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Speeding up 6-DoF Grasp Sampling with Quality-Diversity

Johann Huber∗1, François Hélénon∗1, Mathilde Kappel∗1,
Elie Chelly1, Mahdi Khoramshahi1, Faı̈z Ben Amar1 and Stéphane Doncieux1

Abstract— Recent advances in AI have led to signifi-
cant results in robotic learning, including natural language-
conditioned planning and efficient optimization of controllers
using generative models. However, the interaction data remains
the bottleneck for generalization. Getting data for grasping
is a critical challenge, as this skill is required to complete
many manipulation tasks. Quality-Diversity (QD) algorithms
optimize a set of solutions to get diverse, high-performing
solutions to a given problem. This paper investigates how QD
can be combined with priors to speed up the generation of
diverse grasps poses in simulation compared to standard 6-
DoF grasp sampling schemes. Experiments conducted on 4
grippers with 2-to-5 fingers on standard objects show that
QD outperforms commonly used methods by a large margin.
Further experiments show that QD optimization automatically
finds some efficient priors that are usually hard coded. The
deployment of generated grasps on a 2-finger gripper and an
Allegro hand shows that the diversity produced maintains sim-
to-real transferability. We believe these results to be a significant
step toward the generation of large datasets that can lead to
robust and generalizing robotic grasping policies.

I. INTRODUCTION

Grasping is a skill of great interest in robotics as it is a
prerequisite for many manipulation tasks [1]. The previously
prevalent analytical-based methods [2] are gradually giving
way to data-driven strategies since the beginning of the 21st
century [3]. However, the challenging exploration aspect of
grasping hinders the bootstrapping of the learning process,
as most grasps attempted by a policy initialized at random
yield no reward [4]. Many studies have addressed this issue
by employing imitation learning [5]–[7], parallel grippers
[8], [9], and top-down movements [10]–[12]. However, these
approaches restrict the operational space, constraining the
policies’ adaptability.

The recent advances in robotic learning demonstrate the
capabilities of data-based approaches for skill acquisition
[13]–[17]. These results rely on modern artificial intelligence
methods that require a tremendous amount of high-quality
data to generalize to unknown scenes. It has led to the release
of large datasets [18], many of them focusing on grasping [9],
[19], [20]. Acquiring such high-quality datasets is becoming
critical to allow high representational power architecture to
achieve generalization [13] or to build efficient foundation
models [14] to transfer skills between platforms and scenar-
ios.

∗ equal contribution and corresponding authors
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Fig. 1. Overview of the proposed framework. It consists of a population-
based algorithm that allows the efficient exploration of the space of possible
grasp positions from a genotype space. The optimization process is driven by
searching for diverse and high-performing grasps using a structured archive
of previously found solutions [28]. The genotype space is designed to
leverage the robotic priors that are commonly used in 6-DoF grasp sampling
[23]. All grasps ever produced are added to an outcome archive, which is
the output of the algorithm.

Great efforts have been made to build large sets of real
data [9], [18], but the acquisition of such data is very slow
and expensive. Recent works leverage simulated scenes to
speed up the data generation process [4], [19], [20] while
assuring the sim-to-real transfer through dedicated quality
criteria [21].

The advent of data-driven approaches has led to the
formalization of grasping as a 6 Degrees-of-Freedoms (6-
DoF) pose synthesis problem that can be predicted by a
trained model [22]. Recently, Eppner et al. [23] conducted a
systematic study to identify the best grasp sampling schemes
among the most commonly used ones in the literature. In the
Evolutionary Algorithms field, Huber et al. [4] studied how
Quality-Diversity (QD) algorithms can be applied to generate
diverse datasets of robust reach-and-grasp trajectories.

This paper shows that QD methods can significantly speed
up the 6-DoF grasp sampling. In particular:

• We propose a framework that combines robotic priors
with QD algorithms to generate large sets of diverse
and robust grasps;

• We show that variants based on this framework outper-
form state-of-the-art 6-DoF grasp synthesis schemes on
4 grippers and a dozen of standard objects in simulation;
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• Experiments conducted on a physical Franka Emika
Panda gripper and an Allegro hand show that the pro-
posed method generate grasps that successfully transfer
into the real world while preserving diversity.

