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Abstract

The evaluation of performance of public transportation, such as bus lines for example, is a major issue for op-
erators. To be able to integrate specific and local behaviors, microscopic simulations of the lines, modelling each
buses on a daily basis, brings an actual added value in terms of precision and quality. A scientific deadlock then
appears regarding the parameterization of the simulation model. In order to be able to gather relevant performance
indicators on a potential evolution of the configuration of the line, validated and modifiable simulation models need
to be developed. This study aims at proposing a model development methodology based on a multi-agent simulation
framework and data inputs extracted by a hybrid approach combining machine learning (ML) trained on actual bus
data to predict travel times and probabilistic distributions to accurately estimate travel time variability. It also aims to
propose a two-step validation framework that exhibits the performance of the obtained model on a case study based on
actual data. The results of the proposed approach are validated by a real case study of three bus lines, including a num-
ber of simulation scenarios, to study the impacts of bus recovery time and bus control strategies on bus punctuality.
The results obtained show that proposed hybrid approach combining ML with probabilistic distributions outperforms
probabilistic distributions on average. Overall, the results show a good fit with the actual Key Performance Indicator
(KPI) used by bus operators.

Keywords: Machine learning, Microscopic simulation, Public transport, Bus punctuality, Bus travel time, Bus
holding control

1. Introduction1

Nowadays, urban cities face multiple challenges, ranging from rapidly increasing population to increasing number2

of motorized vehicles and traffic congestion [1]. In order to reduce traffic congestion, and therefore its negative3

impacts, cities around the world are trying to shift personal traffic to public transport [2]. Public transportation (PT),4

public transit or mass transit is defined as transportation of passengers by group travel systems available for use by the5

general public. It is an important part of urban life, which plays a critical and essential role for mobility in the modern6

city. It is managed according to a predefined schedule and operated on established routes. The reliability of service7

can be understood as a combination of: punctuality of service provided within the scheduled times and the frequency8

of service of vehicles evenly spaced to accommodate passengers. In public transport, reliability is considered one of9

the most critical features to assess the quality of service from the perspectives of passengers and operators. Reliability10

is understood in PT as the certainty that passengers have about the level of service they will experience while travelling11

[3]. Travel time and waiting time, in addition to transfer time and comfort level, experienced during the transit trip12

are some of the important reliability attributes [4].13

Travel time variability (TTV), also known as travel time uncertainty, is the key indicator for measuring the perfor-14

mance of the transport system, can be divided into three distinct components: day-to-day variability, variability over15

the course of a day and vehicle-to-vehicle variability [5]. Research emphasizes day-to-day (or inter-day) variability,16
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which describes the degree of variation in travel time for a trip taking the same route over a specific period [6]. Proba-17

bilistic distributions are capable of describing the nature and the pattern of travel time variability. Understanding travel18

time distributions and their components is a prerequisite for reliability analysis. Various studies have made consider-19

able effort in fitting travel times with different types of distributions, such as normal [7], lognormal [8; 9; 10; 11; 12],20

gamma [13; 14], Weibull [15], Burr [16; 17], Generalized extreme value (GEV) distribution [18], Gaussian Mixture21

Model [19] were proposed. Such modelling aimed to find the best statistical distribution to describe and explain the22

shape and the pattern of TTV, because a distribution fitted to travel time values could illustrate a more comprehensive23

nature of the TTV [20].24

Limiting transit delays is at the core of control metrics for the public transport operators, limiting these delays will25

help to maintain an appropriate quality of service with reasonable certainty. Delays can be caused by multiple factors:26

traffic congestion, passenger boarding, road delays and certain events like traffic accidents, etc... Historically, many27

researchers have adopted various methods for predicting the estimated time of arrival of buses, these methods can28

be divided into several groups: historical and real-time approaches, Kalman filtering approaches, statistical methods29

and ML techniques [21]. In practice, the performance indicators are often estimated in a purely statistical way by30

practitioners over several months or years of data. This method provides a relatively coherent image of the past31

behaviour of the bus lines with low modelling effort and computation cost, but does not allow to evaluate these32

indicators in different "what if?" scenarios (e.g. roadworks, new traffic priorities, etc.).33

Another problem that the bus operators face is bus bunching. Bus bunching refers to the phenomenon where a34

group of two or more buses arrives at the same bus stop at the same time. It is a long-standing operational problem35

in urban public transport systems, and it is a major issue that concerns transit users and affects our perception of36

service reliability and efficiency [22]. This indicator is completely impossible to compute in a purely statistical way,37

as it relates to single bus travels, their history (delays) and the buses ahead and behind [23; 24; 25; 26]. Microscopic38

simulations are one of the most promising way to be able to tackle these kind of problems.39

40

To deal with the challenges noted earlier, bus operators need efficient microscopic bus lines simulation models to41

evaluate the performance indicators of the current lines and forecast indicators on potential evolutions of these lines.42

To do so, the first requirement is to be able to model the current situation in a coherent way and validate the results43

it provides. In this study, we aim to validate public transport simulation framework, including simulated travel times44

and bus punctuality, with the available actual data. The focus is on retrieving simulation parameters that best match45

the actual data, particularly bus punctuality which is strongly related to bus travel time. A classical approach is to46

perform the simulation with scheduled travel times, for example from General Transit Feed Specification (GTFS)47

data. However these travel times are too theoretical and may differ greatly from observed travel times. We therefore48

propose to replace theoretical travel times with travel times extracted from actual data. An alternative is to use49

probabilistic distributions to estimate the actual travel time variability to feed PT simulation framework. We propose50

an effective ML technique along with probabilistic distributions, with aim of providing the simulation framework with51

more accurate travel times than those estimated with probabilistic distributions.52

In this paper, we suggest a model development methodology based on a multi-agent simulation framework and data53

inputs extracted by a hybrid approach combining ML trained on actual bus data to predict travel times and probabilistic54

distributions to accurately estimate travel time variability. We also propose a two-step validation framework that55

exhibits the performance of the obtained model on a case study based on actual data provided by an operator. A first56

contribution of this paper is to propose effective ML techniques to predict the travel time in a real scenario, so as57

to bypass the computational efforts in the simulation platform to mimic congestion. A second contribution of this58

work is to couple ML and public transport simulation model in the same framework, which to our knowledge is rarely59

implemented.60

61

The remainder of this article is structured as follows: Section 2 reviews related literature including ML models62

and their application for bus travel prediction, as well as simulation models with emphasis on traffic models. Section63

3 provides an overview of the proposed ML-based microscopic simulation framework and then details each of the64

layers of the framework. Additionally, the two-step validation framework to assess the performance of the proposed65

ML-based simulation model will be presented in detail. A case study scenario will be given in Section 4. In Section66

5, the simulation results will be analyzed and validated based on a set of performance indicators. A discussion of the67

analyses presented is in Section 6 and some concluding remarks in Section 7.68
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2. Literature Review69

Over the past decade, the problem of bus travel time prediction has received wide attention. In this section, we first70

review related works, which can be categorized into prediction of bus arrival time and bus travel time. Furthermore,71

we present a number of traffic simulation frameworks and studies that attempt coupling ML with simulation models,72

as well as the contributions of this work.73

2.1. Bus Arrival Time Prediction74

Estimated Time of Arrival (ETA), also known as expected time of arrival, is the time at which a transportation75

system is expected to arrive at its destination. The term has long been used in aviation and maritime transport, but also76

increasingly in road transport. Various methods have been adopted by researchers to predict the expected arrival time77

of buses, these methods can be grouped as follows: 1) historical approaches predict the travel time at a given time78

as the average travel time for the same period on different days [27; 28; 29; 30]; 2) real time approach predicts that79

the next time interval travel time will be the same as the current travel time [21]; 3) regression models are classical80

approaches for predicting travel time and predicting a dependent variable based on a function formed by a set of81

independent variables [29; 30; 31; 32]; 4) Kalman filter is a popular tool for the recursive estimation of variables82

that characterize a system, it is a model-based estimation scheme that takes into account the stochastic properties of83

process disturbance and the measurement noise [31; 33; 34; 35; 36]; 5) ML techniques have been widely reported for84

traffic and travel time prediction [33; 37; 38; 39; 40].85

2.2. ML for Bus Arrival and Travel Time Prediction86

In past decades, ML models have been widely applied in the transportation field, due to their ability to solve87

complex problems and extract patterns. However, ML approaches are data-driven techniques, requiring a large data88

set and high computation time. Many applications of traditional ML methods have been implemented to predict traffic89

data [41; 42; 43; 44] and traffic congestion [45; 46], reinforcement learning approaches have been incorporated into90

traffic control systems [47; 48], while the models of neural network and deep learning have been widely reported,91

including traffic flow prediction [49; 50; 51; 52], travel demand forecasting [53; 54; 55; 56; 57], traffic signal control92

[58; 59], driving behavior analysis [60; 61] and autonomous driving applications [62; 63].93

Bus Arrival Time Prediction. ML models based on neural network (NN), tree-based, Support Vector Machine (SVM)94

and regression have been proposed for bus arrival time prediction. Chien et al. [33] proposed two artificial neural95

networks to address the dynamic bus arrival time prediction problem. Predicted travel times are then assessed with a96

microscopic simulation model, calibrated and validated with real-world data. Pan et al. [64] introduced a self-learning97

algorithm based on a back-propagation neural network for predicting bus arrival time based on historical data. Li et al.98

[65] proposed a random forest-based approach for bus arrival time prediction, using travel data from the Beijing city99

bus network. Yin et al. [66] proposed a model for prediction bus arrival time at stops with multiple routes using the100

Support Vector Machine algorithm. Yu et al. [67] has applied several ML algorithms including: SVM, NN, k-nearest101

neighbours algorithm (kNN) and linear regression (LR), to predict bus arrival time at bus stop with multiple routes.102

In another work, Shalit et al. [68] introduced a supervised ML method for predicting passengers’ boarding stops.103

Some of the above mentioned methods are used in a hybrid manner. Yang et al. [39] implemented an approach104

in which SVM with Genetic Algorithm (GA) were used to predict bus arrival time, using different features including:105

road length, weather conditions and travel speed. Chen et al. [69] presented a dynamic bus arrival time prediction106

model based on real-world data. The model consists of: 1) An artificial neural network (ANN) model to predict the107

bus travel time between two stops; 2) A Kalman filter-based dynamic algorithm to adjust the arrival time prediction108

using the bus location information down to the minute. In another work, Zhang et al. [70] proposed a method called109

CK-means (K-means Clustering) to predict the arrival time of buses using real time online bus locations. The K-means110

clustering method is used to aggregate historical traffic data and calibrate the operating status of the road section.111
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Bus Travel Time Prediction. Many studies based on deep learning (DL), SVM and tree-based models have been112

devoted for predicting bus travel time. Chen et al. [71] applied a deep learning method with a back-propagation113

neural network to predict bus travel time. The proposed approach was then validated with real traffic data. In another114

work, He et al. [72] used a DL model to predict bus travel time by taking into account passenger’s riding time across115

multiple bus trips and waiting time at transfer bus stops. To do this, the entire journey is partitioned into bus riding116

components and waiting components, each of the components is predicted separately and the results are merged to117

obtain the final bus travel time. Junyou et al. [73] applied the SVM algorithm for bus travel time prediction. In another118

work, Yu et al. [74] predicted bus travel time using random forests based on near neighbors (RFNN). To predict the119

bus travel time between adjacent bus stops, the proposed model takes as input the bus dwell time of the current stop120

and the current traffic conditions on the predicted route segment and next segments. Recently, Ashwini et al. [75]121

proposed a comparative study of number of linear and non-linear models including: LR, Support Vector Regression122

(SVR), Regression Trees (RTs) and Random Forest Regression, to identify a suitable model for travel time prediction.123

In another work, Serin et al. [76] applied and compared a number of ML methods, including tree-based regression124

algorithms and SVR, to predict bus travel time.125

In some works, ML methods combined with Kalman filtering-based algorithm were proposed. Bai et al. [77]126

proposed a dynamic travel time prediction model for buses dealing with on-road cases with multiple bus routes, based127

on SVMs and Kalman filtering-based algorithm. The SVM model predicts baseline travel times from historical bus128

trip data. Travel times can then be adjusted using a Kalman filtering-based algorithm, based on the latest information129

on bus operations and baseline travel times. In another work, Kumar et al. [78] proposed an approach based on kNN130

classifier and model-based Kalman filtering for real-time bus travel time prediction.131

Transit Delay Prediction. Many works focused on predicting transit travel delay. Shoman et al. [79] proposed a132

deep learning-based framework to predict bus delays at the network level, in which the framework is fed by large,133

heterogeneous bus transit data (GTFS) and vehicle probe data. Wu et al. [80] proposed a Random Forest based134

approach to forecast multi-scenario train delays.135

2.3. Traffic Simulation Models136

Traffic simulation can be defined as the mathematical model of transportation systems, implemented through137

the application of dedicated computer software. Traffic simulators can be divided according to the level of details138

provided into: microscopic and macroscopic approaches. Microscopic traffic simulator focuses on the movement of139

each individual entity in the system. It provides a detailed picture of each individual vehicle including: location, time140

and speed [81]. Microscopic models are very effective in assessing heavily congested conditions. On the other hand,141

these traffic models are time-consuming, costly, and can be difficult to calibrate. Macroscopic traffic simulators are142

based on deterministic relationships of flow, speed and density of traffic flow [82]. They were originally developed to143

model traffic in distinct transportation sub-networks, such as freeways and rural highways.144

Open-Source Simulation Models. Over the past decades, a number of traffic simulation frameworks have been devel-145

oped. TRANSIMS developed at Los Alamos National Laboratory (USA) is an integrated set of tools for performing146

the analysis of a regional transportation system based on a cellular automata microscopic simulation model. It models147

individual travelers and their multi-modal transportation based on synthetic populations and their activities. TRAN-148

SIMS represents time in a consistent and continuous way, as well as detailed persons and households [83]. MIT149

(Massachusetts Institute of Technology) developed MITSIMLab, an open-source microscopic traffic simulator that150

evaluates the impacts of alternative traffic management systems, public transport operations and various Intelligent151

Transportation Systems (ITS) strategies at the operational level and helps in their further refinement. In order to cap-152

ture the sensitivity of traffic flows to control and routing strategies, the traffic and network components are detailed153

in MITSIM [84]. MATSim (Multi-Agent Transport Simulation) developed by ETH Zurich, has in the recent years154

become a major open-source framework, used to implement large-scale agent-based transport simulations, in which a155

large number of synthetic persons (so-called “agents”) are simulated. Designed as a framework for large-scale scenar-156

ios, MATSim is highly modular, allowing for a very high level of customization [85]. SUMO (Simulation of Urban157

