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ABSTRACT
Embedding is a crucial step for deep neural networks. Datasets,

from different applications, with different structures, can all

be processed through an embedding layer and transformed

into a dense matrix. The transformation must minimize both

the loss of information and the redundancy of data. Extract-

ing appropriate data features ensures the efficiency of the

transformation. The co-occurrence matrix is an excellent

way of representing the links between elements in a dataset.

However, the dataset size becomes a problem in terms of

computation power and memory footprint for using the co-

occurrence matrix.

In this paper, we propose a parallel and distributed ap-

proach to efficiently constructing the co-occurrence matrix

in a scalable way. Our solution takes advantage of different

features of boolean datasets to minimize the construction

time of the co-occurrence matrix. Our experimental results

show that our solution outperforms traditional approaches

up to 34x. We also demonstrate the efficacy of our approach

with a cost model.
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gorithms; Natural language processing; Information ex-
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1 INTRODUCTION
1.1 Embedding in Deep Learning
Thanks to the development of Deep Neural Networks (DNN),

embedding has become omnipresent in modern life. Embed-

ding plays a key role in generalizing models to tasks with

different data structures. Models such as Word2vec [16] have

made possible the capture of semantic and syntactic infor-

mation about words, enabling a more subtle representation

of words. Popular Transformer models [29] such as BERT

[11] or GPT [26] have been adapted for other domains such

as image recognition [6], image generation [4] and graphs

[30]. While initially used in the Natural Language Process-

ing (NLP) domain to represent words [10, 21], methods have

been introduced to present vector representations of other

data structures such as graphs [8, 20] or categorical data [9].

A good embedding ensures that DNN training is based on

data with quality and variability and has an impact on the

overall training. The setting of the embedding method is a

trade-off between loss of information and the redundancy

of data. Data embedding generally consists of mapping data

into a finite, reduced-dimensional space. However, reducing

complex data structures into a low-dimensional Euclidean

space cannot preserve all the information that was previously

available. A correct embedding needs to retain enough infor-

mation to maintain an accurate representation so that the

model can make its predictions correctly from the embedded

data.

Ensuring good data representation requires control of the

embedding but one of the main limitations of the embedding

layer is the lack of control over its training. The embedding

layer is early in the model’s structure: the back-propagation

used to tune the model’s parameters will bring relatively

little information up to the embedding layer. The embedding

https://doi.org/10.1145/3650200.3656629
https://doi.org/10.1145/3650200.3656629
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I like you. 𝑥1 = I

You like dogs. 𝑥2 = you

I don’t like dogs. 𝑥3 = don’t

𝑥4 = like

𝑥5 = dogs

(a) Example of corpus 𝐷

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5
1 1 0 1 0

0 1 0 1 1

1 0 1 1 1


(b) Incidence matrix 𝑉


2 1 1 2 1

1 2 0 2 1

1 0 1 1 1

2 2 1 3 2

1 1 1 2 2


(c) Co-occurrence matrix 𝐶

Figure 1: Example of corpus of words with (b) the incidence matrix and (c) the co-occurrence matrix associated
with the (a) distribution.

layer needs a lot of time to be trained and to produce relevant

results. This is paradoxical because an adapted embedding

layer facilitates the training of the rest of the network.

The only instruments we have to control embedding are

hyper-parameters and parameter initialization. Pre-trained

embedding or representation [17, 22] can be used when it is

possible. However, this is only possible if the data is already

known and properly explored. For other types of data, it’s

necessary to set up learning embeddings from scratch. In

this situation, the embedding layer will be initialized with

random weights, and the embeddings will be learned jointly

with the rest of the model parameters during training.

A possible in-between is to extract information from the

input data to initialize the embedding layer. In the same

way as Word2vec, which offers word embedding from a

given dataset, one can use methods to extract key features

from the dataset and use the results to initialize the model’s

layer embedding. A good initialized embedding layer pro-

vides the model with a consistent input data representa-

tion, reducing model training time. The cost of initialization

methods must be relatively low to justify their use. We need

approaches with limited computational complexity, since

analyzing datasets can quickly require a considerable com-

putation power.

1.2 Co-occurrence matrix
The co-occurrence matrix [14] is a matrix that depicts the

frequency of co-occurrence of pairs of items in a dataset.

This matrix provides information about the relationships and

patterns between items in a dataset. Each row and column

with the same index represent a unique item, and the cells

of the matrix store the frequency or count of how often

two items co-occur together in the dataset. Initially used for

visualizing co-citations [15], its use has become very popular

in information science [12] for tasks like finding associations,

identifying patterns, calculating similarity measures, and

building recommendation systems.

In NLP, a co-occurrence matrix can be used as the basis

for numerical analysis of how words or word pairs appear to-

gether within a given corpus. For example, the co-occurrence

matrix plays a crucial role in the GloVe [19], a neural network-

based algorithm used to generate word embedding, by pro-

viding the statistical information necessary to learn the word

embeddings through the neural network training process.

The co-occurrence matrix also has a major role in different

topic models like LDA [1, 25] or PLSA [13]. An example of

co-occurrence matrix construction is shown in figure 1 with

a small sentence corpus. This dataset is composed of 3 sen-

tences and using a total of 5 different words. We’ll use the

terms instances to designate the sentences and features the
words that compose the corpus. The co-occurrence matrix is

thus a good tool to prepare the embedding layer. This paper

focuses on how to build a co-occurrence matrix efficiently.