The code had been made publicly available1. More details
can be found on the project website2.

II. RELATED WORKS

Learning to Grasp in Robotics. Many paradigms have
been explored since the advent of data-driven approaches
in the field, including reinforcement learning [24], [25],
and learning from a few demonstrations [6], [7]. However,
these methods require constraining the search space to
make the problem tractable. Many data-greedy approaches
were proposed to get generalization capabilities [9]–[11].
Recently were leveraged Diffusion models [15], Variational
autoencoders [16], or neural representations [17] to sample
grasps poses on unknown objects. Interestingly, most of them
exploit automatically generated data in their learning process.

Automatic Generation of Grasping Datasets. Datasets
for robotic learning can be directly collected in the real
world [10], [18], but this process is very time and cost-
expensive. To circumvent this problem, many works focus
on simulation. Data were originally annotated with analytic
criteria [11], [26], which are still used nowadays for top-
down grasps [27]. On the contrary, more and more works rely
on a physics engine to simulate the gripper-object interaction.
These methods leverage robotic priors to speed up the data
generation, resulting in separated studies for 2-finger [8],
[19], [23] and multi-fingered [20] grippers.

However, there is no consensus on the best methods
to generate diverse grasps for n-finger grippers efficiently.
Eppner et al. [23] put a stepstone on that matter through
a systematic comparison of standard sampling schemes for
6-DoF grasps poses on a parallel gripper. We extend this
analysis to n-finger by including new QD-based sampling
schemes.

Quality Diversity. Quality-Diversity methods are optimiza-
tion algorithms that aim to generate a set of diverse and
high-performing solutions to a given problem [28]. Recently,
Huber et al. [4] demonstrated that QD could generate datasets
of diverse and high-performing reach-and-grasp trajectories
for n-finger grippers and proposed a Domain-Randomization-
based method for estimating the probability of successfully
completing the sim-to-real transfer [21]. We extend this work
to 6DoF grasp sampling to investigate how QD can speed
up the automatic generation of grasping data.

III. METHOD

A. 6DoF Grasp Sampling

Let Θ be the parameter space, and θ ∈ Θ an individual.
Let G be the space of possible grasps given a rigid object
and a gripper, and G ⊆ G be the space of successful grasps.

1https://gitlab.isir.upmc.fr/l2g/qd_grasp_6dof
2https://qdgrasp.github.io/

Fig. 2. Commonly used priors in 6DoF grasp sampling. (Left) approach-
based ; (Right) antipodal-based. Rg is the frame associated with the gripper.
The cylinder is an illustration of a targeted object.

This section aims to define how robotic priors can be used
to project elements from Θ to G.

Definition. Let g ∈ SE(3)×Rn be a grasp, with n being
the number of internal DoF. To reduce the search space on
multi-fingered grippers, we close each hand with synergies.
However, some grippers need flexibility in the initial joint
pose to exploit their gripping capabilities. Thus, we have
g ∈ SE(3)×Sy×Rk with Sy ⊆ N+∗ the space of predefined
synergies with Card(Sy) = m the number of synergies for a
given hand, and k the number of joints for which the initial
state is included in the search space. For a parallel gripper,
we have m = 1 and k = 0, and thus g ∈ SE(3), similarly
to [23]. Details on the synergies and controlled initial joints
are provided in the supplementary materials.

Prior-based Sampling schemes. The present article relies
on the most commonly used schemes for 2-finger grippers
[23]. To our knowledge, the commonly used methods to
generate diverse multi-fingered grasps rely on several op-
timization steps [20], [29], [30]. The present work aims
to compare methods that produce grasps poses by directly
sampling in a search space without further optimization
steps. We let multi-steps methods for future work. The
sampling schemes evaluated by Eppner et al. include the
antipodal-based and approach-based ones (Fig. 2). To have
a meaningful random baseline, we also introduce a contact-
based sampling scheme. Let Rg = (x⃗g, y⃗g, z⃗g) be the frame
associated with the end effector such that (z⃗g, x⃗g) generates
the palm plane and y⃗g drives the gripping direction.

