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DESIGN OF EXPERIMENTS BASED ON A LOW FIDELITY MODEL FOR

SEISMIC FRAGILITY CURVES ESTIMATION

Antoine Van Biesbroeck1, 2, Clément Gauchy3, Cyril Feau2 and Josselin
Garnier1

Abstract. Seismic fragility curves are key quantities of interest for Seismic Probabilistic Risk Assess-
ment studies. They express the probability of failure of a mechanical structure of interest conditional
to a scalar value derived from the ground motion signal coined Intensity Measure. In the literature,
Bayesian approaches have emerged to enable their estimation within the difficult context of limited
data availability. Yet, the log-normal modeling over which most of them are based requires the use
of computationally expensive Markov chain Monte Carlo methods for providing Bayesian estimators.
In this work, we propose an efficient modeling for the estimation of fragility curves in the Bayesian
context, based on a low fidelity model of the structure’s response to the ground motion signal and an
objective prior. The analytical expression of our modeling allows fast generation of estimates. Also,
the representative bias arisen by the modeling choice is handled with a judicious design of experiments
methodology. Finally, our method is evaluated on a real case study, and the results highlight its effi-
ciency and its ability to robustly overcome any bias when coupled with the design of experiments we
propose.

Résumé. Les courbes de fragilité sismiques représentent un outil d’aide à la décision essentiel dans le
cadre des études probabilistes de sûreté. Elles quantifient la probabilité de défaillance d’une structure
mécanique d’intérêt conditionnellement à une valeur scalaire appelée Mesure d’Intensité et extraite du
signal sismique. Dans la littérature, les approches bayésiennes s’illustrent par leurs capacités à estimer
ces courbes dans un contexte où peu de données sont à disposition. Cependant, la modélisation log-
normale sur laquelle la plupart se reposent nécessite l’emploi de méthodes Monte-Carlo par châınes de
Markov dont le coût computationel est élevé. Dans ce travail, nous proposons une modélisation efficace
pour l’estimation de courbes de fragilité dans le canevas bayésien, basé sur un modèle basse fidélité de la
réponse de la structure au signal sismique d’entrée et un prior objectif. L’expression analytique de notre
modèle permet la génération rapide d’estimations a posteriori. Aussi, le biais de représentation issu du
choix de modélisation est pris en considération, via la conception d’une méthodologie de planification
d’expérience judicieuse. Enfin, notre méthode est évaluée sur un cas d’étude concret, et nos résultats
mettent en avant son efficacité et sa capacité de s’affranchir avec robustesse de tout biais lorsqu’elle
est couplée à la planification d’expérience que nous proposons.
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Introduction

The probabilistic seismic risk assessment framework (SPRA) introduced in the 1980s for the nuclear industry
is based on the estimation of seismic fragility curves, for the structures and components (SCs) of interest [1–5].
These curves are defined as the conditional probability that an engineering demand parameter (EDP) – such
as the interstory drift ratio – exceeds a limit threshold, given a scalar value derived from the seismic ground
motion and called intensity measure (IM). The IM can be for instance the peak ground acceleration (PGA) or
a pseudo-spectral acceleration (PSA) evaluated for a given frequency and damping ratio [6–8]. As explained
in [5], it is therefore assumed that the seismic hazard, on a given site, can be reduced to such a single indicator.

Practitioners have several data sources at their disposal to estimate fragility curves, namely: expert judg-
ments supported by test data [1–3, 9], experimental data [3, 10, 11], results of damage collected on existing
structures that have been subjected to earthquakes [12–14] as well as analytical results given by more or less
refined numerical models using synthetic or real seismic excitations [15–20]. Over the years, many methods have
been developed to estimate these curves [9, 12, 13]. Nowadays, even though machine learning techniques are
becoming very popular [7, 19, 21–24], parametric fragility curves historically introduced in the SPRA framework
are ubiquitous in practice and the log-normal model is the most widely used model due to its proven ability to
handle limited data [12–20, 25–30].

Different strategies can be implemented to estimate the parameters that define the fragility curve in the
log-normal model. Among these we distinguish the Bayesian framework [10, 19, 30–37]. This framework is
interesting because it allows to solve the irregularity issues encountered when few data are available. This
occurs with the widely used maximum likelihood estimation coupled with a bootstrap technique to estimate
a confidence interval when the data are binary, that is, when they represent the failing or non-failing state of
the structure [38, 39]. In practice, binary data are encountered when dealing with tests performed on shaking
tables for instance.