1.3 Computation complexity limitation
The co-occurrence matrix could be obtained following by a

matrix multiplication, whose complexity is O(𝑛3) where 𝑛 is

the size of the matrix. However, the usage of this symmetrical

dot product could be quickly limited because of exponential

growth in volume of textual data and real-time applications.

Reducing the complexity of co-occurrence matrix construc-

tion would improve the efficiency of the algorithms and

methods that are based on it, and would also improve the

attractiveness of this matrix.

In DNN, we observed that the datasets are with very low

density, and the arithmetic is boolean for DNN’s applications

including NLP and recommendation systems. Taking these

domain-specific features into account would help to find out

a way to reduce computation complexity while maintaining

good scalability.

In this paper, we propose to improve the efficiency of the

construction of the co-occurrence matrix for a dataset with

Boolean features. The main proposed solutions in this paper

are:

• A new approach that reduces the computation time to

construct the co-occurrence matrix associated with a

binary dataset.

• Cost analysis to compare the computation andmemory

complexity of different approaches.



An Efficient and Scalable Approach to Build Co-occurrence Matrix for DNN’s Embedding Layer ICS ’24, June 4–7, 2024, Kyoto, Japan

• A comprehensive verification of computational com-

plexity.

• Validation of the approach with real-world datasets.

By taking advantage of both the sparsity of this class of

dataset and the arithmetic particular to this data, our method

enables the co-occurrence matrix to be built efficiently. De-

signed for use with large datasets, the computations are well

adapted to a massively parallel or distributed environment.

With our innovative method for faster and more efficient

construction of co-occurrence matrices, this study aims to

overcome these fundamental limitations, paving the way for

smoother data manipulation and deeper comprehension of

large-scale textual data.

2 BASIC NOTATIONS
Let’s recall in this section how a co-occurrence matrix is

basically built, in order to prepare a smooth understanding

on our design of Sparse-Pairwise co-occurrence matrix con-

struction presented in the section 3. We will first provide

here the notations with the basic symmetrical dot product

approach (a.k.a. matrix product) in both sequential and dis-

tributed environments in respectively part 2.1 and part 2.2.

We then extend it to sparse matrices in part 2.3 with a dis-

cussion on storage format and space complexity.

2.1 Symmetrical dot product from
incidence matrix

Let’s first define an incidence matrix before going into the en-

tire symmetrical dot product approach. An incidence matrix,

noted 𝑉 , is a representation used to show the connections

between two sets of data. In our example in figure 1, the

incidence matrix is used to show the connections between

instances and features in our dataset. Each row of the matrix

represents an instance, and each column a feature. We can

quickly see from this matrix which data are linked to each

other.

Therefore, the co-occurrence matrix𝐶 is constructed from

this incidence matrix 𝑉 . Based on the associations between

instances and individuals, this can be used to determine how

often each feature is associated with another feature.

More generally, the construction of the co-occurrence

matrix between the 𝑛 features of a dataset composed of 𝑘

instances is a level-3 BLAS matrix multiplication. We can

build with𝑉𝑇 ×𝑉 that co-occurrence matrix𝐶 , which repre-

sents the true together frequencies of elements. The result of

this operation is a symmetrical matrix. This operation corre-

sponds to a multiplication between a 𝑛×𝑘 and a 𝑘 ×𝑛 matrix,

which corresponds to 𝑘 × 𝑛2 multiplication and (𝑘 − 1) × 𝑛2
addition. The complexity of this operation as a function of 𝑘

and 𝑛 is O(𝑘 × 𝑛2).

The proportion of non-zero elements in thematrix over the

total number of elements in the matrix is called the density of

the matrix. The inverse of the density is called the sparsity of

the matrix. When the density of non-zero elements in a ma-

trix is sufficiently low, storing only the positions and values

of non-zero elements can save both memory and computing

power. Low-density matrices are called sparse matrices [7].

Sparse matrices can be used to build the co-occurrence

matrix. When the proportion of non-zero values is very low

in the 𝑘 vectors of the dataset, it’s possible to consider the in-

cidence matrix𝑉 as a sparse matrix to speed up calculations.

Exploiting matrix sparsity considerably reduces the computa-

tional costs associated with matrix multiplication. However,

performing a multiplication between two sparse matrices is

a complex and costly operation. The costs associated with

reformatting data and/or preparing this operation make its

use limited. Therefore, we will not discuss the SpGEMM ap-

proach in this paper and will consider the sparse approach

as being the approach where one of the two matrices is con-

sidered to be stored in a sparse storage format. Multiplying

a sparse matrix with a dense matrix is a very popular and

well-referenced operation. The great advantage of this ap-

proach is that the computational complexity depends on the

density of the sparse matrix. So, the use of this approach is

optimal when the density is close to 0.

In the rest of this paper, we’ll refer to the dense symmetri-

cal dot product approach when both multiplication matrices

are stored in memory in dense storage format. The approach

where one of the two matrices is stored in memory and ma-

nipulated in a sparse storage format will be called Sparse

symmetrical dot product. We’ll compare both the dense and

sparse symmetrical dot product (SDP) approaches in sec-

tion 5.

2.2 Distributed Dot Product
Multiplying two matrices in a distributed environment is

well studied. A comparison of different data distributions in

terms of computational power, memory and communications

costs can be found in the paper [23].

By distributing the left matrix in

√
𝑝 row blocks and the

right matrix in

√
𝑝 column blocks, we maximize the load

balancing while minimizing the memory space required on

each node and limiting communications. This distribution of

data and calculations ensures optimal performance efficiency.