MObility) was developed at the German Aerospace Centre. It is a microscopic multimodal traffic simulator capable158

of simulating different types of traffic data, in which vehicles, public transport and persons are modeled explicitly. It159

can provide a nice visual and understandable output for future tests and analysis SUMO [81]. Leblond et al. [86]160
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proposed Starling, an agent-based simulation software. It was developed as a generic framework to deal with spatial161

issues of territories. The simulation framework is designed to evaluate a specific mobility service.162

Commercial Models. In addition to open-source models, a number of commercial software have been implemented.163

PTV Vissim, a microscopic multi-modal traffic flow simulation software package developed by PTV (Planung Trans-164

port Verkehr AG) in Karlsruhe, Germany. VISSIM allows users to define a full range of vehicle types including165

passenger cars, buses, trucks, rail vehicles as well as pedestrians and cyclists. It is widely used to simulate, evaluate166

and validate new transport policies and control systems [87]. TransModeler, a traffic simulation platform marketed167

by Caliper Corporation (USA), it is used to model traffic planning, traffic management and emergency evacuation168

scenarios over a wide-area [88].169

2.4. Coupling ML and Simulation Models170

In recent years, several studies attempt to perform ML with simulation models. Shafizadeh et al. [89] coupled ML171

including SVM and ANNs, tree-based models and statistical models with cellular automata to simulate urban growth172

in the city of Tehran. Tongal et al. [90] proposed a simulation framework to explore the effectiveness of different173

ML approaches in streamflow simulation for four rivers in the United States. Yan et al. [91] proposed a method of174

coupling NNs and numerical models to simulate and identify areas at high risk of urban flooding and to predict the175

depth of water accumulation. The outputs of the simulation models are used to feed the neural network. Chabanet et176

al. [92] proposed a method based on active learning concepts to combine a computationally costly simulator with ML177

classifier (kNNs), which is less computationally costly to use online but whose predictions are only approximations178

of the simulator. First, the framework tries to classify the unlabeled instances with kNNs classifier, otherwise, the179

simulator will be performed then. Shahhosseini et al. [93] proposed an approach to couple crop modeling, a simulation180

model with ML models, to improve corn yield prediction in the US Corn Belt. The integration of simulation results181

improved the yield prediction accuracy of ML models. Abdelaty et al. [94] used the simulated energy consumption182

scenarios to develop four different data-driven modelling techniques.183

184

The use of framework combining ML models and public transportation simulators remains poorly implemented.185

An interesting work that addressed a similar problem to our work has been proposed by Othman et al. [95], in which a186

framework integrating NN models into a PT simulation model to improve real-time supply based on multiple demand187

scenarios. First, a Multi-Layer Perceptron coupled with a LR model trained on traffic data and weather information188

was used to predict the type of congestion, duration of congestion and hence delayed travel times. Then, the travel189

times will be fed into a simulator, in which several scenarios will be simulated.190

From a general point of view, the framework proposed in [95] and our framework follow a similar pattern, in which191

the actual data is trained to provide public transport simulator with more accurate travel times. The main difference192

lies in the type of data used as ML input data, with traffic data in [95] and actual bus stop times extracted from AVL193

(Automated Vehicle Location) data in this proposed framework, respectively. In this proposed work, the impacts of194

traffic on the bus routes (including traffic congestion) are indeed included in the actual bus travel times.195

2.5. Study Contributions196

ML is a powerful tool, but it faces certain limitations. One of the main drawbacks is that it can be biased.197

Algorithms implemented in ML are designed to look for patterns in data. If there is a bias in the data, ML algorithms198

will detect and reinforce that bias. Another disadvantage is that ML can be computationally expensive, slow and199

resource-intensive to train successfully, especially on large datasets. On the other hand, simulation has long been200

touted as a powerful tool for understanding complex systems. By building models of how systems work, we can201

better understand how they might behave in the future. However, simulation has its drawbacks. First, the simulation202

is only as good as the models built. If the built models are inaccurate, the simulation performed will be inaccurate203

as well. Second, simulations are only approximations. In a number of situations, simulation models are not capable204

of qualifying all the variables that affect the behavior of the system. In very large and complex problems, the large205

number of variables and the relationships between them makes the problem very difficult to model.206

207

In an effort to overcome the limitations of simulation and ML models, a framework for a ML-based microscopic208

simulation model is proposed, to provide more accurate and realistic simulations for public transport operators, which209
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Ashwini et al. [75] x x x A study to identify a suitable ML model for bus travel time prediction
Bai et al. [77] x x x x Dynamic bus travel time prediction models with multiple bus routes
Chen et al. [69] x x x Dynamic bus arrival time prediction model based on APC real-world
Chen et al. [71] x x x ML approach to predict bus travel time validated with real traffic data
Chien et al. [33] x x x Dynamic bus arrival time prediction with artificial neural networks
Gal et al. [96] x x x x x Traveling time prediction in scheduled transportation with trip segments
He et al. [72] x x x x Travel-time prediction of bus journey with multiple bus trips
Jeong et al. [29] x x x Bus arrival time prediction using artificial neural network model
Junyou et al. [73] x x x Support Vector Machine algorithm for bus travel time prediction
Kumar et al. [97] x x Kalman filtering and ANNs approaches for bus arrival time prediction
Kumar et al. [78] x x x kNN and Kalman filtering model for real-time bus travel time prediction
Lam et al. [98] x x x Prediction of bus arrival time using real time online bus locations
Li et al. [65] x x x Bus arrival time prediction based on random forest
Othman et al. [95] x x x x x Machine learning aided simulation of public transport utilization
Pan et al. [64] x x x Self-learning algorithm based on a BPNN for predicting bus arrival time
Panovski et al. [99] x x x x x Bus arrival time prediction at different bus stops on a given bus route
Shalit et al. [68] x x x A supervised ML model for imputing missing boarding stops
Serin et al. [76] x x x Predicting bus travel time using machine learning methods
Shoman et al. [79] x x Deep learning framework for predicting bus delays on multiple routes
Wu et al. [80] x x x The bounds of improvements toward real-time forecast of train delays
Yang et al. [39] x x Bus arrival time prediction SVM with GA
Yin et al. [66] x x x x Prediction bus arrival time at stops with multiple routes
Yu et al. [67] x x x x Bus arrival time prediction at bus stop with multiple routes
Yu et al. [74] x x x Predicted bus travel time based on near neighbors
Zhang et al. [70] x x x K-means approach to predict bus arrival times based on GPS data
Proposed work x x x x x A microscopic simulation of public transportation based on ML

Table 1: Comparative table of related works

will be useful to enhance the reliability of service. Although a number of studies have addressed the problem of bus210

travel time and arrival time prediction, by implementing ML models. Most studies focus on prediction a single travel211

time value. In this study, the focus is on more accurately estimating travel time variability rather than a single value.212

This work contributes in the literature by: 1) using a ML model with a traffic simulator in the same framework for213

public transportation simulation is not widely implemented; 2) A ML model for travel time prediction, trained on214

actual data, combined with probabilistic distributions to estimate travel time variability, will be used to power the215

simulation, helping to reduce simulation complexity and providing the simulator with appropriate parameters; 3) The216

simulations will be more realistic, as they will be validated with performance indicators directly calculated from actual217

data.218

219

In Table 1, we present a comparison of the proposed work with other works on the following aspects: whether220

ML models (e.g. classical model, neural networks and deep learning models) have been used; whether simulation221

models have been carried out; if both ML and simulation models are a part of the implemented framework; whether222

the focus of the work is travel metrics (e.g. arrival time, travel time and delay), as well as the nature of the data used223

(e.g. historical and real-time data).224
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3. Methodology225

3.1. ML-Based Microscopic Simulation Framework226

Before outlining the proposed framework for a ML-based microscopic simulation model and its different layers,227

an overview of the proposed approach is presented as follows. In the first stage, actual data (GPS traces) and transit228

schedule data (e.g. GTFS data) will be matched and then aggregated at the route segment level. In the second stage, the229

process of building ML model is conducted. A ML algorithm is first selected, then feature importance techniques will230

be applied to select relevant features, then ML will be trained for bus travel time prediction. Finally, the generated231

ML models, combined with probabilistic distributions to estimate bus travel time variability, will be deployed and232

connected to the public transport simulation model. In the third stage, the transit scenario will be implemented, and233

then simulated. During the simulation process, bus travel times will be requested by the simulator. On the other hand,234

deployed models, will process each request and provide the simulator with the predicted travel times. At last, the235

simulation results will be validated with actual data using a set of metrics. An overview of the ML-based microscopic236

simulation framework is shown in Figure 1.237

Figure 1: An overview of the ML-based microscopic simulation framework. The framework consists of three layers: 1) data layer, 2) ML layer,
and 3) simulation layer. 1) Transit schedules and actual data are used to generate aggregated datasets at the segment route level. 2) The ML model
for segment travel time prediction takes place in two stages: A) model building and B) model deployment. A) ML model is first initialized by
selecting the model features, the supervised algorithm and configuring the model parameters. Next, the segment route dataset is prepared, cleaned,
fed to train and adjust the model by performing cross-validation and optimisation techniques respectively. B) Model deployment consists of storing
the model locally, and indexing it in a database. 3) A simulation scenario is implemented and then simulated, in which ML models will feed the
simulation model with travel times
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3.1.1. Data Introduction238

In this section, the spatial and temporal components of the bus line will first be presented, then the data sources239

and data aggregation process used to train the ML models will be detailed.240

Bus Route Components. A transit bus travels from an origin to a destination passing through a set of stops along241

the way. Spatial components can be grouped into several levels: stop, section, segment and route. The link between242

two consecutive stops is called section. A more aggregate section, called segment, the latter is made up of several243

consecutive sections. All sections from an origin terminal to a destination terminal form a route [100]. Additionally,244

and in order to maintain acceptable service reliability, most bus operators set up control points along the bus route.245

Control points are timing points, specific transit stops where the bus departure times are subject to regulation or to246

meet a specific buffer time [4]. An illustration of the spatial components of bus lines is given in Figure 2.247

Figure 2: An illustration of the different spatial components of a transit line

The time components of bus routes can be distinguished into durations and time points. Travel time, dwell time248

and running time are durations, while arrival time and departure time at bus stops are points in time. The travel time249

is made up of dwell time and running time respectively, referring to the time a bus spends stationary at a scheduled250

stop and the time the bus spends while not stopping at a stop. Operating times can be expressed at the level of:251

section, segment or route. Section travel time corresponds to the sum of the dwell time and the running time, between252

two successive stops. Segment travel time corresponds to the sum of the travel times of the sections constituting the253

considered segment. While route travel time refers to the total travel time comprised between the first stop and the254

last stop. An illustration of the time components of bus lines at the section level is given in Figure 3.255

Figure 3: An illustration of the different components of travel time between two transit stops
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Data Used. The main data for the application of the proposed approach can be distinguished into GTFS transit data256

(General Transit Feed Specification) and actual data. Transit schedules are grouped by transit line (e.g. bus line) and257

formatted as GTFS tables. A GTFS feed consists of several comma-separated files that mainly contain information258

about transit lines, stop locations, and timetables [101]. On the other hand, actual data provides information about259

transit trips during a period of the year, including: date, vehicle ID, corresponding trip, and recorded stop times. From260

a technical point of view, actual data is structured similarly to a GTFS stop times table. Practically, actual stop times261

are recorded from GPS trackers on transit vehicles (e.g. buses), at each transit stop. Therefore, scheduled and actual262

stop times can be matched in the same data structure based on mutual attributes, such as trip id and stop id.263

264

After matching scheduled and actual data in the same dataset. The next step is to aggregate the observations265

originally available at the stop-level, to a more aggregated level of details, for instance at the section and segment266

level. The data aggregation process aims to mitigate the impacts of imprecise stop times, since this latter is susceptible267

to measurement errors, which can therefore lead to a poor quality ML model. It takes place in two steps:268

• As a first step, public transport observations at bus stop level will be aggregated at section level. From scheduled269

and actual stop times, the corresponding travel times can be simply derived at the section level.270

• As a second step, certain criteria can be used to define control points, specific transit stops where the buses271

are subject to regulation or to meet a specific buffer time. Depending on these timing points, a set of route272

segments can be defined. Therefore, the observed transit stop times can be aggregated from the section level to273

the segment level. Arrival time, departure time and travel time will be derived.274

For the actual data at hand, only bus arrival times are available. In the remainder of this paper, the bus stop time275

will refer to the bus arrival time. Bus route components, as well as the stop and the travel times of a transit trip,276

aggregated at the stop, section and segment levels, are shown in Figure 4.277

Figure 4: An illustration of the components of a bus route with stop and travel times

The resulting stop-level and section level datasets are illustrated in more details in Appendix A.278
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Transit schedules are mainly planned according to the type of the day. Since demand for public transport is strongly279

linked to the type of the day, the transit demand is greater on working days than on weekends or holidays. Therefore,280

the day type attribute will be used to implement particular scenarios, for instance the working days scenario. In281

addition, in order to understand the status of the transit vehicle relative to the scheduled times, delay measures can be282

estimated at the stop level, and therefore at the segment level. The stop-level delay formula is given in Equation 1.283

Di jk = ATi jk − S Ti jk (1)

Where:284

• Di jk: refers to the delay time for line i, on trip k, at bus stop j285

• ATi jk: refers to the actual stop time for line i, on trip k, at bus stop j286

• S Ti jk: refers to the scheduled stop time for line i, on trip k, at bus stop j287

An illustration of derived attribute data is given in Table 2.

from stop to stop segment ... from stop to stop
index delay delay

STP-1883 STP-982 1 ... 00:00:22 00:01:10
STP-982 STP-990 2 ... 00:01:10 00:02:15
STP-990 STP-994 3 ... 00:02:15 00:01:07
STP-994 STP-998 4 ... 00:01:07 00:01:38
STP-998 STP-1005 5 ... 00:01:38 00:00:10

Table 2: A sample of a segment-level aggregated dataset with focus on derived stop delays

288

In the remainder of this paper, the scheduled stop time will simply be referred as stop time.289