In earthquake engineering, within the SPRA framework, Bayesian inference is often used to update log-normal
fragility curves obtained beforehand by various approaches, by assuming independent distributions for the prior
values of the parameters, such as log-normal distributions for instance [14, 19, 30, 33, 34]. Recently, based on
the reference prior theory, the authors proposed the use of an objective prior [40, 41], in order to remove any
subjectivity that could legitimately lead to inevitable open questions on the influence of the a priori on the
quantities of interest [38]. In all these approaches, the use of Markov chain Monte Carlo (MCMC) methods is
nevertheless necessary to sample the a posteriori distribution of the parameters, which can prove cumbersome
to implement, particularly if we want a rapid first estimate of a fragility curve with limited data.

We circumvent this problem in this work by proposing an effective approach for the estimation of fragility
curves, which avoids the use of the MCMC method. We rely on a low-fidelity linear model between the loga-
rithm of the Engineering Demand Parameter and the one of the IM [9, 13, 25, 42]. Supported by the Bayesian
framework, our model benefits from a fully analytical form; that former allows an efficient implementation and a
solution for fast generation of estimates with limited data. The reliability of the Bayesian scheme w.r.t. its prior
choice is answered as well with the derivation of an objective prior derived on the basis of the reference prior
theory [41, 43]. Finally, since the low-fidelity model is a linear model, we also propose a sequential planning
of experiments strategy to minimize the representation bias. The design we suggest relies on the maximization
of the information brought by the observation of a new data item onto the posterior distribution. That one is
measured through global sensitivity indices described in [44].

The remainder of this paper is organized as follows: the statement of our low-fidelity modeling strategy for
the fragility curves estimation in a Bayesian framework is presented in section 1. After a brief review devoted to
global sensitivity analysis, we describe in section 2 our design for a sequential planning of experiments, taking
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the global sensitivity indices as a support. Section 3 is dedicated to the implementation of our methodology on
a case study from the nuclear industry. Finally, Section 4 which precedes the conclusion offers a discussion on
the performance of our method.

1. Low fidelity model for fragility curves

1.1. Linear regression model

The fragility curve which we seek to estimate is defined by

Pf (a) = P(EDP > C |IM = a). (1)

Up to a refinement of a multiplicative constant in the definition of the engineering demand parameter (EDP),
C can be supposed to be equal to 1 in what follows. The EDP is supposed to be correlated with the intensity
measure (IM) as follows

log EDP = ρ log IM + ϵ, (2)

where the random variable ϵ follows the distribution N (µ, σ2). Here ρ is supposed unknown, as well as µ and
σ.

1.2. Likelihood

We have at our disposal a data-set composed by the tuples (ai, yi)
k
i=1, ai ∈ A ⊂ (0,∞) denoting the measured

IM from the i-th seismic ground motion signal and yi ∈ Y ⊂ (0,∞) denoting the structure’s EDP. Conditionally
to the parameter θ = (ρ, µ, σ), we suppose the observations to be independent and identically distributed. As ai
follows a distribution assumed to admit a density a 7→ p(a) w.r.t. the Lebesgue measure and to be independent
of θ, the distribution of the yi is known conditionally to (ai, θ):

log yi|ai, θ ∼ N (ρ log ai + µ, σ2). (3)

The likelihood for the parameter θ is therefore:

ℓ0k(ŷ, â|θ) =
k∏

i=1

1√
2πσ2

exp

(
− (ŷi − ρâi − µ)2

2σ2

)
p(âi), (4)

where ŷi (resp. âi) denotes log yi (resp. log ai) and ŷ (resp. â) denotes the vector (log yi)
k
i=1 (resp. (log ai)

k
i=1).