The computational complexity of such Dense symmetrical

dot product approach is 𝑂 (𝑘 × 𝑛2

𝑝
) and we need two blocks

of size
𝑘×𝑛√

𝑝
on each processor. Each processor calculates

partial values of the result matrix block. A communication

phase is required to obtain the final values of the result

matrix elements. Many-to-many communications are needed

to process the reduction of these partial results.
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2.3 Sparse storage format
To efficiently store sparse matrices, there are several avail-

able formats to choose from. One of the most commonly used

formats is ELLPACK [27]. ELLPACK is essentially a compres-

sion of non-zero values per row, achieved through the use

of two matrices. The first matrix stores the column index

of non-zero elements, while the second matrix stores the

values of these same elements. When working with Boolean

element matrix compression, only the matrix storing the

element indices is necessary, as non-zero element values are

always equal to 1.

ELLPACK is ideal for cases where the number of non-zero

values is distributed relatively evenly between the rows of

the sparse matrix. However, when this is not the case, it’s

preferable to use other sparse matrix storage formats, such

as CSR or COO, which are also quite popular.

To facilitate a better understanding of approaches that

deal with sparse matrices, we will be using ELLPACK as the

sparse storage format in our examples. This format is easy

to visualize and comprehend while also effectively demon-

strating the benefits of compressing matrix data. It should

be noted that depending on the characteristics and require-

ments of the dataset, other sparse matrix storage formats

can be employed in place of ELLPACK. The choice of format

is completely free and flexible.

Storing low-density matrices in a sparse storage format

saves a lot of memory space. If the matrix can be stored in

memory on each node, then it’s very interesting to consider

duplicating the sparse matrix on each node. In fact, one of

the data distribution options allows you to obtain blocks

of the result matrix on each node without any additional

communication. The result matrix will then be distributed

to the different nodes. Duplicating the sparse matrix on each

node and splitting the other densematrix into 𝑝 blocks avoids

the communication phase involved in the reduction of partial

results with the

√
𝑝 block approach described in section 2.2.

This data distribution is more memory-intensive on each

node but eliminates any need for communication to obtain

the final results.

3 PROPOSED APPROACH
We have seen that the symmetrical dot product and the basic

notations. However, how can we take advantage of DNN’s

domain-specific features to reduce the cost of constructing

the co-occurrence matrix? To answer this question, we’ll

first, in part 3.1, propose another way of visualizing the con-

struction of the co-occurrence matrix, using the pairwise

approach and taking into account the Boolean nature of

the data. In subsection 3.2, we then present an upgraded

approach, named Sparse-Pairwise, which is a mixture of

the symmetrical dot product approach and the pairwise ap-

proach. This allows us to take advantage of both data spar-

sity and data-specific arithmetic. We will then discuss in

section 3.3 implementations of these approaches in a mas-

sively distributed environment. This will help us compare

the different approaches’ complexity in the section 4.

3.1 Pairwise approach
The pairwise approach is based on the following idea: the𝐶𝑖, 𝑗

element of the co-occurrence matrix represents the number

of times that features 𝑖 and 𝑗 have been simultaneously active

for instance. In other words, in a dataset composed of 𝑘

elements, the co-occurrence matrix allows us to visualize the

number of times the features were simultaneously present

on an instance. When 𝑖 = 𝑗 , the co-occurrence matrix tells

us how many times the feature has been associated together

on one instance. Therefore, it is possible to construct the co-

occurrence matrix by forming the set of feature pairs (𝑖, 𝑗)
among all dataset instances. In concrete terms, it consists in

finding all combinations of pairs of non-zero values within

each vector of the dataset.

Algorithm 1 Build the co-occurrence matrix from the Pair-

wise approach

Require: 𝐷 the dataset (list of the 𝑘 input boolean vectors

of size 𝑛)

Ensure: The co-occurrence matrix𝑀 of size 𝑛 × 𝑛
1: initialize all elements of𝑀 to 0

2: for each non-zero element 𝑖 of 𝐷 do
3: for each non-zero element 𝑗 in the same vector than

𝑖 do
4: 𝑀𝑖, 𝑗 ← 𝑀𝑖, 𝑗 + 1
5: end for
6: end for
7: return 𝑀

Let’s take as an example the dataset proposed in figure 1a.

The first instance (e.g., "I like you") is composed of the fea-

tures 𝑥1, 𝑥2 and 𝑥4. We should add 1 to the three elements on

the diagonal of the co-occurrence matrix 𝐶𝑥1,𝑥1 ,𝐶𝑥2,𝑥2 ,𝐶𝑥4,𝑥4 ,

then add 1 for each possible pair with 𝑖 ≠ 𝑗 . We have 6

possible pairs which are as follows: (𝑥1, 𝑥2), (𝑥1, 𝑥4), (𝑥2, 𝑥4),
(𝑥2, 𝑥1), (𝑥4, 𝑥1), (𝑥4, 𝑥2). We, therefore, add 1 to all the ele-

ments of the co-occurrence matrix with these indices. Do

the same with the other sentences in the dataset to obtain

the co-occurrence matrix 𝐶 .

Note here that it is possible to limit the search for pairs

with 𝑖 ≤ 𝑗 . This makes it possible to construct only the upper

triangle of the co-occurrence matrix. If we name the resulting

triangular matrix 𝑇𝐶 , we obtain 𝐶 = 𝑇𝐶 +𝑇𝑇
𝐶
− diag(𝑇𝐶 ).
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Input
data

Compress input 
data by rows

Pair non-zero element of input data
with associated compressed vector

Build co-occurrence
matrix

Figure 2: Overview of the Sparse-Pairwise approach.

