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EQUIDISTRIBUTION SPEED OF PERIODIC POINTS FOR COMPLEX POLYNOMIALS

TIEN-CUONG DINH AND LUCAS KAUFMANN

ABSTRACT. Let f : C→ C be a polynomial map of degree d ≥ 2. We show that the periodic
points of f of period n equidistribute towards the equilibrium measure of f exponentially
fast. This quantifies a theorem of Lyubich.

1. INTRODUCTION

Let f(x) be a complex polynomial of degree d ≥ 2 in the variable x ∈ C and f : C → C
the associated holomorphic map of topological degree d. The dynamics of such maps, that
is, the study of the behavior of the iterates fn := f ◦ · · · ◦ f as n→∞ has been the subject
of intense study for over a hundred years, see [BM01, Mil06] for an overview.

It follows from the seminal works of Brolin [Bro65], Freire-Lopes-Mañé [FLMn83] and
Lyubich [Lyu82, Lyu83] that f admits a canonical invariant measure µ, called the
equilibrium measure of f . This is a probability measure on C characterized by various
dynamical properties. In particular, the support of µ is the Julia set of f and it is the
unique invariant probability measure of maximal entropy. We highlight two important
properties satisfied by µ, namely two equidistribution theorems.

The first equidistribution theorem concerns iterated pre-images of non-exceptional
points, see [Bro65, FLMn83, Lyu83]. More precisely, there exists an exceptional set
E0 ⊂ C containing at most one point such that

(1.1) lim
n→∞

1

dn

∑
x∈f−n(a)

δx = µ for every a ∈ C \ E0,

where the convergence is in the weak sense. Moreover, E0 is empty unless f is conjugated
to the map x 7→ xd. The above convergence can be quantified and is exponentially fast in
the following sense. If a ∈ C \ E0, then there exist constants 1 < λ < d and C > 0 such
that for every test function ϕ on C of class C 2 we have

(1.2)
∣∣∣∣〈 1

dn

∑
x∈f−n(a)

δx, ϕ
〉
−
�
C
ϕ dµ

∣∣∣∣ ≤ C‖ϕ‖C 2

1

λn
.

Moreover, the constant C is proportional to 1 + log+(1/ dist(a,E )), where E = E0 ∪ {∞} is
the exceptional set of f viewed as an endomorphism of the Riemann sphere P1, that is, the
maximal f−1-invariant finite subset of P1. By replacing E by a larger finite set, namely the
orbit of periodic critical points of f , the exponent λ can be taken to be arbitrarily close to
d. See [DS10b] and Theorem 2.6 below for precise statements. By the interpolation theory
of Banach spaces, an analogous result holds for test functions of class C α with 0 < α ≤ 2,
where λ is replaced by λα/2.

A second equidistribution theorem satisfied by µ concerns the periodic points of f , see
[Lyu83]. For each n ≥ 1, let Pn = {x ∈ C : fn(x) = x} be the set of periodic points of
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period n of f . Then,

(1.3) lim
n→∞

1

dn

∑
a∈Pn

δa = µ,

where again the convergence is in the weak sense. In this case, however, a quantitative
convergence has only been obtained in the arithmetic setting, that is, for polynomials with
algebraic coefficients, see [FRL06, Oku16]. In this work, we prove that the convergence is
exponentially fast for any polynomial.

Theorem 1.1. Let f : C → C be a polynomial of degree d ≥ 2 and let µ be its equilibrium
measure. Let Pn = {x ∈ C : fn(x) = x}. Then, there exists a constant 0 < ξ < 1 such that,
for any function ϕ of class C α, 0 < α ≤ 1 on C we have

(1.4)
∣∣∣∣〈 1

dn

∑
a∈Pn

δa, ϕ
〉
−
�
C
ϕ dµ

∣∣∣∣ ≤ Cα‖ϕ‖Cαξαn,

for some constant Cα > 0 independent of n and ϕ.

One might expect that the optimal rate in (1.4) should be ξ = d−1/2 where d < d is
arbitrarily close to d, as this is the best known speed for the equidistribution of
pre-images for C 1 observables, as discussed above. Also, the rate n1/2d−n/2 is achieved in
the arithmetic case for Lipschitz observables, as shown by Favre–Rivera-Letelier and
complemented by Okuyama. See [FRL06, Oku16]. However, obtaining the optimal rate
for general maps f seems challenging. Our methods seem to be adapted to prove the
convergence of the solutions of equations of the type fn(x) = g(x) for a given polynomial
g(x) towards µ in the spirit of [Lyu83, FRL06, Oku16]. They are general and can be
extended to cover the case of rational maps of P1. In this case however, some extra
technical results must be added. We chose to present here only the polynomial case in
order to have a more accessible presentation.

Structure of the proof. We now outline the main strategy of our proof. Let Γn be the graph
of fn viewed in C×C or in the compactification P1 × P1. Denote by ∆ ⊂ C×C ⊂ P1 × P1

be the diagonal. Let [Γn] and [∆] be the corresponding integration currents. Then, the
measure d−n

∑
a∈Pn δa is naturally identified with the measure d−n[Γn] ∧ [∆] on C × C ⊂

P1 × P1 and (1.3) is equivalent to the weak convergence

d−n[Γn] ∧ [∆] −→ π∗1µ ∧ [∆],

where π1 : P1 × P1 → P1 is the projection on the first coordinate. Our goal is to show that
the above convergence is exponentially fast.

The exponentially fast equidistribution of pre-images (1.1) can be used to show that

(1.5) d−n[Γn] −→ π∗1µ,

exponentially fast as currents, see Proposition 2.8 below. Therefore, in order to prove (1.4)
from (1.5) , we need to show that

(1.6) lim
n→∞

(
d−n[Γn] ∧ [∆]

)
=
(

lim
n→∞

d−n[Γn]
)
∧ [∆]

with control on the convergence rate.
In general, one cannot exchange the order of limits and wedge products of currents as

above. A simple counter-example is given by considering the intersection of the currents
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n−1[{y = xn}] with [y = 0] in C2. Here, we need to show this property in our case,
moreover with a control on the speed, which is even more challenging.

Our strategy to overcome the above difficulty is the following:

Step 1 – Perturbed diagonals: We first show that (1.6) holds with an exponential rate if
we replace ∆ by small perturbations. Namely, we show that there is a sequence of curves
∆n ⊂ C× C ⊂ P1 × P1 converging to ∆ satisfying

(1.7) lim
n→∞

(
d−n[Γn] ∧ [∆n]

)
=
(

lim
n→∞

d−n[Γn]
)
∧ [∆]

exponentially fast. Moreover, one can choose ∆n to be e−λn-close to ∆ for some λ > 1,
see Proposition 3.2. This is an application of Moser-Trudinger exponential estimate in the
Sobolev space W 1,2.

Step 2 – Counting transverse branches: In order to be able to replace [∆n] by [∆] in (1.7),
one needs to show that many branches of the graph Γn cross both ∆ and ∆n in a sufficiently
transverse way. This amounts to controlling the number of points of Γn that are too close
to being tangent to ∆. To handle this, we lift Γn and ∆ to the space of first jets. More
precisely, if (x, y) denote the coordinates on C×C, we consider the space C×C×C with
coordinates (x, y, t) and the curves

Γ̂n := {(x, y, t) : y = fn(x), t = (fn)′(x)} and ∆̂ := {(x, y, t) : y = x, t = 1}.

We show, using methods from pluripotential theory, that there is a sequence of
neighborhoods Un shrinking to ∆̂ at a suitable rate such that the mass of d−n[Γ̂n] over Un

is exponentially small. See Proposition 4.4. In order to do that, we compare the slices at
t = 1 and t = 0. The advantage of the slice t = 0 is that Γ̂n ∩ {t = 0} corresponds to the
critical points of fn, which by the chain rule can be treated using the equidistribution of
inverse images, see Lemma 4.3.

Step 3 – From ∆n to ∆: From Step 2 we infer that most of the branches of Γn are
transverse to ∆, and by removing a small number of them we can show that sufficiently
many branches cross both ∆n and ∆ in nearby points. Together with (1.7), this yields our
main theorem.

This article is organized as follows. In Section 2 we recall some fundamental material
needed in the proof of our main theorem. In Section 3 we achieve Step 1 above, namely,
we prove that the desired exponentially fast convergence holds by considering small
perturbations of the diagonal. In Section 4 we study the lifts Γ̂n as above and show that
their mass near ∆̂ is small, yielding Step 2. In Section 5 we use these results to construct
many branches of Γn sufficiently transversal to ∆. Finally, in Section 6 we combine the
previous results and provide the proof of Theorem 1.1.

Acknowledgments: Part of this work was carried out during visits of second named author
visited the Department of Mathematics of National University of Singapore and Singapore’s
Institute for Mathematical Sciences. He would like to thank them for their warm welcome
and financial support. T.-C. Dinh was supported by the NUS grant A-8002488-00-00. L.
Kaufmann was partially funded by the “Loi de programmation de la recherche” through
the Université d’Orléans.
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2. PRELIMINARY RESULTS

We denote by P1 the complex projective line. It is naturally identified with the one point
compactification C ∪ {∞} of C where x ∈ C is identified with [x : 1] and ∞ is identified
with [1 : 0]. Here, the brackets denote homogeneous coordinates. For a polynomial map
f : C → C we shall also denote by f : P1 → P1 its natural extension to P1 by setting
f(∞) =∞.

In this article we denote by ωFS the Fubini-Study form, that is, the unique unitary
invariant (1, 1)-form on P1 normalized by

�
P1 ωFS = 1. The (1, 1)-form ωFS induces a

Kähler metric on P1. We’ll denote by dist the associated distance function.
The use of positive closed currents is crucial throughout this work. We refer to [Dem]

and the appendix of [DS10a] for the necessary background.

2.1. Test functions and norms. For the proof of our main theorem we need to work
with different spaces of test functions and their corresponding norms. Even if our maps
act on an one-dimensional space, we’ll later work on manifolds of higher dimensions, so
we introduce our function spaces in a more general setting. We recall here a few basic
definitions and results. We refer the appendix of [DS10a] for an overview.

