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Abstract

Evaluating the performance of public transportation, such as bus lines for example, is a major issue for Public
Transportation operators. To be able to integrate specific and local behaviors, microscopic line simulations, modelling
each buses on a daily basis, provide actual added value in terms of precision and quality. Carrying out more realistic
and accurate simulations requires the use of appropriate parameters. To achieve this, machine learning models trained
on real-world data can be used to feed and parameterize simulation models. To address this scientific question, it
is necessary to determine how to efficiently integrate machine learning and simulation models. This study aims
to couple machine learning and microscopic simulation models using various strategies, evaluate their accuracy and
performance and discuss the advantages and drawbacks of each. A case study involving three bus lines was conducted,
with results validated against real-world data, showing a good fit for both online and offline strategies. With the best
simulation time, good accuracy and adequate travel times and bus punctuality, an offline strategy seems to stand out
from other coupling strategies.

Keywords: Machine learning, Microscopic simulation, ML-assisted simulation, Travel time variability, Bus travel
time, Bus punctuality, Bus line simulation

1. Introduction1

Rapid progress in urbanization has modernized the lives of many people, but also brought major problems and2

challenges, such as energy consumption, pollution and traffic congestion [1; 2]. To reduce traffic congestion, and3

therefore its negative impacts, cities around the world are trying to shift personal traffic to Public Transportation (PT)4

[3; 4; 5], also called public transport, public transit or mass transit. It is defined as passenger transportation service,5

provided by public or private agencies, available to the general public.6

In PT, reliability is considered as one of the most critical features for evaluating Quality of Service (QoS) from7

the perspective of passengers and operators. Reliability refers to the certainty that passengers have about the level of8

service they will experience while travelling [6]. Maintaining reliable service is important for both transit passengers9

and transit operators [7]. Travel time, waiting time, transfer time and comfort level experienced during the transit10

trips are also some of the most important attributes of reliability [8], while punctuality and regularity are among the11

most important measures for evaluating public transport operations. Punctuality is a feature consisting of a predefined12

vehicle arriving, departing or passing at a predefined point at a predefined time [9].13

In practice, performance indicators are often estimated purely statistically by practitioners over several months or14

years of data. This method provides a relatively consistent picture of the past behaviour of bus lines with low modelling15

effort and computational cost, but does not allow these indicators to be evaluated in different "what if?" scenarios16

(e.g. roadworks, new traffic priorities, etc.). To face these challenges, bus operators need efficient microscopic bus17
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lines simulation models to evaluate the performance indicators of current lines and forecast indicators on potential18

developments of these lines.19

Machine learning (ML), a branch of Artificial Intelligence (AI), involves using algorithms to enable systems to20

learn from data and make predictions or decisions, emulating aspects of human learning. ML and simulation have an21

area of intersection, namely machine learning-assisted simulation, describing the integration of ML into simulation22

[10]. Performing ML and simulation in the same framework aims at improving the quality of simulation results to23

some extent. However, incorporating ML techniques into the simulation model tends to make the overall framework24

more complex and very time-consuming.25

In this paper, to couple ML models trained on actual bus data with a microscopic transit simulation model, we26

propose two strategies: an online strategy with more precise but time-consuming ML models, and an offline strategy27

that is less time-consuming but with approximated ML results. The accuracy and performance of the resulting coupled28

models will be evaluated using a case study based on real-world data provided by an operator. This evaluation will29

include an analysis of travel time day-to-day and period-to-period variability and punctuality performance indicators.30

In addition, a discussion on the advantages and limitations of each coupling strategy will be conducted.31

The remainder of this article is structured as follows: section 2 reviews related literature, including travel time32

variability and prediction, traffic simulation models, as well as the coupling of ML with simulation models. Section 333

provides an overview of the proposed framework for coupling ML and microscopic simulation framework, describes34

and illustrates the two suggested coupling strategies in detail. A case study scenario will be described in section 4. In35

section 5, the simulation results will be analyzed and validated based on a set of performance indicators. A discussion36

of the analyses will be presented in section 6 and some concluding remarks in section 7.37

2. Literature Review38

2.1. Travel Time Variability and Prediction using Machine Learning39

Travel time variability (TTV), also known as travel time uncertainty, is the key indicator for measuring the perfor-40

mance of the transport system, and can be divided into three distinct components: day-to-day variability, variability41

over the course of a day and vehicle-to-vehicle variability [11]. Research emphasizes day-to-day variability, which42

describes the degree of variation in travel time for a trip taking the same route over a specific period [12]. TTV im-43

portance can be seen from the standpoint of operators and passengers. From the operators’ point of view, high TTV44

leads to poor performance of the transport system. This could therefore lead to a loss of passengers and thus revenue45

for transport operators. From a passengers’ perspective, travelers expect that the transport system travel time should46

not exceed the average or scheduled time by more than an acceptable amount. [13].47

Probabilistic distributions are capable of describing the nature and the pattern of TTV. Understanding travel time48

distributions and their components is a prerequisite for reliability analysis. Appropriate choice of travel time distribu-49

tion is an essential element for efficient microscopic simulations of transportation and transit systems, as well as for50

predicting travel time and modeling discrete choices in route selections [14]. Various studies have made considerable51

effort to fit travel times using different types of distributions, such as normal [15], lognormal [16; 17; 18; 19; 20],52

gamma [21; 22], Weibull [23], Burr [24; 25], Generalized extreme value (GEV) distribution [26], Gaussian Mix-53

ture Model [27]. Such modelling aimed to find the best statistical distribution to describe and explain the shape and54

the pattern of TTV, because a distribution fitted to travel time values could illustrate a more comprehensive nature of55

the TTV [13].56

Estimated Time of Arrival (ETA), also known as expected time of arrival, is the time at which a transportation57

system is expected to arrive at its destination. A number of works have been devoted to predicting ETA [28; 29; 30;58

31; 32; 33; 34; 35; 36]. Moreover, ML techniques have been widely reported for travel time prediction, due to their59

ability to solve complex problems and extract patterns. A number of ML approaches have been widely implemented to60

predict the estimated bus arrival time [37; 38; 39; 40; 41; 42; 43; 44] and bus travel time [45; 46; 47; 48; 49; 50; 51; 52].61

2.2. Traffic Simulation Models62

Traffic simulation can be defined as the mathematical model of transportation systems, implemented through the63

application of dedicated computer software. They can be divided according to the level of details provided into64

microscopic and macroscopic traffic simulation models. Microscopic traffic simulator focuses on the movement of65
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each individual entity in the system. They provide a detailed picture of each individual vehicle including: location,66

time and speed [53]. These models are very effective in assessing heavily congested conditions. However, they67

are time-consuming, costly, and can be difficult to calibrate. Macroscopic traffic simulators rely on deterministic68

relationships between traffic flow, speed and density. They are originally developed to model traffic within specific69

transportation sub-networks, such as freeways and rural highways [54].70

Over the past decades, a number of traffic simulation frameworks have been developed, among which:71

• TRANSIMS developed at Los Alamos National Laboratory (USA) is an integrated set of tools for performing the72

analysis of a regional transportation system based on a cellular automata microscopic simulation model [55];73

• MIT (Massachusetts Institute of Technology) developed MITSIMLab, an open-source microscopic traffic sim-74

ulator that evaluates the impacts of alternative traffic management systems, public transport operations and75

various strategies at the operational level [56];76

• MATSim (Multi-Agent Transport Simulation) developed by ETH Zurich, is a major open-source framework,77

used to implement large-scale agent-based transport simulations, it is highly modular, allowing a very high78

level of customization [57];79

• SUMO (Simulation of Urban MObility) was developed at the German Aerospace Centre. It is a microscopic80

multi-modal traffic simulator capable of simulating different types of traffic data, in which vehicles, public81

transport and persons are modeled explicitly [53];82

• Starling, an agent-based simulation software, proposed by Leblond et al.[58], was developed as a generic frame-83

work to deal with spatial issues of territories. The simulation framework is designed to evaluate a specific84

mobility service.85

2.3. Machine Learning and Simulation Models86

The fields of ML and simulation have an intersecting area, which can be divided into three subfields: 1) Simulation-87

assisted machine learning describes the integration of simulation into ML; 2) Machine-learning assisted simulation88

describes the integration of ML into simulation; and 3) A hybrid combination describes a combination of ML and89

simulation with a strong mutual interaction [10].90

In recent years, several works have opted for simulation-assisted machine learning, including an approach using91

unsupervised ML algorithms to automatically detect repetitive patterns in a program’s execution, to reduce costly92

simulation time without significant loss in accuracy [59]. Shafizadeh et al.[60] coupled ML techniques including93

SVM, ANNs, tree-based models and statistical models with cellular automata to simulate urban growth in the city94

of Tehran. Elbattah et al.[61] proposed a framework incorporating simulation modeling along with ML to design95

pathways and assess the return on investment of implementation. Chabanet et al.[62] combined a computationally96

expensive simulator with a KNN classifier, which is less computationally costly to use online but whose predictions97

are only approximations of the simulator.98

On the other hand, ML assisted simulations have been performed in a number of studies, including a proposed99

simulation framework to explore the effectiveness of different ML approaches in streamflow simulation for four rivers100

in the United States [63]. Yan et al.[64] proposed a method for coupling neural networks and numerical models to101

simulate and identify high-risk areas for urban flooding, as well as to predict water accumulation depths. The outputs102

of the simulation models are used to feed the neural network. Shahhosseini et al.[65] proposed an approach to couple103

a simulation model with ML techniques, incorporating simulation results into the ML models to enhance corn yield104

predictions in the US Corn Belt. Abdelaty et al.[66] used the simulated energy consumption scenarios to develop four105

different data-driven modelling techniques.106

In the field of transportation, many studies have used simulation data and results to build ML models. Al Mamlook107

et al.[67] evaluated and compared different ML approaches to predict road accidents, based on driving simulation data.108