This likelihood introduces a challenge due to the lack of clear separation among the three parameters that
constitute θ. Within the Bayesian framework, which we develop later, this challenge could result in a posterior
distribution that is hardly tractable. We address this issue by introducing the following quantities:

ρk =
Covk(ŷ, â)

Vark â
, z = P̃T

a (ŷ − ρkâ), (5)

where Covk, Vark respectively denote the empirical covariance and variance, and the matrix P̃a is defined in
appendix A. Their conditional distributions are given by:

ρk|a, θ ∼ N
(
ρ,

σ2

kVark â

)
, (6)

z|a, θ ∼ N (µP̃T
a 1, σ2D); D = diag

(
1, . . . , 1,

âT â

kVark â

)
, (7)
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where a is the vector (ai)
k
i=1, 1 denotes the vector of Rk composed only of ones, and diag(λ1, . . . , λk−1) refers

to the diagonal matrix of R(k−1)×(k−1) whose diagonal coefficients are the (λi)
k−1
i=1 .

Let us denote by (wi)
k
i=1 the orthogonal columns of the matrix Pa defined in appendix A. Noticing ρk = wT

k ŷ

and z is spanned by the (wi)
k−1
i=1 , we deduce that z and ρk are independent conditionally to (a, θ), and that

the knowledge of (z, ρk,a) is equivalent to the one of (y,a) or (ŷ, â). Thus, the likelihood issued from the
observation of (z, ρk,a) is

ℓk(z, ρk,a|θ) = p(a)
∥â− â∥√
2πâT âσ

exp

− (zk−1 − µ
√
k)2

2σ2 âT â
∥â−â∥2

 exp

(
− (ρk − ρ)2

2σ2/(kVark â)

) k−2∏
i=1

1√
2πσ

exp

(
− z2i
2σ2

)
, (8)

where â = 1
k

∑k
i=1 log ai.

1.3. Prior and posterior

Within a Bayesian context, the parameter of interest θ is itself a random variable taking values in a space
Θ ⊂ R2 × (0,∞) and following a distribution called the prior. We take as a support the reference prior
theory [41, 43] to justify the choice of the Jeffreys’s prior for θ, derived from the likelihood expressed in equation
(8). Conditionally to a, that former is a Gaussian density, making the associated Fisher information matrix
being:

I(θ) =
∫
Ak

 k ∥â−â∥2

σ2âT â
0 0

0 k 2
σ2 0

0 0 kVark â
σ2

 k∏
i=1

p(ai) dai. (9)

The Jeffreys’ prior being defined as the one whose density J w.r.t. the Lebesgue measure is proportional to√
|I(θ)|, we obtain

J(θ) ∝ 1

σ3
. (10)

Finally, the posterior distribution of θ is given by its density, which is proportional to the product of the
likelihood (from equation (8)) with the prior:

p(θ|z,a, ρk) ∝
1

σk+3
exp

(
−
∑k−2

i=1 z2i
2σ2

)
exp

(
−k∥â− â∥2

âT â

(zk−1k
−1/2 − µ)2

2σ2

)
exp

(
− (ρk − ρ)2

2σ2/kVark â

)
. (11)

We recognize the above as a product of square inverse gamma distributions. More precisely, σ−2 follows a
gamma distribution, and µ and ρ follow independent Gaussian distributions conditionally to σ.

This posterior allows to elucidate the distribution of what expresses the fragility curve:

Pf (a)|θ ∼ P(ŷ > 0|â, θ) = Φ

(
ρ log a+ µ

σ

)
, (12)

with Φ being the c.d.f. of a standard Gaussian distribution.
Its distribution is known a posteriori, given that ρ log a+µ

σ , conditionally to (a,a,y) for any a ∈ A, is dis-
tributed as the sum of a variable with Gaussian distribution and the square root of a variable with Gamma
distribution (both variables being independent):

ρ log a+ µ

σ
|a,a,y ∼ N

(
0,

log2 a

kVark â
+

âT â

k∥â− â∥2
)
+

(
ρk log a+

zk−1√
k

)
Γ1/2(c̃, d̃), (13)

c̃ = k/2, d̃ =
1

2

k−2∑
i=1

z2i . (14)
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2. Sensitivity index for design of experiments

2.1. A review of the global sensitivity analysis

Global sensitivity analysis (GSA) is a cornerstone of uncertainty quantification studies of computer simulators.
It aims at quantifying how the uncertainties within the observed output of a model are influenced by the
uncertainties of one or several of its inputs [45]. More formally, in classical GSA settings, a system outputs an
observed variable Y , supposed to be a function of input variables Y = η(X1, . . . , Xp), where the input Xi’s are
assumed to follow a known distribution and to be mutually independent. Since the first indices introduced by
Sobol’ [46], GSA’s tools measure statistically how Y is impacted by one or some of the Xi [47]. Global sensitivity
indices [44] are quantities whose class regroups a large range of these tools. According to their definition, letting
d be a dissimilarity measure between probability distributions, the impact of input Xi onto the output Y can
be derived as