Let (X,ω) be a compact Kähler manifold of dimension k. A quasi-p.s.h. function on
X is locally the difference of a plurisubharmonic (p.s.h.) function and a smooth one. A
function on X is called d.s.h. if it is equal outside a pluripolar set to the difference of two
quasi-p.s.h. functions. We denote by DSH(X) the space of d.s.h. functions equipped with
the norm

‖ϕ‖DSH :=
∣∣〈ωk, ϕ〉∣∣+ min ‖S±‖,

where the above minimum is taken over all positive closed (1, 1)-currents on X such that
ddcϕ = S+ − S−. Here, dc := i

2π
(∂ − ∂) so that ddc = i

π
∂∂. If µ is the equilibirum measure

of a rational map on P1 (see Section 2.3 below) the above norm is equivalent to the norm

‖u‖µ :=
∣∣〈µ, ϕ〉∣∣+ min ‖S±‖,

see [DS10a, Proposition A.43].
Let W 1,2(X) be the Sobolev space of L2 functions whose gradient is also in L2. The

complex Sobolev space W ∗(X) is the subspace of W 1,2(X) formed by functions ψ such that
i∂ψ ∧ ∂ψ ≤ R for some positive closed (1, 1)-current R on X. This space is equipped with
the norm

‖ψ‖∗ :=
∣∣〈ωk, ψ〉∣∣+ min ‖R‖1/2,

where the minimum is taken over all positive closed (1, 1)-currentsR as above, see [Vig07].
When X is of dimension k = 1 the spaces W ∗(X) and W 1,2(X) coincide. In this case, the
norm has a simpler expression, namely

‖ψ‖∗ := ‖ψ‖L1(ω) + ‖∂ψ‖L2 , where ‖∂ψ‖L2 :=
( �

X

i∂ψ ∧ ∂ψ
)1/2

.

Theorem 2.1 (Skoda/Moser-Trudinger). Let (X,ω) be a compact Kähler manifold of
dimension k and dvol = ωk/k! be the associated volume form.

(1) Let F be a bounded subset of DSH(X). There are constants α,C > 0 such that�
X

eα|ϕ|dvol ≤ C for all ϕ ∈ F .
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(2) Let G be a bounded subset of W ∗(X). There are constants α,C > 0 such that�
X

eα|ψ|
2

dvol ≤ C for all ψ ∈ G .

As a corollary, one obtains the following estimates. Here and in the remainder of this
article, we’ll say that a function ϕ : X → R is (M,α)-Hölder continuous for some M > 0
and 0 < α ≤ 1 if |ϕ(x) − ϕ(x′)| ≤ M dist(x, x′)α for all x, x′ ∈ X, where dist denotes the
distance on X induced by the Kähler metric ω.

Corollary 2.2. Let (X,ω) be a compact Kähler manifold.
(1) Let F be a bounded subset of DSH(X). There is a constant A > 0 (independent of

M and γ) such that if ϕ ∈ F is (M,γ)-Hölder continuous for some constants M ≥ 1
and 0 < γ ≤ 1, then

‖ϕ‖∞ ≤ Aγ−1(1 + logM).

(2) Let G be a bounded subset of W ∗(X). There is a constant A > 0 (independent of M
and γ) such that if ψ ∈ G is (M,γ)-Hölder continuous for some constants M ≥ 1 and
0 < γ ≤ 1, then

‖ψ‖∞ ≤ Aγ−1/2(1 + logM)1/2.

Proof. See [DS10b, Prop 2.1] for a proof of (1) in the case γ = 1. The case 0 < γ ≤ 1
can be proved similarly. For a proof of (2) we refer to [DKW20, Prop 4.3]. We note that
version in [DKW20] states a weaker version analogous to (1), but the proof there actually
gives the stronger form stated in (2). �

2.2. Potentials on C and P1. Let ν be a Borel measure on C viewed as a positive (1, 1)-
current on C. A subharmonic function u on C such that ddcu = ν is called a potential
of ν. By Poincaré’s Lemma every measure admits a global potential on C (for instance,
the logarithmic potential below). Furthermore, any two potentials differ by a harmonic
function. In particular, the regularity of the potential depends only on ν and not on the
choice of u. We assume from now on that ν and all measures appearing below have
compact support in C.

The logarithmic potential of ν is the subharmonic function defined by

u(x) =

�
log |x− z|dν(z) = N ∗ ν(x),

where N(z) = log |z| is the Newton potential on C. From the fact that ddcN(z) = δ0, it
follows that ddcu = ν.

Lemma 2.3. Let 0 < s ≤ 1
10

and denote by Ls := (πs2)−11|t−1|≤sidt ∧ dt the normalized
Lebesgue measure on the disc D(1; s) viewed as a positive (1, 1)-form in the variable t. There
exists a d.s.h. function χs such that

Ls(t)− δ0(t) = ddcχs(t)

with the following properties:
(1) There exist constants c1, c2 > 0 independent of s such that

−c1| log s| ≤ χs(t) ≤ c2

(
2− log |t|

)
for |t| ≤ 3.

(2) There exists a constant C > 0 independent of s such that |χs(t)| ≤ C/|t| for |t| ≥ 2.
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Proof. Let us (resp. v0) be logarithmic potential of Ls (resp. δ0). By definition

us(t) =

�
log |t− z|dLs(z) and v0(t) = log |t|.

Set χs := us− v0. Clearly ddcχs(t) = Ls(t)− δ0(t). We now prove the desired estimates for
χs.

For the upper bound in (1), we observe that −v0 ≤ 2− log |t|, so we only need to bound
us from above. If z is in the support of Ls we have |z| ≤ 1+s ≤ 2 so |t−z| ≤ 5 when |t| ≤ 3.
It follows that log |t− z| is uniformly bounded from above for |t| ≤ 3 and z in the support
of Ls. Hence us is uniformly bounded from above over {|t| ≤ 3}. Since 2 − log |t| > 0
there, it follows that us(t) ≤ c′2

(
2 − log |t|

)
for some constant c2 > 0. The upper bound in

(1) follows.
For the lower bound in (1), we first note that for |t| ≤ 3 we have −v0(t) ≥ − log 3 ≥
−| log s| because 0 < s ≤ 1

10
. Therefore, we only need to bound us from below. Consider

the new variable τ = t − 1, so that Ls corresponds to the normalized Lebesgue measure
on the disc {|τ | ≤ s} whose logarithmic potential is

ũs(τ) =
1

πs2

�
|τ |≤s

log |τ − z|idz ∧ dz.

The above function is a radial subharmonic function in τ . In particular ũs can be written
as a non-decreasing convex function of log |τ |, see [Dem, Corollary 5.14]. Therefore, in
order to obtain a lower bound for ũs (and consequently for us(t) = ũs(t+ 1)), it is enough
to bound ũs(0) from below. By a direct computation in polar coordinates, using integration
by parts and recalling that 0 < s < 1

10
, we have

ũs(0) =
2

s2

� s

0

r log r dr = −| log s| − 1

2
≥ −c1| log s|

for a suitable constant c1 > 0. This finishes the proof of (1).
Let us now prove (2). By definition, we have χs(t) =

� (
log |t − z| − log |t|

)
dLs(z). By

radial symmetry, it is enough to prove the estimate for t real and t > 3. In this case, we
have

∣∣ log |t− z| − log |t|
∣∣ =

∣∣ log |1− z
t
|
∣∣. From the mean value theorem, the fact that t > 3

and 1
2
≤ |z| ≤ 2 on the support of Ls, it follows that

∣∣ log |1− z
t
|
∣∣ ≤M

∣∣ z
t

∣∣ for all such t and
z, for a suitable constant M > 0. Therefore

|χs(t)| ≤
M

|t|

�
|z|dLs(z) ≤ 2M

|t|
,

yielding (2). This finishes the proof of the lemma. �

Lemma 2.4. Let L := idx∧dx be the Lebesgue measure on C. Let % be a measurable function
such that 0 ≤ % ≤ 1 and supp% ⊂ D(0; 1). Set ν = % · L and let u be the logarithmic potential
of ν. Then, u is Lipschitz continuous. Moreover, there exists a constant C > 0 independent of
% such that ‖u‖Lip ≤ C.

Before giving the proof of the above lemma, we need to introduce some notation. Let
ũ(x) := limr→0

�
D(x,r)

u(x) dx, where the symbol
�
D(x,r)

denotes the average over D(x, r).
Then ũ = u almost everywhere and the points where equality holds are called Lebesgue
points of u. If u is subhamornic, then all points are Lebesgue points, that is, ũ = u
everywhere.
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For a measurable function h defined on an open subset U of C, consider its Hardy-
Littlewood maximal function

M r
h(a) := sup

0<s<r

 
D(a,s)

|h(x)| dx, r > 0, a ∈ Ur,

where Ur = {z ∈ U ; d(z, U c) > r }. We need the following classical result. We state
only a particular case which is enough for our purposes, see [BHa93] for a more general
statement.

Theorem 2.5. Let U be an open subset of C and u ∈ W 1,1
loc (U). If x ∈ Ur is such that

Mr
|∇u|(x) < +∞ then x is a Lebesgue point of u. Furthermore, for every x, y ∈ Ur such that

|x− y| ≤ r
3

andMr
|∇u|(x) <∞,Mr

|∇u|(y) <∞ we have

|ũ(x)− ũ(y)| ≤ C |x− y| (Mr
|∇u|(x) +Mr

|∇u|(y)),

where C > 0 is a universal constant.

Proof of Lemma 2.4. Let u be the logartihmic potential of ν. By definition, u(x) = N ∗ ν(x),
where N(z) = log |z|. Since ∂N

∂z
(z) = −1

2
z
|z|2 , we have

∣∣∂N
∂z

(z)
∣∣ ≤ 1

2
1
|z| and similarly for ∂N

∂z
.