3.1.2. ML: Building and Deploying Models290

One of the main purposes of ML is to discover patterns, train a model on historical data, and then make pre-291

diction based on the constructed model. The ML model to built aims to predict the transit bus travel time at the292

segment-level.Therefore, real travel time attribute will be considered as the attribute of interest. Furthermore, feature293

importance techniques, in which a score is assigned to input features based on their usefulness in predicting a target294

variable, will be applied to build ML models with relevant features. Next, a ML algorithm will be chosen and ini-295

tialized with a set of predefined parameters. For instance, a decision tree supervised learning algorithm, which was296

originally designed to solve classification problems, has been extended to deal with regression problems [102]. On297

the other hand, the developed approach aims to predict transit travel time (numerical output), regression trees (RT) are298

one of the suitable models to perform. The proposed scheme for initializing the ML model is illustrated in Figure 5.299

ML algorithms, for instance, regression trees designed to solve regression problems, are trained to return a single300

value as output. In order to capture travel time variability, we propose to combine ML algorithm with probabilistic301

distributions as follows. First, the ML algorithm will be trained to predict travel times, these will then be grouped into302

samples according to the resulting regression rules. Then, for each sample, travel time variability will be estimated303

using probabilistic distributions. An illustration of a regression tree model for bus travel time prediction and sample304

travel times resulting from the model output, fitted to a number of probabilistic distributions, to approximate travel305

time variability, are given in Figures 6 and 7, respectively.306

307

After validating the ML model, the next step is to deploy it to feed the simulation model with bus travel times.308

At this stage, the model built will be registered in a specific database, in which each model is indexed by its key,309

as well as a set of information, including: model algorithm, transit line, route segment origin and destination stops,310

model input features and target attribute. In addition, the index database may contain the model parameters and its311

error value, such as the coefficient of determination R2. This last score value is extremely important for sorting the312

generated models. An illustration of the index file is presented in Table 3.313

10



Figure 5: An illustration of the proposed scheme for setting up ML models. The initialization of a ML model is done at three levels. 1) Model
configuration by initializing ML model features and target attribute, as well as route segment information such as transit line, origin and destination
stops. 2) Selection of the supervised algorithm, for instance the regression tree. 3) Configuration of the algorithm parameters

Figure 6: An illustration of a regression tree for travel time prediction. The white nodes refer to the decision conditions, while the cyan nodes are
the terminal leaves of the tree

In sum, a ML algorithm is initialized with predefined parameters, takes as input: a route segment dataset, features314

to build the model, and an attribute of interest for prediction. It will then be trained to predict transit travel time, stored315

locally and then deployed to feed a public transit simulation model.316
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Figure 7: A detailed view of the proposed model output for travel time prediction. Illustration of the resulting day-to-day travel time variability
(Left): A regression tree terminal node, including average travel time and sample size. (Right): The sample travel time distribution, fitted to a
number of probabilistic distributions, to approximate day-to-day travel time variability with emphasis on probability density functions

key algorithm transit line from stop to stop input features model target score (R²)
68dsfnr6 RT A STP-1883 STP-982 stop time real travel time 36%

chhm3moj RT A STP-982 STP-990 stop time real travel time 54%
wr1w7ecg RT A STP-990 STP-994 stop time real travel time 47%
z4p0biet RT A STP-994 STP-998 stop time real travel time 35%
jj8gxgzf RT A STP-998 STP-1005 stop time real travel time 41%

. . . . . . . . . . . . . . . . . . . . . . . .
cq5x4ddu RT A STP-1883 STP-982 stop time;stop delay real travel time 36%
53t58nae RT A STP-982 STP-990 stop time;stop delay real travel time 53%
1y1givje RT A STP-990 STP-994 stop time;stop delay real travel time 46%
qvin2kyt RT A STP-994 STP-998 stop time;stop delay real travel time 34%
yiikt0c1 RT A STP-998 STP-1005 stop time;stop delay real travel time 42%

Table 3: A sample of the deployed models index database. Index information can be grouped into four groups. 1) key used to distinguish models
with same other characteristics. 2) transit line, origin and destination stops, denoted from stop and to stop, refer to model segment route. 3) input
features and target attribute are the data attributes used to build the model. 4) score refers to the evaluation measurement value

3.1.3. Public Transportation Simulation Model317

In this section, Starling proposed by Leblond et al. [86] will be briefly described. Starling combines an agent-318

based framework and a discrete-event approach, it is a microscopic model for mobility simulation. The goal of this319

framework is to provide a basis for the development of computer models for the simulation of specific transport320

systems, consisting of generic simulation classes that can be extended to match the specifications of the simulated321

system. Among the mobility modules, a public transport bus simulation module is implemented. To work, it requires322

a set of inputs including: transit schedules feed (e.g. GTFS data) and bus operator settings that define the behaviour323

of the bus vehicle and the operating rules, such as: minimum bus recovery time and bus holding control strategy.324

Simulating buses according to schedules, with defined travel times between two successive stops, can be seen as325

hypothetical. The bus may be delayed due to: traffic jams, traffic accidents and passenger boarding.326
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In order to perform a bus simulation with a more realistic behaviour, travel times can be estimated using ML327

models trained on historical observations. The generated travel times are then subject to operating rules, in order328

to maintain realistic bus behaviour. Additionally, in order to perform transit simulation, scenario data and operator329

parameters will be added to the simulator inputs. An overview of how deployed ML models are used with a generic330

framework for public transport simulation is shown in Figure 8.331

Figure 8: An overview of using a generic framework for public transport simulation based on ML models. It consists of two blocks: the block
above refers to the simulation framework; the block below gathers the scenario data and the operator parameters as well as the ML models deployed
for the prediction of travel times

Holding Control Strategies. They are among the most widely used public transport control methods, aiming to to332

improve the regularity of service by regulating departure time from stops according to predefined criteria [103].333

Implementing bus holding strategies involves two key design decisions: selecting the set of time point stops and the334

holding criteria [104]. Holding strategies are generally classified into two categories: schedule-based strategies and335

headway-based strategies. A schedule-based holding strategy defines the earliest time a bus can depart from a time336

point stop relatively to the schedule. This rule can be formulated as:337

ETi jk = max(S ETi jk − si j, ATi jk + DTi jk) (2)

Where:338

• ETi jk: exit (departure) time for line i on trip k from stop j339

• S ETi jk: scheduled exit (departure) time for line i on trip k from stop j340

• si j: non-negative slack size defined for line i at stop j341

• ATi jk: actual arrival time for line i on trip k from stop j342

• DTi jk: dwell time for line i on trip k from stop j343

Previous studies on the interaction between slack size and generalized passenger travel time have concluded that344

the slack size should be set to zero [105; 106]. This implies that buses arriving early have to wait at time point stops345

until the scheduled departure time. Schedule-based strategies are useful for low-frequency services when passengers346

follow the timetable or when transfer coordination is an important issue [107]. In contrast, headway-based holding347

strategies use headways between consecutive vehicles as a criterion to regulate departure times from time point stops.348

If the headway-based strategy only takes into account the headway from the preceding vehicle, then the holding349

criteria is defined by a minimal headway requirement:350
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ETi jk = max(ATi j,k−1 + α · H
k−1,k
i , ATi jk + DTi jk) (3)

Where:351

• Hk−1,k
i : planned headway between trips k-1 and k on line j352

• α: threshold ratio parameter353

Stop-Skipping. Also known as expressing is a control measure allowing a vehicle to skip one or a series of stops, if it354

is running behind schedule. Stop-skipping can correct service inconsistencies due to the inherent variations in travel355

time and passenger demand, but may result in increased waiting times for passengers waiting at the skipped stops356

[108]. Thus, most stop-skipping approaches address the problem by considering: 1) passenger-related costs concerns,357

such as passenger waiting times and their in-vehicle times; and 2) operator cost concerns, such as total vehicle trip358

travel times [109]. Stop-skipping strategies can be designed either at the tactical planning level or at the operational359

level (dynamic stop skipping). At the tactical planning level, the emphasis is on developing reliable, resilient or robust360

strategies that will maintain good performance in the event of disruptions during actual operations. On the other hand,361

dynamic stop-skipping strategies at the operational level are reactionary, need to be computationally efficient, and in362

which the skipped stops of a vehicle trip are determined just before dispatch [109; 110; 111]. Stop-skipping strategies363

have been proposed mainly at the planning level and formulated as optimization problems [108; 112]. When stop-364

skipping, the vehicle leaves the stop immediately after the alighting time without boarding of passengers [113]. The365

departure time can be formulate as:366

ETi jk = ATi jk + DTi jk (4)

In this case, the dwell time DTi jk corresponds to alighting only.367

3.2. Two-Step Validation Framework368

The second proposed framework in this study is the two-step validation framework. It aims to validate the simu-369

lation results obtained using performance indicators. The validation is twofold: first, assessing the accuracy of travel370

times generated by ML models; second, evaluate how well the simulation model reproduces reality using certain371

reliability metrics. The proposed validation process is detailed below. From a technical point of view, the valida-372

tion process will be undertaken by comparing the output simulation results with actual observations, including: 1)373

simulated segment travel times and 2) bus delay at timing points.374

375

The first validation process will take place as follows. First, the theoretical and actual travel times will be extracted376

from the actual data, while the simulated travel times will be extracted from the simulation results. Next, the theoretical377

and simulated travel times will be compared to the actual observed travel times in order to: firstly, understand how378

well the actual and theoretical travel times are fit and secondly, validate the ML models for travel time prediction. We379

denote by TTactual and TTsim, respectively the actual and simulated average travel times of the route segment r. In380

order to compare numerically the travel time measurements, a derived metric ∆r, referring to the relative difference381

per route segment r between TTactual and TTsim, is defined in Equation 5.382

∆r =
TTactual,r − TTsim,r

TTactual,r
(5)

The second validation process aims to investigate how well the simulation model reproduces reality based on383

certain reliability metrics, by validating the simulation results against actual observations, using on-time performance384

measurements. In this work, the punctuality of both operated and simulated buses will be assessed according to385

departure delay at the bus stop at the control points of each of the bus lines. The validation process will be performed386

at three delay metrics, defined as follows:387
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• Aggregated delay metric: refers to on-time performance within the one-minute early and five-minutes-late388

arrival range used by several urban transit agencies across the United States [114]. In this metric, the delay of389

a bus can fall into three categories, in which the bus is considered 1) on-time travel if the delay is between not390

earlier than one minute and not later than five minutes at the timing point; 2) in Advance, if the bus is more than391

one minute ahead of the scheduled time; and 3) in Significant delay, if the bus is late by more than five minutes.392

• Bus severity delay metric: in which, delay at control points is grouped into five categories; while the classifi-393

cation of in Advance and in Significant delay remains similar to the first metric, On-time travel is divided into394

three classes including, in addition to On-time travel, minor delay and moderate delay, in which each subclass395

spans a two-minute range. The last two delay values have been defined according to the classification used in396

the work proposed in [115].397

• A third bus delay metric is defined in which stop delays are grouped in one-minute increments between more398

than five minutes early and more than seven minutes late.399

The two first delay metrics are given in more detail in Table 4.400

Delay metric Delay class Range (seconds)

Aggregate Delay Metric
In advance delay < -60
On-time delay ∈ [-60; 300]
Significant delay delay > 300

Bus Severity Delay Metric

In advance delay < -60
On-time delay ∈ [-60; 60]
Minor delay delay ∈ [60; 180]
Moderate delay delay ∈ [180; 300]
Significant delay delay > 300

Table 4: A description of the aggregate and severity delay metrics

After defining the three sets of bus punctuality metrics, in the following, the defined on-time performance metrics401

will be applied at the control points on the actual observations and the simulated results. In order to compare the402

resulting punctuality shares, an offset and a deviation measure denoted δ and ∆, defined respectively, in equations 6403

and 7, can be then be calculated between two sets of shares. Therefore, the defined measure ∆ aims to quantify the404

part of the share poorly located between the two sets.405

δc(S i, S j) = S i,c − S j,c (6)

∆(S i, S j) =
∑
c∈C

δc(S i, S j) · αi, j,c (7)

Where:406

• i and j are two datasets407

• C: refers to delay values according to the punctuality metric used408

• c: a delay value409

• S i: corresponds to the punctuality shares of the buses from the i dataset410

• S i,c: refers to share of c in S i411

• αi, j,c: 1 if (S i,c > S j,c) and 0 otherwise412

A detailed illustration of the proposed two-phases validation framework is shown in Figure 9.413
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Figure 9: A detailed illustration of the proposed two-phase validation framework. The first phases consist of validating the bus travel times.
Actual and simulated travel times can be extracted, from actual data and simulation results, respectively and then compared based on deviation
measurements. The second phases consist of validating bus punctuality, a set of on-time performance metrics can be applied to estimate the actual
and simulated punctuality share of the buses, then a comparison using deviation measures will take place for the assessment

In summary, the proposed ML-based microscopic simulation and validation frameworks can performed together as414

follows. First, ML models will be trained on actual data to predict travel times of bus route segments, then deployed415

to feed the public transport simulation model. Next, the simulation scenario will be implemented and then run.416

Subsequently, the results of the simulated scenario will then be assessed by the two-step validation framework. Finally,417

based on the adequacy of the simulated travel times and bus punctuality shares, the ML models selected for bus travel418

times and the simulation parameters such as recovery time and bus holding strategy can be updated. An overview of419

how the two proposed frameworks perform together is shown in Figure 10.420

Figure 10: An overview of the two proposed frameworks: ML-based microscopic simulation framework and a validation framework

The remainder of the paper is structured as follows: in Section 4, a case study scenario consisting of three bus421

lines of a French city will be presented. In Section 5, the simulation results will be analyzed and validated based on a422

set of metrics. In Section 6, a discussion of the analyses presented, as well as some concluding remarks will be given423

in Section 7.424
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4. Simulation Scenarios425

The simulation scenarios were developed for three bus lines referenced respectively by A, B and C. In this section,426

the chosen bus lines and the timing points will be described first. Next, the ML feature selection technique along with427

the trained ML models will be given. Finally, the simulation parameters including bus holding strategies as well as428

the implemented simulation scenarios will be detailed.429

4.1. Bus Lines: Description430

Line A buses run Monday to Saturday from approximately 4:45 a.m. (first departure) to 9:05 p.m. (last departure)431

and Sunday from approximately 5:35 a.m. to 8:05 p.m. Buses on this line serve 31 stops in one direction and 30432

stops in the other direction, for approximately 8 km of distance and 30 minutes travel time. This bus line is highly433

frequented line with on average one bus every 6 minutes during peak-hours and one bus every 8 minutes during off-434

peak hours, for a total of 234 trips on working days. Line B operates between approximately 5:42 a.m. and 8:26 p.m.435

only on working days. Like line A, the buses serve 31 and 30 stops respectively, over a distance of approximately 9436

and half km and 23 minutes of travel time. Line B operates with an average of one bus every 6 minutes and 8 minutes437

respectively, during peak and off-peak hours, for a total of 271 trips per working day. Line C buses operate all week438

from approximately 5:15 a.m. to 8:30 p.m., serving 10 stops in both directions. Compared to previous lines, line C439

is much shorter with approximately 3 km distance and a travel time of 10 minutes. This line runs on average with a440

bus every 6 minutes and 10 minutes respectively, during peak and off-peak hours, for a total of 198 trips per day. A441

summary description of the bus lines studied is presented in Table 5.442

transit bus travel distance travel time headway
route ID stops (kms) (minutes) on/off peaks