Approach-based prior: Let n⃗ be the normal on the object
surface at the targeted reference point Pg . This method aims
to align n⃗ with y⃗g such that the angle verifies:

(n⃗,−y⃗g) = ν ≤ νa (1)

where νa is the maximum half-aperture of the approach cone.
The parameter θ to explore G is thus:

θ = (xr, yr, zr, d, ν, ξ, ω) (2)

where Pg = (xr, yr, zr) defines the targeted reference pose,
d is the gripper distance to contact point, ν is defined as in
eq. (3), ξ is the cone revolution angle around n⃗, and ω is the

https://gitlab.isir.upmc.fr/l2g/qd_grasp_6dof
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gripper rotation around y⃗g . The maximum half-aperture has
been set to νa = π/4 , like in Eppner et al. [23].

Antipodal-based prior: Let u⃗ = −n⃗, the opposite vector to
the normal n⃗ at the first contact point P1 = (xr1 , yr1 , zr1).
The last point found on the object surface along u⃗ defines the
second contact point P1. The normal of the object surface
at P1 is noted n⃗1. This method consists of finding gripper
poses that apply opposite forces on P2 and P1. Therefore,
the following criterion must be verified:

(n⃗1,−n⃗2) ≤ νt (3)

where νt is the maximal allowed difference between n⃗1 and
n⃗2 to define an antipodal grasp. We set νt = π/6. The
parameter θ is thus:

θ = (xr1 , yr1 , zr1 ,Ω) (4)

where Ω is the gripper orientation around u⃗.
The contact-based methods have been introduced to get

baselines with minimal priors. It consists of the approach-
based method with νa = π. Consequently, sampling the
parameter space can easily make the gripper overlap with the
object. If the approach assumption is as efficient as reported
in the literature [23], the contact-based variants should be
significantly less sample efficient – while avoiding gripper
poses that are too far from the object to grasp it.

B. Leveraging Quality-Diversity for 6DoF-Grasp Sampling

This section aims to detail how we can explore G from Θ
to discover solutions in G.

Definition. This study uses QD standard notations [28].
Let B ⊆ Rnb be the behavior space, and ϕB : Θ → B
the behavior function, which assigns a behavior descriptor
bθ = ϕB(θ) to each θ. The fitness function is f : Θ → R,
and dB : B2 → R is a distance function within B. The goal
is to generate an archive A such that:{

∀b ∈ Breach, ∃θ ∈ A, dB(ϕB(θ), b) < ϵ
∀θ′ ∈ A, θ′ = argmaxθ∈N(bθ′ )

f(θ)
(5)

where Breach ⊆ B is the reachable behavior space, ϵ ∈
R+∗ defines the density of Breach paving, and N(bθ′) =
{θ | neighbordB(bθ, bθ′)} is the set of solutions with close
projections in B. ϕB is deterministic.

Efficiently exploring G from Θ . The overall algorithmic
principle is presented in Fig. 1. It consists of a standard QD
framework, where a mutation-selection process optimizes
an archive A of solutions. Individuals are projected to the
grasp space by exploiting the previously described priors.
Depending on the gripper, the individual θ has additional
values to search among the space of possible joint initial
positions and synergies.

To search within the space of contact points on the object
surface, the mesh is first preprocessed to get a uniform
coverage of its surface. Let Sc be the resulting set of contact
points for a given object. The first components of θ are
in practice used to define the position (xcf , ycf , zcf ) of a
contact point finder Pf . The first targeted reference point
(either Pg or P1 depending on the prior) is defined as

Fig. 3. Considered scenes. Grasp sampling schemes are evaluated on
YCB objects [32] in the Pybullet [31] simulators. Experiments involve a
FE Panda gripper, a Barrett hand, an Allegro hand and a Shadow hand.

the closest point to Pf in Sc. This method has been used
to allow a computationally efficient, physically meaningful
local search. A direct search within a flattened list of contact
points would limit the locality to the way the mesh has been
built, such that two points far away in the list can, in practice,
be very close on the object’s surface.