Algorithm 1 represents the pairwise method. Although

on theory this is a very interesting approach, since it takes

advantage of the fact that the data set is Boolean, it generally

gives less interesting performance. Finding all possible pairs

of elements in a vector means finding the non-zero elements

in the vector, then for each of these values, finding the other

non-zero elements in the same vector. Still in the algorithm 1,

the for loop in the lines 2 and 3 are actually two nested loops
whose execution depends on the result of a condition. For

each element in the vector, test the element value. If the result

is yes, continue in the next loop; otherwise, test the next

element. The problem is that if statements tend to break the

pipeline that runs within CPUs on modern architectures [18].

We’ll look at this in more detail in section 5.

The sparsity of the dataset has an impact on the perfor-

mance of this method: it will define the number of times

we enter the first loop for (line 2). The second loop, for,
will run through all elements, regardless of sparsity. In the

next section, we’ll take a look at an approach derived from

the pairwise approach that takes greater advantage of data

sparsity.

Algorithm 2 Sequential algorithm of Sparse-Pairwise ap-

proach

Require: 𝐷 the dataset (list of the 𝑘 input boolean vectors

of size 𝑛)

Ensure: The co-occurrence matrix𝑀 of size 𝑛 × 𝑛
1: initialize all elements of𝑀 to 0

2: 𝐴← build the ELLPACK sparse matrix index from 𝐷

3: for each of the 𝑘 vectors in 𝐷 do
4: for each non-zero element 𝑖 in 𝑘 do
5: for each element 𝑗 in 𝐴𝑘,: do
6: 𝑀𝑖, 𝑗 ← 𝑀𝑖, 𝑗 + 1
7: end for
8: end for
9: end for
10: return 𝑀

3.2 Sparse-Pairwise approach
We have seen in the previous sub-section that the pairwise

approach takes advantage of the fact that the dataset is com-

posed only of boolean elements, and the symmetrical dot

product approach takes advantage of the fact that sparsity

is high to speed up computations thanks to sparse linear

algebra. In this part, we propose an approach that combines

this approach with the dot product approach to speed up the

construction of the co-occurrence matrix with both sparse

linear algebra and boolean arithmetic. Figure 2 illustrates the

main points of this approach to build co-occurrence matrix.

The limitation of the pairwise approach is that each time a

non-zero element is found, the set of other non-zero elements

in the feature vector must be found. Instead of traversing the

entire vector when a non-zero value is found in the dataset,

the Sparse-Pairwise approach consists of an initial scan the

dataset to prepare the index list of non-zero values. By doing

this, each time a non-zero value is found, we can immediately

refer to the index list to find the pairs in which this non-zero

element will be found. This quickly completes the list of

pairs, without having to go through the rest of the vector.

Taking as an example the dataset in figure 1, compressing

the incidence matrix in ELLPACK format gives the following

index matrix:

𝐸𝑉 =


1 2 4 −
2 4 5 −
1 3 4 5


Then, for each vector 𝑖 of dataset instances, we’ll incre-

ment all the elements of the co-occurrence matrix whose

coordinates are the index pairs stored in row 𝑖 of the above

matrix.

For the first dataset instance, the indices in line 1 above are

𝑠1 = {𝑥1, 𝑥2, 𝑥4}, so the set of pairs is (𝑥1, 𝑥1), (𝑥1, 𝑥2), (𝑥1, 𝑥4),
(𝑥2, 𝑥1), (𝑥2, 𝑥2), (𝑥2, 𝑥4), (𝑥4, 𝑥1), (𝑥4, 𝑥2), (𝑥4, 𝑥4). We then

add 1 to all the elements of the co-occurrence matrix with

these coordinates. This operation is repeated with the other

vectors in the matrix to obtain the co-occurrence matrix for

the dataset.

With this approach, we take advantage both of the pair-

wise search made possible by the fact that dataset elements

are binary values, and of the sparse storage format made

possible by the data’s sparsity. The algorithm 2 represents

the sequential version of this approach, and we’ll discuss its

deployment in a massively distributed environment in the

following part.

3.3 Deploying in a Massively Distributed
Environment

Datasets are generally very large, and to be able to build the

co-occurrence matrix on very large datasets, it is essential to
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have an algorithm adapted to a distributed computing envi-

ronment. In this section, we will compare the two previous

implementations and see what possible optimizations we can

take advantage of with distribution. Let’s note 𝑝 the number

of processors on which calculations will be distributed. For

communications purposes, we assume that these 𝑝 nodes are

linked by a network and have distributed memory.

Given the general size and density of large DNNdatasets, it

has been assumed that every node possesses ample memory

space to replicate the sparse matrix, as elaborated in section

2.3. Duplicating the data to avoid communication seems to

be the most advantageous approach for data distribution

while dealing with sparse matrices. In the case where the

sparse matrix is too large to be stored as such on each node,

dividing the sparse matrix into several blocks of size

√
𝑝 is

also a plausible method for data distribution. This guides us

to the data distribution described in section 2.2.