As ∂u
∂z

= ∂N
∂z
∗ ν and ν = % · L ≤ 1|x|≤1L, it follows that ∂u

∂z
∈ L1

loc and similarly for ∂u
∂z

. Hence
u ∈ W 1,1

loc (U). Moreover,∣∣∣∂u
∂z

(x)
∣∣∣ =

∣∣∣∂N
∂z
∗ ν(x)

∣∣∣ ≤ 1

2

�
1

|x− z|
%(z)dL(z) ≤ 1

2

�
|z|≤1

1

|x− z|
dL(z) = π

and similarly for ∂u
∂z

. We conclude that ∇u is bounded by a constant independent of %.
Hence the maximal functionMr

|∇u| is bounded by a constant independent of %. The lemma
now follows from Theorem 2.5 and the fact that ũ = u when u is subharmonic. �

2.3. Basic equidistribution results. We now recall some basic equidistribution results
for holomorphic endomorphims of P1. Most of them are also valid, after suitable
modifications, for endomorphisms of higher dimensional projective spaces. See [DS10a]
for an overview.

Let f : P1 → P1 be a holomorphic endomorphism of degree d ≥ 2. The equilibrium
measure of f is defined by

µ := lim
n→∞

1

dn
(fn)∗ωFS.

Then, µ probability measure on P1 whose support is the Julia set of f .
If f : C→ C is a polynomial map, then µ has compact support in C and

µ = ddcG, where G(x) = lim
n→∞

1

dn
log+ |fn(x)|.

The following result, although not stated in this exact form, is contained in [DS10b].
Recall that the exceptional set E of f is the largest finite subset of P1 such that f−1(E ) = E .
For polynomials, E always contains the point at infinity. Moreover, E = {∞} unless the
polynomial is conjugated to f(x) = xd, in which case E = {0,∞}.

We’ll use from now on the notation log? t = 1 + | log t| for t ∈ R.

Theorem 2.6 (Equidistribution of pre-images). Let f : P1 → P1 be a holomorphic
endomorphism of degree d ≥ 2 and let µ be its equilibrium measure. For a ∈ P1, let
µna := d−n(fn)∗δa. Let ϕ be a quasi-p.s.h. function on P1 such that ‖ddcϕ‖? ≤ 1. Assume
furthermore that ϕ is (M,α)-Hölder for some M > 0 and 0 < α ≤ 1.
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(1) Let E be the exceptional set of f . Then, there exist constants Cα > 0 and 1 < δ < d
independent of a,M, α, n and ϕ such that

(2.1)
∣∣〈µna − µ, ϕ〉∣∣ ≤ Cα log? dist(a,E )

log?M

δn
.

(2) Let E ′ be the orbit of the periodic critical points of f . Then, for every 1 < d < d there
exists a constant Cd,α > 0 independent of a,M, α, n and ϕ as above such that

(2.2)
∣∣〈µna − µ, ϕ〉∣∣ ≤ Cd,α log? dist(a,E ′)

log?M

dn
.

It is well known that µ is Hölder regular in the following sense: there exist constants
0 < γ ≤ 2 and c > 0 such that µ(D(a, r)) ≤ crγ for all a ∈ P1 and all r ≥ 0. Hereon, the
largest such γ will be referred to as the Hölder exponent of µ.

Corollary 2.7. Let f and µna be as in Theorem 2.6. Fix 0 < r < 1. There exist constants c > 0
and 0 < β < 1 that depend on r, such that for any a, b ∈ P1, we have

µna
(
(D(b; rn)

)
≤ c log? dist(a,E )βn.

Proof. After a change of coordinate, one can assume that b = 0. Let ψn be the function
given by

ψn(x) =
max(log |x|, 1

2
log rn)−max(log |x|, log rn)

−1
2

log rn
, x ∈ C.

Then, ψn is a d.s.h. function with ‖ddcψn‖∗ . 1/| log rn|, 1D(0;rn) ≤ ψn ≤ 1D(0;rn/2) and
‖ψn‖Lip . 1/rn.

From Theorem 2.6 for α = 1, we obtain

µna
(
D(0; rn)

)
≤ 〈µna , ψn〉 . 〈µ, ψn〉+ log? dist(a,E ) log? rn · δ−n

for some 1 < δ < d. Let γ > 0 be the Hölder exponent of µ. Then µ
(
D(0; r)

)
≤ crγ, so

〈µ, ψn〉 ≤ µ
(
D(0; rn/2)

)
≤ c rγn/2.

Choose 1 < δ1 < δ. The above computations show that µna(D(0; rn) is bounded by a
constant times

rγn/2 + log? dist(a,E )(1 + n| log r|)δ−n . log? dist(a,E )
(
rγn/2 + δ−n1

)
,

Taking β := max(rγ/2, δ−1
1 ) gives the desired result. �

The graph point of view. An alternative way of looking at the equidistribution theorems
above is to use the graphs of iterates of f . We’ll see in Proposition 2.8 below that these
graphs, suitably normalized, converge to a canonical current.

We begin by setting some notation that will be kept throughout the text. Denote by
(x, y) the coordinates in C× C. Let

Γn := {y = fn(x)} = {(x, fn(x)) : x ∈ C}

be the graph of fn, viewed as subset of C × C. We still denote by Γn its compactification
inside P1 × P1. Let [Γn] be the integration current along Γn and

JΓnK :=
1

dn
[Γn]

be the associated normalized current of unit mass.
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The following result can be seen as a version of Theorem 2.6 in terms of the above
currents.

Proposition 2.8. Let K be a compact subset of C×C. Fix 1 < d < d. There exists a constant
Cd,K > 0 such that for every test form φ on C × C of class C 1 with support contained in K
one has ∣∣〈JΓnK− π∗1µ, φ〉∣∣ ≤ Cd,K‖φ‖C 1d−n/2.

Proof. Fix a polydisc D(0;A)2 containing K. We divide the proof into four cases.

1st case: φ = ϕ(x, y)dx ∧ dx, where ϕ(x, y) is a function supported by K. Using that the
π1|Γn is one-to-one, we get∣∣∣ �

Γn

ϕ(x, y)dx ∧ dx
∣∣∣ ≤ ‖ϕ‖∞ �

Γn∩D(0;A)2
dx ∧ dx = ‖ϕ‖∞πA2,

so
∣∣〈JΓnK, φ〉∣∣ ≤ d−n‖ϕ‖∞πA2. Since 〈π∗1µ, φ〉 = 0 for such φ by a degree reason and

‖ϕ‖∞ . ‖φ‖C 1 the desired estimate follows.

2nd case: φ = ϕ(x, y)dy ∧ dy, where ϕ(x, y) is a function supported by K. We will prove
the estimate using interpolation between C 0 and C 2 functions. For this, let us first assume
that ϕ is of class C 2. For simplicity, one can assume that ‖ϕ‖C 2 = 1. Notice first that

〈π∗1µ, φ
〉

=

�
|y|≤A

(�
P1

ϕ(x, y)dµ(x)
)

dy ∧ dy.

Since both ‖ddcϕ‖? and ‖ϕ‖Lip are bounded by a constant, Theorem 2.6-(2) for α = 1 gives
that, for any y ∈ P1, one has that�

P1

ϕ(x, y)dµ(x) = d−n
∑

fn(x)=y

ϕ(x, y) +O
(
d−n log? dist(y,E ′)

)
,

where the implicit constants in the big O notation are independent of y, n and ϕ. Also,�
Γn
φ =

�
Γn
ϕ(x, y)dy ∧ dy =

�
|y|≤A

∑
fn(x)=y ϕ(x, y)dy ∧ dy by Fubini’s theorem. Hence,

using that log? dist(·,E ′) is integrable, we get

〈π∗1µ, φ
〉

=

�
|y|≤A

[
d−n

∑
fn(x)=y

ϕ(x, y) +O
(
d−n log? dist(y,E ′)

)]
dy ∧ dy

=
1

dn

�
|y|≤A

∑
fn(x)=y

ϕ(x, y)dy ∧ dy +O(d−n)

=
1

dn

�
Γn

φ+O(d−n)

=
〈
JΓnK, φ

〉
+O(d−n),

where again the implicit constants are independent of y, n and ϕ.
The above computation proves that

∣∣〈JΓnK− π∗1µ, φ〉∣∣ ≤ C ′d,K‖φ‖C 2d−n when ϕ is of class
C 2 for some constant C ′d,K > 0. It is clear that

∣∣〈JΓnK − π∗1µ, φ
〉∣∣ ≤ C ′′d,K‖φ‖C 0 for some

constant C ′′d,K > 0 when ϕ is of class C 0. A standard interpolation argument (see [Tri78,
§2.7.2]) yields

∣∣〈JΓnK− π∗1µ, φ〉∣∣ ≤ Cd,K‖φ‖C 1d−n/2 for some constant Cd,K > 0.



Equidistribution speed of periodic points 10

3rd case: φ = ϕ(x, y)dx ∧ dy, where ϕ(x, y) is a function supported by K. Using that
dy|Γn = (fn)′(x)dx|Γn, that |y| = |fn(x)| ≤ A over K and Cauchy-Schwarz inequality we
have that∣∣∣�

Γn

ϕ(x, y)dx ∧ dy
∣∣∣ =

∣∣∣ �
Γn∩D(0;A)2

ϕ(x, fn(x))(fn)′(x) dx ∧ dx
∣∣∣

≤
(�

Γn∩D(0;A)2
|ϕ(x, fn(x))|2idx ∧ dx

)1/2( �
Γn∩D(0;A)2

|(fn)′(x)|2idx ∧ dx
)1/2

≤ ‖ϕ‖∞π1/2A · cAdn/2.

In the last step we have used that
�

Γn∩D(0;A)2
|(fn)′(x)|2idx∧dx =

�
Γn∩D(0;A)2

idy∧dy and
the last quantity is bounded by a constant times dn, which is the total mass of Γn in P1×P1.
See also Lemma 4.2 below.

We conclude that
∣∣〈JΓnK, φ〉∣∣ ≤ c′Ad

−n/2‖ϕ‖∞. Since 〈π∗1µ, φ〉 = 0 for such φ and ‖ϕ‖∞ .
‖φ‖C 1 the desired estimate follows.

4th case: φ = ϕ(x, y)dx ∧ dy, where ϕ(x, y) is a function supported by K. The proof is
analogous to the one in the 3rd case

Since every test form φ on C×C of class C 1 with support contained in K is a finite sum
of forms of one of the above types, the proposition follows. �

3. SMALL PERTURBATIONS OF ∆

In this section we show that the expected convergence JΓnK ∧ [∆] −→ π∗1µ ∧ [∆] holds
with exponential speed if we replace [∆] in the left hand side by small perturbations ∆n

converging to ∆.