The components of individuals are normalized to lie in
[−1, 1] by limiting the search space to the bounding box of
the targeted object. Each component is projected in its own
interval when projecting θ from Θ to G to eventually get a
grasping g ∈ G that consists of a 6DoF pose in SE(3) and
a constant closure strategy (defined by the initial joint states
and the synergy).

Evaluation. After a population of genomes has been
sampled, the computed corresponding grasps are evaluated
in simulation. A 3d model of the end effector is set to
the computed position in SE(3). The position is already
discarded if there is an overlapping between the end effector
and the object. Otherwise, a constant closure is then applied
to the gripper, with respect to the individual additional
components if necessary (i.e. initial joint states and synergy).
If the fingers are in contact with the object, a verification
phase is conducted – similarly to Eppner et al. [23]. It
consists of applying a fixed shaking pattern on the end
effector. The quality of the grasp (called the fitness f ) is
computed as the number of shakes the grasp g has resisted.

Population-based optimization. Quality-Diversity meth-
ods rely on a behavioral characterization associated with each
evaluated solution [28]. We extend [4] formulation of the
reach-and-grasp problem to the 6-DoF grasp pose sampling
problem by exploiting the same behavior space B, which
is the Cartesian position of the end effector when applying
the forces on the object surface. Each QD method has its
own mutation-selection pattern. An outcome archive Ao is
distinguished from the optimization archive [4]. The output
Ao is eventually filled with a large variety of robust grasps.

IV. EXPERIMENTS

This section provides the most essential information about
the experiments. Details of hyperparameters and implemen-
tations are provided in Appendix I.

Grippers and objects. A comparative analysis has first
been conducted in the simulator Pybullet [31] (Fig. 3). It
involves 4 grippers: a Franka Emika Panda 2-finger gripper,
a 3-finger Barrett hand 280, a 4-finger Allegro hand, and
a 5-finger Shadow hand. The multi-fingered grippers are



controlled with synergies to remain in the 6-DoF grasp pose
paradigm. A subset of 10 objects from the YCB object
dataset [32] were used to evaluate the sampling.

Compared methods. The following methods are com-
pared: contact rand, approach rand and antipodal rand.
They are the standard prior-based sampling schemes de-
scribed in section III-A. Elements are randomly sampled
from the search space, similarly to Eppner et al. [23].
Some variants of QD methods with robotic priors have also
been compared: ME scs [4], which is state-of-the-art for
reach-and-grasp trajectory generation, and CMA MAE [33], a
general purpose state-of-the-art QD algorithm. ME rand [34]
has also been added as a baseline. Note that all prior-based
methods are reported with a dedicated prefix (approach *,
antipodal *, or contact *). QD methods without prefixes
rely on a genome that directly encodes g with spherical
coordinates and Euler angles w.r.t. the object frame.

The 3 kinds of priors are studied on the 2-finger gripper.
However, the antipodal grasps as described in Eppner et al.
are not applicable to multi-fingered grippers. The antipodal-
based methods are thus discarded for the other hands. Note
that variants of approach-based methods are applied in the
literature to generate grasp poses for multi-fingered grippers
[37]–[39].

Evaluation metrics. To identify the best 6-DoF grasp
sampling methods for multiple grippers, we compute an
estimation of the successful grasp space coverage cvg(G),
similarly to Eppner et al. [23]. To do so, 5 runs of 10M
evaluated samples for ME scs and approach me scs have
been computed. All the generated grasps are then added to
a single set of successful grasps SG . To limit the size of
SG , we only keep the Cartesian position of the end effector
while applying the forces on the object surface and round it to
0.01 m. SG contains a single occurrence of each grasp pose.
The grasp pose coverage cvg(G) is computed by extracting
the Cartesian poses of each successful grasp found in the
outcome archive Ao. Positions are then rounded to 0.01 m.
The coverage is calculated as the ratio of elements found in
SG divided by Card(SG). Therefore, cvg(G) ∈ [0, 1], with
cvg(G) = 1 being the optimal value.

