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A B S T R A C T

The evaluation of performance of public transportation, such as bus lines for example, is a major issue for op-
erators. To be able to integrate specific and local behaviors, microscopic simulations of the lines, modelling each 
buses on a daily basis, brings an actual added value in terms of precision and quality. A scientific deadlock then 
appears regarding the parameterization of the simulation model. In order to be able to gather relevant perfor-
mance indicators on a potential evolution of the configuration of the line, validated and modifiable simulation 
models need to be developed. This study aims at proposing a model development methodology based on a multi- 
agent simulation framework and data inputs extracted by a hybrid approach combining machine learning (ML) 
trained on actual bus data to predict travel times and probabilistic distributions to accurately estimate travel time 
variability. It also aims to propose a two-step validation framework that exhibits the performance of the obtained 
model on a case study based on actual data. The results of the proposed approach are validated by a real case 
study of three bus lines, including a number of simulation scenarios, to study the impacts of bus recovery time 
and bus control strategies on bus punctuality. The results obtained show that proposed hybrid approach 
combining ML with probabilistic distributions outperforms probabilistic distributions on average. Overall, the 
results show a good fit with the actual Key Performance Indicator (KPI) used by bus operators.

1. Introduction

Nowadays, urban cities face multiple challenges, ranging from 
rapidly increasing population to increasing number of motorized vehi-
cles and traffic congestion (Jindal et al., 2018). In order to reduce traffic 
congestion, and therefore its negative impacts, cities around the world 
are trying to shift personal traffic to public transport (Reich et al., 2021). 
Public transportation (PT), public transit or mass transit is defined as 
transportation of passengers by group travel systems available for use by 
the general public. It is an important part of urban life, which plays a 
critical and essential role for mobility in the modern city. It is managed 
according to a predefined schedule and operated on established routes. 
The reliability of service can be understood as a combination of: punc-
tuality of service provided within the scheduled times and the frequency 
of service of vehicles evenly spaced to accommodate passengers. In 
public transport, reliability is considered one of the most critical features 
to assess the quality of service from the perspectives of passengers and 
operators. Reliability is understood in PT as the certainty that passengers 
have about the level of service they will experience while travelling (Van 

Oort, 2011). Travel time and waiting time, in addition to transfer time 
and comfort level, experienced during the transit trip are some of the 
important reliability attributes (Ceder, 2024).

Travel time variability (TTV), also known as travel time uncertainty, 
is the key indicator for measuring the performance of the transport 
system, can be divided into three distinct components: day-to-day 
variability, variability over the course of a day and vehicle-to-vehicle 
variability (Noland and Polak, 2002). Research emphasizes day-to-day 
(or inter-day) variability, which describes the degree of variation in 
travel time for a trip taking the same route over a specific period (Büchel 
and Corman, 2018). Probabilistic distributions are capable of describing 
the nature and the pattern of travel time variability. Understanding 
travel time distributions and their components is a prerequisite for 
reliability analysis. Various studies have made considerable effort in 
fitting travel times with different types of distributions, such as normal 
(Taylor, 1982), lognormal (Emam and Al-Deek, 2006; Uno et al., 2009; 
Kieu et al., 2015; Durán-Hormazábal and Tirachini, 2016; Dai et al., 
2019), gamma (Polus, 1979; Jordan and Turnquist, 1979), Weibull 
(Al-Deek and Emam, 2006), Burr (Susilawati et al., 2013; Taylor, 2017), 
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Generalized extreme value (GEV) distribution (Harsha et al., 2020), 
Gaussian Mixture Model (Ma et al., 2016) were proposed. Such model-
ling aimed to find the best statistical distribution to describe and explain 
the shape and the pattern of TTV, because a distribution fitted to travel 
time values could illustrate a more comprehensive nature of the TTV 
(Low et al., 2022).

Limiting transit delays is at the core of control metrics for the public 
transport operators, limiting these delays will help to maintain an 
appropriate quality of service with reasonable certainty. Delays can be 
caused by multiple factors: traffic congestion, passenger boarding, road 
delays and certain events like traffic accidents, etc…

Historically, many researchers have adopted various methods for 
predicting the estimated time of arrival of buses, these methods can be 
divided into several groups: historical and real-time approaches, Kalman 
filtering approaches, statistical methods and machine learning (ML) 
techniques (Padmanaban et al., 2009). In practice, the performance 
indicators are often estimated in a purely statistical way by practitioners 
over several months or years of data. This method provides a relatively 
coherent image of the past behaviour of the bus lines with low modelling 
effort and computation cost, but does not allow to evaluate these in-
dicators in different “what if?” scenarios (e.g. roadworks, new traffic 
priorities, etc.).

Another problem that the bus operators face is bus bunching. Bus 
bunching refers to the phenomenon where a group of two or more buses 
arrives at the same bus stop at the same time. It is a long-standing 
operational problem in urban public transport systems, and it is a 
major issue that concerns transit users and affects our perception of 
service reliability and efficiency (Wang and Sun, 2020). This indicator is 
completely impossible to compute in a purely statistical way, as it relates 
to single bus travels, their history (delays) and the buses ahead and 
behind (Morgan, 2002; Errampalli et al., 2005; Lopez et al., 2018; Kieu 
et al., 2019). Microscopic simulations are one of the most promising way 
to be able to tackle these kind of problems.

To deal with the challenges noted earlier, bus operators need effi-
cient microscopic bus lines simulation models to evaluate the perfor-
mance indicators of the current lines and forecast indicators on potential 
evolutions of these lines. To do so, the first requirement is to be able to 
model the current situation in a coherent way and validate the results it 
provides. In this study, we aim to validate public transport simulation 
framework, including simulated travel times and bus punctuality, with 
the available actual data. The focus is on retrieving simulation param-
eters that best match the actual data, particularly bus punctuality which 
is strongly related to bus travel time. A classical approach is to perform 
the simulation with scheduled travel times, for example from General 
Transit Feed Specification (GTFS) data. However these travel times are 
too theoretical and may differ greatly from observed travel times. We 
therefore propose to replace theoretical travel times with travel times 
extracted from actual data. An alternative is to use probabilistic distri-
butions to estimate the actual travel time variability to feed PT simu-
lation framework. We propose an effective ML technique along with 
probabilistic distributions, with aim of providing the simulation 
framework with more accurate travel times than those estimated with 
probabilistic distributions.

In this paper, we suggest a model development methodology based 
on a multi-agent simulation framework and data inputs extracted by a 
hybrid approach combining ML trained on actual bus data to predict 
travel times and probabilistic distributions to accurately estimate travel 
time variability. We also propose a two-step validation framework that 
exhibits the performance of the obtained model on a case study based on 
actual data provided by an operator. A first contribution of this paper is 
to propose effective ML techniques to predict the travel time in a real 
scenario, so as to bypass the computational efforts in the simulation 
platform to mimic congestion. A second contribution of this work is to 
couple ML and public transport simulation model in the same frame-
work, which to our knowledge is rarely implemented.

The remainder of this article is structured as follows: Section 2

reviews related literature including ML models and their application for 
bus travel prediction, as well as simulation models with emphasis on 
traffic models. Section 3 provides an overview of the proposed ML-based 
microscopic simulation framework and then details each of the layers of 
the framework. Additionally, the two-step validation framework to 
assess the performance of the proposed ML-based simulation model will 
be presented in detail. A case study scenario will be given in Section 4. In 
Section 5, the simulation results will be analyzed and validated based on 
a set of performance indicators. A discussion of the analyses presented is 
in Section 6 and some concluding remarks in Section 7.

2. Literature review

Over the past decade, the problem of bus travel time prediction has 
received wide attention. In this section, we first review related works, 
which can be categorized into prediction of bus arrival time and bus 
travel time. Furthermore, we present a number of traffic simulation 
frameworks and studies that attempt coupling ML with simulation 
models, as well as the contributions of this work.

2.1. Bus arrival time prediction

Estimated Time of Arrival (ETA), also known as expected time of 
arrival, is the time at which a transportation system is expected to arrive 
at its destination. The term has long been used in aviation and maritime 
transport, but also increasingly in road transport. Various methods have 
been adopted by researchers to predict the expected arrival time of 
buses, these methods can be grouped as follows: 1) historical approaches 
predict the travel time at a given time as the average travel time for the 
same period on different days (Wall and Dailey, 1998; Lin and Zeng, 
1999; Jeong and Rilett, 2004; Ramakrishna et al., 2008); 2) real time 
approach predicts that the next time interval travel time will be the same 
as the current travel time (Padmanaban et al., 2009); 3) regression 
models are classical approaches for predicting travel time and predicting 
a dependent variable based on a function formed by a set of independent 
variables (Jeong and Rilett, 2004; Ramakrishna et al., 2008; Shalaby and 
Farhan, 2024; Patnaik et al., 2004); 4) Kalman filter is a popular tool for 
the recursive estimation of variables that characterize a system, it is a 
model-based estimation scheme that takes into account the stochastic 
properties of process disturbance and the measurement noise (Shalaby 
and Farhan, 2024; Chien et al., 2002; Cathey and Dailey, 2003; Chu 
et al., 2005; Kumar et al., 2024); 5) ML techniques have been widely 
reported for traffic and travel time prediction (Chien et al., 2002; 
Altinkaya and Zontul, 2013; Mori et al., 2015; Yang et al., 2016; Abdi 
and Amrit, 2021).

2.2. ML for bus arrival and travel time prediction

In past decades, ML models have been widely applied in the trans-
portation field, due to their ability to solve complex problems and 
extract patterns. However, ML approaches are data-driven techniques, 
requiring a large data set and high computation time. Many applications 
of traditional ML methods have been implemented to predict traffic data 
(Soysal and Schmidt, 2010; Ellis et al., 2014; Fusco et al., 2015; Nguyen 
et al., 2017) and traffic congestion (Thianniwet et al., 2009; Othman 
et al., 2017), reinforcement learning approaches have been incorporated 
into traffic control systems (Balaji et al., 2010; El-Tantawy et al., 2013), 
while the models of neural network and deep learning have been widely 
reported, including traffic flow prediction (Huang et al., 2014; Fou-
ladgar et al., 2017; Polson and Sokolov, 2017; Zhao et al., 2017), travel 
demand forecasting (Yang et al., 2020; Cheng et al., 2024; Baek and 
Sohn, 2016; Ke et al., 2017; Liu and Chen, 2017), traffic signal control 
(Genders and Razavi, 2024; Li et al., 2016), driving behavior analysis 
(Dwivedi et al., 2014; Dong et al., 2024) and autonomous driving ap-
plications (Hadsell et al., 2008; Huval et al., 2024).
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2.2.1. Bus arrival time prediction
ML models based on neural network (NN), tree-based, Support 

Vector Machine (SVM) and regression have been proposed for bus 
arrival time prediction. (Chien et al., 2002) proposed two artificial 
neural networks to address the dynamic bus arrival time prediction 
problem. Predicted travel times are then assessed with a microscopic 
simulation model, calibrated and validated with real-world data. (Pan 
et al., 2012) introduced a self-learning algorithm based on a 
back-propagation neural network for predicting bus arrival time based 
on historical data. (Li, 2017) proposed a random forest-based approach 
for bus arrival time prediction, using travel data from the Beijing city 
bus network. (Yin et al., 2017) proposed a model for prediction bus 
arrival time at stops with multiple routes using the Support Vector 
Machine algorithm. (Yu et al., 2011) has applied several ML algorithms 
including: SVM, NN, k-nearest neighbours algorithm (kNN) and linear 
regression (LR), to predict bus arrival time at bus stop with multiple 
routes. In another work, (Shalit et al., 2023) introduced a supervised ML 
method for predicting passengers’ boarding stops.

Some of the above mentioned methods are used in a hybrid manner. 
(Yang et al., 2016) implemented an approach in which SVM with Ge-
netic Algorithm (GA) were used to predict bus arrival time, using 
different features including: road length, weather conditions and travel 
speed. (Chen et al., 2004) presented a dynamic bus arrival time pre-
diction model based on real-world data. The model consists of: 1) An 
artificial neural network (ANN) model to predict the bus travel time 
between two stops; 2) A Kalman filter-based dynamic algorithm to 
adjust the arrival time prediction using the bus location information 
down to the minute. In another work, (Zhang and Liu, 2019) proposed a 
method called CK-means (K-means Clustering) to predict the arrival 
time of buses using real time online bus locations. The K-means clus-
tering method is used to aggregate historical traffic data and calibrate 
the operating status of the road section.

2.2.2. Bus travel time prediction
Many studies based on deep learning (DL), SVM and tree-based 

models have been devoted for predicting bus travel time. (Chen et al., 
2020) applied a deep learning method with a back-propagation neural 
network to predict bus travel time. The proposed approach was then 
validated with real traffic data. In another work, (He et al., 2018) used a 
DL model to predict bus travel time by taking into account passenger’s 
riding time across multiple bus trips and waiting time at transfer bus 
stops. To do this, the entire journey is partitioned into bus riding com-
ponents and waiting components, each of the components is predicted 
separately and the results are merged to obtain the final bus travel time. 
(Junyou et al., 2018) applied the SVM algorithm for bus travel time 
prediction. In another work, (Yu et al., 2018) predicted bus travel time 
using random forests based on near neighbors (RFNN). To predict the 
bus travel time between adjacent bus stops, the proposed model takes as 
input the bus dwell time of the current stop and the current traffic 
conditions on the predicted route segment and next segments. Recently, 
(Ashwini et al., 2022) proposed a comparative study of number of linear 
and non-linear models including: LR, Support Vector Regression (SVR), 
Regression Trees (RTs) and Random Forest Regression, to identify a 
suitable model for travel time prediction. In another work, (Serin et al., 
2022) applied and compared a number of ML methods, including 
tree-based regression algorithms and SVR, to predict bus travel time.

In some works, ML methods combined with Kalman filtering-based 
algorithm were proposed. (Bai et al., 2015) proposed a dynamic travel 
time prediction model for buses dealing with on-road cases with mul-
tiple bus routes, based on SVMs and Kalman filtering-based algorithm. 
The SVM model predicts baseline travel times from historical bus trip 
data. Travel times can then be adjusted using a Kalman filtering-based 
algorithm, based on the latest information on bus operations and base-
line travel times. In another work, (Kumar et al., 2019) proposed an 
approach based on kNN classifier and model-based Kalman filtering for 
real-time bus travel time prediction.

2.2.3. Transit delay prediction
Many works focused on predicting transit travel delay. (Shoman 

et al., 2020) proposed a deep learning-based framework to predict bus 
delays at the network level, in which the framework is fed by large, 
heterogeneous bus transit data (GTFS) and vehicle probe data. (Wu 
et al., 2021) proposed a Random Forest based approach to forecast 
multi-scenario train delays.

2.3. Traffic simulation models

Traffic simulation can be defined as the mathematical model of 
transportation systems, implemented through the application of dedi-
cated computer software. Traffic simulators can be divided according to 
the level of details provided into: microscopic and macroscopic ap-
proaches. Microscopic traffic simulator focuses on the movement of each 
individual entity in the system. It provides a detailed picture of each 
individual vehicle including: location, time and speed (Behrisch et al., 
2011). Microscopic models are very effective in assessing heavily con-
gested conditions. On the other hand, these traffic models are 
time-consuming, costly, and can be difficult to calibrate. Macroscopic 
traffic simulators are based on deterministic relationships of flow, speed 
and density of traffic flow (Hueper et al., 2009). They were originally 
developed to model traffic in distinct transportation sub-networks, such 
as freeways and rural highways.