Lemma 3.1. After conjugating f by an automorphism of C, we can assume that there is a
constant c > 0 such that |fn(0)| ≥ c and |fn(x)| ≥ 4d

n for all n ≥ 1 and |x| ≥ 1/2.

Proof. We first replace f by f1 = τ−1 ◦ f ◦ τ , where τ : x 7→ x + x0 is a translation sending
the origin to a point x0 in the basin of infinity of f . Then fn1 (0) = τ−1 ◦ fn(x0) converges
to ∞ as n → ∞. In particular |fn1 (0)| ≥ M for every n and a constant M > 0. Now,
let f2 = H−1

R ◦ f1 ◦ HR, where HR(x) = Rx, R > 0. We can choose R large enough so
that |x| ≥ 1 is contained in the basin o infinity of f2. In particular |f2(x)| ≥ (8|x|)d when
|x| ≥ 1/2 and R is large enough, and in this case |fn2 (x)| ≥ 4d

n. This gives the last assertion
of the lemma. For the first assertion, we note that |fn2 (0)| = R−1|fn1 (0)| ≥ R−1M for all
n ≥ 1. The lemma follows. �

Using Lemma 3.1 we can assume that (0, 0) /∈ Γn for every n ≥ 1. Consider the radial
projection on C× C centered at the origin, namely

Π :
(
C× C

)
\ {(0, 0)} → P1, Π(x, y) = [x : y].

Note that Π|Γn is well-defined and holomorphic.
For t ∈ C, let

(3.1) ∆t := Π−1([1 : t]) = {tx− y = 0}.

Observe that ∆1 = ∆. To ease the notation we shall identify t with [1 : t]. We’ll consider
values of t close to 1.
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The Fubini-Study form ωFS on P1 induces a probability measure on P1, that we denote
by mFS.

Proposition 3.2. Let ϕ = ϕ(x) be a function on C of class C 1 and set ϕ̃(x, y) = π∗1ϕ(x, y) =
ϕ(x) on C× C. Let 1 < d < d. For n ≥ 1 and λ > 1 let

(3.2) mn :=
1D(1;e−λn )mFS

mFS(D(1; e−λn)

be the normalized Fubini-Study measure on the disk D(1; e−λ
n
). Then, there exist constants

λ > 1, 0 < β < 1 and a subset Bn ⊂ D(1; e−λ
n
) with mn(Bn) ≥ 1 − βn such that, for all

tn ∈ Bn one has ∣∣〈JΓnK ∧ [∆tn ]− π∗1µ ∧ [∆], ϕ̃〉
∣∣ ≤ C‖ϕ‖C 1d−n/2.

We now begin the proof of the above proposition. From now on, we fix ϕ = ϕ(x) a
compactly supported function on C. We’ll often identify ϕ with ϕ̃ = π∗1ϕ. Consider the
(1, 1)-current

Ψn := ϕJΓnK = d−nϕ[Γn],

which has compact support on C× C and let

ψn = Π∗Ψn = d−nΠ∗
(
ϕ[Γn]

)
.

Observe that Π is well-defined on the support of Ψn and ψn is a continuous function on P1

with compact support in C.

Lemma 3.3. Let ϕ and ψn be as above. Let ν be a probability measure on P1. Then
(1) 〈JΓnK ∧ Π∗ν, ϕ〉 = 〈ν, ψn〉. In particular ψn(t) = 〈JΓnK ∧ [∆t], ϕ〉 for t ∈ C and

ψn(1) = 〈JΓnK ∧ [∆], ϕ〉.
(2) 〈Π∗ν ∧ π∗1µ, ϕ〉 =

�
ϕdµ.

Proof. Observe that, since Γn intersects the fibers of Π on isolated points, the intersection
of currents JΓnK ∧ π∗ν is always a well defined positive measure on C × C. By direct
computation

〈JΓnK ∧ Π∗ν, ϕ〉 = 〈Π∗ν, ϕJΓnK〉 = 〈ν,Π∗
(
ϕJΓnK

)
〉 = 〈ν, ψn〉,

giving the first identity in (1). The last two identities in (1) follow from the the fact that
for fixed t ∈ C we have [∆t] = Π∗(δt) and ∆1 = ∆.

We now prove (2). As in (1), we can readily see that the wedge product Π∗ν ∧ π∗1µ is
well defined. Consider first the case ν = δ1. Then 〈Π∗δ1∧π∗1µ, ϕ〉 = 〈[∆]∧π∗1µ, ϕ〉 =

�
ϕdµ.

In general, we can write ν = δ1 + ddcu for some d.s.h. function u on P1. Then,

〈Π∗ν ∧ π∗1µ, ϕ〉 =

�
ϕdµ+ 〈ddc(u ◦ Π) ∧ π∗1µ, ϕ〉 =

�
ϕdµ+ 〈π∗1µ ∧ ddcϕ, u ◦ Π〉.

Observe that π∗1µ ∧ ddcϕ vanishes, since it is a (2, 2)-current in the variable x. This gives
(2) in general. �

Recall that t = [1 : t], t ∈ C denotes an affine coordinate in P1.

Lemma 3.4. Let ν(t) be a smooth probability measure on P1 with compact support on C.
Then

∣∣ � ψn(t)dν(t)−
�
ϕdµ

∣∣ ≤ C‖ϕ‖C 1d−n/2 for some constant C > 0 independent of ϕ and
n.
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Proof. Using Lemma 3.3 and applying Proposition 2.8 we have that∣∣∣ � ψn(t)dν(t)−
�
ϕdµ

∣∣∣ =
∣∣〈d−n[Γn]− π∗1µ, ϕΠ∗ν〉

∣∣ . ‖ϕ‖C 1d−n/2,

where in the last step we have used that the (1, 1)-form φ := ϕπ∗ν is smooth, compactly
supported in C× C and ‖φ‖C 1 . ‖ϕ‖C 1. �

Recall from the Section 2 that the space W ?(P1) = W 1,2(P1) is formed by the measurable
functions whose ‖.‖? norm is finite.

Lemma 3.5. Let ϕ and ψn be as above. Then ‖∂ψn‖L2 ≤ d−n/2‖∂ϕ‖L2.

Proof. Let ψ̂n := dnψn. We’ll follow the proof of [DKW20, Proposition 2.1]. Denote by πn
the restriction of Π to Γn. Then ψ̂n = (πn)∗ϕ. The map πn defines a branched covering of
degree dn. As in the proof of [DKW20, Proposition 2.1], using Cauchy-Schwarz inequality
we can show that i∂ψ̂n ∧ ∂ψ̂n ≤ dni∂ϕ ∧ ∂ϕ pointwise outside the set of critical values of
πn. Since this set is finite, it doesn’t contribute to the integral of the above (1, 1)-forms. It
follows that

‖∂ψ̂n‖2
L2 =

�
i∂ψ̂n ∧ ∂ψ̂n ≤ dn

�
i∂ϕ ∧ ∂ϕ = dn‖∂ϕ‖2

L2 .

Since ψn = d−nψ̂n we get ‖i∂ψn‖2
L2 = d−2n‖∂ψ̂n‖2

L2 ≤ d−n‖∂ϕ‖2
L2 and the result follows. �

Recall that mn is the normalized Fubini-Study measure on the disc D(1, e−λ
n
) as in the

statement of Proposition 3.2, where λ > 1 will be fixed below.

Lemma 3.6. Let ϕ, ψn and ν be as above. Let 1 < d < d and set λ0 := d/d. Then, there exist
constants 1 < λ < λ0, 0 < β < 1, independent of ϕ, and a subset Bn ⊂ D(1; e−λ

n
) such that

mn(Bn) ≥ 1− βn and for all tn ∈ Bn with n large enough we have∣∣∣ � ψn(t)dν(t)− ψn(tn)
∣∣∣ ≤ ‖ϕ‖C 1d−n/2.

Proof. To ease notation, set m(ψn) :=
�
ψn(t)dν(t). We only need to consider n large

enough. Since ψn depends linearly on ϕ we can assume that ‖ϕ‖C 1 = 1. In particular
‖∂ϕ‖L2 is bounded. Then ‖∂ψn‖L2 . d−n/2 by Lemma 3.5. By Poincaré–Sobolev’s
inequality, we have that ‖m(ψn) − ψn‖L1 . ‖∂ψn‖L2. In particular, the functions
ψ̃n := dn/2(ψn − m(ψn)), n ≥ 1 belong to a bounded family in W ?(P1). By Theorem
2.1-(2) there exist constants c, α > 0, independent of ϕ, such that

mFS(|ψ̃n| ≥M) ≤ ce−αM
2

,

for all M > 0. Choose M = (d/d)n/2 = λ
n/2
0 . Then,

mFS{|ψn −m(ψn)| ≥ d−n/2} = mFS(|ψ̃n| ≥ λn0 ) ≤ ce−αλ
n
0 .

Let sn = e−λ
n, where λ > 1 will be fixed later and let mn(t) be the normalized Lebesgue

measure on the disc D(1, e−λ
n
) as in the statement. By definition, for a Borel set E ⊂

P1 we have mn(E) = mFS(E ∩ D(1; e−λ
n
))/mFS(D(1; e−λ

n
)) . e2λnmFS(E ∩ D(1; e−λ

n
)) ≤

e2λnmFS(E). Hence, denoting by B′n := {|ψn−m(ψn)| > d−n/2} and Bn := (B′n)c, we have
by the last paragraph that mn(B′n) ≤ c′e2λne−αλ

n
0 for some constant c′ > 0. By choosing

1 < λ < λ0 sufficiently close to 1 we have c′e2λne−αλ
n
0 ≤ βn for some 0 < β < 1 and large

n. Hence mn(B′n) ≤ βn and mn(Bn) ≥ 1− βn.
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Recall that we have assumed that ‖ϕ‖C 1 = 1. We have thus proved that for ϕ of class C 1

and tn ∈ Bn as above we have |ψn(tn)−m(ψn)| ≤ ‖ϕ‖C 1d−n/2 and mn(Bn) ≥ 1− βn. This
is the desired result. �

Proof of Proposition 3.2. Fix 1 < d < d and let Bn be as in Lemma 3.6. From Lemmas 3.3,
3.4 , 3.6 and the fact that 〈π∗1µ ∧ [∆], ϕ̃〉 =

�
ϕdµ we obtain that, for tn ∈ Bn we have∣∣〈JΓnK ∧ [∆tn ]− π∗1µ ∧ [∆], ϕ̃〉

∣∣ =
∣∣∣ψn(tn)−

�
ϕdµ

∣∣∣ ≤ (1 + C)‖ϕ‖C 1d−n/2,

which is the desired result. �

4. LIFT TO THE TANGENT BUNDLE

Let X := C × C × C with coordinates (x, y, t) and compactify it by X := P1 × P1 × P1.
We denote by p(x, y, t) = (x, y) and q(x, y, t) = t the two natural projections and set

z = x− y.