Si = EXi

[
d(PY ||PY |Xi

)
]
, (15)

where PY is the distribution of Y , PY |Xi
is the conditional distribution of Y given Xi, and d is a dissimilarity

measure. The choice of d can depend on the expected properties. A classical example is to set d(P ||Q) =
∥EX∼P [X]− EX∼Q[X]∥2 which gives the un-normalized Sobol’ index [46].

2.2. Sequential planning of experiments via global sensitivity index maximization

Following the idea of Da Veiga [44], a judicious data acquisition strategy would be to minimize the sensitivity
that the posterior would get from the observations. This way, the IM ak+1 that has to be chosen for the next
simulation which would output an EDP yk+1, after having observed (y,a) = (yi, ai)

k
i=1 is the one such that the

following index is maximized:
Eyk+1|ak+1,y,a[d(Pθ|y,a||Pθ|yk+1,ak+1,y,a)], (16)

where Eyk+1|ak+1,y,a is the expectation with respect to the distribution of yk+1 given ak+1,y,a. Within the
GSA’s scope, this makes the next experiment being chosen as the one such that the resulting observation of the
structure’s response provides the most impact onto the parameter of interest θ. Sequentially, the observations
are chosen to maximize the evolution of the posterior distribution. We invite one to notice that this viewpoint
joins the reference prior theory one. Indeed, the reference prior is built to be the one such that the posterior
distribution is expected to evolve the most from the prior [43].

If the relation between the logarithm of the EDP and that of the IM is “very close” to a linear relation,
equation (16) is sufficient to improve the learning of the fragility curve. In other words, a strategy based on
this equation makes it possible to sufficiently explore the space of the IMs, in order to maximize their empirical
variance and thus reduce the a posteriori variance of the estimation of the fragility curve, all things being equal
(cf. equation (13)). Note that there is no mathematical proof of this in this paper, but it has been tested
numerically.

In practice, since the linear model is expected to be biased, the way to reduce the bias is to localize the
learning, even if it is not optimal with respect to the a posteriori variance of the estimation of the fragility
curve. In our work, the locality of interest corresponds to the values of IMs for which the fragility curve evolves
“significantly” from 0 to 1. For this reason, we propose a refinement of the data acquisition strategy of equation
(16) which includes the researched information:

Esk+1|ak+1,y,a[d(Pθ|y,a||Pθ|sk+1,ak+1,y,a)], (17)

with sk+1 = 1ŷk+1>0.
As a dissimilarity measure, we suggest the following, defined as a Sobol’ index of the fragility curve:

d(Pθ|y,a||Pθ|sk+1,ak+1,y,a) = ∥E[Pf |y,a]− E[Pf |sk+1, ak+1,y,a]∥2L2

=

∫
A
|E[Pf (a)|y,a]− E[Pf (a)|sk+1, ak+1,y,a]|2 da, (18)
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where for any a ∈ A, Pf (a) = Φ ((ρ log a+ µ)/σ) inherits from the distribution of θ. Conditionally to (y,a), its
distribution has been elucidated in section 1.3. Also,

p(θ|sk+1, ak+1,y,a) =
p(sk+1|ak+1,y,a, θ)

E[p(sk+1|ak+1,y,a, θ)|y,a]
p(θ|y,a) (19)

with p(sk+1|ak+1,y,a, θ) = Pf (ak+1)
sk+1(1− Pf (ak+1))

1−sk+1 . Thus, samples of θ conditionally to (y,a) allow
the approximation of both expectations in equation (18) by Monte-Carlo averages. The integrals in a are
estimated by Simpson’s rule. In the following example, a regular subdivision of A = [0, Amax] is suggested (see
section 3.2).

The calculation of this index necessitates several initial observations. Actually, the derivations of both the
likelihood and the posterior, as outlined in sections 1.2 and 1.3, require that k > 2 and a1 ̸= a2 (refer to appendix
A). In our experiments, we randomly select k0 = 3 initial seismic signals with distinct IMs from their original
distribution. The planning of experiment strategy is then sequentially implemented to select subsequent IM
values by maximizing the numerical approximation of the index expressed in equation (17). The optimization
in one dimension is carried out using the BFGS algorithm.