2.3.1. Open-source simulation models
Over the past decades, a number of traffic simulation frameworks 

have been developed. TRANSIMS developed at Los Alamos National 
Laboratory (USA) is an integrated set of tools for performing the analysis 
of a regional transportation system based on a cellular automata 
microscopic simulation model. It models individual travelers and their 
multi-modal transportation based on synthetic populations and their 
activities. TRANSIMS represents time in a consistent and continuous 
way, as well as detailed persons and households (Smith et al., 1995). 
MIT (Massachusetts Institute of Technology) developed MITSIMLab, an 
open-source microscopic traffic simulator that evaluates the impacts of 
alternative traffic management systems, public transport operations and 
various Intelligent Transportation Systems (ITS) strategies at the oper-
ational level and helps in their further refinement. In order to capture 
the sensitivity of traffic flows to control and routing strategies, the traffic 
and network components are detailed in MITSIM (Yang and Koutso-
poulos, 1996). MATSim (Multi-Agent Transport Simulation) developed 
by ETH Zurich, has in the recent years become a major open-source 
framework, used to implement large-scale agent-based transport simu-
lations, in which a large number of synthetic persons (so-called 
“agents”) are simulated. Designed as a framework for large-scale sce-
narios, MATSim is highly modular, allowing for a very high level of 
customization (Balmer et al., 2009). SUMO (Simulation of Urban 
MObility) was developed at the German Aerospace Centre. It is a 
microscopic multimodal traffic simulator capable of simulating different 
types of traffic data, in which vehicles, public transport and persons are 
modeled explicitly. It can provide a nice visual and understandable 
output for future tests and analysis SUMO (Behrisch et al., 2011). Leb-
lond et al. (2020) proposed Starling, an agent-based simulation soft-
ware. It was developed as a generic framework to deal with spatial issues 
of territories. The simulation framework is designed to evaluate a spe-
cific mobility service.

2.3.2. Commercial models
In addition to open-source models, a number of commercial software 

have been implemented. PTV Vissim, a microscopic multi-modal traffic 
flow simulation software package developed by PTV (Planung Transport 
Verkehr AG) in Karlsruhe, Germany. VISSIM allows users to define a full 
range of vehicle types including passenger cars, buses, trucks, rail ve-
hicles as well as pedestrians and cyclists. It is widely used to simulate, 
evaluate and validate new transport policies and control systems 

Y. Delhoum et al.                                                                                                                                                                                                                               Journal of Public Transportation 26 (2024) 100103 

3 



(Fellendorf and Vortisch, 2001). TransModeler, a traffic simulation 
platform marketed by Caliper Corporation (USA), it is used to model 
traffic planning, traffic management and emergency evacuation sce-
narios over a wide-area (Corporation, 2023).

2.4. Coupling ML and simulation models

In recent years, several studies attempt to perform ML with simula-
tion models. (Shafizadeh-Moghadam et al., 2017) coupled ML including 
SVM and ANNs, tree-based models and statistical models with cellular 
automata to simulate urban growth in the city of Tehran. (Tongal and 
Booij, 2018) proposed a simulation framework to explore the effec-
tiveness of different ML approaches in streamflow simulation for four 
rivers in the United States. (Yan et al., 2021) proposed a method of 
coupling NNs and numerical models to simulate and identify areas at 
high risk of urban flooding and to predict the depth of water accumu-
lation. The outputs of the simulation models are used to feed the neural 
network. (Chabanet et al., 2021) proposed a method based on active 
learning concepts to combine a computationally costly simulator with 
ML classifier (kNNs), which is less computationally costly to use online 
but whose predictions are only approximations of the simulator. First, 
the framework tries to classify the unlabeled instances with kNNs clas-
sifier, otherwise, the simulator will be performed then. (Shahhosseini 
et al., 2021) proposed an approach to couple crop modeling, a simula-
tion model with ML models, to improve corn yield prediction in the US 
Corn Belt. The integration of simulation results improved the yield 
prediction accuracy of ML models. (Abdelaty et al., 2021) used the 
simulated energy consumption scenarios to develop four different 
data-driven modelling techniques.

The use of framework combining ML models and public trans-
portation simulators remains poorly implemented. An interesting work 
that addressed a similar problem to our work has been proposed by 
(Othman and Tan, 2018), in which a framework integrating NN models 
into a PT simulation model to improve real-time supply based on mul-
tiple demand scenarios. First, a Multi-Layer Perceptron coupled with a 
LR model trained on traffic data and weather information was used to 
predict the type of congestion, duration of congestion and hence delayed 
travel times. Then, the travel times will be fed into a simulator, in which 
several scenarios will be simulated.

From a general point of view, the framework proposed in (Othman 
and Tan, 2018) and our framework follow a similar pattern, in which the 
actual data is trained to provide public transport simulator with more 
accurate travel times. The main difference lies in the type of data used as 
ML input data, with traffic data in (Othman and Tan, 2018) and actual 
bus stop times extracted from AVL (Automated Vehicle Location) data in 
this proposed framework, respectively. In this proposed work, the im-
pacts of traffic on the bus routes (including traffic congestion) are indeed 
included in the actual bus travel times.

2.5. Study contributions

ML is a powerful tool, but it faces certain limitations. One of the main 
drawbacks is that it can be biased. Algorithms implemented in ML are 
designed to look for patterns in data. If there is a bias in the data, ML 
algorithms will detect and reinforce that bias. Another disadvantage is 
that ML can be computationally expensive, slow and resource-intensive 
to train successfully, especially on large datasets. On the other hand, 
simulation has long been touted as a powerful tool for understanding 
complex systems. By building models of how systems work, we can 
better understand how they might behave in the future. However, 
simulation has its drawbacks. First, the simulation is only as good as the 
models built. If the built models are inaccurate, the simulation per-
formed will be inaccurate as well. Second, simulations are only ap-
proximations. In a number of situations, simulation models are not 
capable of qualifying all the variables that affect the behavior of the 
system. In very large and complex problems, the large number of 

variables and the relationships between them makes the problem very 
difficult to model.

In an effort to overcome the limitations of simulation and ML models, 
a framework for a ML-based microscopic simulation model is proposed, 
to provide more accurate and realistic simulations for public transport 
operators, which will be useful to enhance the reliability of service. 
Moreover, ML and simulation benefit from each other. For instance, ML 
models provide a public transport simulation model with predicted 
travel times, while, ML models can use the simulated travel times for 
training. Although a number of studies have addressed the problem of 
bus travel time and arrival time prediction, by implementing ML models. 
Most studies focus on prediction a single travel time value. In this study, 
the focus is on more accurately estimating travel time variability rather 
than a single value. This work contributes in the literature by: 1) using a 
ML model with a traffic simulator in the same framework for public 
transportation simulation is not widely implemented; 2) A ML model for 
travel time prediction, trained on actual data, combined with probabi-
listic distributions to estimate travel time variability, will be used to 
power the simulation, helping to reduce simulation complexity and 
providing the simulator with appropriate parameters; 3) The simula-
tions will be more realistic, as they will be validated with performance 
indicators directly calculated from actual data.

In Table 1, we present a comparison of the proposed work with other 
works on the following aspects: whether ML models (e.g. classical 
model, neural networks and deep learning models) have been used; 
whether simulation models have been carried out; if both ML and 
simulation models are a part of the implemented framework; whether 
the focus of the work is travel metrics (e.g. arrival time, travel time and 
delay), as well as the nature of the data used (e.g. historical and real- 
time data).

3. Methodology

In this section, the proposed ML-based microscopic simulation 
framework along with the two-step validation framework will be 
detailed.

3.1. ML-based microscopic simulation framework

In this first section, the proposed ML-based framework along with its 
different layers will be presented in detail, including: an introduction of 
the used data, the building and deployment of ML models for bus travel 
time prediction as well as the PT simulation model and the bus control 
strategies implemented.

Before outlining the proposed framework for a ML-based micro-
scopic simulation model and its different layers, an overview of the 
proposed approach is presented as follows. In the first stage, actual data 
(GPS traces) and transit schedule data (e.g. GTFS data) will be matched 
and then aggregated at the route segment level. In the second stage, the 
process of building ML model is conducted. A ML algorithm is first 
selected, then feature importance techniques will be applied to select 
relevant features, then ML will be trained for bus travel time prediction. 
Finally, the generated ML models, combined with probabilistic distri-
butions to estimate bus travel time variability, will be deployed and 
connected to the public transport simulation model. In the third stage, 
the transit scenario will be implemented, and then simulated. During the 
simulation process, bus travel times will be requested by the simulator. 
On the other hand, deployed models, will process each request and 
provide the simulator with the predicted travel times. At last, the 
simulation results will be validated with actual data using a set of 
metrics. An overview of the ML-based microscopic simulation frame-
work is shown in Fig. 1.

3.1.1. Data introduction
In this section, the spatial and temporal components of the bus line 

will first be presented, then the data sources and data aggregation 
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Table 1 
Comparative table of related works.

Reference Classical 
ML Model

NN 
& DL

Simulation 
Model

ML and 
Simulation

Arrival Time 
Prediction

Travel Time 
Prediction

Delay 
Prediction

Historical 
Data

Real- 
time 
Data

Description

(Ashwini 
et al., 2022)

x x x A study to identify a 
suitable ML model for bus 
travel time prediction

(Bai et al., 
2015)

x x x x Dynamic bus travel time 
prediction models with 
multiple bus routes

(Chen et al., 
2004)

x x x Dynamic bus arrival time 
prediction model based on 
APC real-world

(Chen et al., 
2020)

x x x ML approach to predict bus 
travel time validated with 
real traffic data

(Chien et al., 
2002)

x x x Dynamic bus arrival time 
prediction with artificial 
neural networks

(Gal et al., 
2017)

x x x x x Traveling time prediction 
in scheduled transportation 
with trip segments

(He et al., 
2018)

x x x x Travel-time prediction of 
bus journey with multiple 
bus trips

(Jeong and 
Rilett, 
2004)

x x x Bus arrival time prediction 
using artificial neural 
network model

(Junyou et al., 
2018)

x x x Support Vector Machine 
algorithm for bus travel 
time prediction

(Kumar et al., 
2014)

x x Kalman filtering and ANNs 
approaches for bus arrival 
time prediction

(Kumar et al., 
2019)

x x x kNN and Kalman filtering 
model for real-time bus 
travel time prediction

(Lam et al., 
2019)

x x x Prediction of bus arrival 
time using real time online 
bus locations

(Li, 2017) x x x Bus arrival time prediction 
based on random forest

(Othman and 
Tan, 2018)

x x x x x Machine learning aided 
simulation of public 
transport utilization

(Pan et al., 
2012)

x x x Self-learning algorithm 
based on a BPNN for 
predicting bus arrival time

(Panovski and 
Zaharia, 
2020)

x x x x x Bus arrival time prediction 
at different bus stops on a 
given bus route

(Shalit et al., 
2023)

x x x A supervised ML model for 
imputing missing boarding 
stops

(Serin et al., 
2022)

x x x Predicting bus travel time 
using machine learning 
methods

(Shoman 
et al., 2020)

x x Deep learning framework 
for predicting bus delays on 
multiple routes

(Wu et al., 
2021)

x x x The bounds of 
improvements toward real- 
time forecast of train delays

(Yang et al., 
2016)

x x Bus arrival time prediction 
SVM with GA

(Yin et al., 
2017)

x x x x Prediction bus arrival time 
at stops with multiple 
routes

(Yu et al., 
2011)

x x x x Bus arrival time prediction 
at bus stop with multiple 
routes

(Yu et al., 
2018)

x x x Predicted bus travel time 
based on near neighbors

(Zhang and 
Liu, 2019)

x x x K-means approach to 
predict bus arrival times 
based on GPS data

(continued on next page)
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process used to train the ML models will be detailed.

3.1.1.1. Bus route components. A transit bus travels from an origin to a 
destination passing through a set of stops along the way. Spatial com-
ponents can be grouped into several levels: stop, section, segment and 
route. The link between two consecutive stops is called section. A more 
aggregate section, called segment, the latter is made up of several 
consecutive sections. All sections from an origin terminal to a destina-
tion terminal form a route (Büchel and Corman, 2020). Additionally, and 

in order to maintain acceptable service reliability, most bus operators set 
up control points along the bus route. Control points are timing points, 
specific transit stops where the bus departure times are subject to 
regulation or to meet a specific buffer time (Ceder, 2024). An illustration 
of the spatial components of bus lines is given in Fig. 2.

The time components of bus routes can be distinguished into dura-
tions and time points. Travel time, dwell time and running time are 
durations, while arrival time and departure time at bus stops are points 
in time. The travel time is made up of dwell time and running time 

Table 1 (continued )

Reference Classical 
ML Model

NN 
& DL

Simulation 
Model

ML and 
Simulation

Arrival Time 
Prediction

Travel Time 
Prediction

Delay 
Prediction

Historical 
Data

Real- 
time 
Data

Description

Proposed 
work

x x x x x A microscopic simulation of 
public transportation based 
on ML

Fig. 1. An overview of the ML-based microscopic simulation framework. The framework consists of three layers: 1) data layer, 2) ML layer, and 3) simulation layer. 
1) Transit schedules and actual data are used to generate aggregated datasets at the segment route level. 2) The ML model for segment travel time prediction takes 
place in two stages: A) model building and B) model deployment. A) ML model is first initialized by selecting the model features, the supervised algorithm and 
configuring the model parameters. Next, the segment route dataset is prepared, cleaned, fed to train and adjust the model by performing cross-validation and 
optimisation techniques respectively. B) Model deployment consists of storing the model locally, and indexing it in a database. 3) A simulation scenario is imple-
mented and then simulated, in which ML models will feed the simulation model with travel times.
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respectively, referring to the time a bus spends stationary at a scheduled 
stop and the time the bus spends while not stopping at a stop. Operating 
times can be expressed at the level of: section, segment or route. Section 
travel time corresponds to the sum of the dwell time and the running 
time, between two successive stops. Segment travel time corresponds to 
the sum of the travel times of the sections constituting the considered 
segment. While route travel time refers to the total travel time 
comprised between the first stop and the last stop. An illustration of the 
time components of bus lines at the section level is given in Fig. 3.

3.1.1.2. Data used. The main data for the application of the proposed 
approach can be distinguished into GTFS transit data (General Transit 
Feed Specification) and actual data. Transit schedules are grouped by 
transit line (e.g. bus line) and formatted as GTFS tables. A GTFS feed 
consists of several comma-separated files that mainly contain informa-
tion about transit lines, stop locations, and timetables (Google, 2023). 
On the other hand, actual data provides information about transit trips 
during a period of the year, including: date, vehicle ID, corresponding 
trip, and recorded stop times. From a technical point of view, actual data 
is structured similarly to a GTFS stop times table. Practically, actual stop 
times are recorded from GPS trackers on transit vehicles (e.g. buses), at 
each transit stop. Therefore, scheduled and actual stop times can be 
matched in the same data structure based on mutual attributes, such as 
trip id and stop id.

After matching scheduled and actual data in the same dataset. The 
next step is to aggregate the observations originally available at the stop- 
level, to a more aggregated level of details, for instance at the section 
and segment level. The data aggregation process aims to mitigate the 
impacts of imprecise stop times, since this latter is susceptible to mea-
surement errors, which can therefore lead to a poor quality ML model. It 
takes place in two steps:

• As a first step, public transport observations at bus stop level will be 
aggregated at section level. From scheduled and actual stop times, 
the corresponding travel times can be simply derived at the section 
level.

• As a second step, certain criteria can be used to define control points, 
specific transit stops where the buses are subject to regulation or to 
meet a specific buffer time. Depending on these timing points, a set of 
route segments can be defined. Therefore, the observed transit stop 
times can be aggregated from the section level to the segment level. 
Arrival time, departure time and travel time will be derived.

For the actual data at hand, only bus arrival times are available. In 
the remainder of this paper, the bus stop time will refer to the bus arrival 
time. Bus route components, as well as the stop and the travel times of a 
transit trip, aggregated at the stop, section and segment levels, are 
shown in Fig. 4.

