is defined by

θ(t) =

∫ t

0

(
u0(s)|q(s)|2 −

|p(s)|2

4

)
ds.

In particular
ψ(T, x) = ϕ (ζ(T ), σ(x− q))σd/2eiθ(T ) .

Thus, using (53) and (50), we obtain∥∥∥ψ(T )− ψ0 (σ(· − q)) eiθ(T )
∥∥∥
L2

=
∥∥∥((eiζ(T )(∆−|x|2) − I

)
ψ0

)
(σ(x− q))σd/2

∥∥∥
L2
< ϵ.
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