The graphs Γn ⊂ C× C admit natural lifts to X by setting

Γ̂n =
{

(x, fn(x), (fn)′(x)) : x ∈ C
}
⊂ X.

We will denote by [Γ̂n] the corresponding integration current and

JΓ̂nK :=
1

dn
[Γ̂n]

its normalized version. These are positive closed currents of bidegree (2, 2) viewed in X
or X.

For later use, we state some intermediary estimates. The first one implies that, in a sense,
the currents JΓ̂nK converge to vertical currents with respect to the projection p(x, y, t) =
(x, y), and they become vertical exponentially fast.

Lemma 4.1. There is a constant c > 0 such that for every A > 0, M ≥ 1 and n ≥ 1

〈JΓ̂nK, idx ∧ dx〉{|x|≤A} ≤ cA2d−n

and
〈JΓ̂nK, idy ∧ dy〉{|x|≤A,|t|≤M} ≤ cA2M2d−n.

Proof. Since Γ̂n is a graph over x ∈ D(0, A), the first integral is equal to d−n times the area
of D(0, A). This gives the first inequality.

For (x, y, t) ∈ Γ̂n, we have dy = tdx. Hence, the LHS of the second inequality is bounded
by d−n times �

|x|≤A
M2idx ∧ dx . A2M2.

�

Lemma 4.2. For every A > 0 there is a constant cA > 0 such that�
|z|≤A

|(fn)′(x)|2(idx ∧ dx) ≤ cAd
n.
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Proof. Observe that for (x, y, t) ∈ Γ̂n if |z| = |x− y| ≤ A then both |x| and |y| are bounded
by a constant M > 0, independent of n. This follows for instance from the fact that
|f(x)| ≥ 2|x| outside some fixed disc in C centered at the origin, so |y| = |fn(x)| ≥ 2n|x|
there. Therefore, the integral in the statement is bounded by the area of Γn inside the
bidisc D(0,M)2 in C× C. The lemma follows. �

Note that the diagonal ∆ ⊂ C× C lifts to

∆̂ = {x = y, t = 1} ⊂ X.

One step of the proof of Theorem 1.1 will consist in bounding the number of branches
of Γn that are nearly tangent to ∆. This will amount to controlling the behaviour of Γ̂n
near ∆̂. We’ll obtain estimates on the mass of JΓ̂nK over neighbourhoods of ∆̂ the form
{|z| < rn, |t−1| < sn} for suitable sequences (rn)n≥1 and (sn)n≥1 tending to zero as n→∞.
In order to achieve this goal, we first estimate the mass at the slice t = 0. This slice is easier
to handle due to the chain rule for (fn)′(x).

4.1. The slice t = 0. The lemma below bounds the mass of the slice t = 0, which
correspond to the critical points of fn. Recall from the statement of Theorem 2.6 that E
denotes the exceptional set of f viewed as a map f : P1 → P1. This set is always
contained in the critical set of f .

Lemma 4.3. Let f : C → C be a polynomial map viewed as an endomorphism f : P1 → P1.
as above Let 0 < r < 1 and ε0 > 0 be such that the ε0-neighborhood of E contains no other
critical point of f . Set

Ωn = Ωn(r, ε0) := {|z| < 8rn, dist(x,E ) ≥ ε0} ⊂ X.

Then, for every r and ε0, there exist constants c1 > 0 and 0 < β < 1 (depending on r and ε0)
such that the mass of the measures JΓ̂nK ∧ [t = 0] over Ωn is bounded by c1β

n.

Proof. It suffices to consider n large enough. Let C be the critical set of f and Cn that of
fn. By definition JΓ̂nK ∧ [t = 0] is the measure ϑn on X ∩ {t = 0} ' C× C given by

ϑn =
1

dn

∑
x∈Cn

δ(x,fn(x)).

By the chain rule, x ∈ Cn if and only if (fn)′(x) = f ′(fn−1(x))f ′(fn−2(x)) · · · f ′(f(x))f ′(x)
vanishes, so Cn = C ∪ f−1(C ) ∪ . . . ∪ f−(n−2)(C ) ∪ f−(n−1)(C ) and fn(Cn) = fn(C ) ∪
fn−1(C ) ∪ . . . ∪ f 2(C ) ∪ f(C ). Therefore, we can write

ϑn =
1

dn

∑
c∈C

n∑
p=1

∑
a∈f−n+p(c)

δ(a,fp(c)),

where we count the points with multiplicity. Alternatively, one could rewrite the above
identities for Cn and fn(Cn) as [Cn] =

∑n−1
p=0 (fp)∗[C ], where the bracket denotes the

corresponding integration currents and equivalently for [fn(Cn)].

Claim: If (a, fp(c)) ∈ Ωn for some c ∈ C , then dist(c,E ) ≥ ε0.
Proof of claim: By the definition of Ωn, we have |a − fp(c)| < 8rn and dist(a,E ) ≥ ε0.
Assume by contradiction that dist(c,E ) < ε0. Then, c ∈ E by the assumption on ε0. By the
invariance of E , we have fp(c) ∈ E . Hence, dist(a,E ) < 8rn, which is smaller than ε0 for
n large, a contradiction. The claim follows. �
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Fix p = 1, . . . , n and c ∈ C , and set b := fp(c). Notice that (a, b) ∈ Ωn implies that
a ∈ D(b, 8rn). Hence, the mass of

∑
a∈f−n+p(c) δ(a,fp(c)) over Ωn is bounded by the mass

of (fn−p)∗δc = dn−pµpc over D(b, rn). We use here the notation of Theorem 2.6. From
Corollary 2.7 and the above claim, one has µn−pc (D(b, 8rn)) ≤ µn−pc (D(b, 8rn−p)) . βn−p

for some 0 < β < 1 (depending on r). By increasing β if necessary, we can assume that
β > d−1.

Therefore

ϑn(Ωn) .
1

dn
(d− 1)

n∑
p=1

dn−pβn−p = (d− 1)βn
n∑
p=1

d−pβ−p . βn

and the lemma follows. �

Near the slice t = 1. In this section we estimate the mass of JΓ̂nK near the slice t = 1. This
will be used later to construct good branches of Γn across ∆.

Proposition 4.4. Let f : C→ C be a polynomial map as above viewed as an endomorphism
f : P1 → P1. For n ≥ 1 and λ > 1 let mn(t) be the induced normalized Fubini-Study measure
on D(1, e−λ

n
) defined in (3.2), viewed also as a positive (1, 1)-form in t. There exist 0 < r < 1,

λ > 1 and constants c2 > 0 and 0 < β < 1, depending on r and λ, such that the mass of the
measure JΓ̂nK ∧mn(t) over {|z| ≤ 4rn} is bounded by c2β

n.

Remark 4.5. When f(x) = xd, the periodic points of order n satisfy either |(fn)′(x)| = dn

or (fn)′(x) = 0. It follows that the curves Γ̂n do not intersect suppmn(t) ∩ {|z| ≤ 4rn} and
Proposition 4.4 is trivially true in this case. Therefore, in the proof we will be able to assume
that f is not conjugated to the the map x 7→ xd. We can avoid singling out this exceptional
map by working outside a neighborhood of the exceptional set of f . The proof below still
works, but requires the introduction of an additional cut-off function, making the estimates
more technical. We have chosen to avoid it in order to simplify the proof.

Observe that, from Lemma 3.1, after an affine change of coordinates in C, we can
assume that (x, y, t) ∈ Γ̂n and |x| ≥ 1/2, then |y| ≥ 4d

n and |z| ≥ 3d
n. In particular, we

have that

(4.1) Γ̂n ∩ {|z| ≤ 3} ⊂ {|x| ≤ 1}.

We can now prove Proposition 4.4.

Proof of Proposition 4.4. It is enough to consider n large. By the above discussion, we can
assume that (4.1) holds. Let 0 < r < 1 and λ > 1 be constants whose values will be fixed
in the end of the proof and set sn := e−λ

n.
For each n ≥ 1, let ρn be a cut-off function such that 1{|z|<4rn} ≤ ρn ≤ 1{|z|<8rn} and
‖ρn‖C 2 . r−2n. As in the statement of the proposition, we let mn(t) be the normalized
Fubini-Study measure on D(1, sn), viewed also as a positive (1, 1)-form in t. Then, it is
enough to show that 〈

JΓ̂nK ∧mn(t), ρn(z)
〉
≤ c2β

n.

for some constant c2 > 0.
Denote by Ln := (πs2

n)−11|t−1|≤snidt ∧ dt the normalized Lebesgue measure on the disc
D(1; sn) viewed as a positive (1, 1)-form in the variable t. Observe that mn(t) ≤ CLn(t) for
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some constant C > 0 independent of n. Hence, it is enough to show that

(4.2)
〈
JΓ̂nK ∧Ln(t), ρn(z)

〉
≤ c′2β

n.

for some constant c′2 > 0.
By Lemma 2.3, we can write

Ln(t)− δ0(t) = ddcχn(t)

for a d.s.h. function χn on C with −| log sn| . χn(t) . 2 − log |t| on D(0; 3) and |χn(t)| .
1/|t| for |t| ≥ 2.