The resulting stop-level and section level datasets are illustrated in 
more details in Appendix A.

Transit schedules are mainly planned according to the type of the 
day. Since demand for public transport is strongly linked to the type of 
the day, the transit demand is greater on working days than on weekends 
or holidays. Therefore, the day type attribute will be used to implement 
particular scenarios, for instance the working days scenario. In addition, 
in order to understand the status of the transit vehicle relative to the 
scheduled times, delay measures can be estimated at the stop level, and 
therefore at the segment level. The stop-level delay formula is given in 
Equation (1). 

Dijk = ATijk − STijk (1) 

Where:

• Dijk: refers to the delay time for line i, on trip k, at bus stop j

Fig. 2. An illustration of the different spatial components of a transit line.

Fig. 3. An illustration of the different components of travel time between two transit stops.
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• ATijk: refers to the actual stop time for line i, on trip k, at bus stop j
• STijk: refers to the scheduled stop time for line i, on trip k, at bus stop j

An illustration of derived attribute data is given in Table 2.
In the remainder of this paper, the scheduled stop time will simply be 

referred as stop time.

3.1.2. ML: building and deploying models
One of the main purposes of ML is to discover patterns, train a model 

on historical data, and then make prediction based on the constructed 
model. The ML model to built aims to predict the transit bus travel time 
at the segment-level.Therefore, real travel time attribute will be consid-
ered as the attribute of interest. Furthermore, feature importance tech-
niques, in which a score is assigned to input features based on their 
usefulness in predicting a target variable, will be applied to build ML 
models with relevant features. Next, a ML algorithm will be chosen and 
initialized with a set of predefined parameters. For instance, a decision 
tree supervised learning algorithm, which was originally designed to 
solve classification problems, has been extended to deal with regression 
problems (Geurts et al., 2009). On the other hand, the developed 
approach aims to predict transit travel time (numerical output), 
regression trees (RT) are one of the suitable models to perform. The 
proposed scheme for initializing the ML model is illustrated in Fig. 5.

ML algorithms, for instance, regression trees designed to solve 
regression problems, are trained to return a single value as output. In 
order to capture travel time variability, we propose to combine ML al-
gorithm with probabilistic distributions as follows. First, the ML 

algorithm will be trained to predict travel times, these will then be 
grouped into samples according to the resulting regression rules. Then, 
for each sample, travel time variability will be estimated using proba-
bilistic distributions. An illustration of a regression tree model for bus 
travel time prediction and sample travel times resulting from the model 
output, fitted to a number of probabilistic distributions, to approximate 
travel time variability, are given in Figs. 6 and 7, respectively.

After validating the ML model, the next step is to deploy it to feed the 
simulation model with bus travel times. At this stage, the model built 
will be registered in a specific database, in which each model is indexed 
by its key, as well as a set of information, including: model algorithm, 
transit line, route segment origin and destination stops, model input 
features and target attribute. In addition, the index database may 
contain the model parameters and its error value, such as the coefficient 
of determination R2. This last score value is extremely important for 
sorting the generated models. An illustration of the index file is pre-
sented in Table 3.

In sum, a ML algorithm is initialized with predefined parameters, 
takes as input: a route segment dataset, features to build the model, and 
an attribute of interest for prediction. It will then be trained to predict 
transit travel time, stored locally and then deployed to feed a public 
transit simulation model.

3.1.3. Public transportation simulation model
In this section, Starling proposed by (Leblond et al., 2020) will be 

briefly described. Starling combines an agent-based framework and a 
discrete-event approach, it is a microscopic model for mobility simula-
tion. The goal of this framework is to provide a basis for the development 
of computer models for the simulation of specific transport systems, 
consisting of generic simulation classes that can be extended to match 
the specifications of the simulated system. Among the mobility modules, 
a public transport bus simulation module is implemented. To work, it 
requires a set of inputs including: transit schedules feed (e.g. GTFS data) 
and bus operator settings that define the behaviour of the bus vehicle 
and the operating rules, such as: minimum bus recovery time and bus 
holding control strategy. Simulating buses according to schedules, with 
defined travel times between two successive stops, can be seen as hy-
pothetical. The bus may be delayed due to: traffic jams, traffic accidents 

Fig. 4. An illustration of the components of a bus route with stop and travel times.

Table 2 
A sample of a segment-level aggregated dataset with focus on derived stop 
delays.

from stop to stop segment 
index

… from stop 
delay

to stop 
delay

STP− 1883 STP− 982 1 … 00:00:22 00:01:10
STP− 982 STP− 990 2 … 00:01:10 00:02:15
STP− 990 STP− 994 3 … 00:02:15 00:01:07
STP− 994 STP− 998 4 … 00:01:07 00:01:38
STP− 998 STP− 1005 5 … 00:01:38 00:00:10
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and passenger boarding.
In order to perform a bus simulation with a more realistic behaviour, 

travel times can be estimated using ML models trained on historical 
observations. The generated travel times are then subject to operating 
rules, in order to maintain realistic bus behaviour. Additionally, in order 
to perform transit simulation, scenario data and operator parameters 
will be added to the simulator inputs. An overview of how deployed ML 
models are used with a generic framework for public transport simula-
tion is shown in Fig. 8.

3.1.3.1. Holding control strategies. They are among the most widely 

used public transport control methods, aiming to improve the regularity 
of service by regulating departure time from stops according to pre-
defined criteria (Abkowitz and Lepofsky, 1990). Implementing bus 
holding strategies involves two key design decisions: selecting the set of 
time point stops and the holding criteria (Cats et al., 2011). Holding 
strategies are generally classified into two categories: schedule-based 
strategies and headway-based strategies. A schedule-based holding 
strategy defines the earliest time a bus can depart from a time point stop 
relatively to the schedule. This rule can be formulated as: 

ETijk = max(SETijk − sij,ATijk + DTijk) (2) 

Fig. 5. An illustration of the proposed scheme for setting up ML models. The initialization of a ML model is done at three levels. 1) Model configuration by initializing 
ML model features and target attribute, as well as route segment information such as transit line, origin and destination stops. 2) Selection of the supervised al-
gorithm, for instance the regression tree. 3) Configuration of the algorithm parameters.

Fig. 6. An illustration of a regression tree for travel time prediction. The white nodes refer to the decision conditions, while the cyan nodes are the terminal leaves of 
the tree.
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Fig. 7. A detailed view of the proposed model output for travel time prediction. Illustration of the resulting day-to-day travel time variability (Left): A regression tree 
terminal node, including average travel time and sample size. (Right): The sample travel time distribution, fitted to a number of probabilistic distributions, to 
approximate day-to-day travel time variability with emphasis on probability density functions.

Table 3 
A sample of the deployed models index database. Index information can be grouped into four groups. 1) key used to distinguish models with same other characteristics. 
2) transit line, origin and destination stops, denoted from stop and to stop, refer to model segment route. 3) input features and target attribute are the data attributes used 
to build the model. 4) score refers to the evaluation measurement value.

key algorithm transit line from stop to stop input features model target score (R2)

68dsfnr6 RT A STP− 1883 STP− 982 stop time real travel time 36 %
chhm3moj RT A STP− 982 STP− 990 stop time real travel time 54 %
wr1w7ecg RT A STP− 990 STP− 994 stop time real travel time 47 %
z4p0biet RT A STP− 994 STP− 998 stop time real travel time 35 %
jj8gxgzf RT A STP− 998 STP− 1005 stop time real travel time 41 %
… … … … … … … …
cq5x4ddu RT A STP− 1883 STP− 982 stop time;stop delay real travel time 36 %
53t58nae RT A STP− 982 STP− 990 stop time;stop delay real travel time 53 %
1y1givje RT A STP− 990 STP− 994 stop time;stop delay real travel time 46 %
qvin2kyt RT A STP− 994 STP− 998 stop time;stop delay real travel time 34 %
yiikt0c1 RT A STP− 998 STP− 1005 stop time;stop delay real travel time 42 %

Fig. 8. An overview of using a generic framework for public transport simulation based on ML models. It consists of two blocks: the block above refers to the 
simulation framework; the block below gathers the scenario data and the operator parameters as well as the ML models deployed for the prediction of travel times.
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Where:

• ETijk: exit (departure) time for line i on trip k from stop j
• SETijk: scheduled exit (departure) time for line i on trip k from stop j
• sij: non-negative slack size defined for line i at stop j
• ATijk: actual arrival time for line i on trip k from stop j
• DTijk: dwell time for line i on trip k from stop j

Previous studies on the interaction between slack size and general-
ized passenger travel time have concluded that the slack size should be 
set to zero (Liu and Wirasinghe, 2001; Vandebona and Richardson, 
1986). This implies that buses arriving early have to wait at time point 
stops until the scheduled departure time. Schedule-based strategies are 
useful for low-frequency services when passengers follow the timetable 
or when transfer coordination is an important issue (Strathman et al., 
1999). In contrast, headway-based holding strategies use headways 
between consecutive vehicles as a criterion to regulate departure times 
from time point stops. If the headway-based strategy only takes into 
account the headway from the preceding vehicle, then the holding 
criteria is defined by a minimal headway requirement: 

ETijk = max(ATij,k− 1 + α⋅Hk− 1,k
i ,ATijk + DTijk) (3) 

Where:

• Hk− 1,k
i : planned headway between trips k-1 and k on line j

• α: threshold ratio parameter

3.1.3.2. Stop-Skipping. Also known as expressing is a control measure 
allowing a vehicle to skip one or a series of stops, if it is running behind 
schedule. Stop-skipping can correct service inconsistencies due to the 
inherent variations in travel time and passenger demand, but may result 
in increased waiting times for passengers waiting at the skipped stops 
(Chen et al., 2015). Thus, most stop-skipping approaches address the 
problem by considering: 1) passenger-related costs concerns, such as 
passenger waiting times and their in-vehicle times; and 2) operator cost 
concerns, such as total vehicle trip travel times (Gkiotsalitis and Cats, 
2021). Stop-skipping strategies can be designed either at the tactical 
planning level or at the operational level (dynamic stop skipping). At the 
tactical planning level, the emphasis is on developing reliable, resilient 
or robust strategies that will maintain good performance in the event of 
disruptions during actual operations. On the other hand, dynamic 
stop-skipping strategies at the operational level are reactionary, need to 
be computationally efficient, and in which the skipped stops of a vehicle 
trip are determined just before dispatch (Gkiotsalitis and Cats, 2021; Li 
et al., 2024; Fu et al., 2003). Stop-skipping strategies have been pro-
posed mainly at the planning level and formulated as optimization 
problems (Chen et al., 2015; Liu et al., 2013). When stop-skipping, the 
vehicle leaves the stop immediately after the alighting time without 
boarding of passengers (Rodriguez et al., 2023). The departure time can 
be formulated as: 

ETijk = ATijk + DTijk (4) 

In this case, the dwell time DTijk corresponds to alighting only.

3.2. Two-step validation framework

The second proposed framework in this study is the two-step vali-
dation framework. It aims to validate the simulation results obtained 
using performance indicators. The validation is twofold: first, assessing 
the accuracy of travel times generated by ML models; second, evaluate 
how well the simulation model reproduces reality using certain reli-
ability metrics. The proposed validation process is detailed below. From 
a technical point of view, the validation process will be undertaken by 
comparing the output simulation results with actual observations, 
including: 1) simulated segment travel times and 2) bus delay at timing 

points.
The first validation process will take place as follows. First, the 

theoretical and actual travel times will be extracted from the actual data, 
while the simulated travel times will be extracted from the simulation 
results. Next, the theoretical and simulated travel times will be 
compared to the actual observed travel times in order to: firstly, un-
derstand how well the actual and theoretical travel times are fit and 
secondly, validate the ML models for travel time prediction. We denote 
by TTactual and TTsim, respectively the actual and simulated average 
travel times of the route segment r. In order to compare numerically the 
travel time measurements, a derived metric Δr, referring to the relative 
difference per route segment r between TTactual and TTsim, is defined in 
Equation (5). 

Δr =
TTactual,r − TTsim,r

TTactual,r
(5) 

The second validation process aims to investigate how well the simu-
lation model reproduces reality based on certain reliability metrics, by vali-
dating the simulation results against actual observations, using on-time 
performance measurements. In this work, the punctuality of both 
operated and simulated buses will be assessed according to departure 
delay at the bus stop at the control points of each of the bus lines. The 
validation process will be performed at three delay metrics, defined as 
follows:

• Aggregated delay metric: refers to on-time performance within the 
one-minute early and five-minutes-late arrival range used by several 
urban transit agencies across the United States (Arhin et al., 2014). In 
this metric, the delay of a bus can fall into three categories, in which 
the bus is considered 1) on-time travel if the delay is between not 
earlier than one minute and not later than five minutes at the timing 
point; 2) in Advance, if the bus is more than one minute ahead of the 
scheduled time; and 3) in Significant delay, if the bus is late by more than 
five minutes.

• Bus severity delay metric: in which, delay at control points is 
grouped into five categories; while the classification of in Advance 
and in Significant delay remains similar to the first metric, On-time 
travel is divided into three classes including, in addition to On-time 
travel, minor delay and moderate delay, in which each subclass spans a 
two-minute range. The last two delay values have been defined ac-
cording to the classification used in the work proposed in (Chen 
et al., 2024).

• A third bus delay metric is defined in which stop delays are grouped 
in one-minute increments between more than five minutes early and 
more than seven minutes late.

The two first delay metrics are given in more detail in Table 4.
After defining the three sets of bus punctuality metrics, in the 

following, the defined on-time performance metrics will be applied at 
the control points on the actual observations and the simulated results. 
In order to compare the resulting punctuality shares, an offset and a 
deviation measure denoted δ and Δ, defined respectively, in equations 
(6) and (7), can be then be calculated between two sets of shares. 
Therefore, the defined measure Δ aims to quantify the part of the share 

Table 4 
A description of the aggregate and severity delay metrics.

Delay metric Delay class Range (seconds)

Aggregate Delay Metric In advance delay < − 60
On-time delay ∈ [ − 60; 300]
Significant delay delay > 300

Bus Severity Delay Metric In advance delay < − 60
On-time delay ∈ [ − 60; 60]
Minor delay delay ∈ [60; 180]
Moderate delay delay ∈ [180; 300]
Significant delay delay > 300
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poorly located between the two sets. 

δc(Si, Sj) = Si,c − Sj,c (6) 

Δ(Si, Sj) =
∑

c∈C
δc(Si, Sj)⋅αi,j,c (7) 

Where:

• i and j are two datasets
• C: refers to delay values according to the punctuality metric used
• c: a delay value
• Si: corresponds to the punctuality shares of the buses from the i 

dataset
• Si,c: refers to share of c in Si
• αi,j,c: 1 if (Si,c > Sj,c) and 0 otherwise

A detailed illustration of the proposed two-phases validation 
framework is shown in Fig. 9.

In summary, the proposed ML-based microscopic simulation and 
validation frameworks can performed together as follows. First, ML 
models will be trained on actual data to predict travel times of bus route 
segments, then deployed to feed the public transport simulation model. 
Next, the simulation scenario will be implemented and then run. Sub-
sequently, the results of the simulated scenario will then be assessed by 
the two-step validation framework. Finally, based on the adequacy of 
the simulated travel times and bus punctuality shares, the ML models 
selected for bus travel times and the simulation parameters such as re-
covery time and bus holding strategy can be updated. An overview of 
how the two proposed frameworks perform together is shown in Fig. 10.

The remainder of the paper is structured as follows: in Section 4, a 
case study scenario consisting of three bus lines of a French city will be 
presented. In Section 5, the simulation results will be analyzed and 
validated based on a set of metrics. In Section 6, a discussion of the 
analyses presented, as well as some concluding remarks will be given in 
Section 7.