In another work, Sroczynski et al.[68] used the simulation results to develop and test ML models for traffic prediction.109

ML has also been implemented to assist traffic simulation models, among which can be cited Jiang et al.[69], that used110

unsupervised ML techniques for parameter calibration of a traffic simulation model. Ratrout et al.[70] proposed a ML111

model-based calibration methodology for the PARAMICS model. Jang et al.[71] proposed a method for integrating112
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deep reinforcement learning into traffic simulation modeling. Daguano et al.[72] presented a method for calibrating113

microsimulation models using artificial neural networks.114

The use of frameworks combining ML models and public transportation simulators is still relatively underutilized.115

Othman et al.[73] proposed a framework integrating neural network models into a public transport simulation model116

to improve real-time supply based on multiple demand scenarios. First, a Multi-Layer Perceptron combined with a117

Linear Regression model, trained on traffic data and weather information, was employed to predict congestion type,118

duration, and associated travel delays. These predictions are then input into a simulator to model various scenarios,119

with the goal of optimizing a scheduling plan in the most cost-effective manner possible.120

2.4. ML-Simulation Coupling121

A framework for coupling ML and simulation model will mainly include four layers: a data layer, a ML layer, a122

simulation layer and an evaluation layer. The coupling scheme depends on the nature of the coupling. In simulation-123

assisted ML approaches: input data will be used to prepare datasets to train ML models, the generated ML models will124

be used during the simulation, the results of which will be evaluated using key performance metrics. In ML-assisted125

simulation approaches, the process begins by setting up and running the simulation scenario. The results from this126

simulation are then used to create datasets for training ML models. These models are subsequently evaluated using127

appropriate performance metrics. An overview of the ML coupling scheme is shown in Figure 1.128

Figure 1: ML-Simulation coupling scheme

In the field of transportation, there might be a research gap related to the lack of methodology to couple ML and129

microscopic models for public transport simulation. Although there is limited existing works on the topic, the cou-130

pling process itself, including the exchange between ML and simulation layers, is briefly outlined in most studies. To131

address this research gap, this work contributes to the literature by proposing and comparing two strategies for cou-132

pling ML with a public transport simulation model. We refer by online the coupling strategy in which the ML models133

will provide PT simulation model with bus travel times, the two exchanging directly via a request-response process.134

On the other hand, we refer by offline the coupling strategy in which the simulation model will not directly exchange135

with the ML models, but will only have access to the resulting outputs of ML models. In other microscopic traffic136

simulation works, online/offline strategies refer to online/offline learning, while in this study we refer to online/offline137

coupling. In other words, whether a ML is accessible (online) or not (offline). In offline coupling, the results of ML are138

integrated (loaded) as input into the simulation model. It is also interesting to evaluate the accuracy and performance139

of the simulation model and to understand to what extent each of the coupling strategies can be applied. An overview140

of a proposed framework for coupling ML and public transport simulation model is given in Figure 2.141
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Figure 2: An overview of a framework for coupling ML and public transport simulation models. It consists of four layers: Data layer, in which
transit schedules and actual data are used to generate aggregated datasets. ML layer, in which datasets will be first prepared, a ML model will be
set up, then trained for bus travel time prediction, and finally deployed. Simulation layer, in which a simulation scenario is implemented and then
simulated, in which travel times are estimated by ML models following a request-response process. Evaluation layer, in which the simulation will
be evaluated using a set of KPIs
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Abdelaty et al.[66] x ML prediction models for battery-electric bus energy consumption in transit
Al Mamlook et al.[67] x x ML to predict the freeway traffic accidents-based driving simulation
Chabanet et al.[62] x x Coupling digital simulation and ML metamodel
Daguano et al.[72] x x Automatic calibration of microscopic traffic simulation models using ANNs
Elbattah et al.[61] x Designing care pathways using simulation modeling and ML
Hamerly et al.[59] x Using ML to guide architecture simulation
Jang et al.[71] x x Agent-based simulation modeling with Deep RL for smart traffic signal control
Jiang et al.[69] x x Parameters calibration of traffic simulation model based on data mining
Othman et al.[73] x x x x ML aided simulation of public transport utilization
Ratrout et al.[70] x x Calibration of PARAMICS model: Application of AI-based approach
Shafizadeh et al.[60] x Coupling ML, tree-based and statistical models with CA to simulate urban growth
Shahhosseini et al.[65] x Coupling ML and crop modeling improves crop yield prediction in the US Corn Belt
Sroczynski et al.[68] x x Road traffic prediction: by ML equally effectively as by complex microscopic model
Tongal et al.[63] x Simulation & forecasting of streamflows: ML coupled with base flow separation
Yan et al.[64] x A prediction model of urban flood inundation: coupling ML and numerical simulation
Proposed work x x x x x ML-assisted microscopic PT simulation: two coupling strategies

Table 1: Comparative table of related works

In Table 1, We compare our proposed work with existing studies based on the following aspects: whether the142

framework is simulation-assisted ML or ML-assisted simulation, whether the focus is on transportation and public143

transport, and whether the work addresses TTV and prediction.144
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3. Methodology145

In this section, the spatial and temporal components of transit bus route, as well as the data used, will be briefly146

presented. The proposed approach to couple ML and simulation models, including online and offline strategies, will147

then be explicitly detailed and illustrated on a real case application.148

3.1. Problem Statement149

A transit bus travels from an origin to a destination, passing through a set of transit stops along the way. Spatial150

components can be grouped, according to their type. Section refers to the links between consecutive stops. Segment151

is made up of several consecutive sections. Route is formed by the join of all sections from an origin terminal to a152

destination terminal [74]. In order to maintain acceptable service reliability, bus operators set up control points along153

the bus route. Control points, also called timing points, are particular stops where bus departure times are subject to154

regulation or to meet a specific buffer time [8]. Additionally, timing points can be used to divide a transit route into155

segments. An illustration of the spatial components of bus routes is given in Figure 3.156

Figure 3: An illustration of the different spatial components of a transit line

The temporal components of bus routes can be divided into durations and time points. Travel time, dwell time, and157

running time are durations, while arrival time and departure time at bus stops are specific points in time. Travel time158

consists of both dwell time and running time. Dwell time refers to the period during which a bus remains stationary159

at a scheduled stop, while running time refers to the period during which a bus is in motion between two stops.160

Depending on the level of detail, operating times can be categorized as follows:161

1. Section travel time: This corresponds to the dwell time and running time between successive stops within a162

specific section.163

2. Segment travel time: This refers to the sum of the travel times for all sections within the segment under164

consideration.165

3. Route travel time: This refers to the total travel time from the first stop to the last stop.166

Figure 4 provides an illustration of the temporal components of bus lines at the section level.167

In this study, the data used consist of: 1) Transit schedules, grouped by transit line (e.g., bus line) and formatted168

as GTFS (General Transit Feed Specification) tables [75]; and 2) Actual data, structured similarly to a GTFS stop169

times table, providing information on transit trips during a specified period of the year, including date, vehicle ID, the170

corresponding trip, and actual stop times. The latter are recorded from GPS trackers on transit vehicles at each stop.171

Therefore, scheduled and actual stop times can be mapped in the same data structure based on mutual attributes (e.g.,172

trip ID and stop ID).173

Next, the actual observations, which are originally available at the stop level, can be transformed to the section174

and segment levels. This transformation aims to mitigate the impacts of imprecise stop times, which are susceptible175
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Figure 4: An illustration of the different components of travel time between two transit stops

to measurement errors that can adversely affect the quality of ML models. The components of the bus route, as well176

as the stop and travel times of a bus trip, aggregated at the stop, section, and segment levels, are shown in Figure 5.177

Figure 5: An illustration of the components of a bus route with stop and travel times

3.2. Coupling ML and Simulation Models178

Before outlining the proposed approach to couple ML and public transport simulation model within the frame-179

work, an overview of a generic traffic simulation model Starling [58] will be given. It combines an agent-based180

framework and a discrete-event approach, it is a microscopic model for mobility simulation. Its aim is to provide181

a basis for the development of computer models for the simulation of specific transportation systems, consisting of182

generic simulation classes that can be extended to match the specifications of the system being simulated.183

3.2.1. Coupling Approach: Overview184

The developed coupling approach was designed in order to provide public transport simulation model with more185

realistic travel times, based on historical data via ML models. It consists of three entities: traffic simulation model, the186
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deployed ML models and a ML interface which ensures the exchange between the simulator and the ML models. Ad-187

ditionally, in order to perform transit simulation, scenario data and operator parameters will be added to the simulator188

inputs. An overview of a generic simulation model coupled with deployed ML models is shown in Figure 6.189

Figure 6: An overview of coupling a generic framework with ML models. It consists of two blocks: the block below groups the ML models
deployed for travel times prediction; the block above refers to the simulation framework, its parameters, the scenario data as well as the operator
parameters, and in addition to a ML interface (commander) which ensures the exchange between simulator and ML models

From a technical point of view, the simulator iterates through the transit trips one by one, uses the input control190

points to split the trip route into segments, and applies a specific process to simulate the travel segments. In essence,191

at each control point, the simulated bus requests its next segment travel time by providing the ML interface with the192

route segment and simulation information. The ML commander, on the other hand, selects the most suitable model193

for the requested route segment based on the request information provided. The chosen model will then predict and194

return the travel time of the corresponding segment based on the simulation information. Finally, the ML interface195

will prepare a response and send it back to the simulator. An overview of the coupling process is shown in Figure 7.196

Figure 7: An overview of the proposed coupling process. The simulation model proceeds on trip-by-trip, dividing the trip route into segments
according to the defined control points (CPs). At each control point, the travel time of the next segment is estimated through a request-response
process. Step1: The simulator requests the segment travel time. Step2: The ML controller selects the appropriate ML model for travel time
prediction based on the request information. Step3: The selected model predicts the travel time using the provided information and sends the
prediction back to the ML controller. Step4: The ML controller prepares an appropriate response and sends it back to the simulator.