AA 31 7.90 30 6/8 minutes
AR 30 7.87 35 6/8 minutes
BA 31 9.67 23 6/8 minutes
BR 30 9.65 23 6/8 minutes
CA 10 3.05 12 6/10 minutes
CR 10 3.17 10 6/10 minutes

Table 5: A description of the bus lines studied including: transit line identifier, number of stops per direction, distance and time travel, in addition
to the line’s service frequency during peak and off-peak hours. AA and AR respectively designate the route in one direction Aller, and the route in
the opposite direction Retour of line A

The emphasis of this first work is placed on the simulation of a public transport scenario on working days (Monday443

to Friday), assumed to be more representative in terms of operating days and, consequently, operational trips for the444

public transport operator. The available operational data for the bus lines covered 73, 146 and 41 days for lines A, B445

and C respectively. A workday can be divided into peak and off-peak periods, as presented in Table 6.446

time period abbreviation time interval
Morning off-peak hours AM off-peak [00h00 - 07h30]

Morning peak hours AM peak [07h30 - 09h30]
Inter-peak hours – [09h30 - 16h30]

Evening peak hours PM peak [16h30 - 19h30]
Evening off-peak hours PM off-peak [19h30 - 23h59]

Table 6: A description of the periods of the day, their abbreviations and associated time intervals

The shares of bus line trips, according to the time of day, are reported in Table 7.447

4.2. Bus Lines: Timing Points448

After selecting the bus lines for the simulation scenario, the next step is to set the timing points for each transit449

bus route. The control points are used to split a bus route into route segments in order to: firstly, build ML segment450
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bus morning morning inter- evening evening
line off-peak hours peak hours peak hours peak hours off-peak hours
A 12% 18% 41% 22% 6%
B 13% 13% 43% 20% 10%
C 9% 19% 46% 21% 6%

Table 7: Relative frequency of trips of the bus lines studied by period of the day

travel time models and, subsequently, deploy them for use in simulation; second, the control points will be used by the451

simulator for regularization purposes by applying bus holding strategies. Based on the actual data available, timing452

points correspond to bus stops, in which scheduled departure times are rounded to the nearest minute (hh:mm:00).453

The control points, along with the derived route segments and theoretical segment travel times, for the chosen bus454

lines are shown in Figure 11.455

Figure 11: A detailed illustration of the route segments of the three chosen bus lines. We count, six and three control points per direction for lines
A and C respectively; for bus line B, six timing points are defined in the Aller direction, and eight in the Retour direction. The route segment is
referenced by: its transit line, its transit route direction (A/R) and its index in the transit route. For instance, A-A2 refers to the second segment of
the Aller route of line A

4.3. ML: Algorithm and Feature Selection456

ML Algorithm. In this study, trained ML models are used to feed public transport simulation model with travel times457

matching actual travel times, with more emphasis on accurately estimating travel time variability rather only a single458

travel time prediction. Thus, ML algorithms returning a single output value are not suitable. On the other hand, ML459

algorithms such as RT, kNNs and K-means, in which according to IF-THEN rules, the initial dataset can be split into460

samples, are suitable for dealing with travel time variability. The choice of regression tree as the ML algorithm for461

this study is motivated by the fact that RT is a rule-based approach, in which the built tree can be easily transformed462

into regression rules. Furthermore, to overcome the limitations of the standard RT, in which only one output value is463

returned, probabilistic distributions are used to fit travel times of the corresponding samples, in order to estimate the464

variability of the segment travel time.465
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Feature Selection. Feature importance refers to techniques that assign a score to input features based on their useful-466

ness in predicting a target variable. Feature importance scores can provide insight into the dataset, in which relative467

scores can highlight which features may be most relevant to the target, and the conversely, which features are least468

relevant. For tree-based models, mean decrease in impurity is a measure of how each variable contributes to the ho-469

mogeneity of nodes and leaves in the resulting trees. The higher the value of mean decrease Gini score, the higher470

the importance of the variable in the model. The resulting feature importance based on mean decrease in impurity,471

applied to three bus line datasets studied, is summarized in Table 8.472

feature line A line B line C
stop time 43% 49% 41%
stop delay 40% 32% 41%
day of the week 11% 11% 12%
season 6% 8% 6%

Table 8: Feature importance based on mean decrease in impurity

From Table 8, it can be seen that stop time and stop delay, are the most important features compared to the features473

day of the week and season. Moreover, an attempt to extend dataset, by including weather information was carried474

out. The mean decrease in Gini score applied to three studied lines is reported in Table 9.475

feature line A line B line C
stop time 36% 38% 35%
stop delay 21% 19% 23%
temperature 17% 17% 17%
wind 16% 16% 15%
day of the week 6% 6% 7%
season 2% 3% 3%
rain 1% 0% 1%

Table 9: Feature importance based on mean decrease in impurity, including the weather information

From Table 9, temperature and wind attributes seem to have similar scores, roughly equivalent to stop delay, and476

therefore can be considered as potential features for predicting bus travel time. On the other hand, rain attribute has477

almost an almost zero score, this low score may be due to the nominal nature of rain attribute grouped into four values478

(none, slight, moderate and shower). Therefore, ML models will be built with five sets of input features, including479

stop time, stop delay and weather attributes such as temperature, wind and rain. The first set includes only stop time,480

the second set includes stop time and stop delay, the third set only includes stop time, the fourth set includes only the481

weather attributes, while the fifth set includes stop time and the weather attributes. The observed actual travel time is482

chosen as model target.483

From Figure 12, ML models built with stop time and stop delay as features seem to outperform. Moreover, ML484

models, in which stop time is a feature, appear to score higher compared to those built without stop time feature, for485

each of the three bus lines studied. Additionally, ML models with only stop delay feature score relatively higher than486

those built with only weather features. From a technical point of view, integrating weather information is challenging487

and requires the implementation of a validated weather generator into the public transport simulation model, addling488

an additional layer of complexity to the simulation framework. In the remainder of this paper, we refer to ML models489

built with stop time as a feature by f1, stop time and stop delay as features by f2, stop delay as feature by f3.490
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Figure 12: The coefficient of determination for ML models built with different feature sets, for the studied route segments

4.4. Trained Models: Hyperparameters Tuning491

In order to tune the ML model parameters, the Grid Search approach, a traditional hyperparameter optimization492

method was selected. It simply iterates exhaustively through a manually specified subset of a learning algorithm’s493

hyperparameter space [116]. To build the ML model, we opt for k-fold cross-validation (CV), a technique used in ML494

to evaluate the performance of a model on unseen data. In k-fold CV, the dataset is divided into k subsets (known as495

folds). A fold is used once in each iteration as test data, while the remaining folds are used as training data [117]. So496

the process is iterative until the entire dataset is evaluated. In this study, k = 5 is selected. In terms of parameters,497

regression trees are built according to the following parameter values: tree maximum depth varies between 2 and 14498

levels, while minimum samples per leaf takes four values (25, 50, 75 and 100). In total, for each route segment, 156499

regression trees are built and deployed. For lines A and C, respectively 780 and 312 trees were generated per route500

direction. For line B, 780 and 1092 were generated, respectively, for BA and BR.501

502

From Figure 13 and Figure 14, maximum tree depth parameter seems to have an impact on the quality of the built503

ML models, with a steady increase in terms of score for models with maximum tree depth between 2 to 5 and the504

highest score recorded for models with maximum tree depth between 6 and 8 levels. In contrast, minimum sample size505

parameter appears to have less impact on model scores, with very small differences observed.506

4.5. Simulation: Model and Parameters507

In order to assess and validate the quality of the proposed ML-based microscopic simulation framework, a simu-508

lation model as well as a set of its parameters need to be defined. Firstly, the simulation scenarios will be carried out509

using the generic framework Starling proposed in [86] and briefly described in Section 3.1.3. Secondly, the number of510

runs to simulate is set to 1000 iterations. Usually, a high number of iterations is required in order to generate enough511

samples to validate the simulation results. In addition to validating the simulated travel times, this study aims to512

investigate the impacts bus recovery time strategies and bus holding strategies, on the punctuality of simulated buses.513
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Figure 13: The coefficient of determination for ML models built with different values of maximum tree depth parameters, for the studied route
segments

Figure 14: The coefficient of determination for ML models built with different minimum sample size parameters, for the studied route segments
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4.5.1. Bus Recovery Time Strategies514

Sufficient recovery time should be built into the schedule to ensure that the delays encountered during one trip515

do not carry over on subsequent trips. In this study, a first simulation scenario S 1 will be carried out with a fixed516

minimum recovery time of two minutes. Based on the actual departure delays presented in Figure 15, it appears that517

buses are likely departing a minute earlier and up to two minutes later than the scheduled time. Therefore, a second518

scenario S 2, in which recovery times adjusted based on actual departure delays fitted to probabilistic distributions,519

will be conducted.520

Figure 15: Illustration of the actual departure delay of buses on three lines studied, fitted to a certain number of probabilistic distributions

4.5.2. Bus Holding Control Strategies521

In order to investigate the impacts of applying bus holding strategies on bus punctuality, two instances of scheduled-522

based holding strategy, respectively named S H0 and S H3, an instance of headway-based holding strategy named HH,523

and a base strategy without control NC, will be implemented. S H0 and S H3, are two variants of the scheduled-based524

holding strategy defined in Equation 2, in which s is equals to zero and three minutes, respectively. In NC, the simula-525

tion will be conducted without applying a bus holding strategy. HH is a variant of the headway-based holding strategy526

defined in Equation 3, in which α = 0.8. The strategies implemented are reported in Table 10. Note that NC can be527

thought of as an instance of scheduled-based holding strategy, with s = +∞ (S H∞).528

Scenario Scenario Bus Holding Strategy
ID Short Name Strategy Parameters
NC no-control Scheduled-based s = +∞
S H3 3-Min Scheduled-based s = 3 minutes
S H0 scheduled-based Scheduled-based s = 0 minutes
HH headway-based Headway-based α = 0.8

Table 10: A summary of implemented bus holding strategies. s refers to the non negative slack size defined for a bus line, while α is a threshold
ratio parameter
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4.5.3. Bus Stop-Skipping Strategy529

In this section, we aim to investigate to what extent skipping stops impacts bus punctuality. Stop-skipping control530

measure used to correct service inconsistencies, particularly to eliminate bus delay, is formulated in most studies as531

an optimization problem. With the interest of this study on bus punctuality, the decision whatever or not to skip a stop532

will depend primarily on how late is the bus at the control point. The stop-skipping criteria can be defined as follows:533

Di jk − Dmax ≥ 0 (8)

Where:534

• Di jk: refers to the delay time for line i, on trip k, at bus stop j535

• Dmax: a non-negative maximum bus delay536

If the stop-skipping criteria is met, the set of stops j + 1, j + 2, ..., c − 1 between the current control stop j and the537

next control stop c will be skipped. Skipping is only permitted if the following conditions are met: 1) the stop is not538

a control stop and 2) the preceding bus did not skip the stop (to avoid passengers being denied twice). The departure539

time from a skipped stop is given in Equation 4. In this study, two scenarios S K3 and S K5 will be conducted, in which540

Dmax is set to three and five minutes, from which a bus is moderately late and significantly late, respectively according541

to the second punctuality measure presented in Section 3.2.542

4.6. Case Study: Challenges543

In this study, we faced a number of challenges in setting up this case study, as follows. The first challenge was544

which bus stops to choose as control points ? We first considered each bus stop as a control point. However this545

choice seemed to be so limited due to: 1) The segment travel times were too short, not exceeding one minute on546

average, which largely impacted the quality of the trained ML models which seemed to underfit due to low variance547

in observed travel times; 2) Scheduled stop times (from GTFS) are rounded to the nearest minute, where multiple548

bus stop times are set to the same rounded minute. As a result, inaccurate punctuality for the simulated buses. To549

overcome this issue, a set of stops predefined by the bus operator was used.550

The second challenge was detecting and handling outliers. With actual data available prone to measurement errors,551

especially departure time (at first stop) and arrival time (at last stop), in which some stop times were not accurate. In552

order to clean the dataset, Inter Quartile Range (IQR), a detecting outliers technique was applied. On average, about553

5% of observations were detected as outliers and therefore removed.554

The third challenge was the choice of a probabilistic distribution to fit the travel time distribution, in order to555

estimate the travel time variability. To overcome this issue, the sample travel times - constituting according to ML556

model output, such as regression rules - were fitted to a number of probabilistic distributions, then compared based on557

the R² score and the law with the best-fit score as well as its parameters, will be selected.558

5. Experiments and Results559

In this section, the proposed two-step validation framework will be performed. The first phase of the proposed560

validation framework involves validating the simulated travel times while the second involves validating the simulated561

bus punctuality.562

5.1. Validation of Travel Times563

In this section, the validation of travel times process will be applied. First, scheduled and actual bus travel times564

times will be compared side by side. Next, the resulting travel times of f1, f2 and f3 will be compared over the entire565

day and subsequently over the morning and evening peak hours according to the relative difference metric defined566

in Equation 5. Furthermore, in order to evaluate the quality of ML models, a comparison with four probabilistic567

distributions, according to two goodness-of-fit measures MAE and RMSE will be carried out.568
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Figure 16: Theoretical and actual average travel times are presented side by side for each segment of lines studied. For line A, overall, larger
differences can be observed on certain segments between theoretical and actual travel times. For line B, again, the simulated travel times seem
to correspond well to the actual travel times. In contrast, differences can be observed between theoretical and actual travel times, with minor to
moderate differences for segments in the Aller direction, and more significant for segments in the Retour direction. For line C, che simulated
travel times appear to match actual travel times very well. Furthermore, the theoretical and actual travel times match well for segments in the Aller
direction, while moderate differences can be observed for route segments in the Retour direction