4. Simulation scenarios

The simulation scenarios were developed for three bus lines refer-
enced respectively by A, B and C. In this section, the chosen bus lines and 
the timing points will be described first. Next, the ML feature selection 
technique along with the trained ML models will be given. Finally, the 
simulation parameters including bus holding strategies as well as the 
implemented simulation scenarios will be detailed.

4.1. Bus lines: description

Line A buses run Monday to Saturday from approximately 4:45 a.m. 
(first departure) to 9:05 p.m. (last departure) and Sunday from 
approximately 5:35 a.m. to 8:05 p.m. Buses on this line serve 31 stops in 
one direction and 30 stops in the other direction, for approximately 
8 km of distance and 30 min travel time. This bus line is highly fre-
quented line with on average one bus every 6 min during peak-hours 
and one bus every 8 min during off-peak hours, for a total of 234 trips 
on working days. Line B operates between approximately 5:42 a.m. and 
8:26 p.m. only on working days. Like line A, the buses serve 31 and 30 
stops respectively, over a distance of approximately 9 and half km and 
23 min of travel time. Line B operates with an average of one bus every 
6 min and 8 min respectively, during peak and off-peak hours, for a total 
of 271 trips per working day. Line C buses operate all week from 
approximately 5:15 a.m. to 8:30 p.m., serving 10 stops in both di-
rections. Compared to previous lines, line C is much shorter with 
approximately 3 km distance and a travel time of 10 min. This line runs 
on average with a bus every 6 min and 10 min respectively, during peak 
and off-peak hours, for a total of 198 trips per day. A summary 
description of the bus lines studied is presented in Table 5.

The emphasis of this first work is placed on the simulation of a public 
transport scenario on working days (Monday to Friday), assumed to be 
more representative in terms of operating days and, consequently, 
operational trips for the public transport operator. The available oper-
ational data for the bus lines covered 73, 146 and 41 days for lines A, B 
and C respectively. A workday can be divided into peak and off-peak 
periods, as presented in Table 6.

The shares of bus line trips, according to the time of day, are reported 
in Table 7.

4.2. Bus lines: timing points

After selecting the bus lines for the simulation scenario, the next step 
is to set the timing points for each transit bus route. The control points 
are used to split a bus route into route segments in order to: firstly, build 
ML segment travel time models and, subsequently, deploy them for use 
in simulation; second, the control points will be used by the simulator for 
regularization purposes by applying bus holding strategies. Based on the 
actual data available, timing points correspond to bus stops, in which 
scheduled departure times are rounded to the nearest minute (hh: 
mm:00). The control points, along with the derived route segments and 
theoretical segment travel times, for the chosen bus lines are shown in 

Fig. 9. A detailed illustration of the proposed two-phase validation framework. The first phases consist of validating the bus travel times. Actual and simulated travel 
times can be extracted, from actual data and simulation results, respectively and then compared based on deviation measurements. The second phases consist of 
validating bus punctuality, a set of on-time performance metrics can be applied to estimate the actual and simulated punctuality share of the buses, then a comparison 
using deviation measures will take place for the assessment.
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Fig. 11.

4.3. ML: algorithm and feature selection

4.3.1. ML algorithm
In this study, trained ML models are used to feed public transport 

simulation model with travel times matching actual travel times, with 

more emphasis on accurately estimating travel time variability rather 
only a single travel time prediction. Thus, ML algorithms returning a 
single output value are not suitable. On the other hand, ML algorithms 
such as RT, kNNs and K-means, in which according to IF-THEN rules, the 
initial dataset can be split into samples, are suitable for dealing with 
travel time variability. The choice of regression tree as the ML algorithm 
for this study is motivated by the fact that RT is a rule-based approach, in 
which the built tree can be easily transformed into regression rules. 
Furthermore, to overcome the limitations of the standard RT, in which 
only one output value is returned, probabilistic distributions are used to 
fit travel times of the corresponding samples, in order to estimate the 
variability of the segment travel time. In sum, RT algorithm will be used 
to retrieve bus travel time samples to estimate bus travel time variability 
using probabilistic distributions.

4.3.2. Feature selection
Feature importance refers to techniques that assign a score to input 

features based on their usefulness in predicting a target variable. Feature 
importance scores can provide insight into the dataset, in which relative 
scores can highlight which features may be most relevant to the target, 
and the conversely, which features are least relevant. For tree-based 
models, mean decrease in impurity is a measure of how each variable 
contributes to the homogeneity of nodes and leaves in the resulting 

Fig. 10. An overview of the two proposed frameworks: ML-based microscopic simulation framework and a validation framework.

Table 5 
A description of the bus lines studied including: transit line identifier, number of 
stops per direction, distance and time travel, in addition to the line’s service 
frequency during peak and off-peak hours. AA and AR respectively designate the 
route in one direction Aller, and the route in the opposite direction Retour of line 
A.

transit 
route ID

bus 
stops

travel distance 
(kms)

travel time 
(minutes)

headway on/off 
peaks

AA 31 7.90 30 6/8 min
AR 30 7.87 35 6/8 min
BA 31 9.67 23 6/8 min
BR 30 9.65 23 6/8 min
CA 10 3.05 12 6/10 min
CR 10 3.17 10 6/10 min

Table 6 
A description of the periods of the day, their abbreviations and associated time 
intervals.

time period abbreviation time interval

Morning off-peak hours AM off-peak [00h00 – 07h30]
Morning peak hours AM peak [07h30 – 09h30]
Inter-peak hours – [09h30 – 16h30]
Evening peak hours PM peak [16h30 – 19h30]
Evening off-peak hours PM off-peak [19h30 – 23h59]

Table 7 
Relative frequency of trips of the bus lines studied by period of the day.

bus 
line

morning off- 
peak hours

morning 
peak hours

inter- 
peak 
hours

evening 
peak hours

evening off- 
peak hours

A 12 % 18 % 41 % 22 % 6 %
B 13 % 13 % 43 % 20 % 10 %
C 9 % 19 % 46 % 21 % 6 %
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trees. The higher the value of mean decrease Gini score, the higher the 
importance of the variable in the model. The resulting feature impor-
tance based on mean decrease in impurity, applied to three bus line 
datasets studied, is summarized in Table 8.

From Table 8, it can be seen that stop time and stop delay, are the most 
important features compared to the features day of the week and season. 
Moreover, an attempt to extend dataset, by including weather infor-
mation was carried out. The mean decrease in Gini score applied to three 
studied lines is reported in Table 9.

From Table 9, temperature and wind attributes seem to have similar 
scores, roughly equivalent to stop delay, and therefore can be considered 
as potential features for predicting bus travel time. On the other hand, 
rain attribute has almost an almost zero score, this low score may be due 
to the nominal nature of rain attribute grouped into four values (none, 
slight, moderate and shower). Therefore, ML models will be built with five 
sets of input features, including stop time, stop delay and weather attri-
butes such as temperature, wind and rain. The first set includes only stop 
time, the second set includes stop time and stop delay, the third set only 
includes stop time, the fourth set includes only the weather attributes, 
while the fifth set includes stop time and the weather attributes. The 
observed actual travel time is chosen as model target.

From Fig. 12, ML models built with stop time and stop delay as fea-
tures seem to outperform. Moreover, ML models, in which stop time is a 
feature, appear to score higher compared to those built without stop time 
feature, for each of the three bus lines studied. Additionally, ML models 
with only stop delay feature score relatively higher than those built with 

only weather features. From a technical point of view, integrating 
weather information is challenging and requires the implementation of a 
validated weather generator into the public transport simulation model, 
addling an additional layer of complexity to the simulation framework. 
In the remainder of this paper, we refer to ML models built with stop time 
as a feature by f1, stop time and stop delay as features by f2, stop delay as 
feature by f3.

4.4. Trained models: hyperparameters tuning

In order to tune the ML model parameters, the Grid Search approach, 
a traditional hyperparameter optimization method was selected. It 
simply iterates exhaustively through a manually specified subset of a 
learning algorithm’s hyperparameter space (Pe and Pa, 2024). To build 
the ML model, we opt for k-fold cross-validation (CV), a technique used 
in ML to evaluate the performance of a model on unseen data. In k-fold 
CV, the dataset is divided into k subsets (known as folds). A fold is used 
once in each iteration as test data, while the remaining folds are used as 
training data (Xiong et al., 2020). So the process is iterative until the 
entire dataset is evaluated. In this study, k = 5 is selected. In terms of 
parameters, regression trees are built according to the following 
parameter values: tree maximum depth varies between 2 and 14 levels, 

Fig. 11. A detailed illustration of the route segments of the three chosen bus lines. We count, six and three control points per direction for lines A and C respectively; 
for bus line B, six timing points are defined in the Aller direction, and eight in the Retour direction. The route segment is referenced by: its transit line, its transit route 
direction (A/R) and its index in the transit route. For instance, A-A2 refers to the second segment of the Aller route of line A.

Table 8 
Feature importance based on mean decrease in impurity.

feature line A line B line C

stop time 43 % 49 % 41 %
stop delay 40 % 32 % 41 %
day of the week 11 % 11 % 12 %
season 6 % 8 % 6 %

Table 9 
Feature importance based on mean decrease in impurity, including the weather 
information.

feature line A line B line C

stop time 36 % 38 % 35 %
stop delay 21 % 19 % 23 %
temperature 17 % 17 % 17 %
wind 16 % 16 % 15 %
day of the week 6 % 6 % 7 %
season 2 % 3 % 3 %
rain 1 % 0 % 1 %
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while minimum samples per leaf takes four values (25, 50, 75 and 100). In 
total, for each route segment, 156 regression trees are built and 
deployed. For lines A and C, respectively 780 and 312 trees were 
generated per route direction. For line B, 780 and 1092 were generated, 
respectively, for BA and BR.

From Fig. 13 and Fig. 14, maximum tree depth parameter seems to 

have an impact on the quality of the built ML models, with a steady 
increase in terms of score for models with maximum tree depth between 2 
and 5 and the highest score recorded for models with maximum tree depth 
between 6 and 8 levels. In contrast, minimum sample size parameter 
appears to have less impact on model scores, with very small differences 
observed.

Fig. 12. The coefficient of determination for ML models built with different feature sets, for the studied route segments.

Fig. 13. The coefficient of determination for ML models built with different values of maximum tree depth parameters, for the studied route segments.
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4.5. Simulation: model and parameters

In order to assess and validate the quality of the proposed ML-based 
microscopic simulation framework, a simulation model as well as a set of 
its parameters need to be defined. Firstly, the simulation scenarios will 
be carried out using the generic framework Starling proposed in (Leblond 
et al., 2020) and briefly described in Section 3.1.3. Secondly, the number 
of runs to simulate is set to 1000 iterations. Usually, a high number of 
iterations is required in order to generate enough samples to validate the 
simulation results. In addition to validating the simulated travel times, 
this study aims to investigate the impacts bus recovery time strategies 
and bus holding strategies, on the punctuality of simulated buses.

4.5.1. Bus recovery time strategies
Sufficient recovery time should be built into the schedule to ensure 

that the delays encountered during one trip do not carry over on sub-
sequent trips. In this study, a first simulation scenario S1 will be carried 
out with a fixed minimum recovery time of two minutes. Based on the 
actual departure delays presented in Fig. 15, it appears that buses are 
likely departing a minute earlier and up to two minutes later than the 
scheduled time. Therefore, a second scenario S2, in which recovery times 
adjusted based on actual departure delays fitted to probabilistic distri-
butions, will be conducted.

4.5.2. Bus holding control strategies
In order to investigate the impacts of applying bus holding strategies 

on bus punctuality, two instances of scheduled-based holding strategy, 
respectively named SH0 and SH3, an instance of headway-based holding 
strategy named HH, and a base strategy without control NC, will be 
implemented. SH0 and SH3, are two variants of the scheduled-based 
holding strategy defined in Equation (2), in which s is equals to zero 
and three minutes, respectively. In NC, the simulation will be conducted 

without applying a bus holding strategy. HH is a variant of the headway- 
based holding strategy defined in Equation (3), in which α = 0.8. The 
strategies implemented are reported in Table 10. Note that NC can be 
thought of as an instance of scheduled-based holding strategy, with s =
+ ∞ (SH∞).

4.5.3. Bus stop-skipping strategy
In this section, we aim to investigate to what extent skipping stops 

impacts bus punctuality. Stop-skipping control measure used to correct 
service inconsistencies, particularly to eliminate bus delay, is formu-
lated in most studies as an optimization problem. With the interest of 
this study on bus punctuality, the decision whatever or not to skip a stop 
will depend primarily on how late is the bus at the control point. The 
stop-skipping criteria can be defined as follows: 

Dijk − Dmax ≥ 0 (8) 

Where:

• Dijk: refers to the delay time for line i, on trip k, at bus stop j
• Dmax: a non-negative maximum bus delay

If the stop-skipping criteria is met, the set of stops j + 1, j + 2, …, c −
1 between the current control stop j and the next control stop c will be 
skipped. Skipping is only permitted if the following conditions are met: 
1) the stop is not a control stop and 2) the preceding bus did not skip the 
stop (to avoid passengers being denied twice). The departure time from 
a skipped stop is given in Equation (4). In this study, two scenarios SK3 
and SK5 will be conducted, in which Dmax is set to three and five minutes, 
from which a bus is moderately late and significantly late, respectively 
according to the second punctuality measure presented in Section 3.2.

Fig. 14. The coefficient of determination for ML models built with different minimum sample size parameters, for the studied route segments.
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4.6. Case study: challenges

In this study, we faced a number of challenges in setting up this case 
study, as follows. The first challenge was which bus stops to choose as 
control points? We first considered each bus stop as a control point. 
However this choice seemed to be so limited due to: 1) The segment 
travel times were too short, not exceeding one minute on average, which 
largely impacted the quality of the trained ML models which seemed to 
underfit due to low variance in observed travel times; 2) Scheduled stop 
times (from GTFS) are rounded to the nearest minute, where multiple 
bus stop times are set to the same rounded minute. As a result, inaccu-
rate punctuality for the simulated buses. To overcome this issue, a set of 
stops predefined by the bus operator was used.

The second challenge was detecting and handling outliers. With 
actual data available prone to measurement errors, especially departure 
time (at first stop) and arrival time (at last stop), in which some stop 
times were not accurate. In order to clean the dataset, Inter Quartile 
Range (IQR), a detecting outliers technique was applied. On average, 
about 5 % of observations were detected as outliers and therefore 

removed.
The third challenge was the choice of a probabilistic distribution to 

fit the travel time distribution, in order to estimate the travel time 
variability. To overcome this issue, the sample travel times - constituting 
according to ML model output, such as regression rules - were fitted to a 
number of probabilistic distributions, then compared based on the R2 

score and the law with the best-fit score as well as its parameters, will be 
selected.

5. Experiments and results

In this section, the proposed two-step validation framework will be 
performed. The first phase of the proposed validation framework in-
volves validating the simulated travel times while the second involves 
validating the simulated bus punctuality.

5.1. Validation of travel times

In this section, the validation of travel times process will be applied. 
First, scheduled and actual bus travel times times will be compared side 
by side. Next, the resulting travel times of f1, f2 and f3 will be compared 
over the entire day and subsequently over the morning and evening peak 
hours according to the relative difference metric defined in Equation (5). 
Furthermore, in order to evaluate the quality of ML models, a compar-
ison with four probabilistic distributions, according to two goodness-of- 
fit measures MAE and RMSE will be carried out.

5.1.1. Validation of travel times: theoretical vs actual
Below, theoretical and actual average travel times are presented side 

by side for each segment of three lines studied are presented side by side 

Fig. 15. Illustration of the actual departure delay of buses on three lines studied, fitted to a certain number of probabilistic distributions.