3.3.1 Pairwise approach. The naive pairwise search approach
distribution is to distribute for loops between the nodes.

This approach is not well efficient because building the final

co-occurrence matrix will create a lot of communication for

the reduction. A more interesting approach is to construct

the co-occurrence matrix by blocks of rows. This approach

allows us to play with the intervals covered by the for loops.
Let 𝑏 be the number of blocks into which you want to divide

the matrix 𝐶 . The 𝑖 block of the matrix represents the rows

[𝑛
𝑏
× 𝑖, 𝑛

𝑏
× (𝑖 + 1) [. Since the matrix is symmetrical, adding

data to the𝐶𝑖, 𝑗 element will also add data to the𝐶 𝑗,𝑖 element.

So we can limit the range of loops by checking that either

𝑖 ∈ [𝑛
𝑏
× 𝑖, 𝑛

𝑏
× (𝑖 + 1) [ or 𝑗 ∈ [𝑛

𝑏
× 𝑖, 𝑛

𝑏
× (𝑖 + 1) [. In addition,

since 𝑖 ≤ 𝑗 , we can also limit the interval of the first loop for
to [0, 𝑛

𝑏
× (𝑖 + 1)]. When the element visited by the first loop

is non-zero, it checks whether the element is in the interval.

If yes, the second loop must traverse the rest of the vector. If

not, then the interval of the second loop will be limited to

the interval [𝑛
𝑏
× 𝑖, 𝑛

𝑏
× (𝑖 + 1) [.

Implementing the concept of the Sparse-Pairwise approach

in a distributed environment is a challenging task. Indeed,

distributing the different index lists of non-zero values of

each instance will effectively distribute the computational

power need, but each node will build a partial result of the en-

tire co-occurrence matrix. Allreduce communications must

be made with a length of 𝑛2 values. This scenario is unthink-

able with very large datasets, given the communications size

and the associated cost.

To be able to eliminate communications, each node must

build a block of the final result of the co-occurrence matrix

independently of the other nodes. This would result in the

co-occurrence matrix being distributed across the different

nodes, with blocks of similar size.

3.3.2 Sparse-Pairwise adapted from the sparse symmetrical
dot product. The first approach is to use the same data and

computation distribution of the sparse symmetrical dot prod-

uct approach. The 𝐸 matrix representing the list of indices

is duplicated on each calculation node. Each node then cal-

culates a block of
𝑛
𝑝
rows of the co-occurrence matrix, by

scanning each vector in the dataset for non-zero elements.

When a non-zero value is found, we update the matrix as

explained in section 3.2 with the indices of the 𝐸 matrix. This

approach requires no additional computation. This is the ap-

proach we’ll be deploying when memory constraints are not

the priority. We will refer to this approach as the standard

Sparse-Pairwise approach in the remainder of this paper.

3.3.3 Sparse-Pairwise approach to savememory. Storing dense
blocks of vectors for scanning may require sparing memory

to store the entire dataset when the dataset is large. This is

why we propose an approach that uses the Sparse-Pairwise

principle to limit the memory space required. The aim is to

transform all input data into sparse formats. This reduces

the amount of memory required to store the input data and

adds to the cost of transforming the data.

The principle of this approach is similar to the first, ex-

cept that instead of dispatching the vectors to the different

nodes, we first calculate the columns’ compressed matrix,

then dispatch this compressed matrix and use the indices

in this matrix. It’s impossible here to use the already calcu-

lated rows’ compressed matrix, as it gives no information

on the position of the indices to be taken into account when

creating a block of the co-occurrence matrix. Consequently,

searching for the values included in the processing interval

requires going through the entire compressed matrix, reduc-

ing the interest in this approach in a distributed environment.

Scattering the matrix ensures that each node immediately

has the set of non-zero values it needs to find in order to

update its result block in the matrix.

However, using only compressed matrices requires more

computational power than the standard Sparse-Pairwise ap-

proach. To build the columns’ compressed matrix, we need

to go through the blocks of vectors in the dataset and then

build the matrix. The columns’ compressed matrix requires

more computational power to build than the standard Sparse-

Pairwise approach for simply traversing the dense blocks.

This approach is very interesting for processing very large

datasets on machines with limited RAM. The saving in terms

of memory space will depend on the sparsity of the data.

All the input data used to build the co-occurrence matrix

is compressed. This approach will only be used when RAM

memory cannot store all the information required to build

the co-occurrence matrix with the standard Sparse-Pairwise

approach. In the next section, we will examine the theoretical

comparison of the different approaches with a cost analysis.
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Table 1: Comparison of required computation power, memory and communication for approach in a distributed
environment.

Approach Computation com-

plexity

Memory space to

store input

Communications

Dense symmetrical dot product O(𝑘 × 𝑛2

𝑝 ) 2 × 𝑘×𝑛√
𝑝

(√𝑝 − 1) 𝑛2

𝑝

Sparse symmetrical dot product O(𝑑 × 𝑘 × 𝑛2

𝑝 ) 𝑑 × 𝑛 × 𝑘 + 𝑘×𝑛
𝑝 0

Pairwise O(𝑑 × 𝑘 × 𝑛2

𝑝 ) 𝑘 × 𝑛 0

Sparse-Pairwise O(𝑑2 × 𝑘 × 𝑛2

𝑝 ) 𝑑 × 𝑛 × 𝑘 + 𝑘×𝑛
𝑝 0

Sparse-Pairwise (Save memory) O(𝑑2 × 𝑘 × 𝑛2

𝑝 ) (1 + 1

𝑝 ) × 𝑑 × 𝑘 × 𝑛 0

4 A PRIORI COMPLEXITY ANALYSIS
The table 1 compares the different approaches regarding com-

putational complexity, memory and communication. Com-

plexities are given as a function of 𝑛 and 𝑘 , the dimensions

of the dataset, the number of processors 𝑝 and the density

of the dataset noted 𝑑 . 𝑑 is between 0 and 1 and represents

the ratio between the number of non-zero values and the

total number of elements in the matrix. To obtain the theo-

retical approximation of complexity, we have used the BSP

approach [3]. For the dense and sparse symmetrical dot prod-

uct approaches, we used the data partitioning described in

section 2.2. We also used the different Pairwise and Sparse-

Pairwise approaches described in section 3.3.