8



3.2.2. Coupling Approach: Online Strategy197

In this section, the coupling process will be described in more detail. At this stage of the work, a technical198

concept that requires further explanation is the simulator request. It consists of three components: 1) Route segment199

information, including attributes such as transit line, origin, and destination stops of the route segment, which will be200

used to select the corresponding ML models for travel time prediction; 2) Simulation information, including attributes201

such as time of day and stop delay, will be mainly used by the selected ML model to predict the travel time of the202

corresponding segment; 3) The data type variable refers to the type of response data, which may be a single value,203

such as a mean value, or a probabilistic distribution, such as a normal distribution. An example simulator request is204

shown in Figure 8.205

Figure 8: An example of a simulation request, consisting primarily of a route segment and simulation information

The coupling process is performed in several steps as follows:206

• The simulator prepares a request and transfers it to the ML interface, including the transit route segment, the207

simulation information, and the data type of the predicted values.208

• The ML commander will use the different request information to find the most suitable ML model. This selec-209

tion process is carried out in three stages:210

– In the first stage, the ML interface retrieves the deployed ML models from the model database, which211

match the request segment information. For the sake of simplicity, we assume that there is at least one ML212

model deployed for each requested route segment.213

– In the second stage, among the retrieved models, the ML models built with mutual features related to the214

simulation information are selected.215

– In the third stage, the selected deployed models will be compared using evaluation metrics, such as the216

coefficient of determination R2. The best-fit model will then be chosen by the ML commander to predict217

the travel time of the requested segment.218

• Next, the chosen model for the travel time prediction will use the simulation information as the test dataset,219

apply the prediction and then return the corresponding travel time parameters to the ML interface.220

• Subsequently, a response will be prepared by the ML commander using the parameters received. Depending on221

the type of the request, specific processes will be applied to distinguish two cases: 1) the predicted travel time if222

the requested result is a single value; 2) the parameters of the probabilistic distribution, which can be extracted223

by fitting the corresponding dataset of the predicted travel time to the requested law.224

• Finally, the prepared response will be sent back to the simulator, including the requested parameters.225

Figure 9 schematically illustrates the different steps of the coupling process.226

In the remainder of the paper, we refer to the ML model as the regression tree model.227
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Figure 9: A detailed view of the proposed coupling process. (Left): an illustration of the request-response process, simulator prepares and sends
a request to the ML commander, this latter provides the ML models with request simulation information, which will be used to predict the travel
time, and this will be returned in response to the simulator afterwards. (Right): coupling process - steps

Travel time prediction by the ML model and response preparation by the ML interface, the most important steps in228

the coupling process, are presented as follows. First, the simulation information, consisting of a set of feature values,229

will be used to retrieve the appropriate decision rule, and hence the associated travel time. From a technical point230

of view, an ML test dataset will be built by matching the ML model features with the simulation values, and will231

then be used to predict the corresponding decision rule, and therefore the segment travel time. Second, the dataset232

corresponding to the selected decision rule will be retrieved from the original data. As stated above, depending on the233

type of the request, the response may take the form of a single value or a distribution. In the first case, the average234

travel time of the observations will be retained. In the second case, the observations will be fitted with the requested235

probability law, and the latter parameters will be estimated. Finally, the estimated travel time parameters will be236

returned to the simulator. An overview of the coupling process with a focus on travel time prediction and response237

preparation, with the regression tree as the ML model, is shown in Figure 10. In the presented coupling approach, the238

simulator and ML models exchange simultaneously via the ML interface. Therefore, in the remainder of this paper,239

the proposed approach will be referred to as the online strategy.

Figure 10: Coupling process - regression tree - the focus is on the stages of predicting travel times and preparing the response
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3.2.3. Coupling Approach: Offline Strategy240

Running a simulation scenario with an online strategy may seem time-consuming because, for each simulation241

request, a ML model must be selected and then used to predict the segment travel time. To address the drawbacks of242

the online strategy, an offline coupling strategy is proposed in this section. It aims to run simulation scenarios using243

approximated segment travel times rather than overusing deployed ML models. In the offline coupling approach, a244

pre-simulation is first performed, using ML models to create a table of segment travel times, and then integrating245

the generated table into the framework coupling as part of the ML commander. An overview of the offline coupling246

strategy is presented alongside the online strategy in Figure 11.247

Figure 11: An overview of coupling strategies with emphasis on the request-response process. For the offline strategy, a table with approximate
travel time parameters will first be built based on deployed ML models, integrated into the ML interface, and then used to simulate travel times
during the request-response process

To build the segment travel time parameter table, the following process will be applied. First, based on a set of248

features and an evaluation metric, the best-fit deployed ML model will be retrieved for each route segment. Second, a249

dataset consisting of the actual observations corresponding to each decision rule of the selected model will be prepared.250

Third, the travel time parameters of the decision rules will be estimated. This involves adjusting the corresponding251

observed travel times of each decision rule to the chosen probability law. An overview of generating a table of segment252

travel time parameters based on deployed ML models is depicted in Figure 12.253

The presented offline strategy travel times table is built according to the set of decision rules (a set of feature254

values). A second alternative for estimating a segment’s travel time parameter table can be derived based on static255

time periods (e.g., in 15-minute increments) corresponding to a temporal attribute (e.g., stop time). Therefore, the256

process of generating the segment travel time parameter table for the second variant is given as follows. First of all,257

and similarly to the first offline variant, the ML model best suited to the corresponding segment s ∈ S will be selected.258

Next, the selected model rules will be filtered, and only a set of rules R corresponding to the time period t ∈ T will259

be kept. The fitted parameters of the chosen law will then be estimated for each decision rule r ∈ R. Next, for each260

selected decision rule r ∈ R, a weight value wr for period t will be estimated according to Equation 1. Finally, the law261

parameters per time period t ∈ T will be estimated according to Equation 2.262
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Figure 12: An overview of the building segment travel time parameter table process

wt
r =
|t ∩ rtime_att |

|t|
(1)

Where:263

• |t|: is the absolute duration of a time period t264

• rtime_att: refers to the selected time attribute numeric range in which a decision rule r is satisfied265

• wt
r: is the estimated weight of rule r for time period t266

Pt
i =
∑
r∈R

Pr
i · w

t
r (2)

Where:267

• Pt
i: refers to the estimated value of the law parameter i of the time period t268

• Pr
i : refers to the estimated value of the law parameter i of the decision rule r269

The normal distribution has been widely used to estimate TTV [15; 14; 76]. An application of Equation 2 accord-
ing to the normal law is formulated in Equation 3.

µt =
∑
r∈R

µr · wt
r

σt =
∑
r∈R

σt · wt
r

(3)

Where:270

• µ and σ refer to the mean and standard deviation parameters of the normal distribution, respectively.271

An overview of the updated process for estimating travel time parameters with static time periods is presented in272

Figure 13.273
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Figure 13: An overview of the process of estimating travel time parameters based on static time periods. The process iterates through each of the
route segments and time periods, selects the best-fit segment ML model, retrieves and estimates the corresponding decision rules and their travel
time parameters, respectively. Finally, the rule weights will be calculated and then used to deduce the corresponding law parameters over static
time periods

After detailing the process of building the segment travel times table, the next step in the offline strategy is to274

update the request-response process, as follows. First, the simulator prepares its request in the same way as in the275

online strategy. Then, the ML commander uses the simulation information along with the route segment to retrieve the276

corresponding travel time parameters from the created table. Finally, the ML commander prepares its response and277

sends it back to the simulator in the same way as in the online strategy. An overview of the offline request-response278

process is shown in Figure 14.279

Figure 14: An overview of the request-response for offline coupling strategy. (Left): Overview of the process. (Right): Process steps
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3.3. Coupling ML-Simulation: Illustrations280

3.3.1. Online Strategy: Illustration281

In this section, the application of the described coupling process applied on the first route segment of an anony-282

mous French urban bus line referenced as A, will be detailed in the following. The selected transit route and its bus283

stops are shown in Figure 5. An overview of the coupling framework applied on the chosen route segment is shown284

in Figure 15.285

Figure 15: An overview of the coupling framework on a real case application: an anonymous French urban bus line

The first step in the coupling process is preparing the request, which includes: the type of the request, route286

segment information, and simulation information, the latter including the stop time of the simulated bus and its delay287

at the stop. An illustration of a simulator request is shown in Figure 8. At this point, it should be noted that the request288

type, which defines the type of the travel time data returned, will be discussed in more detail below.289

Next, the ML commander receives the request from the simulator and processes it in three stages. In the first290

stage, the segment route information from the request will be used to filter the indexed models. Therefore, the models291

corresponding to the transit line A, with STP-1883 as the origin and STP-982 as the destination, will be retrieved.292

