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ABSTRACT

Sea bottom unmixing is a challenging task for the analysis
of coastal zones. Actually the upward photons are attenu-
ated and diffused by the water column layer, giving low sig-
nal to noise hyperspectral data. A classical approach is to
perform inversion of the water column using semi-analytical
parametric models and estimation process, and obtain the wa-
ter column constituents (chlorophyll, suspended matter, dis-
solved organic matter and bathymetry), and the coefficients
of pure materials reflectance spectra (endmembers), given in
spectral libraries, for each pixel. We consider here the case
of unknown endmembers, and we suppose that the water col-
umn components have been obtained by a classical inversion
method or in-situ measurements. For each observed pixel
the upward luminance is analysed and decomposed into three
terms, respectively issued after interaction with the target bot-
tom pixel, its neighbours, and the water column. We show
that in some conditions the adjacent pixels effect is not neg-
ligible, due to the diffusion in the water column, and we de-
velop in accordance a new mixing model for the sea bottom.
We propose a non-negative matrix factorisation based unmix-
ing method to solve the problem, and present results for hy-
perspectral data simulations.

1. INTRODUCTION

For the last decades, hyperspectral airborne remote-sensing
has been widely used for mapping of water composition
and bathymetry. In coastal environments, hyperspectral re-
mote sensing methods that allow the simultaneous retrieval
of bathymetry, water quality and benthic cover are usually
based on a radiative transfer model that describes how light
propagates in water. Semi-analytic parametric models have
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been developed to describe the relation between the bottom
reflectance and remote-sensing reflectance by taking into ac-
count water attenuation [1], [2], and also numerical models
such as Hydrolight [3]. These models usually consider that
four parameters affect the water-leaving radiance: depth and
concentrations of optically active constituents, i.e., chloro-
phyll (Chl), colored dissolved organic matter (Cdom) and
suspended non-algal particles (SM ) [4]. The inverse prob-
lem is generally solved using either look-up tables or iterative
least square optimization [4], or maximum Likelihood (ML)
[5], [6], with the help of a known bottom spectral library.
Unmixing consists in estimating both abundances fractions
and endmember spectra in each observed pixel. Actually, due
to natural variability, existing fixed spectral libraries do not
always really represent the materials for a given observation,
generally supposed to be a linear combination of the end-
member spectra with abundance coefficients. Interestingly,
The non-negative matrix factorization (NMF) method has
shown to be able to adapt to various mixing models [7]. In
the case of seabed analysis, the water column influence must
be included in the model. In [8] we have used Lee’s radia-
tive transfer model and proposed to combine ML estimation
and NMF unmixing to obtain simultaneously the water pa-
rameters, the endmembers and the relative abundances. In
this study, we propose to refine the radiative transfer model
and develop an adapted NMF based unmixing method, mak-
ing the hypothesis that the water column parameters can be
previously obtained, either with in-situ measurements and
bathymetric maps, or by the mean of a classical inversion
method that would not require the precise knowledge of the
bottom, or else by inversion with a fixed spectral library. Then
the results of the inversion can be used to initialize the spectra
and the abundance coefficients for the unmixing. In order to
develop a refined radiative transfer model, we first consider
analytically the various sources of upward light issued from
the water column, and in a second step make use of the soft-



Fig. 1. Upward subsurface radiance

ware OSOAA [9] to simulate those many contributions to the
total upward luminance. We note that in some situations the
contribution of the bottom pixels adjacent to the target one
cannot be neglected in the total leaving radiance, so we keep
the corresponding terms in the radiative transfer model. In
the section 3 we develop the corresponding mixing model,
and we solve this problem with an NMF procedure. Last, we
present the unmixing results for realistic simulated data.

2. RADIATIVE TRANSFER MODEL

In this section, we analyse the radiative transfer model within
the oceanic layer, from the bottom to subsurface level, and we
simulate the different sources of upward light at the underwa-
ter surface.