When sparsity starts to become significant, the most in-

teresting approach from a memory perspective is the save

memory Sparse-Pairwise approach. This is the only approach

where the total memory space required for input values is di-

rectly related to thematrix density. Thismeans that if the den-

sity is very low, the storage space required to store the data

will be low. However, from a computational point of view,

compressing data by both rows and columns is computa-

tionally more demanding than the standard Sparse-Pairwise

approach. If there’s a need to save even more memory, it’s

possible to compress the incidence matrix in SGP format

[24], a compression pattern that lets you quickly toggle be-

tween row and column compression in exchange for a certain

additional computation.

Regarding the computational complexity required to build

the co-occurrencematrix, the two Sparse-Pairwise approaches

are equivalent in complexity. The dense symmetrical dot

product approach is the only one where the complexity does

not depend on the density 𝑑 . Sparse-Pairwise approaches

have smaller complexities than the sparse symmetrical dot

product and Pairwise approaches. This is due to the fact that

𝑑 ∈ [0, 1] and therefore 𝑑2 ≤ 𝑑 . While 𝑑 < 1, our proposal

Sparse-Pairwise approach is the most interesting in terms

of computational complexity. In the next section, we will

verify these complexities in practice, which presents our

experiments.

5 EXPERIMENTS
To validate our cost analysis and check the performance of

our Sparse-Pairwise approach, we experimented with imple-

menting the 4 approaches described above in C++ and with

MPI. In the 5.1 part, we’ll be describing our experimental

environment. In the 5.2 section, we’ll use a dataset genera-

tor to independently vary different parameters to see how

the different approaches perform. Finally, in the 5.3 section,

we’ll look at the performance of the different approaches

with various datasets from real-world applications.

5.1 Experimentation environment and
datasets

Our working environment is as follows: we have at our dis-

posal 25 nodes comprising 2 Intel Xeon Gold 6230 20 cores @

2.1 GHz (Cascade Lake). This enabled us to distribute calcula-

tions over a maximum of 1000 cores. Each compute node has

a RAM capacity of 192GB. The Operating System is CentOS

7.9.2009 and the network technology is an Intel Omni-Path

Architecture network 100 Gbit/s. Our disk storage capacity

is 500 GB. It is a Spectrum Scale GPFS parallel file system

that allows 9 GB/s input/output rate.

To be able to test co-occurrence matrix construction ap-

proaches accurately and under different conditions, we have

developed a Boolean dataset generator. The algorithm 3

shows how we can build a dataset with a defined size and

sparsity. Parameters 𝑘 and 𝑛 are respectively the number of

instances and the number of features we want in the dataset.

After generating an empty dataset of the desired size on

line 1, we use the parameter 𝑑 to fill our dataset according to

the expected density. By drawing a random number between

0 and 1 for each element in the dataset, we add non-zero

elements to the dataset with a probability of 𝑑 (line 3-6). The

value of parameter 𝑑 is included in the interval [0, 1].
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Table 2: Datasets overview

Name instances Features nnz Sparsity

Anonymous MS Web [2] 37 711 294 999 974 99.11%

Criteo 200 000 206 10 555 469 74.3799%

Kasandr [28] 2 158 860 291 486 15 844 718 99,9974%

Algorithm 3 Dataset generator

Require: 𝑘 the number of elements in the dataset, 𝑛 the

numbers of dataset features, 𝑑 the expected density of

the dataset

Ensure: A dataset 𝐷

1: 𝐷 ← create 𝑘 vectors of size 𝑛 and initialize all elements

to 0

2: for each element 𝑒 in 𝐷 do
3: 𝑟 ← Random number in [0, 1]
4: if 𝑟 > 𝑑 then
5: Change the value of 𝑒 to 1

6: end if
7: end for
8: return 𝐷

We also chose to use three datasets for our experiments.

An overview of the characteristics of these datasets is avail-

able in table 2. We selected the Anonymous MS Web dataset

for its low density. In contrast, Criteo is a relatively high-

density dataset. Finally, the last dataset, Kasandr, will enable

us to see the scalability of the approaches thanks to its large

size.

5.2 Efficiency and scalability
In order to test co-occurrence methods, we used the gener-

ator introduced in 5.1 to vary the parameters one by one

and observe the resulting variations in execution time to

construct the co-occurrence matrix. This will also enable us

to progressively verify that the results are consistent with

the complexity analysis performed in section 4 and to see

the prevalence of Sparse-Pairwise approach relative to other

approaches.

5.2.1 Memory complexity analysis. The memory complexity

of our implementation is shown in the table 3. The theoretical

values according to the table 1 are also given for comparison.

In this example, the environment parameters have been set

as follows: 𝑛 = 100000, 𝑘 = 200, 𝑝 = 1000 and 𝑑 = 1%. As the

memory required to store the co-occurrence matrix is the

same for all approaches, only the memory required to store

the input data has been taken into account in this table.