We have seen that (x, y, t) ∈ Γ̂n, if |z| = |x− y| is bounded by a constant A > 0, both |x|
and |y| are bounded by a constant M > 0, independent of n. See the proof of Lemma 4.2.
Moreover, if (x, y, t) and |z| ≤M , then |t| ≤M ′

n for some M ′
n > 0. Since ρn(z) has compact

support, the integrals below all take place over some compact subset Kn of C× C× C, so
we can apply Stokes’ formula. Then, the left-hand side of (4.2) equals

〈JΓ̂nK, ρn(z)Ln(t)〉 = 〈JΓ̂nK, ρn(z)δ0(t)〉+ 〈JΓ̂nK, ρn(z)ddcχn(t)〉

= 〈JΓ̂nK, ρn(z)δ0(t)〉+ 〈ddc
(
ρn(z)

)
∧ JΓ̂nK, χn(t)〉

= 〈JΓ̂nK, ρn(z)δ0(t)〉+ 〈JΓ̂nK, χn(t)ddc
(
ρn(z)

)
〉.

By (4.1), we have that suppρn(z) ∩ Γ̂n ⊂ Ωn, where Ωn is the set from Lemma 4.3. By
that lemma, we get that

〈JΓ̂nK, ρn(z)δ0(t)〉 ≤ c1β
n.

for some constants 0 < β < 1 and c1 > 0.
Therefore, in order to conclude the proof, we need to show that

〈JΓ̂nK ∧ θn, χn(t)〉 ≤ c2β
n,

for some constant c2 > 0, where

θn(z) := ddcρn(z).

Observe that θn is a smooth (1, 1)-form supported by {|z| < 8rn} and ‖θn‖∞ . r−2n. In
particular, the mass of θn is bounded uniformly in n.

We’ll split the last integral into two parts. Let 0 ≤ η(t) ≤ 1 be a cut-off function equal to
1 on D(0, 2) and 0 outside D(0, 3). Then,

〈JΓ̂nK ∧ θn(z), χn(t)〉 = 〈JΓ̂nK ∧ θn(z), η(t)χn(t)〉+ 〈JΓ̂nK ∧ θn(z), (1− η(t))χn(t)〉.

The above two terms the left-hand side are handled separately in Lemmas 4.6 and 4.10
below. Combined, they give (4.2) and conclude the proof of the proposition. �

Lemma 4.6. In the above notations, one can choose constants 0 < r < 1 and λ > 1 such that∣∣〈JΓ̂nK ∧ θn(z), η(t)χn(t)〉
∣∣ ≤ c3β

n

for some constants c3 > 0 and 0 < β < 1.

We first prove an auxiliary result. Let νn be the measure on C defined by

(4.3) νn := κn · 1{|x|≤1}∩{|(fn)′(x)|≤3}idx ∧ dx,

where κn > 0 is chosen so that νn is a probability measure. Notice that κn is bounded from
below by (

�
|x|≤1

idx ∧ dx)−1 = 1/π. The role of νn will be clear later on.



Equidistribution speed of periodic points 17

Lemma 4.7. There exists a constant M > 0 independent of n such that νn has a Lipschitz
continuous potential on C whose Lipschitz constant is ≤Mκn.

Proof. Set ν̃n := κ−1
n νn = 1{|x|≤1}∩{|(fn)′(x)|≤3} ·L, where L denotes the Lebesgue measure. By

Lemma 2.4, the measure ν̃n has a Lipschitz potential with an uniformly bounded Lipschitz
constant. As νn = κnν̃n, the lemma follows. �

We’ll need later the following lemma, which we’ll apply to νn above.

Lemma 4.8. Let ν be a probability measure with compact support on C. Assume that ν has
a Lipschitz continuous potential on C whose Lipschitz constant is ≤ κ for some κ ≥ 1. There
exist constants C > 0 and 0 < δ < 1 independent of ν such that, for every n ≥ 1 and every
p ≥ 1 we have

〈(fp)∗(ν),− log |f ′|〉 ≤ Cδ−p(p+ log κ).

Moreover δ ≥ (d− 1)−1 unless f is conjugated to the map x 7→ xd.

Proof. Let u be the µ-potential of ν, that is, the unique d.s.h. function satisfying

ν = µ+ ddcu and 〈µ, u〉 = 0.

From the Lipschitz regualirty of ν and the fact that µ has Hölder local potentials, we see
that the function u is (Mκ,α)-Hölder for some constants M ≥ 1 and 0 < α < 1.

From the invariance of µ we get (fp)∗(ν) = µ + ddcup for un,p := (fp)∗u. Notice that
‖ddcup‖ ≤ 1 and 〈µ, up〉 = 0 for every p ≥ 0.

By Poincaré-Lelong formula we have ddc log |f ′| =
∑

c∈C δc − (d − 1)δ∞. Since (fp)∗ν =
µ+ ddcup, (fp)∗µ = µ and up = (fp)∗u we have

〈(fp)∗(ν),− log |f ′|〉 = −〈µ, log |f ′|〉 − 〈up, ddc log |f ′|〉

= −〈µ, log |f ′|〉 −
∑
c∈C

up(c) + (d− 1)up(∞).

Since∞ is mapped to itself by f with multiplicity d, it follows that up(∞) = (fp)∗u(∞) =
dpu(∞). We thus have

(4.4) 〈(fp)∗(ν),− log |f ′|〉 = −〈µ, log |f ′|〉 −
∑
c∈C

up(c) + (d− 1)dpu(∞).

Claim 1: u(∞) ≤ 0.
Proof of claim: Let G : C→ R≥0 be the Green’s function of f and use the same notation for
its extension to P1. Then ddcG = µ− δ∞. Therefore,

u(∞) = 〈δ∞, u〉 = 〈δ∞ − µ, u〉 = 〈−ddcG, u〉 = 〈G,−ddcu〉
= 〈G, µ− ν〉 = 〈G,−ν〉 ≤ 0,

where we have used that 〈µ, u〉 = 0, from the definition of u, and 〈µ,G〉 = 0 because the
Green’s function vanishes on the support of µ. This proves the claim. �

From the above claim and (4.4) we get that

(4.5) 〈(fp)∗(ν),− log |f ′|〉 ≤ −〈µ, log |f ′|〉 −
∑
c∈C

up(c).

The term 〈µ, log |f ′|〉 is finite, hence bounded by a constant independent of p. We now
bound the remaining term.
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Claim 2: Let K := D(0;R) ⊂ C ⊂ P1 be a large disc containing C and such that P1 \ K
is contained in the basin of ∞ of f . Let κ ≥ 1 be as in the statement of Lemma 4.8.
There are constants M > 0, A ≥ 1 and 0 < α, δ < 1 independent of p such that up is
(MκAp, αδp)-Hölder over K. Moreover δ ≥ (d − 1)−1 unless f is conjugated to the map
x 7→ xd.

Remark 4.9. We can avoid singling out the exceptional map x 7→ xd by working over
dist(x,E ′) ≥ ε0, where E ′ is the orbit of the periodic critical points of f . In this case we
obtain an exponent δ which arbitrarily close to 1 after iteration. The weaker form of the
above claim is enough for our purposes and the proof becomes less technical.

Proof of claim: Observe that since P1 \K is contained in the basin of∞ and R is large, we
have that f−1(K) ⊂ K. We have seen above that u is (Mκ,α)-Hölder for some constants
M > 0 and 0 < α < 1. Let l ≥ 1 be the maximal local multiplicity of f over K and
set δ := 1/l. Hence, f is given locally around any point of K by ζ 7→ ζm for some m ∈
{1, 2, . . . , l}. Notice that l ≤ d − 1 unless f is conjugated to the map x 7→ xd. It follows
that for x, x′ ∈ K we can write f−1(x) = {y1, . . . , yd} and f−1(x′) = {y′1, . . . , y′d} with
dist(yj, y

′
j) ≤ B dist(x, x′)δ for some constant B ≥ 1. Furthermore, yj, y′j ∈ K for all

j = 1, . . . , d. See [DS10b, Proposition 4.1] for details.
For p = 1 we have u1(x) = f∗u(x) =

∑d
j=1 u(yj) and similarly for x′, hence

∣∣u1(x) −
u1(x′)

∣∣ ≤ dMκnB dist(x, x′)αδ. By induction, it follows that∣∣up(x)− up(x′)
∣∣ ≤MκdpBp dist(x, x′)αδ

p

.

This proves the claim with A = Bd. �

We now resume the proof of Lemma 4.8. Recall that we need to bound from above
the right-hand side of (4.5). Notice that the up belong to F := {v ∈ DSH(P1) : ‖v‖µ ≤
1}, which is a bounded family inside DSH(P1), see Section 2. By the claim above up is
(MκAp, αδp)-Hölder. Hence, by Corollary 2.2-(1)

‖up‖∞ . δ−p(p+ log κ).

Therefore, the right-hand side of (4.5) is bounded by a constant times δ−p(p + log κ).
This proves the lemma. �

We can now prove Lemma 4.6.

Proof of Lemma 4.6. Let θn = θ+
n − θ−n , where θ±n are respectively the positive and negative

parts of θn. Denoting by |θn| = θ+
n + θ−n , we have∣∣〈JΓ̂nK ∧ θn(z), η(t)χn(t)〉

∣∣ ≤ 〈JΓ̂nK ∧ |θn(z)|, |η(t)χn(t)|〉.

Recall that sn = e−λ
n and −| log sn| . χn(t) . 2 − log |t|. As | log |t|| . 2 − log |t| .

| log sn| − log |t| on D(0; 3), we have that

|η(t)χn(t)| . η(t)| log sn| − η(t) log |t|.

Notice that the right hand-side above is positive for large n.
Setting

I (1)
n := 〈JΓ̂nK ∧ |θn(z)|, η(t)| log sn|〉 and I (2)

n := 〈JΓ̂nK ∧ |θn(z)|,−η(t) log |t|〉,
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the desired estimate boils down to showing that

(4.6) I (1)
n + I (2)

n ≤ c′′2β
n

for some constants c′′2 > 0 and 0 < β < 1.
We’ll use that, over Γ̂n, |z| ≤ 3 implies |x| ≤ 1 (see (4.1)). Observe that

(4.7) dz|Γ̂n = dx− dy|Γ̂n = (1− (fn)′(x))dx|Γ̂n = (1− t)dx|Γ̂n
and |1− t| ≤ 4 over the support of η(t).