These models are presented in Table 2.293

key algorithm transit line from stop to stop input features model target score (R²)
68dsfnr6 RT A STP-1883 STP-982 stop time real travel time 36%
frvcc9fb RT A STP-1883 STP-982 stop time real travel time 35%

. . . . . . . . . . . . . . . . . . . . . . . .
cq5x4ddu RT A STP-1883 STP-982 stop time;stop delay real travel time 36%
73p81dxl RT A STP-1883 STP-982 stop time;stop delay real travel time 35%

Table 2: A sample of the indexed models with a focus on the selectable route segment models (in bold)

In the second stage, the time of the day and stop delay attributes will be used to match the suitable ML models.294

Therefore, ML models without mutual attributes will be dismissed. It is worth noting that request attributes with the295

same meaning to model input features will be updated. For instance, stop time and time of the day are two feature296

attributes with the same meaning. The matched and dismissed models are given in Table 3.297
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key algorithm transit line from stop to stop input features model target score (R²)
68dsfnr6 RT A STP-1883 STP-982 stop time real travel time 36%
frvcc9fb RT A STP-1883 STP-982 stop time real travel time 35%

cq5x4ddu RT A STP-1883 STP-982 stop time;stop delay real travel time 36%
73p81dxl RT A STP-1883 STP-982 stop time;stop delay real travel time 35%

Table 3: A set of ML models from the indexed database matching the simulator request. (Black): ML models corresponding to simulation attributes.
(Red): unselected ML models

In the third stage, the selection of the best-fit ML model will be based on evaluation metrics. In this study, the298

coefficient of determination R2 is used as an evaluation metric and referenced by score attribute in the model index299

database. Therefore, the selected ML model for travel time prediction, corresponding to the model with the the highest300

score among the matched models, is given in Table 4.301

key algorithm transit line from stop to stop input features model target score (R²)
cq5x4ddu RT A STP-1883 STP-982 stop time;stop delay real travel time 36%

Table 4: The indexed model chosen for travel time prediction

Next, the selected regression tree model will be used to predict the travel time of the illustrated route segment.302

A test dataset is built by matching the simulation information to the model input features, then used to select the303

appropriate decision rule, ending with a tree leaf and hence the predicted travel time class. The test dataset, the304

regression tree used, the rule selected, and its tree leaf are shown in Figure 16.305

Figure 16: An illustration of applying the chosen regression tree model on the test dataset built on the simulation information. The green nodes
constitute the selected path nodes corresponding to the predicted decision rule, the grey nodes are the terminal leaves of the tree, while the red node
is the selected tree leaf containing the predicted travel time variable value. On the other hand, white nodes and blue nodes refer to stop time and
delay conditions respectively
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The last step in the coupling process is the preparation of a response from the predicted travel time. In order to306

prepare this last response, the selected decision rule observations will be retrieved from the segment’s original dataset.307

Depending on the type of request, two responses are to be considered: 1) Single value request, in which the predicted308

value is the average travel time of the retrieved observations; 2) Probability distribution request, in which the retrieved309

observations are fitted to the requested probability distribution. The parameters of the fitted law will therefore be310

returned. The prepared response, depending on the request type, is shown in Figure 17.311

Figure 17: An illustration of the responses prepared based on the type of request. 1) The predicted value is the average travel time of the sample
observations. 2) The relative frequency of the retrieved observations is shown, along with the normal law density function requested and its
parameters: mean (µ) and standard deviation (σ)

3.3.2. Offline Strategy: Illustration312

After illustrating an application of the request-response process using the online coupling strategy, this section313

presents an illustration of the offline strategy. It is carried out in two stages: First, the table of segment travel time314

parameters, estimated based on the deployed ML models, will be provided; Second, a detailed illustration of a request-315

response process will be given. The offline strategy will be applied to the same route segment and simulator request316

shown in the previous section.317

To build the segment travel time parameter table, a number of parameters need to be initialized. As stated above,318

the illustration will take place on the first route segment with STP-1883 as the origin and STP-982 as the destination.319

Depending on the offline strategy variant, the following parameters are initialized as follows. For the first variant, the320

attributes stop time and start delay are considered as selected features; the distribution chosen is the best-fit, which321

corresponds to the probability law best suited to the appropriate ML models. For the second variant, the stop time322

attribute is considered as the selected feature; the normal distribution is the chosen law, while the time periods are323

increments of 15 minutes. The best-fit deployed models selected to create the segment travel time parameter tables324

are given in Table 5, while the two built segment travel time parameter tables are presented in Table 6 and Table325

7, respectively. More details on the travel time parameter tables, as well as the distribution laws, are presented in326

Appendix A.327

key algorithm transit line from stop to stop input features model target score (R²)
cq5x4ddu RT A STP-1883 STP-982 stop time;stop delay real travel time 36%
68dsfnr6 RT A STP-1883 STP-982 stop time real travel time 36%

Table 5: Selected best-fit deployed ML models from the model database. Depending on the offline strategy variant: for the first variant (in black);
for the second variant (in blue).
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transit segment segment feature probability parameter
line from stop to stop values law values
. . . . . . . . . . . . . . . . . .
A STP-1883 STP-982 07:25:30 ≤ stop time < 08:09:00 χ2 loc = 178.97; scale = 11.05; df = 18.83
A STP-1883 STP-982 08:09:00 ≤ stop time < 08:33:00 exponweib loc = 113.78; scale = 231.19;

a = 4.73; c = 1.96
A STP-1883 STP-982 08:33:00 ≤ stop time < 10:45:00 genextreme loc = 388.95; scale = 70.80; c = 0.18

∧ stop delay < 37
A STP-1883 STP-982 08:33:00 ≤ stop time < 10:45:00 χ2 loc = 200.05; scale = 11.13; df = 18.26

∧ stop delay ≥ 37
. . . . . . . . . . . . . . . . . .
A STP-1883 STP-982 18:47:00 ≤ stop time ≤ 23:59:59 genextreme loc = 312.36; scale = 65.17; c= 0.16
. . . . . . . . . . . . . . . . . .

Table 6: Segment travel time parameter table built for the first offline variant, with stop time and start delay as selected features and best-fit
distribution as the chosen law

transit segment segment feature probability parameter
line from stop to stop values law values
. . . . . . . . . . . . . . . . . .
A STP-1883 STP-982 07:30:00 ≤ stop time < 07:45:00 normal µ = 384; σ = 66
A STP-1883 STP-982 08:45:00 ≤ stop time < 08:00:00 normal µ = 384; σ = 66
A STP-1883 STP-982 08:00:00 ≤ stop time < 08:15:00 normal µ = 404; σ = 70
. . . . . . . . . . . . . . . . . .
A STP-1883 STP-982 18:45:00 ≤ stop time < 19:00:00 normal µ = 432; σ = 92
A STP-1883 STP-982 19:00:00 ≤ stop time < 19:15:00 normal µ = 336; σ = 70
A STP-1883 STP-982 19:15:00 ≤ stop time ≤ 19:30:00 normal µ = 336; σ = 70
. . . . . . . . . . . . . . . . . .

Table 7: Segment travel time parameter table built for the second offline variant, with stop time as the selected feature and normal distribution as
the chosen law

After presenting the two segment travel time parameter tables, an illustration of the application of request-response328

process with the offline strategy will be given. An overview of the framework used with offline as a coupling strategy329

is shown in Figure 18.330

Figure 18: An overview of the framework used with offline as a coupling strategy: a real case of application for an urban bus line
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Next, the simulation request presented previously (see Figure 15), will be prepared. Furthermore, in offline cou-331

pling, the response is presented in the format of a distribution law with its associated parameters. Therefore, the data332

type will no longer be included in the request. The updated request is shown in Figure 19.333

Figure 19: Simulation request updated according to offline strategy

Based on the route segment and simulation information, the corresponding decision rule will be selected, by334

matching the request information with the feature values of decision rule. The corresponding decision rules according335

to the offline strategy variant are given in Table 8.336

transit segment segment rule feature offline parameter
line from stop to stop values variant values
A STP-1883 STP-982 07:25:30 ≤ stop time < 08:09:00 first law = χ2; loc = 178.97;

scale = 11.05; df = 18.83
A STP-1883 STP-982 07:30:00 ≤ stop time < 07:45:00 second law = normal; µ = 384; σ = 66

Table 8: Decision rules selected based on offline variant

According to the matched decision rule, a response is prepared by the ML commander, including the corresponding337

law along with its parameters. An illustration of the responses returned by the ML commander to the simulator,338

depending on the offline variant, is shown side by side in Figure 20.339

Figure 20: An illustration of the responses returned based on the offline variant, consisting of the selected law density function and its parameters
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4. Simulation Scenarios340

The simulation scenario was developed for three bus lines referenced respectively as A, B, and C. In this section,341

the chosen bus lines will be described first, the timing points will be illustrated, and the trained ML models as well as342

the simulation model parameters will be provided.343

4.1. Bus Lines: Description and Timing Points344

Line A buses run Monday to Saturday from approximately five in the morning for the first departure and until345

approximately a quarter past nine in the evening for the last departure. On Sundays, the line’s buses run from around346

six in the morning to around a quarter past nine in the evening. Buses on this line serve 33 stops in one direction347

and 34 stops in the other direction, over a distance of approximately nine kilometers and a travel time of thirty-five348

minutes. This bus line is very busy, with an average of one bus every ten minutes during peak hours and one bus every349

quarter of an hour during off-peak hours, resulting in a total of 179 trips per working day.350