3. Numerical application

3.1. Case study presentation

This case study concerns the seismic behavior of a piping system forming part of the secondary line of a
French pressurized water reactor. Figure 1 presents a perspective of the mock-up positioned on the Azalee
shaking table at the EMSI laboratory of CEA/Saclay. Simultaneously, figure 1-right depicts the finite element
model (FEM), employing beam elements and implemented through the proprietary FE code CAST3M [48].
The validation of the FEM was carried out thanks to an experimental campaign described in [49].

The mock-up comprises a carbon steel TU42C pipe with an outer diameter of 114.3 mm, a thickness of
8.56 mm, and a 0.47 elbow characteristic parameter. This pipe, filled with water without pressure, includes
three elbows, with a valve-mimicking mass of 120 kg, constituting over 30% of the mock-up’s total mass. One
end of the mock-up is clamped, while the other is guided to restrict displacements in the X and Y directions.
Additionally, a rod is positioned atop the specimen to limit mass displacements in the Z direction (refer to
Figure 1-right). During testing, excitation was applied exclusively in the X direction.

The numerous simulations carried out for this case study were obtained with artificial seismic signals generated
with the stochastic generator proposed by Rezaeian and Der Kiureghian [50]. This generator implemented in [7]
was calibrated from 97 real accelerograms selected in the European Strong Motion Database for a magnitude
M such that 5.5 ≤ M ≤ 6.5, and a source-to-site distance R < 20 km [51]. Note that enrichment is not a
necessity in the Bayesian framework – especially if a sufficient number of real signals is available – but it allows
comparative performance studies, such as those presented in this work.

As in practice the piping system is located in a building, the artificial signals were filtered using a fictitious
2% damped linear single-mode building at 5 Hz, which corresponds to the first eigenfrequency of the 1% damped
piping system. The chosen failure criterion is based on the assessment of excessive out-of-plane rotation of the
elbow near the clamped end of the mock-up, following the recommendation in [52]. The chosen IM is the PSA
which is calculated here at 5 Hz for a damping ratio of 1%.

In order to evaluate the effectiveness of the proposed method, we considered the nonlinear seismic behavior of
the piping system. Regarding the nonlinear constitutive law of the material, a bilinear law exhibiting kinematic
hardening was used to reproduce the overall nonlinear behaviour of the mock-up with satisfactory agreement
compared to the results of the seismic tests [49].

In this work, the critical rotation threshold is set at C = 4.1◦, representing the 90%-level quantile derived
from a sample of 104 nonlinear numerical simulations.

Finally, the fragility curve that we will call “reference” in the following was obtained by Monte-Carlo averages
on clusters of the IM using the K-means algorithm, following the suggestion of Trevlopoulos et al. [29], from the
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 Rod

  Mass

  Clamped end

Figure 1. (left) Overview of the piping system on the Azalee shaking table and (right) Mock-
up Finite Element Model.

104 data that we dispose. The estimation procedure, not described here for the sake of brevity, is also presented
in the reference [38] where the same system is studied. In this method, the average goes along its confidence
intervals; in the computation of the metrics that are suggested in the next section, the average is considered as
the reference.

3.2. Benchmarking metrics

In order to evaluate the effects that our planning of experiments method has over the fragility curve estimates,
we consider four quantitative metrics described hereafter. Those are later implemented on the a posteriori
estimates conditional to two types of dataset: one derived from our planning of experiments methodology, and

one without. Considering a sample (a,y), we denote by a 7→ P
|a,y
f (a) the random process defined as the fragility

curve conditionally to the sample. P
|a,y
f (a) = Φ((ρ log a + µ)/σ) inherits from the a posteriori distribution of

θ. For each value a the r-quantile of the random variable P
|a,y
f (a) is denoted by q

|a,y
r (a), and its median is

denoted by m|a,y(a). Also, we take into account the reference fragility curve a 7→ P ref
f (a), implemented in the

same fashion as in [38], and as evoked in section 3.1; and we consider a bounded set A = [0, Amax] for the IM,
the truncation is set to the maximal IM within the database of 104 seismic signals we have at disposal for this
work, as disclosed in section 3.1. We define:

• The square bias to the median: B|a,y = ∥m|a,y − P ref
f ∥2L2 ; where ∥P∥2L2 =

1

Amax

∫ Amax

0

P (a)2 da.