For the Sparse SDP and Sparse-Pairwise approaches, we

observe a fairly large difference with the theoretical value.

Table 3: Memory complexity for each approach imple-
mentation.

Approach Theoretical

memory

requirements

implementation

memory

allocation

Dense SDP 12.649 × 105 12.652 × 105
Sparse SDP 2.20 × 105 2.57 × 105
Pairwise 200.0 × 105 200.0 × 105
Sparse-Pairwise 2.20 × 105 2.57 × 105

This is due to our sparse matrix storage format. Using the

ELLPACK format, we initialize an array larger than the num-

ber of non-zero values when the distribution of non-zero

values is not perfectly distributed between the rows. The

slight difference in complexity of the Dense SDP approach is

due to the fact that

√
𝑛 is rounded up to the nearest integer

during load balancing.

For each method implementation, we used a vector of size

𝑝 to store the index of the first row of the block associated

with each matrix. This buffer vector is used to distribute the

data to ensure good load balancing. However, the additional

memory cost required to store this information is very low.

We can see that approaches using sparsity require the least

memory space. We also observe that the pairwise approach

is very memory-intensive, making it difficult to use with

very large datasets.

5.2.2 Density 𝑑 . Figure 3 shows the execution times of the

different approaches as a function of dataset density. The

figure shows that all the approaches vary as a function of

density except the dense symmetrical dot product approach.

The results have been deliberately zoomed in on the lowest

curves, removing the Pairwise approach, whose results are

very high when the density exceeds 0.2.

The Sparse symmetrical dot product approach performs

better than the dense one when the density is less than 0.7.

Similarly, the Pairwise approach performs better when the

density is less than 0.2. We observe that execution times

follow a curve in a similar way to the cost analysis predic-

tions. We observe that execution times increase linearly as a

function of density with the sparse symmetrical dot product
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Figure 3: Execution time comparison between the dif-
ferent pairwise and the matrix approaches to build the
co-occurrence matrix in the function of the sparsity.

approach. The execution times for the Sparse-Pairwise ap-

proach follow a parabolic pattern, confirming the squared

complexity according to density. The Sparse-Pairwise ap-

proach achieves the fastest execution times regardless of

density in the [0.1, 0.9] range.
To take a more detailed study of the performance of the

approaches at low density, we experimented as function of

density in the interval [0, 0.1]. The results are given in figure

4. The results in this figure show that even with a low density,

the Sparse-Pairwise approach is the most interesting in terms

of execution time. The Pairwise approach has about the same

performance as the sparse symmetrical dot product approach

when the density is 1%.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Density

0

10

20

30

40

50

E
x
e
c
u
t
i
o
n
t
i
m
e
(
s
)

Dense SDP

Sparse SDP

Pairwise

Sparse-Pairwise

Figure 4: Execution time comparison between the dif-
ferent approaches to build the co-occurrence matrix in
function of the density. Zoom in the interval [0, 0.1].

Table 4: Execution time to build the co-occurrence ma-
trix with different approaches for two values of 𝑘 . The
coefficient represents the coefficients of the linear func-
tions of execution time.

Approach 𝑘 = 200 𝑘 = 2000 Coefficient

Dense SDP 4.79802 48.7221 2.440 × 10−2
Sparse SDP 2.21438 22.09 1.104 × 10−2
Pairwise 12.2988 119.868 5.976 × 10−2
Sparse-Pairwise 0.486258 4.76849 2.379 × 10−3

The time required to build the co-occurrence matrix be-

comes negligible with the Sparse-Pairwise approach when

the density is very low. With a density of 1%, the execution

time to build the matrix is 0.19 seconds, while building the

sparse matrix from the dataset takes 3.09 seconds.

5.2.3 Number of instances 𝑘 . For the 𝑘 parameter, which

corresponds to the number of individuals in the dataset,

experiments have shown that the impact on execution time

is linear. This fully verifies the cost analysis carried out in

section 4. Doubling 𝑘 means doubling the execution time.

The difference between the two approaches is the value of

the linearity coefficient. In the table 4, we have calculated

the coefficient of linearity for each method between two

measurements with𝑘 = 200 and𝑘 = 2000. For each approach,

this coefficient represents the additional time required when

𝑘 is incremented by 1. The results were obtained by setting

the parameters 𝑝 = 1000, 𝑛 = 50000 and density at 30 %.

It can be seen that 𝑘 has no impact on the differences in

performance between the approaches. Whatever the value

of 𝑘 , we observe that given the experimental conditions of

the table 4, the Sparse-Pairwise approach is 25 times faster

than the Pairwise approach, 10 times faster than the Dense

symmetrical dot product approach and also 4.6 times faster

than the Sparse symmetrical dot product approach.

5.2.4 Number of features 𝑛. In figure 5, we’ve scaled the pa-

rameter 𝑛 by setting the other variables to 𝑘 = 500, 𝑝 = 1000

and fixing the density at 10 %. The figure shows execution

times for 𝑛 between 10000 and 100000. We can see that all

the different approaches have execution times that follow a

curved trajectory with an increase of the value of 𝑛 increases.

The differences are in the second-degree coefficients associ-

ated to each curve. We can see that the slope of the curve is

very slight for the Sparse-Pairwise approach compared to the

other approaches. In this configuration, the Sparse-Pairwise

approach offers the best performance, whatever the value of

𝑛.