Table 10 
A summary of implemented bus holding strategies. s refers to the non negative 
slack size defined for a bus line, while α is a threshold ratio parameter.

Scenario ID Scenario Short Name Bus Holding Strategy Strategy 
Parameters

NC no-control Scheduled-based s = +∞
SH3 3-Min Scheduled-based s = 3 min
SH0 scheduled-based Scheduled-based s = 0 min
HH headway-based Headway-based α = 0.8
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in Fig. 16.
At first glance, the average segment travel times for bus line A seem 

slightly longer for Aller than for Retour. Furthermore, theoretical travel 
times are on average a little overestimated compared to the actual travel 
times, particularly on A-A5 and A-R5, with differences ranging from 
moderate for segments A-A3, A-R1 and A-R5, to significant for segments 
A-A2, A-A5 and A-R3. For line B, one can notice scattered differences in 
travel times between B-Aller and B-Retour, appearing greater on latter 
route, especially on segments betwen B-R4 and B-R6. Overall, differ-
ences seem moderate on Aller and to a lesser extent on Retour. For line C, 
one can see that the differences are limited between the theoretical 
travel times and the actual travel times.

5.1.2. Validation of travel times: actual vs simulation
The resulting travel times of f1, f2 and f3 as well as the relative dif-

ferences metric Δ (see Equation (5)), for bus lines A, B and C are re-
ported, respectively, in Tables 11–13.

For line A, the simulated Aller travel times estimated using f1 models, 
are on average more precise than those estimated using f2 and f3. 
Furthermore, the simulated Retour travel times appear to be more ac-
curate than those of Aller, with f1 and f2 corresponding well to the actual 
travel times. Overall, f1 and f2 seem to outperform f3.

For line B, the simulated Aller travel times of f1 and f2 seem to be 
highly similar. Regarding the travel times of f3, more significant de-
viations can be observed compared to the actual segment travel times, in 
particular for B-A3 and B-A4. Despite the large underestimate of travel 
times of B-A5, it only amount to around 12 s. Concerning the Retour 

route, f1 and f2, provide similar travel times, both seeming to correspond 
well to actual travel times. Furthermore, f3 seems to match the actual 
data, expect for B-R5, in which travel times are greatly overestimated. In 
sum, the three sets of ML models predict very similar travel times, 
including f1 and f2, and to a lesser extent f3.

With regard to Δ in Table 13, the differences seem negligible, aver-
aging a few seconds per route segment.

Thus, from the results illustrated on the three bus lines studied (A, B 
and C), the simulated travel times provided by ML models are highly 
resembled and statistically similar to the actual travel times.

To test the reliability the ML models trained for bus travel time 

Fig. 16. Theoretical and actual average travel times are presented side by side for each segment of lines studied. For line A, overall, larger differences can be 
observed on certain segments between theoretical and actual travel times. For line B, again, the simulated travel times seem to correspond well to the actual travel 
times. In contrast, differences can be observed between theoretical and actual travel times, with minor to moderate differences for segments in the Aller direction, and 
more significant for segments in the Retour direction. For line C, che simulated travel times appear to match actual travel times very well. Furthermore, the 
theoretical and actual travel times match well for segments in the Aller direction, while moderate differences can be observed for route segments in the 
Retour direction.

Table 11 
Reported actual average travel times TTactual (in seconds) as well as the relative 
differences Δf1, Δf2 and Δf3, respectively, from f1, f2 and f3, for each route 
segment of bus line A.

segment ID segment stops TTactual Δf1 Δf2 Δf3

A-A1 STP− 1006 → STP− 1013 429 − 5 % − 8 % − 6 %
A-A2 STP− 1013 → STP− 1017 121 1 % 8 % 2 %
A-A3 STP− 1017 → STP− 1022 420 1 % 0 % 3 %
A-A4 STP− 1022 → STP− 1030 603 2 % 3 % 5 %
A-A5 STP− 1030 → STP− 1846 419 7 % 12 % 16 %
– – – – – –
A-R1 STP− 1883 → STP− 982 423 0 % 0 % − 1 %
A-R2 STP− 982 → STP− 990 629 3 % 1 % 1 %
A-R3 STP− 990 → STP− 994 253 3 % 3 % 9 %
A-R4 STP− 994 → STP− 998 226 2 % 1 % 4 %
A-R5 STP− 998 → STP− 1005 333 3 % 4 % 9 %
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prediction, simulated and actual travel times will be compared over 
morning and evening peak hours. For line A, the results show that the 
actual segment travel times of Aller route are on average relatively 
longer during morning rush hours than during evening hours, and vice 
versa for the Retour segments. For line B, similar actual travel times are 
observed at both peak hours, while an increase in segment travel times is 
observed during the evening hours compared to the morning peak hours, 
for line C.

In sum, ML models in which features include stop time (f1 and f2) 
perform better than those built by only considering bus delay at the stop. 
Moreover, ML models with only the stop time as a feature (f1) relatively 
match the best actual travel times. In the remainder of this work, the ML 
models are referred to the f1 models. An in-depth analysis of actual 

travel times together along with relative differences from three set of 
models (f1, f2 and f3) over peak hours, for bus lines A, B and C can be 
found in B.

5.1.3. Validation of Travel Times: ML vs Probabilistic Distributions
To assess the accuracy of the ML models for bus travel time predic-

tion, the simulated travel times provided by ML will be compared to four 
probabilistic distributions, including: normal, lognormal, gamma and 
generalized extreme value (GEV) distributions, with a focus on morning 
and evening peak hours. The actual travel times as well as the relative 
differences resulting from ML and probabilistic distributions over peak 
hours, for bus lines A, B and C are reported, respectively, in 
Tables 14–16.

From Table 14, one can see that the ML travel times are on average 
more precise compared to the travel times generated by the different 
probabilistic distributions, during morning and evening rush hours. 
Moreover, the differences between ML and distributions are more sig-
nificant during morning peak hours than during evening hours.

For line B, a similar trend is observed with more precise ML travel 
times compared to those estimated by the probabilistic distributions, in 
the morning and to a lesser extent during the evening rush hours. 
Furthermore, while the normal, lognormal, and gamma distributions seem 
to correspond to the actual travel times to a lesser extent, GEV distri-
bution appears to strongly overestimate actual travel times.

From Table 16, one can see that on average the ML travel times of 
line C seem to be more precise than the statistical distribution travel 
times, both during morning and evening peak hours. Additionally, the 
resulting travel times of the four probabilistic distribution are highly 
resembled, with on average, generalized extreme value distribution 
appearing to provide more accurate travel times than the normal, 
lognormal, and gamma distributions.

5.1.4. Validation of travel times: goodness of fit
In order to thoroughly evaluate the quality of the simulated travel 

times provided by ML and the probabilistic distributions, mean absolute 
error (MAE) and root mean square error (RMSE), two goodness-of-fit 
measures (GOF), will be estimated at morning and evening peak 
hours, for each route.

In essence, segment travel times will be grouped into half-minute 
slot. MAE and RMSE measures, are respectively formulated in Equa-
tions (9) and (10). The estimated values of MAE and RMSE, applied to 
the three bus lines, are reported in Tables 17 and 18, respectively. 
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Where:

Table 12 
Reported actual average travel times TTactual as well as the relative differences 
Δf1, Δf2 and Δf3, for bus line B.

segment ID segment stops TTactual Δf1 Δf2 Δf3

B-A1 STP− 2349 → 
STP− 1380

560 2 % 2 % 0 %

B-A2 STP− 1380 → 
STP− 1390

568 3 % 2 % 3 %

B-A3 STP− 1390 → 
STP− 1394

249 2 % 2 % 19 %

B-A4 STP− 1394 → 
STP− 2408

433 5 % 5 % 12 %

B-A5 STP− 2408 → 
STP− 2746

92 − 13 % − 14 % − 13 %

– – – – – –
B-R1 STP− 2747 → 

STP− 2348
114 − 4 % − 2 % − 3 %

B-R2 STP− 2348 → 
STP− 1411

417 1 % 0 % 1 %

B-R3 STP− 1411 → 
STP− 1415

231 3 % 3 % 4 %

B-R4 STP− 1415 → 
STP− 1420

286 4 % 2 % 3 %

B-R5 STP− 1420 → 
STP− 1424

315 4 % 6 % 16 %

B-R6 STP− 1424 → 
STP− 1379

353 4 % 5 % 2 %

B-R7 STP− 1379 → STP− 834 169 3 % 3 % 3 %

Table 13 
Reported actual average travel times TTactual as well as the relative differences 
Δf1, Δf2 and Δf3, for bus line C.

segment ID segment stops TTactual Δf1 Δf2 Δf3

C-A1 STP− 2521 → STP− 2525 282 − 3 % − 2 % − 2 %
C-A2 STP− 2525 → STP− 2526 343 − 3 % − 3 % − 2 %
– – – – – –
C-R1 STP− 2526 → STP− 2527 353 − 2 % − 2 % − 1 %
C-R2 STP− 2527 → STP− 2440 226 − 1 % − 1 % 0 %

Table 14 
Reported actual average travel times TTactual as well as relative differences ΔML, Δnorm, Δlognorm, Δgamma and ΔGEV, respectively, from ML, norm, lognorm and GEV 
distributions, for each route segment of bus line A, over morning and evening peak-hours.

Morning peak hours Evening peak hours
segment ID TTactual ΔML Δnorm Δlognorm Δgamma ΔGEV TTactual ΔML Δnorm Δlognorm Δgamma ΔGEV

A-A1 513 − 10 % − 16 % − 16 % − 53 % − 16 % 422 − 3 % − 3 % − 3 % − 3 % − 4 %
A-A2 132 1 % − 1 % − 3 % 33 % − 2 % 125 1 % 1 % 0 % 1 % 0 %
A-A3 481 − 1 % − 10 % − 9 % − 5 % − 8 % 433 − 5 % − 1 % − 1 % − 1 % − 1 %
A-A4 653 − 1 % − 4 % − 4 % − 3 % − 4 % 619 − 1 % 0 % 1 % 0 % 0 %
A-A5 500 10 % 16 % 17 % 20 % 12 % 433 1 % 6 % 7 % − 18 % 1 %
– – – – – – – – – – – – –
A-R1 418 − 3 % − 7 % − 6 % − 7 % − 7 % 472 1 % − 3 % − 3 % − 3 % − 3 %
A-R2 628 − 2 % − 6 % − 6 % − 5 % − 5 % 706 4 % 2 % 2 % 2 % 2 %
A-R3 248 1 % − 3 % − 3 % − 3 % − 2 % 271 3 % 8 % 10 % − 29 % 14 %
A-R4 231 − 1 % − 4 % − 4 % − 4 % − 5 % 253 0 % − 1 % − 1 % 0 % − 3 %
A-R5 349 − 5 % − 4 % − 4 % − 3 % 395 % 349 2 % 7 % 8 % 12 % 13 %
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• s: a route segment
• S: a set of route segments
• t: a travel time increment.
• T: a set of travel time increments
• Pt

a,s: refers to the actual relative frequency for segment s with TT ∈ t
• Pt

d,s: refers to relative frequency of a distribution d for segment s with 
with TT ∈ t

At first glance at Table 17, ML seems to have the lowest MAE on most 
bus routes. Additionally, the differences between ML and other 

distributions tend to be smaller, to some extent, during evening peak 
hours, with the exception of line C routes, on which ML appears to 
significantly outperform.

From Table 18, ML models show the lowest RMSE error on most line 
routes. Similar to MAE, ML appears to outperform probabilistic distri-
butions during morning peak hours and, to a lesser extent, during eve-
ning peak hours.

Furthermore, with exception to A-Retour and to a lesser extent C-Aller 
routes, the resulting travel times during the evening rush hours appear 
more accurate than those during morning hours.

Table 15 
Reported actual average travel times as well as relative differences resulting from ML and probabilistic distributions, for each route segment of bus line B, over morning 
and evening peak-hours.

Morning peak hours Evening peak hours
segment ID TTactual ΔML Δnorm Δlognorm Δgamma ΔGEV TTactual ΔML Δnorm Δlognorm Δgamma ΔGEV

B-A1 573 − 2 % − 7 % − 7 % − 6 % 2 % 625 − 2 % − 4 % − 5 % − 4 % 38 %
B-A2 617 0 % − 5 % − 5 % − 5 % 74 % 635 − 1 % − 2 % − 2 % − 2 % 118 %
B-A3 305 − 9 % − 16 % − 16 % − 56 % 738 % 313 − 1 % − 7 % − 8 % − 7 % 123 %
B-A4 548 2 % − 3 % − 4 % 0 % 44 % 450 1 % 2 % 2 % 2 % 183 %
B-A5 105 − 14 % − 15 % − 16 % − 16 % − 19 % 103 − 27 % − 27 % − 26 % − 27 % − 29 %
– – – – – – – – – – – – –
B-R1 99 − 5 % − 5 % − 6 % − 5 % 0 % 131 − 4 % − 4 % − 3 % − 3 % − 3 %
B-R2 413 − 1 % − 4 % − 4 % − 4 % − 1 % 490 − 2 % − 6 % − 6 % − 6 % − 6 %
B-R3 284 1 % − 7 % − 7 % − 7 % 58 % 260 1 % − 4 % − 4 % − 4 % − 6 %
B-R4 310 0 % − 5 % − 5 % − 6 % 40 % 312 0 % − 2 % − 2 % − 2 % − 4 %
B-R5 342 8 % 8 % 8 % 8 % 844 % 352 2 % 2 % 2 % 2 % 104 %
B-R6 375 − 2 % − 8 % − 7 % − 7 % 2 % 384 − 1 % − 3 % − 4 % − 4 % − 3 %
B-R7 188 − 3 % − 7 % − 8 % − 7 % 21 % 179 − 1 % − 4 % − 4 % − 4 % 6 %

Table 16 
Reported actual average travel times as well as relative differences resulting from ML and probabilistic distributions, for each route segment of bus line C, over morning 
and evening peak-hours.

Morning peak hours Evening peak hours
segment ID TTactual ΔML Δnorm Δlognorm Δgamma ΔGEV TTactual ΔML Δnorm Δlognorm Δgamma ΔGEV

C-A1 284 − 3 % − 6 % − 6 % − 6 % − 5 % 300 − 6 % − 9 % − 9 % − 9 % − 9 %
C-A2 342 − 3 % − 9 % − 10 % − 9 % − 8 % 395 − 5 % − 14 % − 14 % − 15 % − 8 %
– – – – – – – – – – – – –
C-R1 373 − 1 % − 10 % − 10 % − 10 % − 10 % 396 − 4 % − 10 % − 10 % − 10 % − 3 %
C-R2 231 − 3 % − 6 % − 6 % − 6 % − 6 % 233 0 % − 1 % − 1 % − 1 % − 1 %

Table 17 
Mean Absolute Error (MAE) between actual and simulated travel times, by route, during morning and evening peak-hours.

Morning peak hours Evening peak hours
Route ID ML norm lognorm gamma GEV ML norm lognorm gamma GEV

A-Aller 19 % 23 % 24 % 54 % 21 % 11 % 15 % 13 % 17 % 14 %
A-Retour 9 % 10 % 9 % 9 % 11 % 13 % 19 % 15 % 27 % 20 %
– – – – – – – – – – –
B-Aller 13 % 17 % 15 % 29 % 28 % 10 % 12 % 11 % 11 % 42 %
B-Retour 10 % 14 % 13 % 13 % 27 % 9 % 10 % 8 % 8 % 10 %
– – – – – – – – – – –
C-Aller 5 % 15 % 17 % 17 % 14 % 6 % 15 % 20 % 20 % 19 %
C-Retour 5 % 20 % 21 % 22 % 23 % 5 % 8 % 10 % 9 % 9 %

Table 18 
Root Mean Square Error (RMSE) between actual and simulated travel times, by route, during morning and evening peak-hours.