2.1. Analytical expression of the subsurface upward radi-
ance

If we consider only the first order terms, the upward subsur-
face radiance when observing a subsurface pixel O can be
decomposed as presented in figure 1, with bold terms corre-
sponding to spectral vectors:
Etot: total downward luminance at the bottom level.
Ltot: total subsurface upward radiance
Ldirtw : subsurface direct upward radiance after interaction with
the target
Ldiftw : subsurface diffuse upward radiance after interaction
with the target
Ldifaw : subsurface diffuse upward radiance after interaction
with the pixels adjacent to the target
Lw: subsurface diffuse upward radiance from the water col-
umn, without interaction with the bottom
It can be seen in figure 1 that when observing a subsurface

pixel O, the environment of the target pixel P of the bot-
tom contribute to the observed subsurface radiance, due to
the diffusion of light inside the water column. Then the to-
tal contributing bottom reflectance is not only the target pixel,

but also its neighbours. The observed sub-surface radiance at
depth 0−, corresponding to the target bottom pixel P , can be
expressed by the sum of three main terms (figure 1):

Ltot(0−) = Ldirtw (0−) + Ldifenv(0−) + Lw(0−) (1)

and Ldifenv(0−) = Ldiftw (0−) + Ldifaw (0−).
In the following, we omit the depth 0− for the subsurface
luminance terms.
In the next section we focus on the equivalent environment
reflectance of the bottom, including the target pixel and its
neighbours.

2.2. Environment reflectance

We consider the equivalent bottom environment reflectance,
including the target pixel and the adjacent ones, that con-
tribute to the upward diffuse radiance for one pixel observed.
It is defined as the spectral vector ρenv:

ρenv(λ, P ) =

∫ ∫
M∈V(P )

γenv(λ, d(P,M))ρ(λ,M)dS

(2)
M is a pixel in the neighbor V(P ) of P , ρ(λ,M) the

bottom reflectance at pixel M , dS is the elementary surface
around M, γenv the environment function for the upward ra-
diance, and d(P,M) = R is the distance between P and M .

Formally, the environment function is dependent on the
wavelength, but we have verified with simulations that it
varies very slowly with it, so we shall consider this function
as a scalar in the equation 2. It is given by γenv(P,M) =
1
S
dG(R)
dR , with S the environment surface, and G(R) the

contribution of a target pixel of radius R (pixel size) to the
environment V(P ) for the total diffuse radiance at subsur-
face level. For the upward diffuse radiance, the diffusion
is anisotropic from the bottom to the sea surface, so the
environment function is not symmetric. In this case, the
expression of G(R) can be found in [10], and depends on
the optical thickness of the water layer and the phase func-
tion. Then it varies with the depth H, the water quality,
given by [Chl, Cdom, SM ], and the wavelength. G(R)
has been be calculated by means of OSOAA simulations,
for many values of depth, wavelength, water quality and
target pixel size R. Some values of the environment func-
tion are plotted in figure 2, for a standard quality water
[Chl = 1 mg/m3, Cdom = 0.2 m−1, SM = 3 mg/L)], as
a function of R (the results were the same for all wavelengths
between 400 nm and 700 nm) . We note that the contribution
of a 0.20m target pixel in the diffuse light, given by G(R),
is approximately 75% for 1 m depth, while it is only 40%
at 5 m. Consequently, the pixels neighbour to the target one
cannot be neglected in high resolution images.

The total environment reflectance at pixel P is then, sep-
arating target and adjacent pixels contributions:



Fig. 2. Environment function G(R) for many pixel sizes, two
depths, and standard water

ρenv(P ) = ρt(P )

∫ ∫
M=P

γenv(R)dS +

ρa(P )

∫ ∫
M 6=P

γenv(R))dS

ρenv = δ × ρt + (1− δ)× ρa (3)

ρt(P ) is the target reflectance, ρa(P ) the equivalent re-
flectance of the pixels in the neighbour of the target. The
radiative transfer equation becomes:

Ltot(0−) = Lw(0−) +
Etot(P )

π
�Tdir(0−)� ρt

+
Etot(P )

π
�Tdif (0−)� [δ × ρt + (1− δ)× ρa] (4)

The environment parameter δ (resp. 1 − δ) gives the propor-
tion of diffuse light rising to the surface after interaction with
the target (resp. adjacent pixels). � is the Hadamard (point-
wise) product, Tdir is the direct upward transmission vector,
Tdif the diffuse upward transmission vector and Etot(P ) the
total illumination at the bottom pixel P .

In order to obtain a usefull expression for unmixing, we
now introduce the mixing model into the radiative transfer
equation.

2.3. Decomposition of the bottom reflectances

2.3.1. Target pixel

The target pixel is decomposed as a linear combination of J
endmembers sj : ρt =

∑J
j sjaj,t, with aj,t being the abun-

dance fraction of the ’pure’ material of reflectance sj in the
target pixel t.