V. RESULTS AND DISCUSSION

Simulated Grasps Synthesis. Fig. 4 shows the evo-
lution of the grasp space coverage with respect to the
number of 6-DoF grasps samples evaluated in the simu-
lation. The QD state-of-the-art method with limited pri-
ors (contact ME scs) significantly outperforms the standard
grasps sampling schemes (contact rand, antipodal rand, ap-
proach rand) regardless of the platform. It shows that QD
can speed up grasp sampling compared to standard methods.
The usage of the contact prior is here critical, as it leads to
a significant increase of performance compared to ME scs.

Interestingly, the results obtained on the standard schemes
for the Panda gripper are lower than the one reported by
Eppner et al. [23]. This difference might come from the
model of contacts in bullets and the simulation parameters
that could make the grasps harder in Bullet than in FleX.
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Fig. 4. QD-based vs standard prior-based sampling schemes. Ratio
of diverse, successful grasp found w.r.t. the number of evaluated samples.
The dashed lines are commonly used in the literature; the plain ones are
QD-based. contact ME scs outperforms the standard schemes and the raw
QD method by a large margin on the 4 considered grippers.
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Fig. 5. Leveraging priors with QD state-of-the-art. Same principle
as in Fig. 4. All the tested QD variants outperform standard prior-based
sampling schemes. The pressure for quality optimization makes QD contact
variants behave similarly as QD approach, such that the algorithm generates
solutions that verify the usually hard-coded approach criterion (Fig. 6).

Another difference is the grasp coverage metrics: Eppner et
al. include the orientation of the gripper pose for measuring
diversity, while we only keep the Cartesian position. This
might shift the plateau of strongly constrained methods like
antipodal rand to a higher grasping coverage. However, the
relative performances are comparable.

Fig. 5 shows the evolution of the grasp space coverage for
several combinations of state-of-the-art QD algorithms and
robotic priors on the Panda gripper and the Allegro hand. QD
variants with priors reached higher coverage than standard
prior-based methods. Variants based on ME scs are the best-
performing ones, extending Huber et al. [4] results on reach-
and-grasps trajectories to 6-DoF poses. The antipodal-based
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Fig. 6. Distribution of ν from successful grasps generated with contact-
based variants. Each bin describes the probability p(ν) of finding grasps
poses with a ν angle between the normal to the hand palm and the normal
at the nearest contact point on the object surface. By focusing on the most
promising part of the search space, the QD method generates grasps that
match the approach prior (i.e. ν ∈ [0, π/4]).

Fig. 7. Examples of successful grasps coverage per methods. Each voxel
is the end effector position of a simulated successful grasp. The heatmaps
describe the robustness of each grasp – the hottest the voxel, the more
robust the grasp. Leveraging QD results in a more sample-efficient search,
eventually producing a set of grasp poses that cover the whole object surface.

variant of ME scs quickly plateaus, showing that this prior
is too conservative to explore G. Moreover, it can be noticed
that QD variants with either the approach or the contact
priors do not reach significant differences in coverage. This is
unexpected, as there is a clear difference between standard
random-based variants for approach and contact (see Fig.
4). An explanation can be found in Fig. 6, which shows
the distribution of ν variables for contact variants of QD
methods. The distributions mostly lie between 0 and π/4,
which is the constraint imposed by the approach prior. By
focusing on the most promising part of the search space, QD
variants generate grasp samples in which the palm normal is
aligned with the normal on the object surface at the targeted
contact point. In other words, QD contact-based variants
automatically find priors that are usually hard-coded to speed
up the generation of the grasps.

Fig. 7 provides examples of FR3 grasps poses for standard
6-DoF grasp sampling scheme, as well as one of the two best-
performing QD method, after 100k evaluation samples. The
QD-generated grasps successfully cover the whole object’s
surfaces, including both fragile and robust grasp regions. It
is well-known in the machine learning community that high-

Fig. 8. Examples of transferred grasps. The proposed method generates
diverse grasp poses that are robust in the physical world.