5.1.1. Validation of Travel Times: Theo vs Actual569

Below, Theoretical and actual average travel times are presented side by side for each segment of three lines570

studied are presented side by side in Figure 16.571

At first glance, the average segment travel times for bus line A seem slightly longer for Aller than for Retour.572

Furthermore, theoretical travel times are on average a little overestimated compared to the actual travel times, particu-573

larly on A-A5 and A-R5, with differences ranging from moderate for segments A-A3, A-R1 and A-R5, to significant for574

segments A-A2, A-A5 and A-R3. For line B, one can notice scattered differences in travel times between B-Aller and575

B-Retour, appearing greater on latter route, especially on segments betwen B-R4 and B-R6. Overall, differences seem576

moderate on Aller and to a lesser extent on Retour. For line C, one can see that the differences are limited between577

the theoretical travel times and the actual travel times.578

5.1.2. Validation of Travel Times: Actual vs Simulation579

The resulting travel times of f1, f2 and f3 as well as the relative differences metric ∆ (see Equation 5), for bus lines580

A, B and C are reported, respectively, in Table 11, 12 and 13.581

For line A, the simulated Aller travel times estimated using f1 models, are on average more precise than those582

estimated using f2 and f3. Furthermore, the simulated Retour travel times appear to be more accurate than those of583

Aller, with f1 and f2 corresponding well to the actual travel times. Overall, f1 and f2 seem to outperform f3.584

585
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segment ID segment stops TTactual ∆ f 1 ∆ f 2 ∆ f 3

A-A1 STP-1006→ STP-1013 429 -5% -8% -6%
A-A2 STP-1013→ STP-1017 121 1% 8% 2%
A-A3 STP-1017→ STP-1022 420 1% 0% 3%
A-A4 STP-1022→ STP-1030 603 2% 3% 5%
A-A5 STP-1030→ STP-1846 419 7% 12% 16%

- - - - - -
A-R1 STP-1883→ STP-982 423 0% 0% -1%
A-R2 STP-982→ STP-990 629 3% 1% 1%
A-R3 STP-990→ STP-994 253 3% 3% 9%
A-R4 STP-994→ STP-998 226 2% 1% 4%
A-R5 STP-998→ STP-1005 333 3% 4% 9%

Table 11: Reported actual average travel times TTactual (in seconds) as well as the relative differences ∆ f 1, ∆ f 2 and ∆ f 3, respectively, from f1, f2
and f3, for each route segment of bus line A

segment ID segment stops TTactual ∆ f 1 ∆ f 2 ∆ f 3

B-A1 STP-2349→ STP-1380 560 2% 2% 0%
B-A2 STP-1380→ STP-1390 568 3% 2% 3%
B-A3 STP-1390→ STP-1394 249 2% 2% 19%
B-A4 STP-1394→ STP-2408 433 5% 5% 12%
B-A5 STP-2408→ STP-2746 92 -13% -14% -13%

- - - - - -
B-R1 STP-2747→ STP-2348 114 -4% -2% -3%
B-R2 STP-2348→ STP-1411 417 1% 0% 1%
B-R3 STP-1411→ STP-1415 231 3% 3% 4%
B-R4 STP-1415→ STP-1420 286 4% 2% 3%
B-R5 STP-1420→ STP-1424 315 4% 6% 16%
B-R6 STP-1424→ STP-1379 353 4% 5% 2%
B-R7 STP-1379→ STP-834 169 3% 3% 3%

Table 12: Reported actual average travel times TTactual as well as the relative differences ∆ f 1, ∆ f 2 and ∆ f 3, for bus line B

For line B, the simulated Aller travel times of f1 and f2 seem to be highly similar. Regarding the travel times of586

f3, more significant deviations can be observed compared to the actual segment travel times, in particular for B-A3587

and B-A4. Despite the large underestimate of travel times of B-A5, it only amount to around 12 seconds. Concerning588

the Retour route, f1 and f2, provide similar travel times, both seeming to correspond well to actual travel times.589

Furthermore, f3 seems to match the actual data, expect for B-R5, in which travel times are greatly overestimated. In590

sum, the three sets of ML models predict very similar travel times, including f1 and f2, and to a lesser extent f3.591

segment ID segment stops TTactual ∆ f 1 ∆ f 2 ∆ f 3

C-A1 STP-2521→ STP-2525 282 -3% -2% -2%
C-A2 STP-2525→ STP-2526 343 -3% -3% -2%

- - - - - -
C-R1 STP-2526→ STP-2527 353 -2% -2% -1%
C-R2 STP-2527→ STP-2440 226 -1% -1% 0%

Table 13: Reported actual average travel times TTactual as well as the relative differences ∆ f 1, ∆ f 2 and ∆ f 3, for bus line C

With regard to ∆ in Table 13, the differences seem negligible, averaging a few seconds per route segment.592
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Thus, from the results illustrated on the three bus lines studied (A, B and C), the simulated travel times provided593

by ML models are highly resembled and statistically similar to the actual travel times.594

595

To test the reliability the ML models trained for bus travel time prediction, simulated and actual travel times will596

be compared over morning and evening peak hours. For line A, the results show that the actual segment travel times597

of Aller route are on average relatively longer during morning rush hours than during evening hours, and vice versa598

for the Retour segments. For line B, similar actual travel times are observed at both peak hours, while an increase in599

segment travel times is observed during the evening hours compared to the morning peak hours, for line C.600

In sum, ML models in which features include stop time ( f1 and f2) perform better than those built by only consid-601

ering bus delay at the stop. Moreover, ML models with only the stop time as a feature ( f1) relatively match the best602

actual travel times. In the remainder of this work, the ML models are referred to the f1 models. An in-depth analysis603

of actual travel times together along with relative differences from three set of models ( f1, f2 and f3) over peak hours,604

for bus lines A, B and C can be found in Appendix B.605

5.1.3. Validation of Travel Times: ML vs Probabilistic Distributions606

To assess the accuracy of the ML models for bus travel time prediction, the simulated travel times provided by ML607

will be compared to four probabilistic distributions, including: normal, lognormal, gamma and generalized extreme608

value (GEV) distributions, with a focus on morning and evening peak hours. The actual travel times as well as the609

relative differences resulting from ML and probabilistic distributions over peak hours, for bus lines A, B and C are610

reported, respectively, in Table 14, 15 and 16.611

Morning peak hours Evening peak hours
segment ID TTactual ∆ML ∆norm ∆lognorm ∆gamma ∆GEV TTactual ∆ML ∆norm ∆lognorm ∆gamma ∆GEV

A-A1 513 -10% -16% -16% -53% -16% 422 -3% -3% -3% -3% -4%
A-A2 132 1% -1% -3% 33% -2% 125 1% 1% 0% 1% 0%
A-A3 481 -1% -10% -9% -5% -8% 433 -5% -1% -1% -1% -1%
A-A4 653 -1% -4% -4% -3% -4% 619 -1% 0% 1% 0% 0%
A-A5 500 10% 16% 17% 20% 12% 433 1% 6% 7% -18% 1%

- - - - - - - - - - - - -
A-R1 418 -3% -7% -6% -7% -7% 472 1% -3% -3% -3% -3%
A-R2 628 -2% -6% -6% -5% -5% 706 4% 2% 2% 2% 2%
A-R3 248 1% -3% -3% -3% -2% 271 3% 8% 10% -29% 14%
A-R4 231 -1% -4% -4% -4% -5% 253 0% -1% -1% 0% -3%
A-R5 349 -5% -4% -4% -3% 395% 349 2% 7% 8% 12% 13%

Table 14: Reported actual average travel times TTactual as well as relative differences ∆ML, ∆norm, ∆lognorm, ∆gamma and ∆GEV , respectively, from
ML, norm, lognorm and GEV distributions, for each route segment of bus line A, over morning and evening peak-hours

From Table 14, one can see that the ML travel times are on average more precise compared to the travel times gen-612

erated by the different probabilistic distributions, during morning and evening rush hours. Moreover, the differences613

between ML and distributions are more significant during morning peak hours than during evening hours.614

For line B, a similar trend is observed with more precise ML travel times compared to those estimated by the615

probabilistic distributions, in the morning and to a lesser extent during the evening rush hours. Furthermore, while616

the normal, lognormal, and gamma distributions seem to correspond to the actual travel times to a lesser extent, GEV617

distribution appears to strongly overestimate actual travel times.618

From Table 16, one can see that on average the ML travel times of line C seem to be more precise than the statistical619

distribution travel times, both during morning and evening peak hours. Additionally, the resulting travel times of the620

four probabilistic distribution are highly resembled, with on average, generalized extreme value distribution appearing621

to provide more accurate travel times than the normal, lognormal, and gamma distributions.622
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Morning peak hours Evening peak hours
segment ID TTactual ∆ML ∆norm ∆lognorm ∆gamma ∆GEV TTactual ∆ML ∆norm ∆lognorm ∆gamma ∆GEV

B-A1 573 -2% -7% -7% -6% 2% 625 -2% -4% -5% -4% 38%
B-A2 617 0% -5% -5% -5% 74% 635 -1% -2% -2% -2% 118%
B-A3 305 -9% -16% -16% -56% 738% 313 -1% -7% -8% -7% 123%
B-A4 548 2% -3% -4% 0% 44% 450 1% 2% 2% 2% 183%
B-A5 105 -14% -15% -16% -16% -19% 103 -27% -27% -26% -27% -29%

- - - - - - - - - - - - -
B-R1 99 -5% -5% -6% -5% 0% 131 -4% -4% -3% -3% -3%
B-R2 413 -1% -4% -4% -4% -1% 490 -2% -6% -6% -6% -6%
B-R3 284 1% -7% -7% -7% 58% 260 1% -4% -4% -4% -6%
B-R4 310 0% -5% -5% -6% 40% 312 0% -2% -2% -2% -4%
B-R5 342 8% 8% 8% 8% 844% 352 2% 2% 2% 2% 104%
B-R6 375 -2% -8% -7% -7% 2% 384 -1% -3% -4% -4% -3%
B-R7 188 -3% -7% -8% -7% 21% 179 -1% -4% -4% -4% 6%

Table 15: Reported actual average travel times as well as relative differences resulting from ML and probabilistic distributions, for each route
segment of bus line B, over morning and evening peak-hours

Morning peak hours Evening peak hours
segment ID TTactual ∆ML ∆norm ∆lognorm ∆gamma ∆GEV TTactual ∆ML ∆norm ∆lognorm ∆gamma ∆GEV

C-A1 284 -3% -6% -6% -6% -5% 300 -6% -9% -9% -9% -9%
C-A2 342 -3% -9% -10% -9% -8% 395 -5% -14% -14% -15% -8%

- - - - - - - - - - - - -
C-R1 373 -1% -10% -10% -10% -10% 396 -4% -10% -10% -10% -3%
C-R2 231 -3% -6% -6% -6% -6% 233 0% -1% -1% -1% -1%

Table 16: Reported actual average travel times as well as relative differences resulting from ML and probabilistic distributions, for each route
segment of bus line C, over morning and evening peak-hours

5.1.4. Validation of Travel Times: Goodness of fit623

In order to thoroughly evaluate the quality of the simulated travel times provided by ML and the probabilistic624

distributions, mean absolute error (MAE) and root mean square error (RMSE), two goodness-of-fit measures (GOF),625

will be estimated at morning and evening peak hours, for each route.626

627

In essence, segment travel times will be grouped into half-minute slot. MAE and RMSE measures, are respectively628

formulated in Equations 9 and 10. The estimated values of MAE and RMSE, applied to the three bus lines, are reported629

in Tables 17 and 18, respectively.630

MAE =
1
|S |
·
∑
s∈S

∑
t∈T

|Pt
d,s − Pt

a,s| (9)

RMS E =

√
1
|S |
·
∑
s∈S

∑
t∈T

(Pt
d,s − Pt

a,s)2 (10)

Where:631

• s: a route segment632

• S: a set of route segments633

• t: a travel time increment.634
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• T: a set of travel time increments635

• Pt
a,s: refers to the actual relative frequency for segment s with TT ∈ t636

• Pt
d,s: refers to relative frequency of a distribution d for segment s with with TT ∈ t637

Morning peak hours Evening peak hours
Route ID ML norm lognorm gamma GEV ML norm lognorm gamma GEV
A-Aller 19% 23% 24% 54% 21% 11% 15% 13% 17% 14%
A-Retour 9% 10% 9% 9% 11% 13% 19% 15% 27% 20%
- - - - - - - - - - -
B-Aller 13% 17% 15% 29% 28% 10% 12% 11% 11% 42%
B-Retour 10% 14% 13% 13% 27% 9% 10% 8% 8% 10%
- - - - - - - - - - -
C-Aller 5% 15% 17% 17% 14% 6% 15% 20% 20% 19%
C-Retour 5% 20% 21% 22% 23% 5% 8% 10% 9% 9%

Table 17: Mean Absolute Error (MAE) between actual and simulated travel times, by route, during morning and evening peak-hours

At first glance at Table 17, ML seems to have the lowest MAE on most bus routes. Additionally, the differences638

between ML and other distributions tend to be smaller, to some extent, during evening peak hours, with the exception639

of line C routes, on which ML appears to significantly outperform.640

Morning peak hours Evening peak hours
Route ID ML norm lognorm gamma GEV ML norm lognorm gamma GEV
A-Aller 11% 15% 17% 40% 14% 7% 10% 9% 13% 9%
A-Retour 8% 8% 7% 7% 8% 9% 13% 12% 23% 14%
- - - - - - - - - - -
B-Aller 9% 11% 10% 25% 18% 7% 10% 10% 9% 36%
B-Retour 8% 11% 11% 11% 24% 8% 8% 7% 6% 8%
- - - - - - - - - - -
C-Aller 4% 12% 13% 13% 11% 4% 10% 14% 14% 13%
C-Retour 4% 15% 17% 17% 18% 4% 6% 7% 7% 6%

Table 18: Root Mean Square Error (RMSE) between actual and simulated travel times, by route, during morning and evening peak-hours

From Table 18, ML models show the lowest RMSE error on most line routes. Similar to MAE, ML appears to641

outperform probabilistic distributions during morning peak hours and, to a lesser extent, during evening peak hours.642

Furthermore, with exception to A-Retour and to a lesser extent C-Aller routes, the resulting travel times during the643

evening rush hours appear more accurate than those during morning hours.644

5.2. Validation of Simulation Results: Impacts of Recovery Time Strategies on Bus Punctuality645

In order to investigate the impacts of bus recovery time on simulated bus punctuality, two simulation scenarios S 1646

using a fixed minimum recovery time of two minutes and S 2 using an adjusted recovery time, will be conducted. In647

the following, aggregated delay and bus delay severity, two of the on-time performance metrics presented in Section648