Using that ‖θn‖∞ . r−2n, recalling that θn(z) is supported by {|z| ≤ 8rn} and using
(4.1), we obtain that

(4.8) |θn(z)| . 1

r2n
|1− t|21|x|≤1idx ∧ dx over Γ̂n.

Since |t| ≤ 3 over the support of η(t), we get that

(4.9) I (1)
n .

| log sn|
r2n

∣∣〈JΓ̂nK,1|x|≤1idx ∧ dx〉
∣∣ . | log sn|

r2ndn
,

where we have used the first inequality in Lemma 4.1.
We now bound I (2)

n . Using (4.8), we have

I (2)
n .

1

dnr2n

�
Γ̂n∩{|x|≤1}∩{|t|≤3}

− log |(fn)′(x)|idx ∧ dx

Let νn be the measure defined in (4.3). Since the projection (x, y, t) 7→ x is a
biholomorphism over Γ̂n, the last integral above equals

1

κndnr2n
〈νn,− log |(fn)′|〉 =

1

κndnr2n

n−1∑
p=0

〈νn,− log |f ′| ◦ fp〉

=
1

κndnr2n

n−1∑
p=0

〈(fp)∗(νn),− log |f ′|〉,

where in the first equality we have used the chain rule for (fn)′ and in the second one the
change of variables formula.

Our main theorem is clearly true for the map x 7→ xd, so we can assume that δ−1 ≤ d− 1
in Lemma 4.8. From Lemma 4.7 and Lemma 4.8 applied to νn we get that

(4.10) I (2)
n .

1

κndnr2n

n−1∑
p=0

δ−p
(
p+ log+ κn

)
.

1

dnr2n
nδ−n ≤ n

(d− 1)n

dn
1

r2n
.

Recall that κn ≥ 1/π, so log+ κn/κn is uniformly bounded.
Combining (4.9), (4.10) and using that sn = e−λ

n we get that

I (1)
n + I (2)

n .
λn

r2ndn
+ n

(d− 1)n

dn
1

r2n
.

Choosing both 0 < r < 1 and λ > 1 sufficiently close to 1 yields (4.6) for suitable
constants c3 > 0 and 0 < β < 1. The lemma follows. �

Lemma 4.10. In the above notations, one can choose constants 0 < r < 1 and λ > 1 such
that ∣∣〈JΓ̂nK ∧ θn(z), (1− η(t))χn(t)〉

∣∣ ≤ c4β
n

for some constants c4 > 0 and 0 < β < 1.
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Proof. Recall that |χn(t)| . 1/|t| for |t| ≥ 2 and ‖θn(z)‖∞ = O(r−2n). Using (4.7), we get
that ∣∣θn(z), (1− η(t))χn(t)|Γ̂n

∣∣ . 1

r2n

|1− t|2

|t|
1|t|≥2,|z|≤3idx ∧ dx|Γ̂n

.
1

r2n
(1 + |(fn)′(x)|)1|t|≥2,|z|≤3idx ∧ dx|Γ̂n .

Using Cauchy-Schwarz, we get that
∣∣〈JΓ̂nK ∧ θn(z), (1 − η(t))χn(t)〉

∣∣, is bounded by a
constant times

1

r2ndn

�
|z|<3

(1+|(fn)′(x)|)idx∧dx . 1

r2ndn

[ �
|z|<3

idx∧dx
]1/2[ �

|z|<3

(1+|(fn)′(x)|2)idx∧dx
]1/2

.

Using Lemmas 4.1 and 4.2, we see that the last quantity is . r−2nd−ndn/2. The result
follows by taking 0 < r < 1 sufficiently close to 1 and setting β = r−2d−1/2. �

5. TRANSVERSE BRANCHES ACROSS ∆

In this section we show that we can produce many branches of Γn crossing ∆ in a
sufficiently transversal way. Together with the equidistribution given by Proposition 3.2,
this will yield Theorem 1.1.

As above, let π(x, y) = x− y = z. For t ∈ C∗ let

πt : C× C→ C, πt(x, y) = tx− y.

Note that πt|Γn is a branched covering of degree dn. Indeed, the fibers over c ∈ C
correspond to the solutions of the polynomial equation fn(x) = tx − c. Observe that
∆t = {tx− y = 0} = π−1

t (0), see (3.1).
For fixed t ∈ C consider the coordinate system

(zt, wt) := (tx− y, tx+ y)

on C×C. We’ll work with values of t close to t = 1. When t = 1 we recover the coordinate
z = x − y as above. In these new coordinates, the projection πt is given by (zt, wt) 7→ zt.
Moreover,

(5.1) ∆t = {zt = 0} and ∆ = {(1 + t)zt = (t− 1)wt}.

Observe that when |x| ≤ 1 as in (4.1) (see also Lemma 3.1) and if |t − 1| ≤ sn for
sn = e−λ

n as in Proposition 4.4 we have for n large, that

(5.2) |zt| ≤ 2rn =⇒ |z| = |zt − (t− 1)x| ≤ |zt|+ sn ≤ 2rn + e−λ
n ≤ 3rn.

The lemma below says that, for many values of t near t = 1, the projection πt admits
many inverse branches above {|zt| < rn}. Recall from (3.2) that mn(t) is the normalized
Fubini-Study measure on the disc D(1, e−λ

n
).

Lemma 5.1. Let 0 < r < 1 and sn = e−λ
n be as in Proposition 4.4. There exist 0 < α0, β0 < 1

and a subset An ⊂ D(1, sn) with mn(An) ≥ 1− αn0 such that for every tn ∈ An the restriction
of πtn to Γn∩π−1

tn (D(0; 2rn)) = Γn∩{|ztn| < 2rn} admits at least dn(1−βn0 ) inverse branches.



Equidistribution speed of periodic points 21

Proof. Denote by π̃t the restriction of πt to Γn ∩ π−1
t (D(0; 2rn)) = Γn ∩ {|zt| < 2rn}. By

Riemann-Hurwitz theorem [Din05, Lemme 3.4] the number of inverse branches of π̃t is
at least deg π̃n(1 − 2τn) = dn(1 − 2τn), where dnτn is the number of tangencies between
Γn ∩ {|zt| < 2rn} and the fibers of πt, i.e., the lines tx− y = constant.

For each n ≥ 1 and t ∈ C, denote by νtn := JΓ̂nK ∧ q∗δt the slice of the current JΓ̂nK at t
with respect to the projection q(x, y, t) = t. Equivalently, one may write
νtn = 1

dn

∑
{x:(fn)′(x)=t} δ(x,(fn)(x),(fn)′(x)). Notice that the total mass of νtn is 1 − d−n and

τn = ‖1{|zt|≤rn}νtn‖.
By Proposition 4.4 if we view mn(t) as a positive measure and also as a positive (1, 1)-

form in t, we have that the mass of the measure

ν̃n =

�
νtn dmn(t) = JΓ̂nK ∧mn(t)

over the set {|z| ≤ 3rn} is bounded by c2β
n for c2 > 0 and 0 < β < 1 (depending on

r and s, but not on n). In view of (5.2), for every t ∈ D(1, e−λ
n
), the mass of ν̃n over

{|zt| ≤ 2rn} is also bounded by c2β
n. In particular, for every β < β0 < 1 we have that

mn{t : ‖1{|zt|≤rn}νtn‖ ≥ βn0 } . (β/β0)n. The lemma follows by setting An := {t ∈ D(1; sn) :
‖1{|zt|≤rn}νtn‖ < βn0 } = {t : τn < βn0 }, and choosing β/β0 < α0 < 1. �

In the next result, we will select only the branches given by Lemma 5.1 that are
sufficiently transversal to ∆t in a suitable sense.

Lemma 5.2. Let 0 < r < 1 and An ⊂ D(1, sn) be as in Lemma 5.1. Then, there exists
0 < β1 < 1 and κ > 1 such that for n large enough we have that, for every tn ∈ An, the
restriction of πtn to Γn ∩ π−1

tn (D(0; 2rn)) = Γn ∩ {|ztn| < 2rn} admits at least dn(1 − βn1 )
inverse branches g̃ : {|ztn| < 2rn} → Γn ∩ {|ztn| < 2rn} such that in the coordinates (ztn , wtn)
we have g̃(ztn) = (zt, g(ztn)) with |g′| ≤ κn over {|ztn| < rn}.

Proof. As in the proof of Lemma 5.1, denote by π̃tn the restriction of πtn to
Γn ∩ π−1

tn (D(0; 2rn)) = Γn ∩ {|ztn| < 2rn}. By that lemma, for tn ∈ An there are at least
Nn := dn(1 − βn0 ) inverse branches of π̃tn. Denote by
g̃j : {|ztn| < 2rn} → Γn ∩ {|ztn| < 2rn}, j = 1, . . . , Nn such branches. We can write
g̃j(ztn) = (ztn , gj(ztn)) for some holomorphic functions gj on {|ztn| < rn}. Recall that
Γn ∩ {|ztn| < 2rn} ⊂ Γn ∩ {|z| < 3rn}.

Let ω = idx ∧ dx + idy ∧ dy be the standard Kähler form on C × C and denote by A(Γ)
the area of a complex curve Γ inside C × C with respect to ω. Using Lemma 4.2, we see
that

A(Γn ∩ {|z| < 3rn}) =

�
Γn∩{|z|<3rn}

ω =

�
{|z|<3rn}

(1 + |(fn)′(x)|2)idx ∧ dx ≤ c dn

for some constant c > 0, independent of r and n. Note that Γn ∩ {|z| < 1} ⊂ {|x| < M} for
large n for some constant M . See also Lemma ??.

Denoting by Γ(g̃j) the graph of the branch g̃j, we have that
Nn∑
j=1

A(Γ(gj)) ≤ A(Γn ∩ {|z| < 3rn}) ≤ cdn.