QD Framework Reach-and-grasp 6DoF
Gripper Panda Panda Allegro

ηsim2real 0.84 0.95 0.72

TABLE I
MEASURED SIM2REAL TRANSFER RATIOS.

quality datasets include good and bad examples and do not
ignore some parts of the targeted distribution. Several works
build diverse grasp poses datasets using standard sampling
scheme [19], [23]. The obtained results suggest that similar
datasets can be built significantly faster by leveraging QD-
based optimization methods.

Real robot experiments. To evaluate the exploitability of
the grasps generated by ME scs, grasping repertoires have
been generated with the same hyperparameters, except from
the usage of a Domain-Randomization-based fitness that
showed a significant alignment with sim2real transfer [21].
More details on the experimental setups can be found in
Appendix II. Table I reports the obtained sim2real transfer
ratios ηsim2real on a couple of objects when deploying the
grasps with higher fitness in As. The 6DoF framework leads
to comparable results with the reach-and-grasp framework,
reaching 95% of transfer on the Panda gripper. Deployments
on the Allegro hand resulted in a lower ratio (ηsim2real =
72%). Most of the failures are due to 2-finger grasp syner-
gies, which do not apply enough force for lifting the power
drill. All the attempts succeeded on the bleach cleanser, the
bowl, and the mug. In Fig. 8 are provided some examples
of successfully transferred grasps. Those experiments show
that the generated grasps can successfully be exploited in the
physical world.

Limitations. The grasp generation experiments have been
conducted with CPU parallelization only. Related works
leverage GPU parallelization for scaling the generation of
diverse 6-DoF grasp poses [23]. Applying QD methods on
GPU environments would imply a stochasticity inherent to
parallelization. Recent works explore how to apply QD to
stochastic environments [35]. Exploring how to extend the
present work to GPU parallelization is a promising way of
improving the generation of diverse grasping datasets.

Another limitation is the grippers’ control. There is no
fine control of the force intensity here, and the dexterous
hands are limited to synergy-based grasps. The use of simple
sampling methods for dexterous hands is also restrictive.
The proposed framework aims to speed up the generation
of diverse and robust grasps for different grippers with mi-
nor adaptations. Exploiting multi-step optimization methods



[20], [29] within this framework might be a promising way to
generate large datasets of diverse grasps for dexterous hands
beyond synergies.

VI. CONCLUSIONS

This work demonstrates the potential of combining
Quality-Diversity methods with priors to speed up the 6-
DoF grasp sampling schemes and build large datasets of
diverse and robust grasps. Our proposed method can easily
be applied to several robotic platforms, from parallel 2-finger
grippers to dexterous hands. Experiments conducted on real
robots show that the diversity of found solutions maintains
sim-to-real transferability. We believe such a method can help
the latest robotic learning models to converge to generalizing
grasping policies by leveraging large datasets of simulated
grasps.
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Supplementary Materials

APPENDIX I
EXPERIMENTAL DETAILS: SIMULATION

Objects. Following YCB objects were used in the data
generation experiments. For the Panda gripper: banana,
bleach cleanser, bowl, cracker box, mug, power drill, rubiks
cube, spatula, tennis ball; for the Barrett hand: banana, bleach
cleanser, bowl, cracker box, power drill, rubiks cube, spatula,
tennis ball; for the Allegro hand: banana, bleach cleanser,
bowl, chips can, cracker box, mug, power drill, rubiks cube,
spatula, tennis ball; for the Shadow hand: banana, bleach
cleanser, bowl, mug, power drill, rubiks cube, spatula, tennis
ball.

Algorithms. Let µ be the population size, λ the number of
offspring, k the number of neighbors considered for novelty
computation, and Ne the maximum number of evaluation.
We set: µ = λ = 500, k = 15, Ne = 100k. All offspring
are mutated with a probability indpb = 0.3 to modify
each gene. For a fair comparison, all ME-derivated methods
sample µ = λ individuals for offspring generation at each
iteration. The mutation operator applied by default to all
the methods is a Gaussian perturbation of 0 mean and 0.1
standard deviation. This value of σ has been obtained by
doing grid search, trying to get the highest possible value of
cvg(G) after 20k evaluated samples. The variance of optimal
value of σ between methods was so small that we set it to 0.1
for all the mutation-based methods. For CMA MAE variants,
we used the same parameters as in [33]: The emitter batch
size is set to 36, and the number of emitters to 15, fmin = −1
and α = 0.01.