Line B operates every day between five in the morning and nine twenty in the evening. Buses on this line serve351

32 stops in both directions, covering a distance of approximately nine and a half kilometers and a travel time of just352

over half an hour. In terms of frequency, Line B runs on average with one bus every six minutes during peak hours353

and twelve minutes during off-peak hours, resulting in a total of 208 trips per working day.354

Line C buses operate all week from approximately five in the morning to nine in the evening, serving 6 stops in355

one direction and 5 in the opposite direction. Compared to the previous two lines, bus line C is much shorter, with a356

distance of around two kilometers and a travel time of seven minutes. This line runs on average with one bus every357

seven minutes during peak hours and ten minutes during off-peak hours, resulting in a total of 186 trips per day.358

route route route route distance route travel time service frequency
ID name stops (kms) (minutes) on/off peak hours
AA A-Aller 33 9.00 37 10/15 minutes
AR A-Retour 34 9.39 38 10/14 minutes
BA B-Aller 32 9.59 33 6/12 minutes
BR B-Retour 32 9.67 31 7/12 minutes
CA C-Aller 6 2.19 6 7/10 minutes
CR C-Retour 5 1.81 7 7/10 minutes

Table 9: A description of the bus lines studied including: line identifier and name, number of stops per route direction, distance and time travel, in
addition to the line’s service frequency during peak and off-peak hours. AA and AR respectively designate the route in one direction Aller, and the
route in the opposite direction Retour of line A

The public transport simulation scenarios will be carried out on working days (Monday to Friday). The operating359

days available for the selected lines covered 86, 274, and 281 days for lines A, B, and C, respectively. A description360

of the bus lines studied is given in Table 9.361

After selecting the bus lines for the simulation, the next step is to define the control points for each bus route.362

These selected points will be used to divide each bus route into route segments, in order to train and then deploy ML363

segment travel time models. These models will feed the simulation model with appropriate travel times. The retrieved364

bus timing points, derived route segments, and their scheduled travel times for the selected bus lines are shown in365

Figure 21.366

4.2. Machine Learning: Models Trained367

In this work, ML models are trained and then deployed in order to: 1) directly feed the simulation model with the368

travel times of the route segments in the case of online coupling; 2) build a table of segment travel time parameters in369

the case of offline coupling. This study focuses on accurately estimating travel time variability rather than returning370

a single travel time prediction value. ML algorithms such as regression trees, which divide the original dataset into371

samples based on IF-THEN rules, are suitable for dealing with travel time variability. Thus, the Regression Tree372

algorithm is chosen as the ML algorithm in this study. Next, regression trees are trained with two sets of input373

features: a) with only stop time; b) with stop time and stop delay. The actual travel time attribute is set as the target.374
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Figure 21: A detailed illustration of the route segments of the three selected bus lines. For bus line A, eleven control points are defined in the Aller
direction, and nine in the Retour direction; there are eight and four timing points per direction for bus lines B and C. The route segment is identified
by: its transit line, its route direction (A/R) and its index in the transit route. For instance, B-R2 refers to the second segment of the Retour route of
line B

To build the ML model, we opt for k-fold cross-validation (CV), a technique used in ML to evaluate the perfor-375

mance of a model on unseen data. In k-fold CV, the dataset is divided into k subsets (known as folds). A fold is used376

once in each iteration as testing data, while the remaining folds are used as training data [77]. Thus, the process is377

repetitive until the entire dataset is evaluated. In this study, k = 5 is selected.378

In terms of parameters, regression trees are built according to the following parameter values: tree maximum depth379

varies between five and fourteen levels, while minimum samples per leaf takes four values ranging from 25 to 100.380

In total, for each route segment, 80 regression trees are built and deployed. For line A, 800 and 640 models were381

generated respectively, for AA and AR. For lines B and C, respectively, 560 and 240 models were generated per route382

direction.383

4.3. Simulation Model: Model and Parameters384

In order to evaluate and validate the quality of the different coupling strategies, a simulation model as well as a385

set of its parameters must be defined. The simulation scenarios will be carried out using an online strategy and three386

offline coupling variants. In the first two offline variants S 1 and S 2, the segment route travel time parameter table will387

be built based on the normal distribution, with a static time period of a quarter of an hour for S 1. On the other hand,388

the table of parameters of the third variant S 3a will be generated according to the best-fit distribution law. We assume389

that S 3a and S 3b are considered equivalent during the simulation runtime because no ML models will be trained during390

the simulation runtime. Thus, the best-fit ML model from which the segment travel times table will be constructed391

will remain the same. S 3a and S 3b will be referred to as S 3 in the remainder of this paper. The different coupling392

variants implemented are given in Table 10.393

In this study, the simulation scenarios will be performed using a generic framework, briefly described in section394

3.2. A high number of simulation iterations is necessary in order to generate sufficient samples for the evaluation of395

the coupling strategies. The number of runs to be simulated is set for this study to 1000 iterations.396
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strategy coupling probability time
abbreviation strategy law periods

S 1 offline normal 15-minutes
S 2 offline normal -
S 3a offline best-fit -
S 3b online best-fit -

Table 10: Implemented coupling variants for the simulated scenario, including three offline strategy variants (S 1, S 2 and S 3a) and one online
strategy (S 3b)

5. Experiments and Results397

Before presenting the results obtained, the two-step evaluation process undertaken will be briefly detailed. It aims398

to assess the quality of simulation results obtained from each of the coupling variants using performance indicators.399

The process is twofold: First, validate ML models for travel time prediction; Second, evaluate the simulated bus400

on-time performance accuracy of each coupling strategy. From a technical perspective, simulation results will be401

compared to actual observations, including: 1) segment travel times and 2) bus delays at control points. Furthermore,402

a computational evaluation of the simulated coupling strategies will take place. Note that the initial dataset was used403

entirely as a test dataset to validate the simulation performance.404

In the first step of the evaluation process, the simulated segment travel times will be compared side-by-side to the405

actual segment travel times. We denote by TT r
A and TT r

S , respectively the actual and simulated average travel times406

of the route segment r. The two travel times will be compared according to a derived metric ∆r
S ,A, which refers to the407

relative difference per route segment r between TTS and TTA, formulated in Equation 4. Furthermore, the two-sample408

Kolmogorov-Smirnov (KS) test [78], a non-parametric method used to assess the similarity between two distributions,409

will be performed between actual and simulated travel time distributions, in order to evaluate the resulting day-to-day410

travel time variability. Additionally, TTV over the course of the day will be evaluated.411

∆r
S ,A =

TT r
S

TT r
A
− 1 (4)

With TT r
S > 0 and TT r

A > 0412

In the second step of the evaluation process, a quality assessment of simulated bus punctuality, using a punctuality413

measure (operator service reliability), will be performed. It involves comparing actual and simulated punctuality414

shares side by side. In this study, the punctuality of the operated and simulated buses will be evaluated based on the415

departure delay at the bus stop at the timing points of each of the bus lines. A bus can be classified according to its416

delay at the stop into three categories: a) ahead, if the bus is more than one minute ahead of the scheduled time; b)417

on-time travel, if the delay is between not earlier than one minute and not later than five minutes at the timing point;418

and c) significant delay, if the bus is late by more than five minutes [79].419

After introducing the bus punctuality measure, the presented on-time performance metric will be applied at control420

points to the resulting actual and simulated on-time performance shares. Thus, a ∆ deviation measure defined in421

Equation 5, aimed at quantifying the part of the sharing poorly located between two sets of shares, will be evaluated.422

∆(S i, S j) =
1
2
·
∑
c∈C

| S i,c − S j,c | (5)

Where:423

• i and j are two datasets424

• C: refers to bus punctuality values with C = {ahead, on-time travel, significant delay}425

• S i: corresponds to the punctuality shares of the buses from the i dataset426

• S i,c: refers to share of c in S i with 0 ≤ S i,c ≤ 1 and
∑

c∈C S i,c = 1427

• ∆(S i, S j): refers to the part of the sharing poorly located between S i and S j with 0 ≤ ∆(S i, S j) ≤ 1428
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5.1. ML: Model Validation429

5.1.1. Model Validation: Actual vs Simulated Travel Times430

In this section, the first step of the evaluation process will be applied. In order to understand how well the actual431

and simulated travel times based on ML models are fitted, the simulated travel times resulting from the different432

coupling variants will be compared side by side to the actual travel times. The attributes of the route segments of bus433

line A, including its route segment ID, its segment stops, as well as the actual average (TTA) and relative metric values434

∆, corresponding to the three simulation scenarios (S 1, S 2, and S 3), are given in Table 11.435

By analyzing the ∆ values, it can be observed that the simulated travel times provided by the ML models match436

the actual travel times well with a very slight deviation. For most route segments of bus line A, ∆ does not exceed 5%,437

with the exception of A-A2 and A-R6. These latter segments are particularly short, at around two minutes of travel438

time. On the other hand, concerning the simulated travel times of S 1, S 2, and S 3, one can see that the differences are439

negligible.440

Segment ID Segment Stops TTA ∆S 1,A ∆S 2,A ∆S 3,A

A-A1 STP-2790→ STP-281 222 0% -1% -2%
A-A2 STP-28→ STP-314 83 -5% -5% -5%
A-A3 STP-314→ STP-301 293 -2% -2% -2%
A-A4 STP-301→ STP-283 118 -4% -3% -4%
A-A5 STP-283→ STP-769 232 -3% -3% -3%
A-A6 STP-769→ STP-122 190 -1% 0% -1%
A-A7 STP-122→ STP-123 86 -4% -3% -4%
A-A8 STP-123→ STP-40 248 0% 0% 0%
A-A9 STP-40→ STP-41 91 -3% -2% -3%
A-A10 STP-41→ STP-1891 839 -2% -2% -1%