• The quadratic error: E |a,y = E
[
∥P |a,y

f − P ref
f ∥2L2 |a,y

]
.

• The 1− r-square credibility width: W |a,y = ∥q|a,y1−r/2 − q
|a,y
r/2 ∥2L2 .

• The 1− r-coverage probability: P |a,y =
1

Amax

∫ Amax

0

1
P ref

f (a)∈
[
q
|a,y
1−r/2

(a),q
|a,y
r/2

(a)
] da.

For the forthcoming implementation of these metrics, numerous a posteriori samples of the process P
|a,y
f are

generated from their known distribution (see equation (11)) and serve the computation of the medians, quan-
tiles and means through Monte-Carlo derivation. The integrals are approximated numerically from Simpsons’
interpolation on sub-intervals of regular size 0 = A0 < · · · < Ap = Amax. In our computations, we use
Amax = 55m/s2, and p = 200.
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(a) (b) (c)

Figure 2. Examples of fragility curve estimations for different number of observations, with
the PSA considered as IM. Are plotted the 95% credibility interval for 3 datasets of respective
sizes 20 (blue), 80 (orange), and 200 (red); the reference curve P ref

f is drawn in magenta and is
accompanied with the confidence interval of the procedure in dashed lines. The observations
are chosen (a) w.r.t. the standard distribution of the IM; or (b) w.r.t. a uniform distribution
on [0, Amax]; or (c) using our planning of experiments method. The green crosses represent 50
pairs (ai,1yi>C) drawn for each method.

3.3. Numerical results

Figure 2 shows examples of fragility curve estimations based on different dataset sizes. The results pre-
sented in Figure 2-(c) come from our planning-of-experiments (PE) methodology while the results presented in
Figures 2-(a) and 2-(b) come from independent random samples, with IMs that have been drawn w.r.t. their
original standard distribution or w.r.t. a uniform distribution. These qualitative results clearly illustrate the
contribution of our methodology.

When samples are randomly drawn from the original IM distribution or from a uniform distribution, the
results show a rapid convergence of the estimates – in the sense that the associated credibility intervals decrease
rapidly – towards biased estimations of the fragility curves. Conversely, when the samples come from the PE
methodology, the bias decreases but the convergence is slower.

These observations are confirmed on a larger scale by the results presented in Figures 3 and 4. These ones
are issued from computations of the metrics B|a,y, E |a,y, W |a,y and P |a,y described in section 3.2, for various
observation sets (a,y). They compare the performances of our PE methodology with the two methods that
are based on independently drawn observations: the one that involves IM samples drawn from their standard
distribution, and the one that involves IM samples drawn from a uniform distribution over the range [0, Amax].

Figure 3 shows empirical comparisons of the bias and of the quadratic error between the method involving a
design of experiments and without. These two results clearly illustrate that the PE approach outperforms the
standard and the uniform approaches. Although the quadratic error is strongly related to the variance of the
estimates it is significantly offset by the fact that the bias is smaller with the PE approach. Indeed, figure 4-left
illustrates that the 95%-square credibility width is smaller with the standard and uniform approaches than with
the PE-based approach. This good result nevertheless masks a lack of robustness of the standard or uniform
approaches since the estimate turns out to be strongly biased, as shown in figure 4-right. This figure shows
indeed the coverage probability for the both methods, as a function of the dataset size. It measures the average
inclusion of the reference fragility curves to the a posteriori credibility intervals.
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Figure 3. Confidence intervals and means w.r.t. the (a,y) for (left) the square bias to the
median B|a,y and (right) the quadratic error E |a,y; as a function of the number of observations.
For each value of k = 5, 10, . . . , 200, a number of L = 200 dataset have been drawn following the
standard distribution of the IM firstly (for the blue curves), following a uniform distribution on
[0, Amax] secondly (for the orange curves), and following the planning of experiments method
thirdly (for the red curves).
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Figure 4. (left) 95%-confidence intervals and means w.r.t. (a,y) for the 95%-square credibility
width W |a,y, as a function of the number of observations. (right) mean w.r.t. (a,y) for the
95%-coverage probability P |a,y, as a function of the number of observations. For each value of
k = 5, 10, . . . , 200, L = 200 datasets have been drawn following the standard distribution of the
IM firstly (for the blue curves), following a uniform distribution on [0, Amax] secondly (for the
orange curves), and following the planning of experiments method thirdly (for the red curves).