3.2, will be applied at the control points on the actual observations and the two simulated scenarios (S 1 and S 2), for649

each of the three bus lines (A, B and C). The results obtained on each dataset will then be statistically analyzed and650

compared side by side.651

5.2.1. Impacts of Recovery Time: Aggregated Delay Metric652

Figure 17 provided first insights at how bus punctuality is distributed. It illustrates the resulting bus status share653

according to the first punctuality metric, applied to the 9 datasets. Further on, Table 19 illustrates in more detail the654

differences between the shares resulting from simulation scenarios and the actual shares.655
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Figure 17: Bus punctuality shares for the bus lines studied, based on the first on-time measurement. For lines A and B, a strong similarity of shares
is observed between S 1 and S 2, while compared to actual shares, the differences are minors, with S 2 appearing to slightly outperform S 1. For line
C, the resulting shares of S 1 and S 2 are different, compared to the referenced shares, S 2 seems to slightly outperform S 1

S 1 (A) S 2 (A) S 1 (B) S 2 (B) S 1 (C) S 2 (C)
Advance > 1 min +5% +3% +5% +3% -1% +5%

On-time travel -1% -1% 0% -1% +3% -5%
Significant delay -4% -2% -5% -2% -2 0%

∆(S , actual) 5% 3% 5% 3% 3% 5%

Table 19: Illustration of the differences and gaps between the resulting simulation shares and the actual shares according to the first punctuality
metric, for lines A, B and C

At first glance, one can see some differences in the shares between the different lines, line C seems to be the most656

regular on-time bus line among the lines studied, followed by line B then line A. Based on in advance shares, line A657

buses are much further ahead than compared to lines B and C. Furthermore, line C, with its shortest bus routes, has the658

least late buses, in which the share of Significant delay is negligible, while lines A and B show statistically an almost659

identical ratio for significantly delayed buses. The analysis process will proceed as follows: the bus status shares of660

the actual observations will be analyzed first, followed by those from the two simulated scenarios. Secondly, the share661

of the actual observations will be compared to the shares resulting from the simulation.662

663

For bus line A, the results show that about two thirds of the actual buses are on time and about one third are early664

at the timing points. On the other hand, the results of the simulated scenarios indicate a very similar trend for S 1665

and S 2, with an identical share for on-time travel (with 62%) and minor differences (± 2%) between in advance and666

significantly delayed buses. Compared to the actual data, minor differences were observed with 5% for S 1 and 3% for667

S 2 respectively.668

669

For bus line B, the shares indicate that approximately three thirds and one fifth of actual buses are on-time and670

early, respectively, while significantly late buses represent less than a tenth of the total buses. Furthermore, the results671

also show that S 1 and S 2 follow a similar trend, with minor differences (3%) for the in advance and significantly late672

buses. As for bus line A, the differences between the actual and simulated shares are minor and almost identical, with673

a difference of approximately 5% and 3%, respectively, for S 1 and S 2.674

675
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For bus line C, it can be observed that almost all actual buses travel on-time, while that a tenth are ahead. On the676

other hand, the share of significantly delay is very negligible. Unlike the two previous bus lines (A and B), the results677

of the two simulated scenarios (S 1 and S 2) show different trends. S 2 overestimates the share of buses in advance678

(+5%) compared to actual observations and to S 1, while on the other hand, S 1 completely underestimates the buses679

with a significant delay, estimated to be almost zero.680

681

In total, the results showed significant similarities between S 1 and S 2, with minor differences on bus lines A and682

B, and to a lesser extent on line C where the differences appear more significant. Compared to the actual bus delays,683

the delays shares resulting from the simulation, using the adjusted recovery time in S 2 scenario, are more accurate684

than those in S 1, in which a fixed minimum recovery time of two minutes was implemented. The results obtained in685

S 2 slightly overestimate the ratio of buses ahead of schedule. In short, the resulting simulation distributions for the686

three lines studied are with a good fit to the actual reference distributions according to this studied metric.687

5.2.2. Impacts of Recovery Time: Bus Delay Severity Metric688

In order to investigate in more details the delay shares obtained previously according to the first metric used, the689

bus severity delay metric defines buses ahead of schedule and significantly delayed as in the first metric, in contrast,690

distinguishing the on-time travel into three sub-classes with a 2 minute horizon, as follows: on-time travel, minor691

delay and moderate delay, respectively, if the delay is between -1 and +1, +1 and +3 and +3 and +5 minutes.692

Figure 18: Bus punctuality shares for lines A, B and C, based on the second on-time metric with five levels of delay: in advance, on-time
travel, minor, moderate and significantly delayed. Concerning the resulting shares, the differences between S 1 and S 2 are much more significant,
particularly for the on-time travel share. The S 2 shares appear to match the actual data well for lines A and B, and to a lesser extent for line C. In
contrast, S1 seems to considerably overestimate the share of on-time travel and underestimate all the remaining shares

From Figure 18 and Table 20, one can observe a strong resemblance between the shares of bus punctuality both693

for the actual observations and S 2, and that for the three studied bus lines. An exception to note for bus line C, part694

of the share (around 5%) of in advance and on-time travel buses seems is poorly located. Furthermore, the share of695

minor, moderate and significant delays is almost identical between S 2 and actual observations. In sum, S 2 is slightly696

overestimates the shares of early buses, well adjusted to the shares of minor, moderate and significant delays, with an697

approximate deviation of 4% to 6% for the lines studied. In contrast, the S 1 shares show a significant overestimation698

of in advance and on-time, and therefore, an underestimation of minor, moderate and significant shares, with an699

approximate deviation of 9% for line A, 15% for line B and 14% for line C.700

701

In short, the results of the second on-time performance metric show that applying an adjusted recovery time702

strategy improved the quality of results compared to the fixed recovery time strategy.703
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S 1 (A) S 2 (A) S 1 (B) S 2 (B) S 1 (C) S 2 (C)
Advance > 1 min +5% +3% +5% +3% -1% +5%

On-time travel +4% -1% +10% 0% +14% -6%
Minor delay -2% +1% -4% +1% -6% +1%

Moderate delay -3% -1% -5% -2% -5% 0%
Significant delay -4% -2% -5% -2% -2% 0%

δ(S , actual) 9% 4% 15% 4% 14% 6%

Table 20: Illustration of the differences and gaps between the resulting simulation shares and the actual shares according to the second on-time
metric, for lines studied

5.3. Validation of Simulation Results: Impacts of Bus Control Strategies on Bus Punctuality704

In this section, the emphasis is placed on investigating the impacts of different bus control strategies on bus705

punctuality. The strategies implemented are reported in Table 10. In the following, the resulting shares will be706

analyzed and compared to the actual shares, according to a number of one-time performance metrics.707

5.3.1. Impacts of Bus Holding: Aggregated Delay Metric708

The bus punctuality shares based on aggregate delay metric for bus lines A, B and C are shown in Figure 19. The709

differences between the resulting simulation shares and the actual shares according to the first punctuality metric are710

reported in Table 21.711

Figure 19: Impacts of bus holding strategies - Bus punctuality shares for the bus lines studied, based on the first on-time measurement

∆(S , actual) no-control scheduled-based scheduled-based headway-based
NC S H3 S H0 HH

Line A 3% 3% 31% 7%
Line B 4% 3% 22% 12%
Line C 4% 5% 7% 2%

Table 21: Impacts of bus holding - Illustration of the differences between the resulting simulation shares and the actual shares according to the first
punctuality metric, for bus lines A, B and C

712
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For bus line A, results obtained from actual observations show that about two thirds of buses on time and about713

one third are early at the timing points. On the other hand, the results indicate a very similar trend for scenarios NC714

and S H3, with an identical share for on-time travel and minor differences (± 3%) between in advance and significantly715

delayed buses. The results show that S H0 appear to completely underestimate the share of ahead bus, and strongly716

overestimate the share of on-time buses, the share of significantly delayed buses, on the other hand, is slightly underes-717

timated. Furthermore, the HH results indicate an underestimation of the share of early buses, and an underestimation718

to a lesser extent of the share of on-time and significantly late buses. In short, for line A, the shares of NC and S H3719

appear more similar to the actual shares compared to the shares of HH.720

721

For bus line B, the shares shown indicate that approximately three thirds and one fifth of actual buses are on-722

time travel and in advance, respectively, while the buses with a significant delay represent less than a tenth of the total723

buses. Furthermore, the results show that NC and S H3 follow a similar trend, with minor differences for the ahead and724

significantly late buses. For S H0, a trend similar to that of line A is observed, including a complete underestimation725

of the share of early buses. Moreover, the HH results indicate an underestimation and overestimation of the share726

of in advance and significantly delayed buses, respectively. Overall, for line B, the differences between the real and727

simulated shares are minor for NC and S H3 and, to a greater extent, for HH and S H0.728

729

For bus line C, one can observe that almost all actual buses travel on-time, while that a tenth are ahead. On the730

other hand, the share of significantly delay is very negligible. The results show a similar trends for NC and S H3 with a731

slightly overestimation and underestimation of the share of buses ahead and on-time, respectively, and match well with732

the actual share of significantly delayed buses. On the other hand, S H0 follows a different trend by overestimating and733

underestimating, respectively, the share of buses early and on-time. Unlike lines A and B, the shares of HH appear to734

correspond well to the actual shares, outperforming those resulting from the scheduled-based scenarios.735

736

In total, the analyzed results show significant similarities between NC and S H3, corresponding well to the actual737

shares of bus punctuality. In contrast, S H0 seems to strongly underestimate the share of early buses, while HH tends738

to overestimate the share of late buses.739

5.3.2. Impacts of Bus Holding: Bus Delay Severity Metric740

The bus punctuality shares based on bus severity delay metric for bus lines A, B and C are shown in Figure 20. The741

differences between the resulting simulation shares and the actual shares according to the second punctuality metric742

are reported in Table 22.743

Figure 20: Impacts of bus holding strategies - Bus punctuality shares for the bus lines studied, based on the second on-time measurement
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∆(S , actual) no-control scheduled-based scheduled-based headway-based
NC S H3 S H0 HH

Line A 4% 4% 31% 9%
Line B 6% 4% 22% 17%
Line C 4% 6% 9% 4%

Table 22: Impacts of bus holding - Illustration of the differences and gaps between the resulting simulation shares and the actual shares according
to the second punctuality metric, for bus lines A, B and C

From Figure 20 and Table 22, one can observe a resemblance between the shares of bus punctuality for the744

actual observations, NC and S H3, and that for the three studied bus lines. Exception to note for line C, part of the745

share (around 5%) of in advance and on-time travel buses seems is poorly located. Furthermore, the share of minor,746

moderate and significant delays is almost identical between S H3, NC and actual observations. For S H0, the resulting747

early and on-time bus shares are heavily neglected and overestimated for lines A and B respectively, while the slightly748

late bus shares are also overestimated, but to a lesser extent. On the other hand, for line C, one can observe a similar749

trend but to a lesser extent to that of lines A and B, with an underestimation and an overestimation, respectively for750

the share of buses in advance and on-time. For HH, the resulting shares of line A indicate an underestimate of the751

share of early and on-time buses, but also a slight overestimation of share of late buses, a similar trend is observed752

for line B but to a greater extent, while for line C, minor differences with the actual shares are observed, including an753

underestimation of the share of on-time buses.754

In short, the shares obtained according to this second bus punctuality measure follow similar trend to that of755

the first measure. Compared to actual bus punctuality, the shares resulting from NC and S H3, are on average more756

accurate than those from S H0 and HH.757

5.3.3. Impacts of Bus Holding: a Third Bus Delay Metric758

After having presenting in detail the shares resulting from the application of the two bus punctuality metrics, for759

the bus lines studied. The simulation results showed some differences between the actually observed delays and the760

delays resulting from the simulation. To better understand the those resulting differences in more detail, the actual761

shares will be compared over intervals of one minute increments, alongside the shares resulting from the simulated762

scenarios.763

Figure 21: A comparison of actual and simulated bus punctuality shares at control points grouped in one-minute increments, for bus line A
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In Figure 21 the relative frequencies of bus punctuality at the control points of bus line A are illustrated. The764

shares resulting of the no-control strategy (NC) correspond well to the actual shares with a negligible difference to765

note. One can observe that the shares of S H3 follow the same trend as those of NC, with the exception of the share766

of buses more than four minutes ahead, where the share is completely ignored. On the other hand, for buses two to767

three minutes ahead, the share is overestimated (+8). For S H0, the share of early buses is completely underestimated,768

while HH appears to slightly underestimate the share of early buses, slightly overestimate the share of late buses, and769

match well with the share of on-time buses.770

Figure 22: A comparison of actual and simulated bus punctuality shares at control points grouped in one-minute increments, for bus line B

Figure 23: A comparison of actual and simulated bus punctuality shares at control points grouped in one-minute increments, for bus line C
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Figure 22 illustrates the relative frequency of bus delays for line B. The results show that NC and to a lesser extent771

S H3, ranging from good fit to slightly overestimate the share of buses ahead and on-time, respectively. Furthermore,772

S H0 and S H3 seem to strongly underestimate the share of buses in advance, with more than three minutes and one773

minute ahead, respectively. Moreover, the resulting shares of the scheduling-based holding scenarios follow the same774

pattern by slightly underestimating the share of buses with moderate to significant delay. On the other hand, HH775

appears to underestimate the share of early buses, to a lesser extent slightly underestimate and overestimate the share776

of on-time and late buses, respectively.777

From Figure 23, it can be observed that the bus line C is the most punctual line among the lines studied. The results778

show that the resulting shares of scheduled-based holding scenarios, correspond well to the actual share of late buses.779

NC and S H3 slightly overestimate and underestimate the share of early buses and on-time buses, respectively. In780

contrast, S H0 significantly overestimates the share of buses on time and underestimates the share of buses in advance.781

On the other hand, HH seems to underestimate the share of on-time buses and to a lesser extent the share of buses too782

early, while it slightly underestimates the share of buses significantly delayed.783

The differences between the resulting simulation shares and the actual shares according to the third punctuality784

metric are reported in Table 23.785

∆(S , actual) no-control 3-min scheduled-based headway-based
NC S H3 S H0 HH

Line A 4% 11% 35% 8%
Line B 7% 10% 22% 14%
Line C 6% 6% 11% 5%

Table 23: Illustration of the differences and gaps between the resulting simulation shares and the actual shares according to the third punctuality
metric, for bus lines A, B and C