- - - - - -
A-R1 STP-1891→ STP-56 272 0% -2% -1%
A-R2 STP-56→ STP-65 499 -1% -1% -1%
A-R3 STP-65→ STP-128 372 0% -1% -1%
A-R4 STP-128→ STP-129 67 -2% -3% -2%
A-R5 STP-129→ STP-130 130 -2% -3% -2%
A-R6 STP-130→ STP-131 120 -5% -5% -5%
A-R7 STP-131→ STP-134 243 -3% -3% -2%
A-R8 STP-134→ STP-2785 683 2% 2% 2%

Table 11: Reported average travel times TTA, TTS 1, TTS 2 and TTS 3 (in seconds) as well as the related derived relative metric values ∆, for each
route segment of bus line A

After analyzing the different travel times of bus line A, the next step is to analyze the second bus line B and its441

travel times. Regarding the ∆ values in Table 12, the simulated and actual travel times fit well, with a deviation of no442

more than 3% for most of segments, except for B-R1, B-R5 and B-R6. For B-R1 and B-R5, ∆S 3 is the highest with443

13% and 17% respectively, which is equivalent to a deviation of half a minute and three-quarters of a minute. In total,444

the simulated travel times from three simulation scenarios are almost identical, with the exception of the departure445

and arrival segment as well as B-R5.446

447

From Table 13, one can see that the route segments of line C are relatively shorter than those of the previous two448

bus lines (A and B). As for ∆, the relative differences between route segments are minor, averaging a few seconds449

per route segment. On the other hand, the travel times simulated using S 1 and S 2, correspond statistically well to the450

actual travel times compared to the simulated travel times of S 3.451
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Segment ID Segment Stops TTA ∆S 1,A ∆S 2,A ∆S 3,A

B-A1 STP-2713→ STP-2460 288 -2% -2% -2%
B-A2 STP-2460→ STP-2465 320 -1% -1% -1%
B-A3 STP-2465→ STP-2474 522 -1% -1% -1%
B-A4 STP-2474→ STP-2478 411 -2% -2% -2%
B-A5 STP-2478→ STP-2484 329 0% 0% 0%
B-A6 STP-2484→ STP-2489 153 3% 3% 3%

- - - - - -
B-R1 STP-2490→ STP-2494 219 -7% -7% 13%
B-R2 STP-2494→ STP-2500 316 -1% -1% -1%
B-R3 STP-2500→ STP-2504 357 -3% -3% -3%
B-R4 STP-2504→ STP-2514 579 -2% -2% -2%
B-R5 STP-2514→ STP-2518 248 0% 0% 17%
B-R6 STP-2518→ STP-2716 320 -6% -6% -6%

Table 12: Reported average travel times along with the associated deviation metric values, for each route segment of bus line B

Segment ID Segment Stops TTA ∆S 1,A ∆S 2,A ∆S 3,A

C-A1 STP-2531→ STP-2533 184 -2% -2% -2%
C-A2 STP-2533→ STP-2534 75 0% 0% 5%
C-A3 STP-2534→ STP-2536 76 -2% -2% -2%

- - - - - -
C-R1 STP-2537→ STP-2539 102 0% 0% 9%
C-R2 STP-2539→ STP-2540 74 -2% -2% -2%
C-R3 STP-2540→ STP-2541 65 -5% -5% -5%

Table 13: Reported average travel times as well as ∆ values, for the six segments of the C bus line

5.1.2. Model Evaluation: Day-to-Day Variability452

In order to further analyze the resulting travel times, day-to-day variability will be investigated. Hence, the two-453

sample Kolmogorov-Smirnov test will be carried out, between on one hand the distribution of actual travel times454

and on the other hand the distributions of travel times simulated. Cumulative relative frequency distribution curves455

obtained from the KS test for the three scenarios, over the three lines studied, are given in Figures 22, 23 and 24.456

For line A, at first glance, negligible differences can be observed between the curves obtained, except for segments457

A-A8 as well as the two terminal segments A-A10 and A-R8, in which certain differences are observed. Figure 23 shows458

slight differences overall, except for B-A6 and B-R1, B-R5 for S 3, in which a more significant difference between the459

actual and simulated CDF values is observed. From Figure 24, larger differences are observed, for line C compared to460

those for lines A and B. These differences can be explained by the particularity of line C, on which the route segments461

are significantly short (around 2km) short routes segments and therefore short travel times.462

In order to quantify the observed differences between the actual and simulated CFD, Kolmogorov’s D statistic (also463

called the Kolmogorov–Smirnov statistic) - which quantifies the maximum vertical distance between the empirical464

distribution functions of two samples - will be analyzed for each route segment. The resulting D-statistic values for465

each route segment of the three lines studied are shown in Figure 25.466

For line A, S 3 seems to have the lowest D-statistic among the simulated scenarios on average (D ≈ 0.06). In467

contrast, no clear trend is observed for S 1 and S 2, with more similar D-statistic values on average (D ≈ 0.08). For line468

B, one can observe that S 3 has on average the lowest D-statistic compared to S 1 and S 2. In contrast and surprisingly,469

S 3 has the highest D-statistic on the segments B-R1 and B-R5 (with D ≈ 0.19). For line C, it can be observed that470

D-statistic values are relatively higher compared to those of lines A and B. Overall, the results once again show that471

S 3 has the lowest D-statistic on average compared to S 1 and S 2.472

Thus, from the results illustrated on the three bus lines studied, the simulated travel times provided by the ML473

models are statistically similar to the actual travel times. The travel times simulated with S 1 and S 2 coupling strategies474
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Figure 22: Cumulative relative frequency distribution curves obtained for each route segment of bus line A

Figure 23: Cumulative relative frequency distribution curves obtained for each route segment of bus line B

slightly outperform those generated by S 3.475
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Figure 24: Cumulative relative frequency distribution curves obtained for each route segment of bus line C

5.1.3. Model Evaluation: Period-to-Period Variability476

After analyzing the day-to-day travel time variability, in this section the focus is on studying the variability of477

travel times over the course of the day, also known as inter-period or period-to-period variability, which describes the478

variability between vehicles making similar trips at different times during the same day [74].479

From Figure 26, the segments of A-Aller route can be grouped into three sets given as follows. The first set480

consists of segments A-A1, A-A3, A-A7, A-A8 and A-A9, its variation pattern is characterized by two travel time peaks:481

1) at noon and 2) at hours during evening rush hour. Furthermore, for most of route segments, a similar trend is482

observed between actual and simulated travel times. For A-A1, the simulation scenarios seem to slightly overestimate483

the segment travel times. For A-A3, a similar tendency is observed during the morning and evening periods, and484

throughout the day for S 3, while in contrast, S 1 and S 2 appear to follow a different trend and overestimate the travel485

times of the segments in the afternoon. For A-A7, a few observations need to be pointed out. First, the segment486

travel times are the shortest among A-Aller segments. Second, three travel time peaks are observed (morning, noon487

and evening). Third, the differences between simulated and actual travel times appear larger compared to other488

segments. For A-A8 and A-A9, an overestimation of the simulated travel times over most of the day is observed, with489

the simulated and actual travel times fitting well, during the evening peak hours.490

The second set consists of segments A-A2, A-A4, A-A5 and A-A6, its variation pattern is characterized by a constant491

increase in the travel times of the segments during the day, from early morning until during evening rush hours.492

Furthermore, for most route segments, a similar trend is observed between actual and simulated travel times. For493

A-A2, the results show that the simulated travel times are slightly underestimated during evening peak-hours. For494

A-A4 and A-A5, one can observe a very similar tendency between the actual and simulated travel times. For A-A6, one495

can observe that S 1 and S 2 follow different trends, particularly during the inter-peaks period.496

The third set, consisting of segment A-A10, is characterized by three travel time peaks, during morning and evening497

rush hours as well at midday. For A-A10, the longest route segment, S 3 on the one hand, seems to follow the same498

trend as the actual observations (three peaks) with differences that seem to be greater in the morning and evening than499

at midday. S 1 and S 2, on the other hand, experience two peaks (morning and evening), with travel times appearing to500

stabilize during the inter-peak period.501

From Figure 27, for A-Retour, the segments can be grouped into two sets as follows. The first set consists of502

A-Retour segments (except A-A5 and A-A6), where travel times during the day are characterized by relatively stable503

values between the morning and evening rush hours.504
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Figure 25: Kolmogorov-Smirnov (KS) test results (D-statistic) for each route segment

For A-R1, a particular segment with multiple peaks, S 3 on the one hand seems to show similar trends to some505

extent as the actual observations. S 1 and S 2, however, follow a different trend with two peaks during morning and506

evening rush hours. For A-R2, the simulated travel times follow a similar trend to the actual observations, with S 3507

showing a slightly different pattern from S 1 and S 2 in the morning. For A-R3, a similar trend is observed with the508

actual observations for S 3 and, to a lesser extent, for S 1 and S 2. On the other hand, the differences appear most509

significant among the "A-Retour" segments. Similar trends are observed with negligible differences for A-R4 and510