We have shown that the performance of the Sparse-Pairwise

approach is the most interesting whatever the values of 𝑘 , 𝑛
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Figure 5: Execution time for different co-occurrence
matrix building approaches in the function of the size
of 𝑛.
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Figure 6: Strong scalability: Execution time for differ-
ent co-occurrence matrix building approaches in the
function of the number of processors 𝑝.

and matrix density. The Sparse-Pairwise approach is scalable

and well suited over a wide range of 𝑛 and 𝑘 values. The

efficiency of the Sparse-Pairwise approach is improved even

further with very sparse datasets, but it’s still worth using

regardless of density. In addition, we have verified that the

experiments match the theoretical performance in terms of

computational complexity obtained in the previous section.

5.2.5 Number of processors 𝑝 . Figure 6 shows execution

times as a function of the number of processors 𝑝 . The ma-

trix size is set to 𝑘 = 100 and 𝑛 = 100000 and the sparsity

is fixed to 20%. We can see in this figure that the differ-

ent methods for building the co-occurrence matrix all have

excellent scalability. The Sparse-Pairwise approach has an
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Figure 7: Weak scalability: Execution time for differ-
ent co-occurrence matrix building approaches with a
linear modification of 𝑛 and 𝑝.

efficiency of 96.9% with 1000 nodes compared with the execu-

tion time with 100 nodes, which is very good scalability. The

efficiencies of the other methods are quite similar, although

the sparse SDP approach achieves 87.8%. Which makes this

approach the least interesting in terms of scalability.

The results for the study of weak scalability are shown

in figure 7. In this figure, we varied 𝑛 and 𝑝 linearly, so that

each processor always has a block of the input dataset of

the same size. In other words, the problem size is fixed for

each processor. In the experiments shown in figure 7, we set

𝑘 = 100 and 𝑛 = 100 × 𝑝 , so the size of the block distributed

to each compute node is 100 × 100.
That execution time increases linearly as a function of 𝑝

and 𝑛. When 𝑝 (and 𝑛) are doubled, execution time is also

doubled. This verifies the computation complexity given in

table 1. If the complexity of
𝑛2

𝑝
= 𝛼 , then

(2𝑛)2
2𝑝

= 2
𝑛2

𝑝
= 2𝛼 .

All else being equal, we efficiently expect execution times to

double when 𝑛 and 𝑝 are doubled. The experiments in figure

7 were performed with a density of 5%. We have the same

performances associated with this density as in figure 4.

5.3 Validation with real-case datasets
Now that we’ve demonstrated the efficiency of our method,

we need to show that it also works on real-world datasets. To

do this, we’ll use the three datasets presented in table 2. We’ll

apply the different co-occurrencematrix building approaches

to these datasets and compare performance.

The execution times for building the co-occurrence ma-

trix for each dataset with each approach are printed in ta-

ble 5. The performances obtained highlight that the Sparse-

Pairwise approach builds the co-occurrence matrix fastest

with all datasets. We can see that the performance of the
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Sparse-Pairwise approach is just over 4 times better than the

Sparse symmetrical dot product approach with the Criteo

dataset and up to over 34 times faster with the Kasandr

dataset. This shows that the lower the density of the dataset,

the more effective the Sparse-Pairwise approach. Thanks to

the sparse storage formats, our approach also takes advan-

tage of the limited memory required to store matrices. It

makes it possible to work with large datasets like Kasandr,

where memory space is insufficient to store matrices densely.

Table 5: Execution time in seconds to build the co-
occurrence matrix with different approaches. These
results are obtained with 𝑝 = 1000. The execution times
take into account the time required to build sparse ma-
trices from dataset data, if necessary.

Anonymous

MS Web

Criteo Kasandr

Dense SDP 3.10211 80.9875 OOM

Sparse SDP 0.349944 28.7367 80.5154

Pairwise 0.460221 170.988 OOM

Sparse-Pairwise 0.0218032 6.77173 2.33458

The results obtained correspond to the performance ob-

served with the dataset generator. The Sparse-Pairwise ap-

proach significantly reduces the execution time required to

build the co-occurrence matrix. The greater the sparsity of

the dataset, the greater the performance gains. The results

obtained with Kasandr allow us to justify the scalability of

the Sparse-Pairwise approach with very large datasets.

6 CONCLUSION
In this paper, we proposed Sparse-Pairwise, an approach to

building the co-occurrence matrix from a dataset composed

of categorical and Boolean variables. This approach takes ad-

vantage of both arithmetic and sparsity to efficiently build the

co-occurrence matrix. Cost analysis and experiments show

that our Sparse-Pairwise approach reduces computational

complexity compared with dense and sparse symmetrical

dot product approaches, regardless of dataset density. We

defined and used a dataset generator to experiment with the

impact of each matrix parameter on the performances of

the approaches. The results show that Sparse-Pairwise re-

duces the execution time required to build the co-occurrence

matrix for a very large field of values. Experiments with

datasets from real-world applications show that the perfor-

mance of our approach makes it possible to envisage the use

of co-occurrence matrices as tools for many applications. A

future work would be applying this approach to initialize

deep neural networks in order to reduce the training time.

Sparse-Pairwise’s distributed approach was validate with a

CPU cluster. The use of accelerators which can be used to ex-

press the intra-node parallelism is a perspective of this work

for increasing efficiency and scaling the proposed approach.

We plan to integrate this approach into MindSpore [5] to

enable Sparse-Pairwise to be used on GPUs and NPUs.
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