Morning peak hours Evening peak hours
Route ID ML norm lognorm gamma GEV ML norm lognorm gamma GEV

A-Aller 11 % 15 % 17 % 40 % 14 % 7 % 10 % 9 % 13 % 9 %
A-Retour 8 % 8 % 7 % 7 % 8 % 9 % 13 % 12 % 23 % 14 %
– – – – – – – – – – –
B-Aller 9 % 11 % 10 % 25 % 18 % 7 % 10 % 10 % 9 % 36 %
B-Retour 8 % 11 % 11 % 11 % 24 % 8 % 8 % 7 % 6 % 8 %
– – – – – – – – – – –
C-Aller 4 % 12 % 13 % 13 % 11 % 4 % 10 % 14 % 14 % 13 %
C-Retour 4 % 15 % 17 % 17 % 18 % 4 % 6 % 7 % 7 % 6 %
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5.2. Validation of simulation results: impacts of recovery time strategies 
on bus punctuality

In order to investigate the impacts of bus recovery time on simulated 
bus punctuality, two simulation scenarios S1 using a fixed minimum re-
covery time of two minutes and S2 using an adjusted recovery time, will be 
conducted. In the following, aggregated delay and bus delay severity, 
two of the on-time performance metrics presented in Section 3.2, will be 
applied at the control points on the actual observations and the two 
simulated scenarios (S1 and S2), for each of the three bus lines (A, B and 
C). The results obtained on each dataset will then be statistically 
analyzed and compared side by side.

5.2.1. Impacts of recovery time: aggregated delay metric
Fig. 17 provided first insights at how bus punctuality is distributed. It 

illustrates the resulting bus status share according to the first punctuality 
metric, applied to the 9 datasets. Further on, Table 19 illustrates in more 
detail the differences between the shares resulting from simulation 
scenarios and the actual shares.

At first glance, one can see some differences in the shares between 
the different lines, line C seems to be the most regular on-time bus line 
among the lines studied, followed by line B then line A. Based on in 
advance shares, line A buses are much further ahead than compared to 
lines B and C. Furthermore, line C, with its shortest bus routes, has the 
least late buses, in which the share of Significant delay is negligible, while 
lines A and B show statistically an almost identical ratio for significantly 
delayed buses. The analysis process will proceed as follows: the bus 
status shares of the actual observations will be analyzed first, followed 
by those from the two simulated scenarios. Secondly, the share of the 
actual observations will be compared to the shares resulting from the 
simulation.

For bus line A, the results show that about two thirds of the actual 
buses are on time and about one third are early at the timing points. On 
the other hand, the results of the simulated scenarios indicate a very 
similar trend for S1 and S2, with an identical share for on-time travel (with 
62 %) and minor differences ( ± 2 %) between in advance and signifi-
cantly delayed buses. Compared to the actual data, minor differences 
were observed with 5 % for S1 and 3 % for S2 respectively.

For bus line B, the shares indicate that approximately three thirds 
and one fifth of actual buses are on-time and early, respectively, while 
significantly late buses represent less than a tenth of the total buses. 

Furthermore, the results also show that S1 and S2 follow a similar trend, 
with minor differences (3 %) for the in advance and significantly late 
buses. As for bus line A, the differences between the actual and simu-
lated shares are minor and almost identical, with a difference of 
approximately 5 % and 3 %, respectively, for S1 and S2.

For bus line C, it can be observed that almost all actual buses travel 
on-time, while that a tenth are ahead. On the other hand, the share of 
significantly delay is very negligible. Unlike the two previous bus lines (A 
and B), the results of the two simulated scenarios (S1 and S2) show 
different trends. S2 overestimates the share of buses in advance (+5 %) 
compared to actual observations and to S1, while on the other hand, S1 
completely underestimates the buses with a significant delay, estimated 
to be almost zero.

In total, the results showed significant similarities between S1 and S2, 
with minor differences on bus lines A and B, and to a lesser extent on line 
C where the differences appear more significant. Compared to the actual 
bus delays, the delays shares resulting from the simulation, using the 
adjusted recovery time in S2 scenario, are more accurate than those in 
S1, in which a fixed minimum recovery time of two minutes was 
implemented. The results obtained in S2 slightly overestimate the ratio 
of buses ahead of schedule. In short, the resulting simulation distribu-
tions for the three lines studied are with a good fit to the actual reference 
distributions according to this studied metric.

5.2.2. Impacts of recovery time: bus delay severity metric
In order to investigate in more details the delay shares obtained 

previously according to the first metric used, the bus severity delay 
metric defines buses ahead of schedule and significantly delayed as in the 
first metric, in contrast, distinguishing the on-time travel into three sub- 
classes with a 2 min horizon, as follows: on-time travel, minor delay and 
moderate delay, respectively, if the delay is between − 1 and +1, +1 and 

Fig. 17. Bus punctuality shares for the bus lines studied, based on the first on-time measurement. For lines A and B, a strong similarity of shares is observed between 
S1 and S2, while compared to actual shares, the differences are minors, with S2 appearing to slightly outperform S1. For line C, the resulting shares of S1 and S2 are 
different, compared to the referenced shares, S2 seems to slightly outperform S1.

Table 19 
Illustration of the differences and gaps between the resulting simulation shares 
and the actual shares according to the first punctuality metric, for lines A, B and 
C.

S1 (A) S2 (A) S1 (B) S2 (B) S1 (C) S2 (C)

Advance > 1 min +5 % +3 % +5 % +3 % − 1 % +5 %
On-time travel − 1 % − 1 % 0 % − 1 % +3 % − 5 %
Significant delay − 4 % − 2 % − 5 % − 2 % − 2 0 %
Δ(S, actual) 5 % 3 % 5 % 3 % 3 % 5 %
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+3 and +3 and +5 min.
From Fig. 18 and Table 20, one can observe a strong resemblance 

between the shares of bus punctuality both for the actual observations 
and S2, and that for the three studied bus lines. An exception to note for 
bus line C, part of the share (around 5 %) of in advance and on-time travel 
buses seems is poorly located. Furthermore, the share of minor, mod-
erate and significant delays is almost identical between S2 and actual 
observations. In sum, S2 is slightly overestimates the shares of early 
buses, well adjusted to the shares of minor, moderate and significant de-
lays, with an approximate deviation of 4–6 % for the lines studied. In 
contrast, the S1 shares show a significant overestimation of in advance 
and on-time, and therefore, an underestimation of minor, moderate and 
significant shares, with an approximate deviation of 9 % for line A, 15 % 
for line B and 14 % for line C.

In short, the results of the second on-time performance metric show 
that applying an adjusted recovery time strategy improved the quality of 
results compared to the fixed recovery time strategy.

5.3. Validation of simulation results: impacts of bus control strategies on 
bus punctuality

In this section, the emphasis is placed on investigating the impacts of 
different bus control strategies on bus punctuality. The strategies 
implemented are reported in Table 10. In the following, the resulting 
shares will be analyzed and compared to the actual shares, according to 
a number of one-time performance metrics.

5.3.1. Impacts of bus holding: aggregated delay metric
The bus punctuality shares based on aggregate delay metric for bus 

lines A, B and C are shown in Fig. 19. The differences between the 
resulting simulation shares and the actual shares according to the first 
punctuality metric are reported in Table 21.

For bus line A, results obtained from actual observations show that 
about two thirds of buses on time and about one third are early at the 
timing points. On the other hand, the results indicate a very similar trend 
for scenarios NC and SH3, with an identical share for on-time travel and 
minor differences ( ± 3 %) between in advance and significantly delayed 
buses. The results show that SH0 appear to completely underestimate the 
share of ahead bus, and strongly overestimate the share of on-time 
buses, the share of significantly delayed buses, on the other hand, is 
slightly underestimated. Furthermore, the HH results indicate an 

underestimation of the share of early buses, and an underestimation to a 
lesser extent of the share of on-time and significantly late buses. In short, 
for line A, the shares of NC and SH3 appear more similar to the actual 
shares compared to the shares of HH.

For bus line B, the shares shown indicate that approximately three 
thirds and one fifth of actual buses are on-time travel and in advance, 
respectively, while the buses with a significant delay represent less than 
a tenth of the total buses. Furthermore, the results show that NC and SH3 
follow a similar trend, with minor differences for the ahead and signifi-
cantly late buses. For SH0, a trend similar to that of line A is observed, 
including a complete underestimation of the share of early buses. 
Moreover, the HH results indicate an underestimation and over-
estimation of the share of in advance and significantly delayed buses, 
respectively. Overall, for line B, the differences between the real and 
simulated shares are minor for NC and SH3 and, to a greater extent, for 
HH and SH0.

For bus line C, one can observe that almost all actual buses travel on- 
time, while that a tenth are ahead. On the other hand, the share of 
significantly delay is very negligible. The results show a similar trends for 
NC and SH3 with a slightly overestimation and underestimation of the 
share of buses ahead and on-time, respectively, and match well with the 
actual share of significantly delayed buses. On the other hand, SH0 fol-
lows a different trend by overestimating and underestimating, respec-
tively, the share of buses early and on-time. Unlike lines A and B, the 
shares of HH appear to correspond well to the actual shares, out-
performing those resulting from the scheduled-based scenarios.

In total, the analyzed results show significant similarities between 
NC and SH3, corresponding well to the actual shares of bus punctuality. 
In contrast, SH0 seems to strongly underestimate the share of early 
buses, while HH tends to overestimate the share of late buses.

Fig. 18. Bus punctuality shares for lines A, B and C, based on the second on-time metric with five levels of delay: in advance, on-time travel, minor, moderate and 
significantly delayed. Concerning the resulting shares, the differences between S1 and S2 are much more significant, particularly for the on-time travel share. The S2 
shares appear to match the actual data well for lines A and B, and to a lesser extent for line C. In contrast, S1 seems to considerably overestimate the share of on-time 
travel and underestimate all the remaining shares.

Table 20 
Illustration of the differences and gaps between the resulting simulation shares 
and the actual shares according to the second on-time metric, for lines studied.

S1 (A) S2 (A) S1 (B) S2 (B) S1 (C) S2 (C)

Advance > 1 min +5 % +3 % +5 % +3 % − 1 % +5 %
On-time travel +4 % − 1 % +10 % 0 % +14 % − 6 %
Minor delay − 2 % +1 % − 4 % +1 % − 6 % +1 %
Moderate delay − 3 % − 1 % − 5 % − 2 % − 5 % 0 %
Significant delay − 4 % − 2 % − 5 % − 2 % − 2 % 0 %
δ(S, actual) 9 % 4 % 15 % 4 % 14 % 6 %
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5.3.2. Impacts of bus holding: bus delay severity metric
The bus punctuality shares based on bus severity delay metric for bus 

lines A, B and C are shown in Fig. 20. The differences between the 
resulting simulation shares and the actual shares according to the second 
punctuality metric are reported in Table 22.

From Fig. 20 and Table 22, one can observe a resemblance between 
the shares of bus punctuality for the actual observations, NC and SH3, 
and that for the three studied bus lines. Exception to note for line C, part 
of the share (around 5 %) of in advance and on-time travel buses seems is 
poorly located. Furthermore, the share of minor, moderate and 

significant delays is almost identical between SH3, NC and actual ob-
servations. For SH0, the resulting early and on-time bus shares are 
heavily neglected and overestimated for lines A and B respectively, 
while the slightly late bus shares are also overestimated, but to a lesser 
extent. On the other hand, for line C, one can observe a similar trend but 
to a lesser extent to that of lines A and B, with an underestimation and an 
overestimation, respectively for the share of buses in advance and on- 
time. For HH, the resulting shares of line A indicate an underestimate of 
the share of early and on-time buses, but also a slight overestimation of 
share of late buses, a similar trend is observed for line B but to a greater 

Fig. 19. Impacts of bus holding strategies - Bus punctuality shares for the bus lines studied, based on the first on-time measurement.

Table 21 
Impacts of bus holding - Illustration of the differences between the resulting 
simulation shares and the actual shares according to the first punctuality metric, 
for bus lines A, B and C.

Δ(S, 
actual)

no-control 
NC

scheduled-based 
SH3

scheduled-based 
SH0

headway- 
based HH

Line A 3 % 3 % 31 % 7 %
Line B 4 % 3 % 22 % 12 %
Line C 4 % 5 % 7 % 2 %

Fig. 20. Impacts of bus holding strategies - Bus punctuality shares for the bus lines studied, based on the second on-time measurement.

Table 22 
Impacts of bus holding - Illustration of the differences and gaps between the 
resulting simulation shares and the actual shares according to the second 
punctuality metric, for bus lines A, B and C.

Δ(S, 
actual)

no-control 
NC

scheduled-based 
SH3

scheduled-based 
SH0

headway- 
based HH

Line A 4 % 4 % 31 % 9 %
Line B 6 % 4 % 22 % 17 %
Line C 4 % 6 % 9 % 4 %
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extent, while for line C, minor differences with the actual shares are 
observed, including an underestimation of the share of on-time buses.

In short, the shares obtained according to this second bus punctuality 
measure follow similar trend to that of the first measure. Compared to 
actual bus punctuality, the shares resulting from NC and SH3, are on 
average more accurate than those from SH0 and HH.

5.3.3. Impacts of bus holding: a third bus delay metric
After having presenting in detail the shares resulting from the 

application of the two bus punctuality metrics, for the bus lines studied. 
The simulation results showed some differences between the actually 
observed delays and the delays resulting from the simulation. To better 
understand the those resulting differences in more detail, the actual 
shares will be compared over intervals of one minute increments, 
alongside the shares resulting from the simulated scenarios.

In Fig. 21 the relative frequencies of bus punctuality at the control 
points of bus line A are illustrated. The shares resulting of the no-control 
strategy (NC) correspond well to the actual shares with a negligible 
difference to note. One can observe that the shares of SH3 follow the 
same trend as those of NC, with the exception of the share of buses more 
than four minutes ahead, where the share is completely ignored. On the 
other hand, for buses two to three minutes ahead, the share is over-
estimated (+8). For SH0, the share of early buses is completely under-
estimated, while HH appears to slightly underestimate the share of early 
buses, slightly overestimate the share of late buses, and match well with 
the share of on-time buses.

Fig. 22 illustrates the relative frequency of bus delays for line B. The 
results show that NC and to a lesser extent SH3, ranging from good fit to 
slightly overestimate the share of buses ahead and on-time, respectively. 
Furthermore, SH0 and SH3 seem to strongly underestimate the share of 
buses in advance, with more than three minutes and one minute ahead, 
respectively. Moreover, the resulting shares of the scheduling-based 
holding scenarios follow the same pattern by slightly underestimating 
the share of buses with moderate to significant delay. On the other hand, 
HH appears to underestimate the share of early buses, to a lesser extent 
slightly underestimate and overestimate the share of on-time and late 
buses, respectively.

From Fig. 23, it can be observed that the bus line C is the most 
punctual line among the lines studied. The results show that the 
resulting shares of scheduled-based holding scenarios, correspond well 
to the actual share of late buses. NC and SH3 slightly overestimate and 

underestimate the share of early buses and on-time buses, respectively. 
In contrast, SH0 significantly overestimates the share of buses on time 
and underestimates the share of buses in advance. On the other hand, 
HH seems to underestimate the share of on-time buses and to a lesser 
extent the share of buses too early, while it slightly underestimates the 
share of buses significantly delayed.

The differences between the resulting simulation shares and the 
actual shares according to the third punctuality metric are reported in 
Table 23.

Overall, NC seems to adequately match the actual shares of lines A 
and B, and on average outperform SH3 and HH. On the other hand, HH 
shares correspond well to the actual shares of line C, slightly out-
performing NC and SH3. In contrast, the SH0 corresponds the least to the 
actual shares, for the three studied lines.