A-R7, while more significant deviations were observed during the morning compared to inter-peak times for A-R8.511

The second set includes A-R5 and A-R6, where a similar trend with a good fit is observed between actual and sim-512

ulated travel times. Additionally, travel times observed during evening rush hours were significantly higher compared513

to the rest of the day.514

From Figure 28, the segments of the B-Aller route can be grouped into two sets as follows. The first set consists of515

the first three segments, where the actual travel time variation pattern is characterized by two travel time peaks: 1) at516

midday and 2) during the evening rush hour. The differences between the two peaks are relatively small for segments517

B-A1 and B-A2 and larger for segment B-A3. Furthermore, a similar trend is observed for the simulated travel times,518

which are slightly longer during most of the day, except during the evening peak hours.519

The second set, consisting of the last three segments, is characterized by a steady increase in actual travel times520

throughout the day, with significantly high travel times during the evening rush hours, almost twice those observed521

in the morning for B-A4. For B-A4, B-A5, and to a lesser extent B-A6, the resulting simulated travel times follow a522

similar pattern to the actual observations with a main peak in the evening, but overestimate travel times throughout523

most of the day.524
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Figure 26: Travel time variability over the course of a day - bus line A - Aller

Figure 27: Travel time variability over the course of a day - bus line A - Retour

From Figure 29, for B-Retour, the segments can be grouped into three sets.525

The first set, consisting of B-R1 and B-R5, is characterized by a small variation in actual travel times over the course526

of the day. Additionally, the travel times of S 1 and S 2 appear to follow the same pattern as the actual travel times527

with minor deviations. In contrast, the travel times of S 3 seem significantly deviated, with substantial overestimation528

during the evening and afternoon for B-R1 and early in the morning for B-R5.529
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Figure 28: Travel time variability over the course of a day - bus line B - Aller

Figure 29: Travel time variability over the course of a day - bus line B - Retour

The second set includes segments B-R2, B-R3, and B-R4. This set is characterized by a steady increase in travel530

times during the day for B-R3 and B-R4 and, to a greater extent for B-R2, with a peak in actual travel times during the531

evening rush hours. A similar trend is observed for the simulation scenarios, with travel times overestimated to some532

extent throughout the day, except during the evening.533
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The third set consists of segment B-R6, where two peaks can be observed at midday and during the evening rush534

hours, with relatively small differences between the two peaks. Additionally, the simulated travel times seem slightly535

overestimated.536

Figure 30: Travel time variability over the course of a day of bus line C

After analyzing the period-to-period travel time variability of lines A and B, the next step is to analyze the vari-537

ability of line C, focusing specifically on the departure segments (C-A1 and C-R1) with an average travel time of more538

than two minutes.539

From Figure 30, similar trends between actual and simulated travel times can be observed, including multiple540

peaks (morning, noon, evening). Contrary to the trends observed for lines A and B, travel times during morning rush541

hours are longer than during evening rush hours. Furthermore, the differences appear relatively minor, averaging just542

a few seconds. However, a notable observation is the trend for S 3, where the simulated travel times are significantly543

overestimated compared to the actual travel times for C-A2 and C-R1, particularly in the afternoon and around noon.544

5.2. Simulation Model Precision: Actual vs Simulated Bus Punctuality545

The second step in the evaluation process is to assess simulated bus punctuality. The punctuality measures outlined546

in Section 5 will be estimated based on actual observations and the three simulated scenarios (S 1, S 2, and S 3) for each547

of the three bus lines (A, B, and C). The resulting shares, obtained from each dataset, will be statistically analyzed and548

compared side by side.549

Figure 31 provides initial insights into how bus on-time performance is distributed according to the presented550

metric, applied to all 12 datasets. Further details on the differences between the shares resulting from the simulation551

scenarios and the actual shares are provided in Table 14. At first glance, one can observe some differences in the shares552

between the different bus lines, with A and C appearing to be slightly more punctual than B. Based on ahead shares,553

line C buses are much more ahead compared to lines A and B. Furthermore, line C, with its shortest bus routes, has554

the least number of late buses, where the share of significant delay is negligible, while lines A and B have statistically555

similar ratios for significantly delayed buses.556

For bus line A, results from actual observations show that approximately two-thirds of buses are on time and557

about one-fifth are early at control points. On the other hand, the shares obtained from the three simulated scenarios558

indicate a very similar trend, with minor differences (± 2%) across different delay categories. In total, the simulation559

shares appear to be comparable to the actual shares, with differences ranging from 4% to 5%, resulting from a slight560

underestimation of the share of buses with significant delays.561
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Figure 31: Bus punctuality shares for the bus lines studied, based on the first punctuality measurement. For the three studied lines, a strong
similarity shares is observed between S 1, S 2 and S 3 compared to actual shares, with S 1 appearing to slightly outperform S 2 and S 3

For bus line B, approximately two-thirds of actual buses are on-time travel and one-fifth are ahead. Buses with a562

significant delay represent less than a tenth of the total buses. Furthermore, the results show that the resulting shares563

do not follow exactly the same trend. While S 1 slightly underestimates the share of late buses (-5%), S 2 and S 3 tend564

to overestimate the share of on-time travel (+8% and +6%, respectively). As with bus line A, the differences between565

the actual and simulated shares are moderate, ranging from approximately 5% to 8%.566

According to the results obtained from applying the first metric to the bus line C datasets, approximately two-567

thirds are on time and one-quarter are early. On the other hand, the share of buses with significant delays is very568

negligible. Unlike the two previous bus lines (A and B), the resulting shares from the three simulated scenarios show569

an identical trend to the actual shares with negligible differences not exceeding 2%.570

In summary, the analyzed results show significant similarities between the shares of S 1, S 2, and S 3 with minor571

differences on bus lines A and C, and to a lesser extent on line B. Compared to actual bus delays, the delay shares572

resulting from the S 1 simulation scenario appear to be slightly more accurate than those from S 2 and S 3, which573

slightly overestimate the share of on-time buses. In short, the resulting simulation distributions for the three studied574

lines are well-fitted to the actual reference distributions according to this metric, demonstrating good accuracy of the575

simulation model.576

Line A Line B Line C
S a S 1 S 2 S 3 S a S 1 S 2 S 3 S a S 1 S 2 S 3

Ahead 17% 21% 19% 20% 21% 24% 18% 16% 24% 26% 26% 24%
On-time travel 76% 76% 78% 77% 72% 74% 80% 78% 75% 74% 74% 75%

Significant delay 7% 3% 2% 3% 7% 2% 2% 6% 1% 0% 0% 1%

∆(S , actual) - 4% 5% 5% - 5% 8% 6% - 2% 2% 0%

Table 14: Illustration of the differences and gaps between the resulting simulation shares and the actual shares according to the first punctuality
metric, for lines A, B and C

5.3. Coupling Model Performance: Offline vs Online Computation Time577

After validating the simulated travel times and evaluating the accuracy of the implemented coupling strategies, the578

next step is to evaluate the simulation model performance. Figure 32 illustrates the experimental computation times579

for building a decision tree for travel time prediction as well as simulation execution time.580

From Figure 32.(a) and (b), one can observe that the computation time for building one ML model, which includes581

dataset preparation and training time, is higher for lines B and C compared to line A. On the other hand, it can be seen582

that the total time required to build all segment models is higher for line A than for lines B and C. These trends can be583

explained by a larger dataset for bus lines B and C, and a larger number of route segments for line A.584
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From Figure 32.(c) and (d), the simulation time appears to be slightly higher for lines A and B compared to line585

C. For the coupling strategies, S 1 is notably the strategy with the lowest simulation time for all three bus lines. On586

average, S 1 requires two to three times less computation time compared to S 2 and S 3a, and up to seven times less than587

S 3b. For S 2 and S 3a, which are based on the normal and best-fit probability laws, respectively, a similar execution588

time can be observed, with S 3a having a relatively higher simulation time than S 2. As expected, for S 3b, the online589

coupling strategy has a high computational time compared to the three offline coupling variants. For the scenarios590

conducted, the online strategy simulation is on average twice as slow as its equivalent offline strategy.591

Figure 32: Overview of the different calculation times for each bus line. (a): Average time to prepare the dataset and train tree regression for
segment travel time prediction. (b): Total ML model building time per bus line. (c) and (d): Single and total simulation time for each bus line (1000
iterations). S 1 is the strategy with the lowest calculation time, while the online strategy S 3b is the one with the highest computation time

The resulting differences in total simulation time between the studied lines can be explained by: 1) the number592

of route segments and 2) the number of simulated trips. The advantage of S 1 over other strategies is explained593

by the fixed size of the table of segment travel time parameters, built on the basis of a feature (stop time) and a594

period static time (15 minutes). Furthermore, the relative difference in calculation time between S 2 and S 3a could be595

explained by the fact that the empirical time necessary to generate a valid travel time value with the normal law is, on596

average, lower than that of the best-fit law. Additionally, the application of the request-response during the simulation597

is time-consuming, particularly using the online coupling strategy, which requires retrieving, for each request, the598

corresponding ML model from the indexed ML database. Therefore, excessive access to the index database leads to599

a much longer simulation time, as in S 3b. It should be noted that applying an offline strategy requires building a table600

of travel time parameters, with the building time being relatively minor compared to the scenario simulation time,601

ranging from a few seconds to a few minutes depending on the number of segments and the models built, and to a602

lesser extent on the distribution law chosen.603
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6. Discussions604