Overall, NC seems to adequately match the actual shares of lines A and B, and on average outperform S H3 and786

HH. On the other hand, HH shares correspond well to the actual shares of line C, slightly outperforming NC and S H3.787

In contrast, the S H0 corresponds the least to the actual shares, for the three studied lines.788

5.3.4. Impacts of Bus Stop-Skipping on Bus Punctuality789

In this section, the focus is on studying the impacts of bus stop-skipping approach on bus punctuality. The resulting790

bus punctuality shares - based on the second metric - of the two scenarios (S K3 and S K5) in which stop-skipping is791

implemented, as well as the actual shares and the resulting shares of no control scenario, are shown in Figure 24.792

Figure 24: Bus punctuality shares for the bus lines studied, based on the second on-time measurement. Expressing 3-min and Expressing 5-min
refer respectively to the resulting shares of scenarios S K3 and S K5
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For bus line A and B, we can observe a slight increase in the share of early and on-time buses, and at same time793

a slight decrease in share of moderately and significantly late buses, for S K3 compared to NC. In contrast, for S K5,794

negligible changes were observed. For line C, the shares of NC, S K3 and S K5 were almost the same. Compared to the795

actual shares, S K3 and S K5 seem to diverge, with a greater overestimation of the shares of early buses compared to796

NC. In sum, the applied stop-skipping strategy appears to have a slight impact on bus punctuality shares, in particular797

by decreasing the share of late buses.798

5.4. Simulation vs Actual: Off-Peak and Peak Hours799

In addition to the overall validation of bus travel times, previous analyzes using the three bus punctuality metrics800

have shown that the simulation results correspond well to the actual bus shares. In the following, a validation process801

will be conducted, in which the simulation results of no control scenario will be compared side-by-side with the802

actual observations, using the bus severity metric based on defined periods of the day (see Table 6). The simulation803

and actual bus punctuality shares, for the three bus lines, are given in Figure 25.804

Figure 25: Punctuality shares of buses, per time slot of the day for the three lines studied

For bus line A,the actual and simulation delay shares appear to follow similar pattern over a number of periods.805

During morning peak hours, the share of in advance and on-time travel buses is slightly overestimated. Next, a similar806

trend is observed during inter-peak, evening peak and off-peak hours, which account for more than two-thirds of total807

trips. The biggest difference is observed during AM off-peak hours, with a significant overestimation of the share of808

in advance buses (+11%), and consequently a slight underestimation of the shares of on-time and delayed buses.809

810

For bus line B, moderate differences are observed compared to line A. A very similar trend is observed, between811

the two shares during the morning peak hours, and to a lesser extent during inter-peak and evening peak hours.812

Concerning the late evening shares, one can observe a significant overestimation of in advance buses (+8%). On the813

other hand, few buses run during this late period with approximately less than a tenth of total trips.814
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For bus line C, the simulation and actual shares essentially follow a similar trend during evening rush hours and, to815

a lesser extent during inter-peak hours. Furthermore, larger differences can be observed during AM peak and off-peak816

hours, and PM off-peak hours, with the share of buses in advance being overestimated by +5% in evening off-peak817

hours, by +8% in morning off-peak hours, and strongly underestimated in morning rush hours with around +10%.818

819

In short, the results presented in this section give us some insights into the extent to which the simulation is able820

to reproduce reality. For the two main bus lines studied (A and B), the shares obtained show a similar trend during821

the two peak hours and during the inter-peak hours, which represents more than three quarters of the total trips, for822

the two bus lines. On the other hand, more significant differences are observed during off-peak hours in the morning823

for line A, and during off-peak hours in the evening for line B. Concerning bus line C, it can be observed that the824

differences in sharers are considerably greater compared to lines A and B, due to a certain overestimation on the share825

of in advance buses, particularly during morning periods.826

6. Discussion and Perspectives827

In this section, a discussion of the obtained results, including actual and simulated travel times and bus punctu-828

ality, will be discussed in depth. Next, the feature selection process along with an in-depth discussion of simulation829

parameters will be presented. Finally, the limitations and perspectives of the proposed work will be given.830

6.1. Discussion: Results831

In this first section, the resulting travel times and bus punctuality will be analyzed. Furthermore, a discussion on832

the impacts of bus recovery time, holding and stop-skipping strategies will be detailed.833

6.1.1. Analysis of Travel Times834

From the results at hand, the theoretical travel times seem to differ slightly from the observed travel times, these835

differences can be explained by: on the one hand, the theoretical arrival times at control points are rounded to nearest836

minute (hh:mm:00); on the other hand, on the last route segments, bus drivers will often tend to reach the terminal837

stop as quickly as possible. Furthermore, differences travel times between routes on the same line can be explained by838

a different level of demand and traffic in each direction. For line B, another explanation for the observed travel times839

differences is plausible, with the Retour route has more segments than Aller route. Furthermore, route segments B-A1840

and B-A2, together with B-R4 to B-R7 follow the same road but in opposite directions, this latter split of the Retour841

route, resulting in a higher number of control points, generates some of the significant differences due to shorter842

segments and therefore shorter travel times. For line C, the differences are insignificant in both directions, can be843

explained by the fact that the bus routes of line C are much shorter compared to A and B.844

The simulated travel times provided by ML models ( f1, f2 and f3), are highly resembled and statistically similar845

to the actual travel times. For line C, the differences across all route segments are negligible, averaging a few seconds846

per route segment. These similarities can be explained by the nature of travel time variability, which to some extent847

corresponds to probabilistic distributions regardless of the features selected to train ML models. In sum, ML models848

with stop time as feature ( f1 and f2) perform better than those built by only considering bus delay at the stop ( f3).849

Moreover, ML models with only the stop time as a feature ( f1) relatively match the best actual travel times. As850

expected, bus travel times are highly dependent on the time of the day. In contrast, travel times seem less sensitive to851

the bus delay, whether the bus is late or not.852

853

Overall, ML travel times are on average more accurate compared to the travel times estimated by probabilistic854

distributions, according to both goodness of fit metrics MAE and RMSE, during morning and evening peak hours.855

Furthermore, the travel times obtained during the evening rush hours appear more accurate than those during morning856

hours, which may be explained by a better fitting of evening travel times using probabilistic distributions compared to857

the morning travel times.858
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6.1.2. Analysis of Bus Punctuality859

Impacts of Bus Recovery Time Strategies. The share of bus punctuality, resulting from the first two simulated sce-860

narios (S 1 and S 2) appear to closely follow the actual shares according to the first metric, S 2 seems to significantly861

outperform S 1 according to the second metric, in which S 1, greatly overestimates the share of buses on time. This862

could be explained by the applied recovery time strategy, in which the latter simulation parameter was set to a min-863

imum of two minutes in S 1, while it was adjusted in S 2. The choice of recovery time strategy will be discussed in864

depth below.865

Impacts of Bus Holding Strategies. The second set of scenarios aims to investigate the impacts of bus holding strate-866

gies on bus punctuality (see Table 10). The shares obtained according to the first and second metric, show significant867

similarities between NC and S H3, with both on average more accurate than those from S H0 and HH. In contrast, S H0868

seems to strongly underestimate the share of early buses, while HH tends to overestimate the share of late buses. Ac-869

cording to third metric, NC seems to adequately match the actual shares of lines A and B, and on average outperform870

S H3 and HH. On the other hand, HH shares correspond well to the actual shares of line C, slightly outperforming NC871

and S H3. In contrast, the S H0 corresponds the least to the actual shares, for the three studied lines. The bus holding872

strategies implemented, including holding criteria will be discussed in detail below.873

Impacts of Stop-Skipping Strategy. The third set of implemented scenarios (SK3 and SK5) aims to investigate the874

impacts of bus stop-skipping strategy on bus punctuality. The observed slight decrease of the shares of moderately875

and significantly late buses is the result of applying the stop-skipping strategy. Overall, this strategy has a negligible876

impact on bus punctuality shares, which can be explained by: 1) a low share of buses moderately and significantly877

late, and 2) the impact of the defined skipping criteria, which will be discussed in detail below.878

Simulation vs Actual: Off-Peak and Peak Hours. Besides, the simulation results fit well with the actual data, in terms879

of bus punctuality during the two peak hours and during the inter-peak hours, for lines A and B and, to a lesser extent,880

for line C, in which the differences are more significant, due to an overestimation of the share of in advance buses,881

particularly during morning periods. These larger differences may be explained by the nature of line C, with a low882

number of route segments (two segments per route) and by relatively short travel times with on average 10 minutes883

for line C compared to 30 minutes for line A and 23 minutes for line B.884

On the other hand, the simulation model shows a certain difficulty in adjusting the shares of bus delay during885

off-peak hours in the morning and evening. This lack might be caused by an overestimation of the share of early buses886

mainly due to a low number of trips during off-peak hours, and therefore a smaller dataset to train and build more887

accurate ML models. An interesting observation needs to be pointed. For line A, a very high share of early buses888

is observed during evening off-peak hours, which can be explained by a lower traffic level, fewer passengers, which889

implies short dwell times and therefore shorter travel times.890

6.2. Discussion: Feature Selection891

The training dataset is mainly derived from actual bus AVL data, with bus vehicle and trip information such as892

bus stop time, bus stop delay and segment travel time, in addition to other derived information such as day of the893

week and season. Analyzing the resulting mean decrease in Gini score, stop time and stop delay appear to be the894

two most relevant features. Additionally, an in-depth analysis of the input features was then conducted, showing a895

higher R2 score for ML models built with stop time and stop delay compared to those built with weather features.896

The selected features corresponding to the information of a bus during a trip, which make the ML models relatively897

simple to implement. On the other hand, training a ML model with few features will likely result in an underfit model.898

Additionally, the ML models implemented in this study are designed to predict the travel time of a bus independently899

on its fleet. By including information about buses ahead will potentially enhance the quality of trained models. In900

contrast, some features may be highly correlated with each other due to the temporal nature of the data, which can901

lead to multicollinearity issues.902

6.3. Discussion: Simulation Parameters903

In this section, the simulation parameters including bus recovery time strategies, scheduled-based, headway-based904

and stop-skipping holding criteria will be discussed in depth.905
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6.3.1. Bus Recovery Time906

Another point to discuss is the choice of bus recovery time strategy. Sufficient recovery time should be built into907

the schedule to ensure that the delays encountered during one trip do not carry over on subsequent trips. In this study,908

two strategies S 1 and S 2 were implemented, with a fixed minimum recovery time up to two minutes in S 1 and an909

adjusted recovery time estimated from the observed recovery times in S 2.910

Applying a fixed recovery time, as with S 1, is relatively simple to implement without requiring other correspond-911

ing data. On the other hand, the implementation of a short duration straightforward at the end of the trip will likely912

have an impact on the bus departure time, only if the arriving bus was very late, otherwise the next bus departure will913

be at the predefined time. From the departure delays observed in Figure 15, one can see that buses will likely depart914

one minute early and up to two minutes late than the scheduled time. S 2 attempted to overcome the limitations of S 1,915

by adjusting the departure delay based on those observed, which improved the quality of simulated bus punctuality.916

However, the application of this second approach has a major drawback, as it will require historical data, which not917

always available, limiting its application to other cases studies.918

6.3.2. Holding Criteria919

Scheduled-Based Holding. In this section, the value of holding criteria s will be discussed with emphasis on the920

three variants of the scheduled-based holding strategy. With s = 0 (S H0), buses were held whenever were ahead921

of schedule. This strategy seems too theoretical and does not reflect actual bus trends, leading to near ignorance on922

the share of early buses. Bus drivers tend to tolerate being to some extent ahead of schedule and will therefore not923

systematically hold up the bus each time they are early. In fact, bus operators considered a bus up to a minute early924

to be on time [114]. With s = +∞ (NC), no holding control strategy was applied. Surprisingly, the obtained bus925

punctuality shares seem to correspond best to the actual shares, with a slight overestimation of buses ahead. Once926

again, this trend may be explained by a certain tolerance of buses ahead to a certain extent on the lines studied. In927

order to understand to what extent the holding criteria implemented correspond to the actual criteria, in other words,928

how early does a bus to be to be held ? A third holding strategy was implemented with s = 3 minutes (S H3). The929

results show that even with more than three minutes ahead, some of in advance buses were not held.930

Headway-Based Holding. The headway-based holding strategy HH was implemented with α = 0.8, which implies931

that a bus will only be held if its headway is more than 20% shorter than the scheduled headway. For lines A and B, HH932

seems to slightly underestimate and overestimate the shares of ahead and late buses respectively. Explanations may933

be as follows: 1) HH aims to maintain the predifined headway between running buses and, with the holding control of934

a bus heavily dependent on the preceding bus, an early or delayed departure of the bus will have a subsequent impact935

on the following buses; 2) In this study, service reliability is evaluated according to punctuality measures, more suited936

to scheduled-based strategies than to headway-based strategies, since it evaluates one vehicle at a time, and in which937

maintaining the headway may not be enough to guarantee the punctuality of buses. For line C, HH presents the best938

fit with actual shares, which can be explained by: 1) short travel times, on average 10 to 12 minutes; 2) The holding939

control is carried out at a single timing point, since the first and last points correspond to the origin and destination940

stops respectively; 3) Line C has a relatively large headway compared its route travel time (6/10 minutes versus 12941

minutes), and therefore buses will mostly not be held.942

6.3.3. Stop-Skipping Criteria943

In this section, the value of stop-skipping criteria Dmax will be discussed. The stop-skipping will only occur if944

the bus delay at the control point is greater than Dmax, and if not, the skipping will not performed. This can lead to945

additional delays, particularly if the bus continues to run slower than than expected, and subsequently further skipped946

stops, which likely explains the relative slight variation in the share of moderately and significantly late buses, for line947

A and B. For line C, with only one skipping stop and relatively short travel times, stop-skipping may not occur, which948

may explain the no change in terms of S K3 and S K5 shares compared to NC.949

Another factor that we need to highlight is the performed dwell time, in which alighting is allowed, while boarding950

is denied. Besides, from the available data, the dwell time is considered as part of the running time, which may to951

some extent overestimate the simulated travel times and thus generate a slight delay for buses.952
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6.4. Limitations and Perspectives953

This study has potential weaknesses and limitations. First, relying on data from just three bus lines in the same954

city might not fully capture the complexity and variability of urban public transportation systems. Additionally,955

the model’s effectiveness in other contexts, cities, or transportation modes may not have been thoroughly explored956

or validated. Although this study attempted to validate the simulation framework based on ML results, it will be957

interesting to extend its scope to other cities by conducting simulation scenarios with a larger number of bus lines.958