5.3.4. Impacts of bus stop-skipping on bus punctuality
In this section, the focus is on studying the impacts of bus stop- 

skipping approach on bus punctuality. The resulting bus punctuality 
shares - based on the second metric - of the two scenarios (SK3 and SK5) 
in which stop-skipping is implemented, as well as the actual shares and 
the resulting shares of no control scenario, are shown in Fig. 24.

For bus line A and B, we can observe a slight increase in the share of 
early and on-time buses, and at same time a slight decrease in share of 
moderately and significantly late buses, for SK3 compared to NC. In 
contrast, for SK5, negligible changes were observed. For line C, the 
shares of NC, SK3 and SK5 were almost the same. Compared to the actual 
shares, SK3 and SK5 seem to diverge, with a greater overestimation of the 
shares of early buses compared to NC. In sum, the applied stop-skipping 
strategy appears to have a slight impact on bus punctuality shares, in 
particular by decreasing the share of late buses.

5.4. Simulation vs actual: off-peak and peak hours

In addition to the overall validation of bus travel times, previous 
analyzes using the three bus punctuality metrics have shown that the 
simulation results correspond well to the actual bus shares. In the 
following, a validation process will be conducted, in which the simula-
tion results of no control scenario will be compared side-by-side with the 
actual observations, using the bus severity metric based on defined pe-
riods of the day (see Table 6). The simulation and actual bus punctuality 
shares, for the three bus lines, are given in Fig. 25.

Fig. 21. A comparison of actual and simulated bus punctuality shares at control points grouped in one-minute increments, for bus line A.
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For bus line A,the actual and simulation delay shares appear to 
follow similar pattern over a number of periods. During morning peak 
hours, the share of in advance and on-time travel buses is slightly over-
estimated. Next, a similar trend is observed during inter-peak, evening 

peak and off-peak hours, which account for more than two-thirds of total 
trips. The biggest difference is observed during AM off-peak hours, with 
a significant overestimation of the share of in advance buses (+11 %), 
and consequently a slight underestimation of the shares of on-time and 
delayed buses.

For bus line B, moderate differences are observed compared to line A. 
A very similar trend is observed, between the two shares during the 
morning peak hours, and to a lesser extent during inter-peak and eve-
ning peak hours. Concerning the late evening shares, one can observe a 
significant overestimation of in advance buses (+8 %). On the other 
hand, few buses run during this late period with approximately less than 
a tenth of total trips.

For bus line C, the simulation and actual shares essentially follow a 
similar trend during evening rush hours and, to a lesser extent during 
inter-peak hours. Furthermore, larger differences can be observed 

Fig. 22. A comparison of actual and simulated bus punctuality shares at control points grouped in one-minute increments, for bus line B.

Fig. 23. A comparison of actual and simulated bus punctuality shares at control points grouped in one-minute increments, for bus line C.

Table 23 
Illustration of the differences and gaps between the resulting simulation shares 
and the actual shares according to the third punctuality metric, for bus lines A, B 
and C.

Δ(S, 
actual)

no-control 
NC

3-min 
SH3

scheduled-based 
SH0

headway-based 
HH

Line A 4 % 11 % 35 % 8 %
Line B 7 % 10 % 22 % 14 %
Line C 6 % 6 % 11 % 5 %
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during AM peak and off-peak hours, and PM off-peak hours, with the 
share of buses in advance being overestimated by +5 % in evening off- 
peak hours, by +8 % in morning off-peak hours, and strongly under-
estimated in morning rush hours with around +10 %.

In short, the results presented in this section give us some insights 
into the extent to which the simulation is able to reproduce reality. For 
the two main bus lines studied (A and B), the shares obtained show a 

similar trend during the two peak hours and during the inter-peak hours, 
which represents more than three quarters of the total trips, for the two 
bus lines. On the other hand, more significant differences are observed 
during off-peak hours in the morning for line A, and during off-peak 
hours in the evening for line B. Concerning bus line C, it can be 
observed that the differences in sharers are considerably greater 
compared to lines A and B, due to a certain overestimation on the share 

Fig. 24. Bus punctuality shares for the bus lines studied, based on the second on-time measurement. Expressing 3-min and Expressing 5-min refer respectively to the 
resulting shares of scenarios SK3 and SK5.

Fig. 25. Punctuality shares of buses, per time slot of the day for the three lines studied.
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of in advance buses, particularly during morning periods.

6. Discussion and perspectives

In this section, a discussion of the obtained results, including actual 
and simulated travel times and bus punctuality, will be discussed in 
depth. Next, the feature selection process along with an in-depth dis-
cussion of simulation parameters will be presented. Finally, the limita-
tions and perspectives of the proposed work will be given.

6.1. Discussion: results

In this first section, the resulting travel times and bus punctuality will 
be analyzed. Furthermore, a discussion on the impacts of bus recovery 
time, holding and stop-skipping strategies will be detailed.

6.1.1. Analysis of travel times
From the results at hand, the theoretical travel times seem to differ 

slightly from the observed travel times, these differences can be 
explained by: on the one hand, the theoretical arrival times at control 
points are rounded to nearest minute (hh:mm:00); on the other hand, on 
the last route segments, bus drivers will often tend to reach the terminal 
stop as quickly as possible. Furthermore, differences travel times be-
tween routes on the same line can be explained by a different level of 
demand and traffic in each direction. For line B, another explanation for 
the observed travel times differences is plausible, with the Retour route 
has more segments than Aller route. Furthermore, route segments B-A1 
and B-A2, together with B-R4 to B-R7 follow the same road but in 
opposite directions, this latter split of the Retour route, resulting in a 
higher number of control points, generates some of the significant dif-
ferences due to shorter segments and therefore shorter travel times. For 
line C, the differences are insignificant in both directions, can be 
explained by the fact that the bus routes of line C are much shorter 
compared to A and B.

The simulated travel times provided by ML models (f1, f2 and f3), are 
highly resembled and statistically similar to the actual travel times. For 
line C, the differences across all route segments are negligible, averaging 
a few seconds per route segment. These similarities can be explained by 
the nature of travel time variability, which to some extent corresponds 
to probabilistic distributions regardless of the features selected to train 
ML models. In sum, ML models with stop time as feature (f1 and f2) 
perform better than those built by only considering bus delay at the stop 
(f3). Moreover, ML models with only the stop time as a feature (f1) 
relatively match the best actual travel times. As expected, bus travel 
times are highly dependent on the time of the day. In contrast, travel 
times seem less sensitive to the bus delay, whether the bus is late or not.

Overall, ML travel times are on average more accurate compared to 
the travel times estimated by probabilistic distributions, according to 
both goodness of fit metrics MAE and RMSE, during morning and eve-
ning peak hours. Furthermore, the travel times obtained during the 
evening rush hours appear more accurate than those during morning 
hours, which may be explained by a better fitting of evening travel times 
using probabilistic distributions compared to the morning travel times.

6.1.2. Analysis of bus punctuality

6.1.2.1. Impacts of bus recovery time strategies. The share of bus punc-
tuality, resulting from the first two simulated scenarios (S1 and S2) 
appear to closely follow the actual shares according to the first metric, S2 
seems to significantly outperform S1 according to the second metric, in 
which S1, greatly overestimates the share of buses on time. This could be 
explained by the applied recovery time strategy, in which the latter 
simulation parameter was set to a minimum of two minutes in S1, while 
it was adjusted in S2. The choice of recovery time strategy will be dis-
cussed in depth below.

6.1.2.2. Impacts of bus holding strategies. The second set of scenarios 
aims to investigate the impacts of bus holding strategies on bus punc-
tuality (see Table 10). The shares obtained according to the first and 
second metric, show significant similarities between NC and SH3, with 
both on average more accurate than those from SH0 and HH. In contrast, 
SH0 seems to strongly underestimate the share of early buses, while HH 
tends to overestimate the share of late buses. According to third metric, 
NC seems to adequately match the actual shares of lines A and B, and on 
average outperform SH3 and HH. On the other hand, HH shares corre-
spond well to the actual shares of line C, slightly outperforming NC and 
SH3. In contrast, the SH0 corresponds the least to the actual shares, for 
the three studied lines. The bus holding strategies implemented, 
including holding criteria will be discussed in detail below.

6.1.2.3. Impacts of stop-skipping strategy. The third set of implemented 
scenarios (SK3 and SK5) aims to investigate the impacts of bus stop- 
skipping strategy on bus punctuality. The observed slight decrease of 
the shares of moderately and significantly late buses is the result of 
applying the stop-skipping strategy. Overall, this strategy has a negli-
gible impact on bus punctuality shares, which can be explained by: 1) a 
low share of buses moderately and significantly late, and 2) the impact 
of the defined skipping criteria, which will be discussed in detail below.

6.1.2.4. Simulation vs actual: off-peak and peak hours. Besides, the 
simulation results fit well with the actual data, in terms of bus punctu-
ality during the two peak hours and during the inter-peak hours, for lines 
A and B and, to a lesser extent, for line C, in which the differences are 
more significant, due to an overestimation of the share of in advance 
buses, particularly during morning periods. These larger differences 
may be explained by the nature of line C, with a low number of route 
segments (two segments per route) and by relatively short travel times 
with on average 10 min for line C compared to 30 min for line A and 
23 min for line B.

On the other hand, the simulation model shows a certain difficulty in 
adjusting the shares of bus delay during off-peak hours in the morning 
and evening. This lack might be caused by an overestimation of the 
share of early buses mainly due to a low number of trips during off-peak 
hours, and therefore a smaller dataset to train and build more accurate 
ML models. An interesting observation needs to be pointed. For line A, a 
very high share of early buses is observed during evening off-peak hours, 
which can be explained by a lower traffic level, fewer passengers, which 
implies short dwell times and therefore shorter travel times.

6.2. Discussion: feature selection

The training dataset is mainly derived from actual bus AVL data, 
with bus vehicle and trip information such as bus stop time, bus stop delay 
and segment travel time, in addition to other derived information such as 
day of the week and season. Analyzing the resulting mean decrease in Gini 
score, stop time and stop delay appear to be the two most relevant fea-
tures. Additionally, an in-depth analysis of the input features was then 
conducted, showing a higher R2 score for ML models built with stop time 
and stop delay compared to those built with weather features. The 
selected features corresponding to the information of a bus during a trip, 
which make the ML models relatively simple to implement. On the other 
hand, training a ML model with few features will likely result in an 
underfit model. Additionally, the ML models implemented in this study 
are designed to predict the travel time of a bus independently on its fleet. 
By including information about buses ahead will potentially enhance the 
quality of trained models. In contrast, some features may be highly 
correlated with each other due to the temporal nature of the data, which 
can lead to multicollinearity issues.
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6.3. Discussion: simulation parameters

In this section, the simulation parameters including bus recovery 
time strategies, scheduled-based, headway-based and stop-skipping 
holding criteria will be discussed in depth.

6.3.1. Bus recovery time
Another point to discuss is the choice of bus recovery time strategy. 

Sufficient recovery time should be built into the schedule to ensure that 
the delays encountered during one trip do not carry over on subsequent 
trips. In this study, two strategies S1 and S2 were implemented, with a 
fixed minimum recovery time up to two minutes in S1 and an adjusted 
recovery time estimated from the observed recovery times in S2.

Applying a fixed recovery time, as with S1, is relatively simple to 
implement without requiring other corresponding data. On the other 
hand, the implementation of a short duration straightforward at the end 
of the trip will likely have an impact on the bus departure time, only if 
the arriving bus was very late, otherwise the next bus departure will be 
at the predefined time. From the departure delays observed in Figure 15, 
one can see that buses will likely depart one minute early and up to two 
minutes late than the scheduled time. S2 attempted to overcome the 
limitations of S1, by adjusting the departure delay based on those 
observed, which improved the quality of simulated bus punctuality. 
However, the application of this second approach has a major drawback, 
as it will require historical data, which not always available, limiting its 
application to other cases studies.

6.3.2. Holding criteria

6.3.2.1. Scheduled-based holding. In this section, the value of holding 
criteria s will be discussed with emphasis on the three variants of the 
scheduled-based holding strategy. With s = 0 (SH0), buses were held 
whenever were ahead of schedule. This strategy seems too theoretical 
and does not reflect actual bus trends, leading to near ignorance on the 
share of early buses. Bus drivers tend to tolerate being to some extent 
ahead of schedule and will therefore not systematically hold up the bus 
each time they are early. In fact, bus operators considered a bus up to a 
minute early to be on time (Arhin et al., 2014). With s = + ∞ (NC), no 
holding control strategy was applied. Surprisingly, the obtained bus 
punctuality shares seem to correspond best to the actual shares, with a 
slight overestimation of buses ahead. Once again, this trend may be 
explained by a certain tolerance of buses ahead to a certain extent on the 
lines studied. In order to understand to what extent the holding criteria 
implemented correspond to the actual criteria, in other words, how early 
does a bus to be to be held? A third holding strategy was implemented 
with s = 3 min (SH3). The results show that even with more than three 
minutes ahead, some of in advance buses were not held.

6.3.2.2. Headway-based holding. The headway-based holding strategy 
HH was implemented with α = 0.8, which implies that a bus will only be 
held if its headway is more than 20 % shorter than the scheduled 
headway. For lines A and B, HH seems to slightly underestimate and 
overestimate the shares of ahead and late buses respectively. Explana-
tions may be as follows: 1) HH aims to maintain the predifined headway 
between running buses and, with the holding control of a bus heavily 
dependent on the preceding bus, an early or delayed departure of the bus 
will have a subsequent impact on the following buses; 2) In this study, 
service reliability is evaluated according to punctuality measures, more 
suited to scheduled-based strategies than to headway-based strategies, 
since it evaluates one vehicle at a time, and in which maintaining the 
headway may not be enough to guarantee the punctuality of buses. For 
line C, HH presents the best fit with actual shares, which can be 
explained by: 1) short travel times, on average 10–12 min; 2) The 
holding control is carried out at a single timing point, since the first and 
last points correspond to the origin and destination stops respectively; 3) 

Line C has a relatively large headway compared its route travel time (6/ 
10 min versus 12 min), and therefore buses will mostly not be held.

6.3.3. Stop-skipping criteria
In this section, the value of stop-skipping criteria Dmax will be dis-

cussed. The stop-skipping will only occur if the bus delay at the control 
point is greater than Dmax, and if not, the skipping will not performed. 
This can lead to additional delays, particularly if the bus continues to run 
slower than than expected, and subsequently further skipped stops, 
which likely explains the relative slight variation in the share of 
moderately and significantly late buses, for line A and B. For line C, with 
only one skipping stop and relatively short travel times, stop-skipping 
may not occur, which may explain the no change in terms of SK3 and 
SK5 shares compared to NC.

Another factor that we need to highlight is the performed dwell time, 
in which alighting is allowed, while boarding is denied. Besides, from 
the available data, the dwell time is considered as part of the running 
time, which may to some extent overestimate the simulated travel times 
and thus generate a slight delay for buses.

6.4. Limitations and perspectives

This study has potential weaknesses and limitations. First, relying on 
data from just three bus lines in the same city might not fully capture the 
complexity and variability of urban public transportation systems. 
Additionally, the model’s effectiveness in other contexts, cities, or 
transportation modes may not have been thoroughly explored or vali-
dated. Although this study attempted to validate the simulation frame-
work based on ML results, it will be interesting to extend its scope to 
other cities by conducting simulation scenarios with a larger number of 
bus lines.

The dataset for bus travel time prediction is somewhat poor, 
including only trip information. Therefore, it will be interesting to 
enrich the training dataset, with information about traffic and road 
characteristics such as: speed limit and traffic lights, in order to: on the 
one hand, to improve the accuracy of ML prediction and, on the other 
hand, to extend the scope of the application to other bus lines. Another 
limitation needs to be pointed out regarding the resilience and adapt-
ability of the framework. The simulation scenarios were carried out with 
emphasis on working day, it will be interesting to carry out other sce-
narios with emphasis on week-ends and public holidays. In addition, 
incorporating more diverse dataset, including special event, will test the 
resilience and adaptability of the framework.