The simulated travel times provided by the ML models match well with the actual travel times on the three lines605

studied, with S 1 and S 2 slightly outperforming S 3. From Table 12, S 3 appears to significantly overestimate the travel606

times of B-R1 and B-R5, which can be explained by an imprecise trend in period-to-period travel time variability. This607

results in a significant deviation in travel times, in the afternoon and evening for B-R1 and during off-peak hours in608

the morning and the evening for B-R5.609

Concerning day-to-day variability, the differences between the actual and simulated CFD for segments A-A10 and610

A-R8 (see Figure 22) are the result of a significant overestimation of travel times during morning rush hours and, to a611

lesser extent, during evening peak hours, in which travel times are the longest. Similarly for B-A6 (see Figure 23), and612

despite a relatively small deviation between the travel times obtained (∆ ≈ 3%), the differences can be explained by a613

relative overestimation of the simulated travel times, particularly during off-peak hours in the morning and evening.614

Concerning period-to-period variability, three trends were observed: 1) A pattern with a peak in the evening,615

which can be explained by the impact of the increase in traffic over the course of the day; 2) A pattern with two616

peaks at midday and in the evening, which can be explained by a reduction in road congestion in the afternoon; and617

3) A pattern with three peaks (morning, noon, and evening), for certain segments of line C, where the earliest peak618

is explained by the presence of traffic lights as well as crossroads near educational facilities such as high schools.619

Furthermore, the results showed that travel times during evening rush hours are significantly longer than the rest of620

the day, which can be explained by a high level of traffic and congestion.621

For S 1 and S 2, a very similar trend was observed, which can be explained by the choice of normal distribution to622

fit the observed travel times. The travel times estimated using S 1 and S 2 were more regular during the inter-periods,623

which can be explained once again by: 1) the use of normal law and 2) a relatively small variation in the observed624

travel times. In contrast, the S 3 trends appear to match those in actual travel times on most route segments. However,625

it also fails to accurately estimate travel times, especially during inter-periods, leading to discrepancies, which can be626

explained by an unsuitable law for travel time fitting.627

The delay shares resulting from the simulation generally corresponded well to the actual shares, with a slight628

underestimation of the shares of late buses according to the first bus punctuality metric. Furthermore, none of the629

applied coupling strategies seem to stand out; the differences appear very limited or even negligible, S 1 and S 3630

being slightly more regular and outperforming S 2. On the other hand, according to the second punctuality metric,631

the resulting shares of the simulation lack precision, with significant differences, particularly for buses on time and632

slightly late. This could be explained by a late departure of some buses. For instance, if a bus leaves its terminal633

relatively late, it may not be able to make up the scheduled stop time and, therefore, be late at control points, resulting634

in an increase in the number of delayed buses. To overcome this drawback, integrating actual bus departure delays635

into the simulation model will greatly improve the simulation results.636

From a computational point of view, the bus-line simulation time scales depending on the number of route seg-637

ments and trips simulated. S 1 is the strategy with the least simulation time, followed by S 2 and S 3a, while S 3b has638

the highest simulation time. The advantage of using an online strategy is retrieving from an updated model database.639

Additionally, it provides the ability to use multiple models per route segment. On the other hand, applying an offline640

strategy allows the use of a single model per route segment, with the need to rebuild the parameter table each time a641

new ML model is built and inserted into the database. The building time of the travel time parameter table increases642

slightly each time a new model is indexed but remains much lower than the online simulation time. In summary,643

applying an offline coupling strategy requires less simulation time than an online strategy.644

Overall, S 1 seems to stand out from other coupling strategies with a good trade-off between simulation time and645

adequacy to actual observations for both travel time and bus punctuality. In short, the online coupling strategy is more646

suitable for real-time applications. On the other hand, offline coupling strategies, with good model accuracy and the647

best computation time, are suitable for simulation applications.648
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7. Conclusions649

This paper sheds light on how ML and public transport simulation models can be effectively coupled. In this650

paper, we suggested two coupling strategies: 1) online, in which ML models provide PT simulators with travel times,651

and 2) offline, in which travel times resulting from ML are integrated as input data into the transit simulation model.652

In the proposed framework, various data sources are integrated, ML models are trained and deployed for predicting653

bus travel times, and simulation scenarios are implemented and executed. A case study was carried out on three bus654

lines in a French city with four scenarios, including three offline coupling variants (S 1, S 2, and S 3a) and one online655

variant (S 3b) per bus line.656

A first analysis aimed at validating the simulated travel times was carried out. Furthermore, two analyses were657

conducted to further evaluate the variability in travel from day to day and from period to period. The results showed658

that S 1 and S 2 followed a very similar trend, while S 3 matched the actual trends but also showed difficulties in ac-659

curately predicting travel times in particular situations, leading to some deviations. Overall, the resulting simulated660

travel times adequately match actual travel times, with slight differences observed, in which S 1 and S 2 slightly out-661

perform S 3. On the other hand, an evaluation of the accuracy of the model was carried out. Despite the use of more662

approximate travel times, the offline strategies show as good a match as the online strategy between the actual and663

simulated bus punctuality shares. In terms of performance, S 1 stood out from other coupling strategies with less sim-664

ulation time. Overall, S 1 appears to be the best strategy, with good model precision and the best calculation time. We665

believe this paper is of particular interest for practitioners in the field, as it provides insights into how to effectively666

couple ML and public transport simulation models, as well as the benefits and limitations of each strategy.667
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Appendix A.676

Abbreviation Description
χ2 Chi-squared distribution
dweibull Double Weibull distribution
exponnorm Exponentially modified Gaussian distribution
exponweib Exponentiated Weibull distribution
gamma Gamma distribution
genextreme Generalized extreme value distribution
log-normal Log-normal distribution
normal Normal distribution
rayleigh Rayleigh distribution

Table A.15: List of probability laws used in this work

feature probability parameter values
values law loc scale a c df K s

00:00:00 ≤ stop time < 07:25:30 exponnorm 279.04 47.24 0.72
07:25:30 ≤ stop time < 08:09:00 χ2 178.97 11.05 18.83
08:09:00 ≤ stop time < 08:51:00 genextreme 405.45 81.22 0.16
08:51:00 ≤ stop time < 09:52:30 log-normal 63.20 328.82 0.21
09:52:30 ≤ stop time < 10:45:00 genextreme 397.87 61.38 0.17
10:45:00 ≤ stop time < 11:05:00 rayleigh 286.08 126.84
11:05:00 ≤ stop time < 12:32:00 genextreme 420.60 69.58 0.11
12:32:00 ≤ stop time < 15:02:00 log-normal -43.50 470.37 0.14
15:02:00 ≤ stop time < 16:09:00 genextreme 416.49 70.86 0.13
16:09:00 ≤ stop time < 16:26:00 genextreme 432.99 87.79 0.15
16:26:00 ≤ stop time < 17:32:00 gamma 221.73 57.94 5.32
17:32:00 ≤ stop time < 17:51:00 gamma 183.22 45.78 7.23
17:51:00 ≤ stop time < 18:14:00 rayleigh 275.95 165.22
18:14:00 ≤ stop time < 18:58:30 genextreme 349.26 41.30 1.91
18:58:30 ≤ stop time ≤ 23:59:59 χ2 66.03 9.13 29.57

Table A.16: An illustration of the built travel time parameter table for the route segment, in which from stop = STP-1883 and to stop = STP-982
of transit line A, with stop time as selected feature and best-fit distribution as the chosen law. The meaning of the law parameters can be found in
https://docs.scipy.org/doc/scipy/tutorial/stats/
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feature probability parameter values
values law loc scale a c df K s

00:00:00 ≤ stop time < 07:25:30 exponnorm 279.04 47.24 0.72
07:25:30 ≤ stop time < 08:09:00 χ2 178.97 11.05 18.83
08:09:00 ≤ stop time < 08:33:00 exponweib 113.78 231.19 4.73 1.96
08:33:00 ≤ stop time < 10:45:00 genextreme 388.95 70.80 0.18

∧ stop delay < 37
08:33:00 ≤ stop time < 10:45:00 χ2 200.05 11.13 18.26

∧ stop delay ≥ 37
10:45:00 ≤ stop time < 12:32:00 genextreme 406.98 64.48 0.06

∧ stop delay < 40
10:45:00 ≤ stop time < 12:32:00 gamma 137.61 19.89 16.24

∧ stop delay ≥ 40
12:32:00 ≤ stop time < 14:02:00 exponnorm 397.84 53.72 0.78
14:02:00 ≤ stop time < 15:07:00 exponnorm 372.67 50.53 0.96
15:07:00 ≤ stop time < 16:14:30 gamma 135.73 19.93 15.81
16:14:30 ≤ stop time < 16:26:00 dweibull 469.40 85.49 1.34
16:26:00 ≤ stop time < 16:37:30 dweibull 502.70 100.90 1.33
16:37:30 ≤ stop time < 17:44:00 exponweib -403.20 120.65 2346.43 1.03
17:44:00 ≤ stop time < 18:08:00 χ2 245.01 28.04 8.80
17:44:00 ≤ stop time < 18:47:00 exponnorm 357.21 42.61 2.00
18:47:00 ≤ stop time ≤ 23:59:59 genextreme 312.36 65.17 0.16

Table A.17: An illustration of the built travel time parameter table for the route segment, in which from stop = STP-1883 and to stop = STP-982 of
transit line A, with stop time and start delay as selected features and best-fit distribution as the chosen law. The meaning of the law parameters can
be found in https://docs.scipy.org/doc/scipy/tutorial/stats/
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