The dataset for bus travel time prediction is somewhat poor, including only trip information. Therefore, it will be959

interesting to enrich the training dataset, with information about traffic and road characteristics such as: speed limit960

and traffic lights, in order to: on the one hand, to improve the accuracy of ML prediction and, on the other hand,961

to extend the scope of the application to other bus lines. Another limitation needs to be pointed out regarding the962

resilience and adaptability of the framework. The simulation scenarios were carried out with emphasis on working963

day, it will be interesting to carry out other scenarios with emphasis on week-ends and public holidays. In addition,964

incorporating more diverse dataset, including special event, will test the resilience and adaptability of the framework.965

The results of this study put into perspective certain points on which it will be interesting to work. 1) Running966

a simulation model with ML models can be time-consuming, especially for bus lines with a large number of seg-967

ments. Thus, in order to overcome this drawback, several ML-Simulation coupling strategies, can be implemented.968

2) Another direction for future research concerns the findings of this study. Although previous analyzes have shown969

that the simulation model produces good results according to a number of bus on-time metrics, it is also interesting970

to investigate the extent to which operational recovery time influences bus on-time performance. 3) One further step971

could be the application of different strategies to eliminate delay occurrences, which can be useful to bus operators to972

improve service regularity.973

7. Conclusions974

This paper sheds light on the evaluation of public transportation performance, which constitutes an important issue975

facing operators. In this paper, we aim to propose a validation framework integrating microscopic simulation model976

with ML techniques. We introduced a hybrid approach combining regression trees trained with three feature sets for977

travel times prediction and probabilistic distributions to accurately estimate travel time variability to feed simulation978

model. Furthermore, a case study on three bus lines was carried out, in which two scenarios (S 1 and S 2) and six979

scenarios (S H0, S H3, NC, HH, S K3 and S K5) were implemented, respectively, to study the impacts of recovery times980

and bus control strategies on bus punctuality. The results show that the travel times simulated using ML were very981

resembled, with f1 adequately matching the best actual travel times with minor differences. They also show that982

the proposed hybrid approach combining ML with probabilistic distributions can better better estimate travel time983

variability than probabilistic distributions on average.984

A first analysis of bus punctuality was carried out, showing a good match between the actual and simulated985

simulated shares resulting of S 1 with a fixed minimum recovery time and S 2 with an adjusted recovery time derived986

from actual data, with overall S 2 more precise than S 1. A second analysis was carried out. Surprisingly NC with no987

holding control seems to correspond best to actual shares, while S H0 seems too theoretical and does not reflect actual988

bus trends, leading to high underestimation of bus shares ahead. HH with headway-based holding strategy, presented989

the best fit with actual shares for line C. A third analysis was carried out, showing a limited impact of the implemented990

bus stop-skipping strategy on the bus punctuality, due to a low share of late buses and the limitation of stop-skipping991

to buses very late. We also conduct an error analysis on the punctuality of simulated buses depending on the time of992

the day. The simulated buses follow a similar trend during inter-peak and peak hours, and to a lesser extent during the993

off-peak hours, in which lines A and B seem to correspond better to actual shares compared to C. The results show994

that bus travel times seem strongly dependent on the time of the day and, on the other hand, seem less sensitive to bus995

delays. Furthermore, the departure delay at the originating terminal as well as the applied holding control strategy are996

the two most influential factors on bus punctuality.997

Further research should involve further testing with a lager number of lines and different sets of control points to998

evaluate the performance of the proposed framework. Additionally, actual data can be enriched by including informa-999

tion on traffic and road characteristics. This will improve the quality of the input data and improve the effectiveness1000

and robustness of the ML model. The results of this study benefit bus operators to assist them in decision-making, by1001
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providing appropriate simulation parameters that correspond to a large extent to the actual situation, and thus realize1002

new scenarios, in actual and similar contexts, based on validated results. We believe this paper is of interest especially1003

for the practitioners in the field, as it provides in-depth insight into how ML and public transport simulation model1004

can be integrated into the same framework, to improve quality simulation results.1005
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Appendix A. Data Section1016

scheduled scheduled real real
date vehicle id trip id stop id stop arrival departure arrival departure

sequence time time time time
20200916 VCL-255 TRP-21022 STP-1883 1 07:41:00 07:41:00 07:41:22 07:41:22
20200916 VCL-255 TRP-21022 STP-1884 2 07:42:20 07:42:20 07:43:21 07:43:21

... ... ... ... ... ... ... ... ...
20200916 VCL-255 TRP-21022 STP-982 7 07:47:00 07:47:00 07:48:10 07:48:10
20200916 VCL-255 TRP-21022 STP-983 8 07:47:53 07:47:53 07:49:12 07:49:12

... ... ... ... ... ... ... ... ...
20200916 VCL-255 TRP-21022 STP-990 16 07:56:00 07:56:00 07:58:15 07:58:15
20200916 VCL-255 TRP-21022 STP-991 17 07:57:06 07:57:06 07:58:52 07:58:52

... ... ... ... ... ... ... ... ...
20200916 VCL-255 TRP-21022 STP-994 20 08:01:00 08:01:00 08:02:07 08:02:07
20200916 VCL-255 TRP-21022 STP-995 21 08:01:50 08:01:50 08:02:49 08:02:49

... ... ... ... ... ... ... ... ...
20200916 VCL-255 TRP-21022 STP-998 23 08:04:00 08:04:00 08:05:38 08:05:38
20200916 VCL-255 TRP-21022 STP-2105 24 08:05:14 08:05:14 08:06:14 08:06:14

... ... ... ... ... ... ... ... ...
20200916 VCL-255 TRP-21022 STP-1004 30 08:10:20 08:10:20 08:10:59 08:10:59
20200916 VCL-255 TRP-21022 STP-1005 31 08:11:00 08:11:00 08:11:10 08:11:10

Table A.24: A sample of combined data, including scheduled and actual time attributes
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scheduled scheduled scheduled real real real
from stop to stop section from stop to stop section from stop to stop section

index time time travel time time time travel time
STP-1883 STP-1884 1 07:41:00 07:42:20 00:01:20 07:41:22 07:43:21 00:01:59

. . . . . . . . . . . . . . . . . . . . . . . . . . .
STP-982 STP-983 7 07:47:00 07:47:53 00:00:53 07:48:10 07:49:12 00:01:02

. . . . . . . . . . . . . . . . . . . . . . . . . . .
STP-990 STP-991 16 07:56:00 07:57:06 00:01:06 07:58:15 07:58:52 00:00:37

. . . . . . . . . . . . . . . . . . . . . . . . . . .
STP-994 STP-995 20 08:01:00 08:01:50 00:00:50 08:02:07 08:02:49 00:00:42

. . . . . . . . . . . . . . . . . . . . . . . . . . .
STP-998 STP-2105 23 08:04:00 08:05:14 00:01:14 08:05:38 08:06:14 00:00:36

. . . . . . . . . . . . . . . . . . . . . . . . . . .
STP-1004 STP-1005 30 08:10:20 08:11:00 00:00:40 08:10:59 08:11:10 00:00:11

Table A.25: A sample dataset aggregated at section level, including: section stops and index, scheduled and real times, and derived travel times

scheduled scheduled scheduled real real real
from stop to stop segment from stop to stop segment from stop to stop segment

index time time travel time time time travel time
STP-1883 STP-982 1 07:41:00 07:47:00 00:06:00 07:41:22 07:48:10 00:06:48
STP-982 STP-990 2 07:47:00 07:56:00 00:09:00 07:48:10 07:58:15 00:10:05
STP-990 STP-994 3 07:56:00 08:01:00 00:05:00 07:58:15 08:02:07 00:03:52
STP-994 STP-998 4 08:01:00 08:04:00 00:03:00 08:02:07 08:05:38 00:03:31
STP-998 STP-1005 5 08:04:00 08:11:00 00:07:00 08:05:38 08:11:10 00:05:32

Table A.26: A sample dataset aggregated at segment level

Appendix B. Validation of Travel Times1017
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segment ID segment stops TTtheo TTactual TT f 1 TT f 2 TT f 3 ∆t,a ∆ f 1 ∆ f 2 ∆ f 3

A-A1 STP-1006→ STP-1013 434 429 408 395 402 -1% -5% -8% -6%
A-A2 STP-1013→ STP-1017 188 121 123 131 124 -35% 1% 8% 2%
A-A3 STP-1017→ STP-1022 371 420 422 421 432 13% 1% 0% 3%
A-A4 STP-1022→ STP-1030 584 603 617 619 636 3% 2% 3% 5%
A-A5 STP-1030→ STP-1846 597 419 450 470 487 -30% 7% 12% 16%

- - - - - - - - - - -
A-R1 STP-1883→ STP-982 383 423 423 421 420 10% 0% 0% -1%
A-R2 STP-982→ STP-990 620 629 648 637 636 1% 3% 1% 1%
A-R3 STP-990→ STP-994 322 253 262 261 275 -21% 3% 3% 9%
A-R4 STP-994→ STP-998 247 226 230 229 235 -8% 2% 1% 4%
A-R5 STP-998→ STP-1005 392 333 342 346 362 -15% 3% 4% 9%

Table B.27: Reported average travel times (in seconds) as well as derived relative metric ∆, for each route segment of bus line A

segment ID segment stops TTtheo TTactual TT f 1 TT f 2 TT f 3 ∆t,a ∆ f 1 ∆ f 2 ∆ f 3

C-A1 STP-2521→ STP-2525 280 282 275 276 277 1% -3% -2% -2%
C-A2 STP-2525→ STP-2526 323 343 333 334 336 6% -3% -3% -2%

- - - - - - - - - - -
C-R1 STP-2526→ STP-2527 288 353 347 345 349 22% -2% -2% -1%
C-R2 STP-2527→ STP-2440 297 226 223 223 225 -24% -1% -1% 0%

Table B.28: Reported average travel times (in seconds) as well as derived relative metric ∆, for each route segment of bus line C

segment ID segment stops TTtheo TTactual TT f 1 TT f 2 TT f 3 ∆t,a ∆ f 1 ∆ f 2 ∆ f 3

B-A1 STP-2349→ STP-1380 530 560 569 568 560 6% 2% 2% 0%
B-A2 STP-1380→ STP-1390 588 568 587 578 586 -3% 3% 2% 3%
B-A3 STP-1390→ STP-1394 297 249 254 255 296 -16% 2% 2% 19%
B-A4 STP-1394→ STP-2408 480 433 454 453 486 -10% 5% 5% 12%
B-A5 STP-2408→ STP-2746 75 92 80 79 80 22% -13% -14% -13%

- - - - - - - - - - -
B-R1 STP-2747→ STP-2348 75 114 110 112 110 52% -4% -2% -3%
B-R2 STP-2348→ STP-1411 449 417 422 417 420 -7% 1% 0% 1%
B-R3 STP-1411→ STP-1415 270 231 238 237 240 -15% 3% 3% 4%
B-R4 STP-1415→ STP-1420 224 286 296 291 295 28% 4% 2% 3%
B-R5 STP-1420→ STP-1424 444 315 327 334 365 -29% 4% 6% 16%
B-R6 STP-1424→ STP-1379 251 353 366 370 359 41% 4% 5% 2%
B-R7 STP-1379→ STP-834 206 169 174 223 174 -18% 3% 32% 3%

Table B.29: Reported average travel times (in seconds) as well as ∆ values, for each route segment of bus line B
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Morning peak hours Evening peak hours
segment ID TTactual ∆ f 1 ∆ f 2 ∆ f 3 TTactual ∆ f 1 ∆ f 2 ∆ f 3

A-A1 513 -10% -14% -22% 422 -3% -6% -3%
A-A2 132 1% 2% -3% 125 1% -1% -1%
A-A3 481 -1% 0% -8% 433 -5% -4% 1%
A-A4 653 -1% 0% -3% 619 -1% 0% 4%
A-A5 500 10% 11% 13% 433 1% 3% 13%

- - - - - - - - -
A-R1 418 -3% -4% 0% 472 1% 1% -10%
A-R2 628 -2% -4% 0% 706 4% 4% -7%
A-R3 248 1% -3% 6% 271 3% 8% 13%
A-R4 231 -1% -4% 1% 253 0% 2% -9%
A-R5 349 -5% -2% 0% 349 2% 3% 14%

Table B.30: Reported actual average travel times TTactual as well as the relative differences ∆ f 1, ∆ f 2 and ∆ f 3, for bus line A, over morning and
evening peak-hours

Morning peak hours Evening peak hours
segment ID TTactual ∆ f 1 ∆ f 2 ∆ f 3 TTactual ∆ f 1 ∆ f 2 ∆ f 3

C-A1 284 -3% -3% -3% 300 -6% -6% -7%
C-A2 342 -3% -5% -2% 395 -5% -4% -14%

- - - - - - - - -
C-R1 373 -1% -2% -7% 396 -4% -4% -10%
C-R2 231 -3% -3% -4% 233 0% -1% -2%

Table B.31: Reported actual average travel times TTactual as well as the relative differences ∆ f 1, ∆ f 2 and ∆ f 3, for bus line C, over morning and
evening peak-hours

Morning peak hours Evening peak hours
segment ID TTactual ∆ f 1 ∆ f 2 ∆ f 3 TTactual ∆ f 1 ∆ f 2 ∆ f 3

B-A1 573 -2% -3% -2% 625 -2% -2% -10%
B-A2 617 0% -2% -5% 635 -1% -2% -7%
B-A3 305 -9% -9% -3% 313 -1% -1% -4%
B-A4 548 2% -3% -6% 450 1% 1% 9%
B-A5 105 -14% -15% -24% 103 -27% -28% -24%

- - - - - - - - -
B-R1 99 -5% 0% 10% 131 -4% -2% -16%
B-R2 413 -1% -3% 1% 490 -2% -3% -14%
B-R3 284 1% 0% -14% 260 1% 1% -4%
B-R4 310 0% -2% -5% 312 0% -1% -6%
B-R5 342 8% 9% 14% 352 2% 2% 9%
B-R6 375 -2% -1% -4% 384 -1% -2% -8%
B-R7 188 -3% 4% -8% 179 -1% 4% -4%

Table B.32: Reported actual average travel times TTactual as well as the relative differences ∆ f 1, ∆ f 2 and ∆ f 3, for bus line B, over morning and
evening peak-hours
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