The results of this study put into perspective certain points on which 
it will be interesting to work. 1) Running a simulation model with ML 
models can be time-consuming, especially for bus lines with a large 
number of segments. Thus, in order to overcome this drawback, several 
ML-Simulation coupling strategies, can be implemented. 2) Another 
direction for future research concerns the findings of this study. 
Although previous analyzes have shown that the simulation model 
produces good results according to a number of bus on-time metrics, it is 
also interesting to investigate the extent to which operational recovery 
time influences bus on-time performance. 3) One further step could be 
the application of different strategies to eliminate delay occurrences, 
which can be useful to bus operators to improve service regularity.

7. Conclusions

This paper sheds light on the evaluation of public transportation 
performance, which constitutes an important issue facing operators. In 
this paper, we aim to propose a validation framework integrating 
microscopic simulation model with ML techniques. We introduced a 
hybrid approach combining regression trees trained with three feature 
sets for travel times prediction and probabilistic distributions to accu-
rately estimate travel time variability to feed simulation model. 
Furthermore, a case study on three bus lines was carried out, in which 
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two scenarios (S1 and S2) and six scenarios (SH0, SH3, NC, HH, SK3 and 
SK5) were implemented, respectively, to study the impacts of recovery 
times and bus control strategies on bus punctuality. The results show 
that the travel times simulated using ML were very resembled, with f1 
adequately matching the best actual travel times with minor differences. 
They also show that the proposed hybrid approach combining ML with 
probabilistic distributions can better estimate travel time variability 
than probabilistic distributions on average.

A first analysis of bus punctuality was carried out, showing a good 
match between the actual and simulated shares resulting of S1 with a 
fixed minimum recovery time and S2 with an adjusted recovery time 
derived from actual data, with overall S2 more precise than S1. A second 
analysis was carried out. Surprisingly NC with no holding control seems 
to correspond best to actual shares, while SH0 seems too theoretical and 
does not reflect actual bus trends, leading to high underestimation of bus 
shares ahead. HH with headway-based holding strategy, presented the 
best fit with actual shares for line C. A third analysis was carried out, 
showing a limited impact of the implemented bus stop-skipping strategy 
on the bus punctuality, due to a low share of late buses and the limitation 
of stop-skipping to buses very late. We also conduct an error analysis on 
the punctuality of simulated buses depending on the time of the day. The 
simulated buses follow a similar trend during inter-peak and peak hours, 
and to a lesser extent during the off-peak hours, in which lines A and B 
seem to correspond better to actual shares compared to C. The results 
show that bus travel times seem strongly dependent on the time of the 
day and, on the other hand, seem less sensitive to bus delays. Further-
more, the departure delay at the originating terminal as well as the 
applied holding control strategy are the two most influential factors on 
bus punctuality.

The main objective of the SIMULBUS project, funding this work, was 
to be able to develop microscopic simulation models of bus lines in order 
to test the influence of different factors, such as an evolution of control 
policies, bus plannings, fleet size management or road setups for 
example. In order to enhance the validation process of such models, a 
first step, developed here, was to be able to simulate the historical 
behavior of the bus lines, based on actual data retrieved in the past few 
months. The coupling of ML and multi-agent simulation techniques 
shows good results which make the objective of the prediction models 
plausible. Obviously, everything here was developed for bus lines, but 
the real parameter of this study is constituted of the different transport 
modes sharing the same characteristics than the buses: several instances 
of vehicles running on the same paths, scheduled by predefined 

timetables. Considering the variability of structure and behavior of the 
bus lines across the world, it seems on the other hand impossible to 
apply the results on one line on another one. Therefore, depending on 
the characteristics of each bus line or transport mode, the proposed 
framework described in this work can be applied or adjusted to each new 
line under study.

Further research should involve further testing with a lager number 
of lines and different sets of control points to evaluate the performance 
of the proposed framework. Additionally, actual data can be enriched by 
including information on traffic and road characteristics. This will 
improve the quality of the input data and improve the effectiveness and 
robustness of the ML model. The results of this study benefit bus oper-
ators to assist them in decision-making, by providing appropriate 
simulation parameters that correspond to a large extent to the actual 
situation, and thus realize new scenarios, in actual and similar contexts, 
based on validated results. We believe this paper is of interest especially 
for the practitioners in the field, as it provides in-depth insight into how 
ML and public transport simulation model can be integrated into the 
same framework, to improve quality simulation results.
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Appendix A. Data Section

Table A.1 
A sample of combined data, including scheduled and actual time attributes.

date vehicle id trip id stop id stop sequence scheduled arrival time scheduled departure time real arrival time real departure time

20200916 VCL− 255 TRP− 21022 STP− 1883 1 07:41:00 07:41:00 07:41:22 07:41:22
20200916 VCL− 255 TRP− 21022 STP− 1884 2 07:42:20 07:42:20 07:43:21 07:43:21
… … … … … … … … …
20200916 VCL− 255 TRP− 21022 STP− 982 7 07:47:00 07:47:00 07:48:10 07:48:10
20200916 VCL− 255 TRP− 21022 STP− 983 8 07:47:53 07:47:53 07:49:12 07:49:12
… … … … … … … … …
20200916 VCL− 255 TRP− 21022 STP− 990 16 07:56:00 07:56:00 07:58:15 07:58:15
20200916 VCL− 255 TRP− 21022 STP− 991 17 07:57:06 07:57:06 07:58:52 07:58:52
… … … … … … … … …
20200916 VCL− 255 TRP− 21022 STP− 994 20 08:01:00 08:01:00 08:02:07 08:02:07
20200916 VCL− 255 TRP− 21022 STP− 995 21 08:01:50 08:01:50 08:02:49 08:02:49
… … … … … … … … …
20200916 VCL− 255 TRP− 21022 STP− 998 23 08:04:00 08:04:00 08:05:38 08:05:38
20200916 VCL− 255 TRP− 21022 STP− 2105 24 08:05:14 08:05:14 08:06:14 08:06:14
… … … … … … … … …
20200916 VCL− 255 TRP− 21022 STP− 1004 30 08:10:20 08:10:20 08:10:59 08:10:59
20200916 VCL− 255 TRP− 21022 STP− 1005 31 08:11:00 08:11:00 08:11:10 08:11:10
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Table A.2 
A sample dataset aggregated at section level, including: section stops and index, scheduled and real times, and derived travel times.

from stop to stop section 
index

scheduled from stop 
time

scheduled to stop 
time

scheduled section travel 
time

real from stop 
time

real to stop 
time

real section travel 
time

STP− 1883 STP− 1884 1 07:41:00 07:42:20 00:01:20 07:41:22 07:43:21 00:01:59
… … … … … … … … …
STP− 982 STP− 983 7 07:47:00 07:47:53 00:00:53 07:48:10 07:49:12 00:01:02
… … … … … … … … …
STP− 990 STP− 991 16 07:56:00 07:57:06 00:01:06 07:58:15 07:58:52 00:00:37
… … … … … … … … …
STP− 994 STP− 995 20 08:01:00 08:01:50 00:00:50 08:02:07 08:02:49 00:00:42
… … … … … … … … …
STP− 998 STP− 2105 23 08:04:00 08:05:14 00:01:14 08:05:38 08:06:14 00:00:36
… … … … … … … … …
STP− 1004 STP− 1005 30 08:10:20 08:11:00 00:00:40 08:10:59 08:11:10 00:00:11

Table A.3 
A sample dataset aggregated at segment level.

from stop to stop segment 
index

scheduled from 
stop time

scheduled to stop 
time

scheduled segment 
travel time

real from stop 
time

real to stop 
time

real segment 
travel time

STP− 1883 STP− 982 1 07:41:00 07:47:00 00:06:00 07:41:22 07:48:10 00:06:48
STP− 982 STP− 990 2 07:47:00 07:56:00 00:09:00 07:48:10 07:58:15 00:10:05
STP− 990 STP− 994 3 07:56:00 08:01:00 00:05:00 07:58:15 08:02:07 00:03:52
STP− 994 STP− 998 4 08:01:00 08:04:00 00:03:00 08:02:07 08:05:38 00:03:31
STP− 998 STP− 1005 5 08:04:00 08:11:00 00:07:00 08:05:38 08:11:10 00:05:32

B. Validation of Travel Times

Table B.1 
Reported average travel times (in seconds) as well as derived relative metric Δ, for each route segment of bus line A.

segment ID segment stops TTtheo TTactual TTf1 TTf2 TTf3 Δt,a Δf1 Δf2 Δf3

A-A1 STP− 1006 → STP− 1013 434 429 408 395 402 − 1 % − 5 % − 8 % − 6 %
A-A2 STP− 1013 → STP− 1017 188 121 123 131 124 − 35 % 1 % 8 % 2 %
A-A3 STP− 1017 → STP− 1022 371 420 422 421 432 13 % 1 % 0 % 3 %
A-A4 STP− 1022 → STP− 1030 584 603 617 619 636 3 % 2 % 3 % 5 %
A-A5 STP− 1030 → STP− 1846 597 419 450 470 487 − 30 % 7 % 12 % 16 %
– – – – – – – – – – –
A-R1 STP− 1883 → STP− 982 383 423 423 421 420 10 % 0 % 0 % − 1 %
A-R2 STP− 982 → STP− 990 620 629 648 637 636 1 % 3 % 1 % 1 %
A-R3 STP− 990 → STP− 994 322 253 262 261 275 − 21 % 3 % 3 % 9 %
A-R4 STP− 994 → STP− 998 247 226 230 229 235 − 8 % 2 % 1 % 4 %
A-R5 STP− 998 → STP− 1005 392 333 342 346 362 − 15 % 3 % 4 % 9 %

Table B.2 
Reported average travel times (in seconds) as well as derived relative metric Δ, for each route segment of bus line C.

segment ID segment stops TTtheo TTactual TTf1 TTf2 TTf3 Δt,a Δf1 Δf2 Δf3

C-A1 STP− 2521 → STP− 2525 280 282 275 276 277 1 % − 3 % − 2 % − 2 %
C-A2 STP− 2525 → STP− 2526 323 343 333 334 336 6 % − 3 % − 3 % − 2 %
– – – – – – – – – – –
C-R1 STP− 2526 → STP− 2527 288 353 347 345 349 22 % − 2 % − 2 % − 1 %
C-R2 STP− 2527 → STP− 2440 297 226 223 223 225 − 24 % − 1 % − 1 % 0 %

Y. Delhoum et al.                                                                                                                                                                                                                               Journal of Public Transportation 26 (2024) 100103 

30 



Table B.3 
Reported average travel times (in seconds) as well as Δ values, for each route segment of bus line B.

segment ID segment stops TTtheo TTactual TTf1 TTf2 TTf3 Δt,a Δf1 Δf2 Δf3

B-A1 STP− 2349 → STP− 1380 530 560 569 568 560 6 % 2 % 2 % 0 %
B-A2 STP− 1380 → STP− 1390 588 568 587 578 586 − 3 % 3 % 2 % 3 %
B-A3 STP− 1390 → STP− 1394 297 249 254 255 296 − 16 % 2 % 2 % 19 %
B-A4 STP− 1394 → STP− 2408 480 433 454 453 486 − 10 % 5 % 5 % 12 %
B-A5 STP− 2408 → STP− 2746 75 92 80 79 80 22 % − 13 % − 14 % − 13 %
– – – – – – – – – – –
B-R1 STP− 2747 → STP− 2348 75 114 110 112 110 52 % − 4 % − 2 % − 3 %
B-R2 STP− 2348 → STP− 1411 449 417 422 417 420 − 7 % 1 % 0 % 1 %
B-R3 STP− 1411 → STP− 1415 270 231 238 237 240 − 15 % 3 % 3 % 4 %
B-R4 STP− 1415 → STP− 1420 224 286 296 291 295 28 % 4 % 2 % 3 %
B-R5 STP− 1420 → STP− 1424 444 315 327 334 365 − 29 % 4 % 6 % 16 %
B-R6 STP− 1424 → STP− 1379 251 353 366 370 359 41 % 4 % 5 % 2 %
B-R7 STP− 1379 → STP− 834 206 169 174 223 174 − 18 % 3 % 32 % 3 %

Table B.4 
Reported actual average travel times TTactual as well as the relative differences Δf1, Δf2 and Δf3, for bus line A, over morning and evening peak-hours.

Morning peak hours Evening peak hours
segment ID TTactual Δf1 Δf2 Δf3 TTactual Δf1 Δf2 Δf3

A-A1 513 − 10 % − 14 % − 22 % 422 − 3 % − 6 % − 3 %
A-A2 132 1 % 2 % − 3 % 125 1 % − 1 % − 1 %
A-A3 481 − 1 % 0 % − 8 % 433 − 5 % − 4 % 1 %
A-A4 653 − 1 % 0 % − 3 % 619 − 1 % 0 % 4 %
A-A5 500 10 % 11 % 13 % 433 1 % 3 % 13 %
– – – – – – – – –
A-R1 418 − 3 % − 4 % 0 % 472 1 % 1 % − 10 %
A-R2 628 − 2 % − 4 % 0 % 706 4 % 4 % − 7 %
A-R3 248 1 % − 3 % 6 % 271 3 % 8 % 13 %
A-R4 231 − 1 % − 4 % 1 % 253 0 % 2 % − 9 %
A-R5 349 − 5 % − 2 % 0 % 349 2 % 3 % 14 %

Table B.5 
Reported actual average travel times TTactual as well as the relative differences Δf1, Δf2 and Δf3, for bus line C, over morning and evening peak-hours.

Morning peak hours Evening peak hours
segment ID TTactual Δf1 Δf2 Δf3 TTactual Δf1 Δf2 Δf3

C-A1 284 − 3 % − 3 % − 3 % 300 − 6 % − 6 % − 7 %
C-A2 342 − 3 % − 5 % − 2 % 395 − 5 % − 4 % − 14 %
– – – – – – – – –
C-R1 373 − 1 % − 2 % − 7 % 396 − 4 % − 4 % − 10 %
C-R2 231 − 3 % − 3 % − 4 % 233 0 % − 1 % − 2 %

Table B.6 
Reported actual average travel times TTactual as well as the relative differences Δf1, Δf2 and Δf3, for bus line B, over morning and evening peak-hours.

Morning peak hours Evening peak hours
segment ID TTactual Δf1 Δf2 Δf3 TTactual Δf1 Δf2 Δf3

B-A1 573 − 2 % − 3 % − 2 % 625 − 2 % − 2 % − 10 %
B-A2 617 0 % − 2 % − 5 % 635 − 1 % − 2 % − 7 %
B-A3 305 − 9 % − 9 % − 3 % 313 − 1 % − 1 % − 4 %
B-A4 548 2 % − 3 % − 6 % 450 1 % 1 % 9 %
B-A5 105 − 14 % − 15 % − 24 % 103 − 27 % − 28 % − 24 %
- - - - - - - - -
B-R1 99 − 5 % 0 % 10 % 131 − 4 % − 2 % − 16 %
B-R2 413 − 1 % − 3 % 1 % 490 − 2 % − 3 % − 14 %
B-R3 284 1 % 0 % − 14 % 260 1 % 1 % − 4 %
B-R4 310 0 % − 2 % − 5 % 312 0 % − 1 % − 6 %
B-R5 342 8 % 9 % 14 % 352 2 % 2 % 9 %
B-R6 375 − 2 % − 1 % − 4 % 384 − 1 % − 2 % − 8 %
B-R7 188 − 3 % 4 % − 8 % 179 − 1 % 4 % − 4 %
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