4. Discussion

The results presented in the previous section clearly illustrate the superiority of the PE-based approach over
the standard and uniform approaches. Similar results, not presented here for the sake of brevity, and obtained
with the PGA as IM, as well as with other types of structures, also confirm these results.

The strength of the approach proposed in this work is its completely analytical nature, which avoids the use
of MCMC methods for the a posteriori estimation of fragility curves. To do this, however, it is necessary to
assume that the logarithm of the EDP evolves linearly as a function of the logarithm of the IM.

So, to solve this problem, we are faced with a contradiction. In order to satisfy the linearity assumption, it
is necessary, on the one hand, that the learning zone is local, that is to say restricted to the vicinity of the IMs
for which the fragility curve evolves significantly from 0 to 1. On the other hand, the equation (13) shows that
an empirical variance of the IMs that is too small is penalizing from the point of view of the variance of the
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estimation of the fragility curves. The variance of the latter is in fact inversely proportional to that of the IMs
considered for learning.

As the numerical results show, the proposed learning method localizes the learning in the area of interest
and significantly reduces the model bias. As a result, this is accompanied by a slight reduction in the size of
the credibility interval with the number of training data.

This therefore suggests that the proposed method is effective for samples with limited size (for instance, given
the results presented in section 3.3, an appropriate limit could be a sample size smaller than 100 for the case
study treated in this paper). Beyond that, given the cost associated with each training data, it seems preferable
to move towards less constrained and more sophisticated methods [7, 24, 38].

Conclusion

Assessing the seismic fragility of structures and components when few data are available is a challenging task
and the Bayesian framework is known to be effective for these types of problems.

In this work we proposed an efficient Bayesian methodology whose strength lies in its fully analytical nature,
which avoids the use of MCMC methods for the a posteriori estimation of fragility curves. The effectiveness
of the method comes from the assumption of linearity between the logarithm of the EDP and that of the IM
of interest. As this hypothesis implies a model bias in most practical cases, we proposed a strategy in order to
minimize this bias, by concentrating the learning in the vicinity of the IMs for which the fragility curve evolves
significantly from 0 to 1.

The numerical results clearly illustrate the superiority of the proposed approach over an approach without
a learning strategy. They emphasize the robustness of a design of experiments which is based on a sensitivity
analysis of the posterior distribution. Such construction is not limited to the modeling we derive in this work
in particular, and could still be adapted to another to increase its learning abilities. They also suggest that the
proposed method is effective for a limited sample size (about 100 in our settings). Beyond that, given the cost
associated with each training data, it seems preferable to move towards less constrained and more sophisticated
methods, in order to more effectively minimize both the biases and the variance of the estimates.

For practitioners, this method therefore constitutes a rapid and robust tool for first estimates of fragility
curves in a context where the datasets are of limited size.

A. Construction of z

Conditionally to (a, θ), we derive the distribution of ŷ − ρkâ:

ŷ − ρkâ|a, θ ∼ N (µ1, σ2Ua), with Ua = I − â( 12 â− â)T

kVark â
− ( 12 â− â)âT

kVark â
, â =

1

k

k∑
i=1

log ai, (20)

where 1 denotes the vector of Rk which contains only ones. Below is suggested a diagonalization of the matrix
Ua: we define Pa such that PT

a Pa = I and PT
a UaPa is a diagonal matrix. To define z, we denote by P̃a the

matrix in Rk×(k−1) composed by the k− 1 first columns of Pa. In what follows, we assume that k > 2 and that
the coordinates of a are not all identical.

The matrix Ua takes the form of I−uvT −vuT for some vectors u and v of Rk, which are linearly independent.
It is clear that the diagonalization of Ua is linked with the one of V = uvT + vuT .