2.3.2. Environment reflectance

Let call N the number of adjacent neighbours considered
in the scene. ρa = 1

N

∑N
n=1 ρn, ρn being the reflectance

at pixel n, in the neighbour of the target pixel, and ρn
can also be decomposed as a linear endmembers mixture
ρn =

∑J
j=1 aj,n sj , with aj,n the abundance fraction of the

jth endmember in the pixel ρn.
When observing the target pixel Oi at subsurface level,

the diffuse light comes both from the target bottom pixel Pi
and from the adjacent pixels. The parameter δ is dependent on
the pixel, because the depth and the water quality can vary in
the scene. The equivalent reflectance spectrum corresponding
to this observation is defined as:

ρenv,i = δi ρt,i + (1− δi) ρa,i

= δi

J∑
j=1

aj,i sj + (1− δi)
1

N

N∑
n=1;n 6=i

J∑
j=1

aj,n sj

=

J∑
j=1

[
N∑
n=1

pn,i aj,n

]
sj (5)

with pn,i = 1−δi
N if n ∈ V(i), n 6= i, pn,i = δi if n = i,

and else pn,i = 0. This can be written with a vector/matrix
product: ρenv(i) = S ãi, with S the matrix containing all the
endmembers arranged in columns, and ãi a vector whose the
jth element is ãj,i =

∑N
n=1 aj,n pn,i.

Finally, each component of ãi = Api gives an ’equiva-
lent abundance’ with the weighted sum of the proportions of
the endmembers in the whole neighbour of the target pixel i,
and ρenv(i) = S A pi

3. UNDERWATER MIXING PROBLEM

3.1. Mixing model

We obtain the mixing model from the radiative transfer equa-
tion, divided by the downward illumination at surface level,
E(0−) in order to obtain reflectances (. / is the pointwise di-
vision).

(Ltot − Lw)./E(0−) =

(E(P )./πE(0−))� [Tdir � ρt +Tdif � ρenv] (6)

For each target pixel i we have: r̃i = k1 � (S ai) +
k2 � (S Api), with r̃i = (Ltot − Lw)./E(0−), k1 =
(E(P )./πE(0−))�Tdir and k2 = E(P )./π �E(0−)Tdif .
For the whole scene, the mixing model is then:

R̃ = K1 � (S A) +K2 � (S A P) (7)

The L × I matrices R̃, K1, K2 are constructed with all
the spectral vectors arranged in columns, the abundance ma-
trix A is J × I and P is I × I .

This model is a generalisation of the linear mixing model
to the case of diffused photons, being the cause of adjacency
effects described by the additive term (K2 � S A P).

We propose a generalisation of the non negative matrix
procedure to solve this mixing problem.



3.2. Unmixing method

The unimixing problem is the estimation of both matrices A
and S. Actually In this work we consider the case where only
the bottom is unknown, the water column illumination, trans-
mission, diffusion vectors being all known. The matrix P
is preliminary calculated for a given neighbour of the target
pixel, depending on the pixel size, and is fixed in the optimi-
sation process.

In order to solve the problem, we minimize a cost function
that is the Frobenius norm between the observed subsurface
reflectance (corrected by the water subsurface reflectance),
and the estimated one:

RQE = ‖R̃obs − R̃‖2Fro

Where R̃obs is the observed reflectance, corrected from the
water radiance. We solve the optimisation with a non negative
matrix factorisation scheme. We use an alternate projected
gradient. The cost function gradients up to A and S are:

∇RQES(S,A) =[
K1 �

(
R̃obs −K1 � (SA)−K2 � (SAP)

)]
At

+ K2 �
[(

R̃obs −K1 � (SA)−K2 � (SAP)
)]

(AP)t

∇RQEA(S,A) =

St
[
K1 �

(
R̃obs −K1 � (SA)−K2 � (SAP)

)]
+ St

[
K2 �

(
R̃obs −K1 � (SA)−K2 � (SAP)

)]
Pt

The unmixing algorithm is then

Algorithm 1 NMF Underwater Unmixing algorithm
Initialization : estimation of K1,K2,Ainit,Sinit
while ε > th do
{A(n+1)} ← {

[
A(n) − αA∇RQEA(Sn,An)

]1
0
}

{S(n+1)}← {
[
S(n) − αS∇RQES(S

n,An) + regS
]1
0
}

R̃(n+1) = K1 � (S(n+1)A(n+1)) + K2 �
(S(n+1)A(n+1)P)
ε = maxp(|r̃(n+1) − r̃(n)|/r̃(n))
n = n+ 1

end while

αA and αS are the gradient steps, calculated with an
Armijo-Lin method. We also use regularization for the end-
members, given by regS , as defined in [11], to minimise
endmembers dispersion. The results are assessed with sim-
ulated images. In future work, we shall also make the water
column characteristics be unknown, but here we restrict the
problem to the estimation of the bottom.