The fitness f is computed by applying a predefined
shaking pattern, similarly to [23]. The fitness of a grasp pose
g is equal to the number of shakes applied to the gripper after
the closure without making the object fall. Let Ns the number
of performed shakes. We set Ns = 2: the first perturbation
is a translation shake, the second one is a rotation - both
around a fixed axis in the simulated world. Therefore, the
optimal fitness is f∗ = Ns = 2.

Grippers. Following are the details on the way each
gripper is controlled. For the Panda gripper: The fingers
opened as wide as possible, and closed at grip time; for
the Barrett hand: the initial position of the joints that orient
the proximal part of each fingers with respect to the palm
are defined by the parameter, such that the search space
allows to get several initial configuration of those fingers. All
the fingers are then uniformly closed; for both the Allegro
and the Shadow hand: the hand is closed with respect to
synergies. The synergies consist of a uniform closure of
specific fingers, including thumb-index, thumb-mid, thumb-
index-mid, and all the fingers. All fingers are initialized in
wide open position. The thumb palm-to-proximal joint is
always set such that the thumb is orthogonal to the palm.
This kind of synergies have been used for their simplicity,
their efficiency, and the ease with which they can be adapted
to different grippers. Other kind of synergies can be found in
the literature, like the eigen grasps [40]. Studying the optimal

way to generate grasps for n-fingers is beyond the scope of
this paper.

APPENDIX II
EXPERIMENTAL DETAILS: PHYSICAL WORLD

Data generation. The fitness has been replaced with
a quality criterion dedicated to sim2real transfer. We use
a variant of the Mixture Domain Randomization criterion
proposed in [21], removing the variance on the joint state -
as it is redundant with the variance on the object state in the
6DoF grasp prediction context. Let NMDR be the number
of retrials, σop the object position variance along each axis,
and σoo its orientation variance. We set NMDR = 100,
σop = 0.005m, σoo = 30◦. We kept the same variance of
friction coefficient as in [21]. The shaking process is similar
to the simulated experiments. Consequently, the best possible
fitness is f∗

MDR = Ns × NMDR = 200. The probability
ηsim2real for a given grasp g to successfully transfer in the
physical world can thus be estimated as:

ηsim2real(g) =
f(g)

f∗
MDR

All the remaining hyperparameters are similar to those
used in the simulated experiments. The grasps are then sorted
with respect to their fitness fMDR.

Real world setup. Real experiments involve a Franka
Research 3 arm with a parallel gripper and an Allegro-Hand
V4 with gravity compensation and some compliance. The
same arm is used for both grippers. A 3D-printed mounting
adaptor is used to fix the Allegro hand on the arm. The
Allegro hand is controlled with a joint impedance controller
with gravity compensation. No additional material that could
increase adhesion is used to make grasping easier. The
synergies are the same as the ones used in the simulated
experiments. The gravity compensation is computed with
respect to the fixed arm base. The motion planning of the
end effector is conducted with RRT connect through Moveit!,
assuming that the object and the table are collision bodies.
The object pose detection is conducted by leveraging a hand-
eye calibrated Realsense D435i, using the vision pipeline
from Hélénon et al. [36]. The angle between the camera
point-of-view and the table plan is roughly 30◦.

Experiments. The real experiment involves 4 YCB ob-
jects: the bowl, the mug, the bleach cleanser and the
power drill. It is worth noting that among the sorted high-
performing grasps, the ones that do collide with the table
were discarded. Almost all the deployed trajectories have
successfully been transferred on the physical gripper. The
failures are primarily due to a misalignment between the
applied forces in simulation and the real world. This also
raises a limitation of the 6DoF setup widely used in the
literature. A finer control of applied forces could overcome
this limitation.
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