First of all notice that v⊥ and u⊥ are two different hyperplanes because of the linear independence of u and
v. That makes u⊥ ∩ v⊥ a subspace of dimension k − 2. Therefore, as one would notice that u⊥ ∩ v⊥ ⊂ ker V
and im V ⊂ Span(u, v), the converse inclusions stand.
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This way, while 0 is the first eigenvalue of V with rank k− 2, an other eigenvalue r must admit eigenvectors
in Span(u, v), which should make the system{

rγ = γvTu+ δvT v
rδ = γuTu+ δuT v

(21)

admitting an infinity of solutions w.r.t. (γ, δ). Equivalently, its determinant must be null which lead to the two
solutions

r = vTu± ∥v∥∥u∥. (22)

As u and v are linearly independent, the equation above defines two different eigenvalues r+ and r−, both of
rank 1. Let r be one of those, a resolution of the equation system (21) gives that the eigenspace associated with
r is Span(vT vu+ (r − vTu)v).

Coming back to Ua, the arguments above show that the eigenvalues of Ua are 1, 1 − r− and 1 − r+ with
respective ranks k − 2, 1 and 1, and with:

r+ = 1 , r− =
−kâ

2

∥â− â∥2
, (23)

because

∥â∥2∥1
2
â− â∥2 =

k∑
i=1

â2i

1

4

k∑
i=1

â2i +

(
k∑

i=1

â2i

)
1

k

(
k∑

i=1

âi

)2

−
(

k∑
i=1

â2i

)
1

k

(
k∑

i=1

âi

)2
 =

1

4

(
k∑

i=1

â2i

)2

. (24)

Now, let us choose w1, . . . , wk−2 an orthonormal basis of â⊥ ∩ ( 12 â− â)⊥. Let us define

wk−1 =
1√
k
1, wk =

â− â

∥â− â∥
. (25)

We remind 1 is the vector whose coordinates are ones. Therefore, denoting Pa the matrix whose columns are
the wi, i = 1, . . . , k; it comes PT

a Pa = I and

PT
a UaPa = diag

(
1, . . . , 1,

âT â

∥â− â∥2
, 0

)
. (26)

The complete definition of Pa depends on the chosen orthonormal basis w1, . . . , wk−2 of â⊥ ∩ ( 12 â − â)⊥.

In practice, we proceed as follows to construct it, starting from wk−1 = (w
(j)
k−1)

k
j=1 and wk = (w

(j)
k )kj=1 as

defined in equation (25). We denote by ei the canonical vectors of Rk (the jth coordinate of ei is equal to 0

iff j ̸= i). As the coordinates of a are not all the sames, there exist j, p such that w
(j)
k ̸= w

(p)
k (in practice, we

select the minimal j and the minimal p such that this property is verified). Thus, we can show that the vectors
wk, wk−1, (ei)i ̸=j,p form a basis of Rk by computing their determinant:

det(wk, wk−1, (ei)i̸=j,p) = w
(j)
k w

(p)
k−1(−1)j+p+1 − w

(j)
k−1w

(p)
k (−1)j+p+1 ̸= 0, (27)

as w
(j)
k−1 = w

(p)
k−1. Eventually, the family of the wi, i = 1, . . . k is the result of the Gram-Schmidt process applied

to uk, . . . , u1 = wk, wk−1, (ei)i ̸=j,p:

wk−i =
w̃k−i

∥w̃k−i∥
, w̃k−i = uk−i −

∑
j<i

wT
k−juk−i · wk−j , (28)
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Note that this process leaves the expressions of wk and wk−1 unchanged. The family w1, . . . , wk−2 thus forms
a basis of Span(wk, wk−1)

⊥ = â⊥ ∩ ( 12 â− â)⊥.
We invite the reader to notice that in any way, the construction of those k − 2 first columns of Pa has no

influence on the resulting posterior distribution of interest (given by equation (11)). Indeed, that latter only

involves the expressions of zk−1 and of
∑k−2

i=1 z2i . Concerning the first one, it is equal to wT
k−1(ŷ − ρkâ), and

concerning the second one, it is equal to:

k−2∑
i=1

z2i =

k−2∑
i=1

|wT
i (ŷ − ρkâ)|2 =

k∑
i=1

|wT
i (ŷ − ρkâ)|2 − |wT

k−1(ŷ − ρkâ)|2 − |wT
k (ŷ − ρkâ)|2

= ∥ŷ − ρkâ∥2 − |wT
k−1(ŷ − ρkâ)|2 − |wT

k (ŷ − ρkâ)|2.
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