3.3. Simulations

We develop simulations in order to assess the proposed
method. Data are simulated according to the model, and

Fig. 3. Endmembers spectra and simulated bottom in reconstructed
colors

Fig. 4. L1 norm of the different terms in the mixing model

the unimixind is performed with the proposed NMF. The
results are evaluated with quadratic error on the spectra,
abundances and reconstructed subsurface image, and spectral
angle distance for the endmembers.

3.3.1. Simulated data

The bottom is generated with a linear mixing model, using
four endmember spectra representative of the benthic species,
in (figure 3), that have been obtained through a data cam-
paign, made in the area of Porquerolles Island, South France,
in September 2015. There are representative of two algae,
the Caulerpa Taxifolia, and the Posidonia, clear sand and a
dark substratum. In order to reduce the time calmculation
done by OSOAA for each pixel, we have sub-sampled the
spectra and only 31 wavelengths are kept between 400 nm
and 700 nm, to account for the water attenuation out of this
spectral band. The abundances are randomly generated with
a maximum abundance of 85% for each endmember, though
we have enforced the mixing between the two clear spectra or
the two dark spectra in order to have a good contrast, and the
relative quantities of light or dark mixed pixels vary in five
zones of the image (figure 3).

The values of K1 and K2 determine the relative impor-
tance of the diffused light and direct light. We show the L1

norms of the direct and the diffuse terms, for clear and stan-
dard water and many depths in figure 4. We note that gen-
erally the direct term dominates the diffuse term, so the in-
fluence of the adjacency effect, only present in the diffuse
term, will not be noticeable. However in high depth, the dif-



Fig. 5. Reconstruction errors, errors on spectra and abundances for
the three unmixing

fusion term is comparable to the direct term, so in this case
the new model should be performing. We generate the under-
water data according to equation 7, with H = {5 m, 10 m}
and clear water. Some white noise is added to the subsurface
image, in order to attain a SNR of 40dB.

3.3.2. Results

We initialize the unmixing either with VCA performed on the
bottom without water added, or with endmembers modified
with a correlated Gaussian law. The abundances are initial-
ized with FCLS applied on the bottom. We present results for
a pixel radius R = 0.5 m, at H = 10 m and H = 5 m, av-
eraged on 10 realizations and the two different initializations,
and calculate the mean square error on reconstructed bottom
(RQE), on endmembers (SME) and abundances (AME), and
the spectral mean error on endmembers (SAD). We compare
the results when using the model of equation 7 for the unmix-
ing, and when performing the unmixing with no adjacency
effect modeled (no adjacency model : R̃ = K1 � (S A) +
K2 � (S A)), then neglecting the adjacency pixels effects in
the diffusion term. This allows to assess the relevance of the
complete model. We also compare with the unmixing of the
bottom without any water column, which obviously gives the
best performances.

Figure 5 shows that the complete model is performing bet-
ter than the model with no adjacency effects, for H = 10 m
andH = 5m, and clear water. In figure 6 we present in detail
the spectral mean error for the three unmixing at H = 10m,
with the error bars showing some variability.

Fig. 6. Spectral mean error, three unmixing, two initializations

4. CONCLUSION

In this work we have developed a new unmixing scheme,
adapted to the sea bottom analysis. To this end we have pro-
posed a new mixing model that takes into account the diffu-
sion effects inside the water column, leading to bottom adja-
cency effects. We make use of the software OSOAA to sim-
ulate precisely the water column effects onto the upwelling
photons, and we evaluate the results with realistic simula-
tions. The results mainly depends on the pixel size, the depth
and the water quality. We show that for pixels of radius R =
0.5 m the model is able to improve the results for depths
≥ 5 m in clear water. Then we conclude that for high res-
olution sensors the bottom estimation is improved by taking
into account the proposed model, that account for the bottom
adjacency effects. In future work we will present more deeply
the analysis of the model, and apply it to many different sim-
ulated cases, as well as to unmixing of real images. Moreover
we have here supposed known the water characteristics, in fu-
ture works we will also suppose those unknown and develop
the corresponding method.
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