For 0 < δ < δ′ < 1 denote by `n the number of branches satisfying A(Γ(gj)) > δ−n

and set kn = Nn − `n. The above estimates show that `n ≤ cdnδn ≤ dn(δ′)n. Taking
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max(β0, δ
′) < β1 < 1, we conclude that there there are kn ≥ dn(1−βn0 − (δ′)n) ≥ dn(1−βn1 )

branches whose graph satisfies A(Γ̃(gj)) ≤ δ−n. We call such g̃j the good branches.
Let ωt = idzt∧dzt+idwt∧dwt, where (zt, wt) = (tx−y, tx+y) as above. Observe that, since
|t| is bounded away from zero, we have that c1ω ≤ ωt ≤ c2ω for some constants 0 < c1 ≤ c2.
It follows that, for the good branches as above, we have

�
Γ(g̃j)

ωt ≤ c2A(Γ(g̃j)) ≤ c2δ
−n. On

the other hand, using that g̃j(zt) = (zt, gj(zt)), we have�
Γ(g̃j)

ωtn =

�
{|ztn |<2rn}

(1 + |g′j(ztn)|2)idzt ∧ dzt ≥ ‖g′j‖2
L2(|ztn |<2rn).

We conclude that ‖g′j‖L2(|ztn |<2rn) ≤ c
1/2
2 δ−n/2. By Cauchy’s estimate, it follows that

‖g′j‖L∞(|ztn |<rn) . δ−n/2r−n. The result follows by taking κ > 1/δ1/2r−1. �

6. PROOF OF THEOREM 1.1

In this section we’ll give the proof Theorem 1.1. The conclusion clearly holds to the map
Ξ : x 7→ xd as it can be checked directly. Therefore, we’ll assume from now on that f not
conjugated to Ξ in order to apply Proposition 4.4 and its consequences. Note however that
by Remark 4.5 this is not strictly necessary.

It is enough to prove the theorem for ϕ of class C 1, since the general case follows by
standard interpolation arguments, see [Tri78, §2.7.2]. We begin by observing that if ϕ is a
test function on C and ϕ̃ = π∗ϕ, then〈 1

dn

∑
a∈Pn

δa, ϕ
〉

=
〈
JΓnK ∧ [∆], ϕ̃

〉
and

〈
π∗1µ ∧ [∆], ϕ̃

〉
=

�
ϕ dµ.

Therefore, showing (1.4) for α = 1 is equivalent to showing that

(6.1)
∣∣〈JΓnK ∧ [∆]− π∗1µ ∧ [∆], ϕ̃

〉∣∣ ≤ C‖ϕ‖C 1ξn

for some 0 < ξ < 1. As in the previous sections, we shall identify ϕ and ϕ̃.
Recall from Sections 5 and 3 that we have projections πt : C × C → C, t ∈ C and

Π :
(
C× C

)
\ {(0, 0)} → P1 given by πt(x, y) = tx− y and Π(x, y) = [x : y] respectively. As

before, we identify t ∈ C with the point [1 : t] ∈ P1. Recall also the notation

∆t = Π−1(t) = {tx− y = 0} = π−1
t (0).

By Lemma 5.2 and Proposition 3.2, after renaming the constants δj, β appearing in the
statements, we can find real numbers 0 < r < 1 and sn = e−λ

n with λ > 1, constants
0 < α, β < 1, κ > 1 , and subsets An and Bn of D(1; sn) with the following properties

(P1) mn(An) ≥ 1−αn and mn(Bn) ≥ 1−αn, where mn denotes the normalized Fubini-
Study measure on D(1; sn).

(P2) For every tn ∈ An the restriction of πtn to Γn ∩ {|ztn| < rn} ⊂ Γn ∩ {|z| < 2rn}
admits at least dn(1 − βn) inverse branches of the form ztn 7→ (ztn , g(ztn)) in the
coordinates (ztn , wtn) = (tnx− y, tnx+ y) with ‖g′‖∞ ≤ κn. We call such maps good
transverse branches.

(P3) For every tn ∈ Bn we have that
∣∣〈JΓnK∧[∆tn ]−π∗1µ∧[∆], ϕ̃〉

∣∣ ≤ C‖ϕ‖C 1d−n/2, where
1 < d < d can be taken arbitrarily close to d and C > 0 is a constant independent
of n and ϕ.

The proof of Theorem 1.1 will follow from these properties.
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Proof of Theorem 1.1. Fix ϕ = ϕ(x) a compactly supported function on C of class C 1. It is
enough to prove (6.1) for n large enough. When n is large, (P1) implies that both mn(An)
and mn(Bn) are larger than 1/2. Since mn is a probability measure, we have An∩Bn 6= ∅.
Therefore, we can choose for every large n a point tn ∈ An ∩Bn satisfying (P2) and (P3)
above simultaneously. From here until the end of the proof we fix a large n and such a
point tn. We also fix coordinates (ztn , wtn) as in (P2) above.

From (P3), the estimate (6.1) will follow if we show that∣∣〈JΓnK ∧ [∆tn ]− JΓnK ∧ [∆], ϕ̃
〉∣∣ ≤ C‖ϕ‖C 1ξn.

for some constants C > 0 and 1/d1/2 ≤ ξ < 1. By setting

µn := JΓnK ∧ [∆] and νn := JΓnK ∧ [∆tn ]

this is equivalent to showing that

(6.2)
∣∣〈νn − µn, ϕ̃〉∣∣ ≤ C‖ϕ‖C 1ξn.

Observe that µn and νn are probability measures on C × C. Let p`, ` = 1, . . . , dn be
the points in the support of νn, i.e. the points in the intersection Γn ∩ ∆tn, counted with
multiplicity. We label them as follows: we denote by pG` the ones through which passes a
good transverse branch for πtn|Γn∩{|ztn |≤rn} and by pB` the remaining ones. Notice that the
points pG` have multiplicity one and by (P2) there are at least dn − bdnβnc many of them.

After applying Lemma 3.1, we see that the supports of νn and µn all belong to a fixed
compact set of C × C and are bounded away from the origin. Notice that the point with
coordinates (ztn , wtn) = (0, g(0)) is one the pG` above. In particular, we see that for any
good branch g we have |g(0)| ≤M for some constant M > 0 independent of g.

Let q`, ` = 1, . . . , dn be the points in the support of µn, i.e. the points in the intersection
Γn ∩∆, counted with multiplicity. By (5.1), a sufficient condition for a point q = (ztn , wtn)
to belong to Γn ∩∆ is that its coordinates yield a solution of the system{

wtn = g(ztn) (q ∈ Γn)

(tn − 1)wtn = (1 + tn)ztn (q ∈ ∆),

where g is one the good inverse branches of πtn|Γn∩{|ztn |≤rn}. Since tn 6= 1, it is enough to
solve the equation

h(ztn) := g(ztn)− 1 + tn
tn − 1

ztn = 0

for ztn in order to obtain a solution of the above system.

Claim: For every good branch g, the associated equation h(ztn) = 0 admits a single solution
on the disc {|ztn| ≤ 6Me−λ

n} when n is large enough.

Proof of claim: Fix a good branch g. Recall that the point with coordinates (0, g(0)) is one
the pG` introduced above. We’ll apply Rouché’s Theorem on {|ztn| ≤ Ae−λ

n}, where A > 0
will be determined later. Since, |g(0)| ≤M and |g′| ≤ κn, we have the following inequality
on {|ztn| = Ae−λ

n} for n large:

|g(ztn)| ≤ |g(ztn)− g(0)|+ |g(0)| ≤ Aκne−λ
n

+M ≤ 2M.
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Now |tn−1| ≤ e−λ
n implies 1+tn

tn−1
≥ 1

2
eλ

n, so
∣∣1+tn
tn−1

ztn
∣∣ ≥ A

2
over {|ztn| = Ae−λ

n}. By choosing
A = 6M , we get that

|g(ztn)| ≤
∣∣∣1 + tn
tn − 1

ztn

∣∣∣ on {|ztn | = 6Me−λ
n}.

By Rouché’s Theorem, the functions 1+tn
tn−1

ztn and h(ztn) = g(ztn)− 1+tn
tn−1

ztn have the same
number of zeroes on the disc {|ztn| ≤ 6Me−λ

n}, namely a single one. This proves the
claim. �

We have thus shown that:
For each good transverse branch g, there is a single a single point q = (ztn , g(ztn)) in the

graph of g with |ztn| ≤ Ae−λ
n and q ∈ Γn ∩∆ .

If we denote by Gn = {pG` } the set of good points, the above statement can be rephrased
by saying that we have an injective map Gn → Γn ∩∆ = suppµn sending pG` = (0, g(0)) to
the corresponding point q as above, which is one of the points qk of the support of µn. After
re-indexing, we can assume that pG` is sent to q`. We denote by q′k the remaining points of
suppµn.

Using the above claim and recalling that |g′| ≤ κn, we have

dist(pG` , q`)
2 . |ztn|2 + |g(0)− g(ztn)|2 ≤ A2(1 + κ2n)e−2λn ,

so there exists a constant C1 > 0 independent of n and ` such that dist(pG` , q`) ≤ C1κ
ne−λ

n.
We can thus write

νn − µn = d−n
( dn−bdnβnc∑

`=1

δpG` +

bdnβnc∑
`=1

δpB` −
dn−bdnβnc)∑

`=1

δq` +

bdnβnc∑
`=1

δq′`

)

= d−n
dn−bdnβnc∑

`=1

(
δpG` − δq`

)
+ d−n

bdnβnc∑
`=1

(
δpB` − δq′`

)
=: ΥG

n + ΥB
n ,

where Υ
G/B
n are signed measures on C× C.

Since dist(pG` , q`) ≤ C1κ
ne−λ

n, there exists a constant C2 > 0 such that∣∣〈ΥG
n , ϕ̃

〉∣∣ ≤ C2κ
ne−λ

n‖ϕ‖C 1 .

As ‖ΥB
n ‖ = 2βn, we conclude that∣∣〈νn − µn, ϕ̃〉∣∣ ≤ C2κ

ne−λ
n‖ϕ‖C 1 + 2βn‖ϕ‖∞ ≤ C‖ϕ‖C 1βn.

for some constant C > 0. By choosing ξ = max(β, 1/d1/2) we obtain (6.2). This completes
the proof of the theorem. �
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