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Abstract

Several major epidemic events over the past two decades have highlighted the im-
portance of developing and studying non-Markovian compartmental models. Sel-
lke [1983] introduced an ingenious construction for the SIR epidemic process to
study the final size of epidemics. In this paper, we extend this construction to
the SEI1I2RS model. This model is chosen for its compactness, while includ-
ing parallel infectious stages (I1 and I2) and cycles (aka loops) due to reinfection.
Our methodology easily generalizes to a general class of stochastic compartmental
models in closed populations, including SIR-like models (a series of compartments
in one row), SEIAR-like models (parallel compartments), but also models with cy-
cles. Our construction inherits from Sellke construction its ability to handle both
Markovian and non-Markovian frameworks. Also, it naturally leads to a repre-
sentation of the epidemic process under the form of a deterministic function of
uncertain parameters (such as epidemic parameters) and variables modeling inter-
nal noise. Based on this representation, we propose a global sensitivity analysis of
the SEI1I2RS model. With our methodology we are able to quantify epistemic
uncertainty due to the lack of knowledge on epidemic parameters and statistical
uncertainty induced by stochasticity of the model. Finally we provide numerical
experiments in both Markovian and non-Markovian frameworks.

Keywords Sellke construction, compartmental models, non-Markovian epidemic
process, global sensitivity analysis.

1 Introduction

The COVID-19 pandemic has underlined the importance of mathematical model-
ing of epidemics. There are a wide variety of mathematical models that can be used
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to predict the spread of an epidemic or to guide health decision-making. Models de-
signed to capture the spread of an epidemic in a given population include stochastic
compartmental models. These models are related to the seminal model introduced
in Kermack and McKendrick [1927] known as the SIR model, where the popula-
tion is divided into three compartments: susceptible (S), infected (I), and removed
(R). The model then follows the change in the proportion of the population belong-
ing to each compartment through time, by reproducing numerically the transition
rules from one compartment to the other. Advanced models can be designed with a
larger number of compartments to better reflect the characteristics of an outbreak,
as well as to match data on which dynamic inference can be performed. Result-
ing processes can be either Markovian or non-Markovian, depending on modeling
framework. Although the Markovian setting is quite restrictive, as it is charac-
terized by memorylessness [Nowzari et al., 2015, Großmann et al., 2021, Sofonea
et al., 2021, Saeedian et al., 2017], it has been widely studied in the literature as it is
simpler to analyze from a mathematical point of view. Memory in non-Markovian
processes is induced by sampling non-exponentially distributed holding times be-
tween consecutive state transitions [Van Mieghem and van de Bovenkamp, 2013,
Streftaris and Gibson, 2012], or by considering stochastic systems with time delay
[see Brett and Galla, 2013, e.g.].

Both Markovian and non-Markovian models are subject to uncertainties. On
the one hand, epistemic uncertainty due to a lack of knowledge of the parame-
ters. On the other hand, statistical uncertainty induced by the stochasticity of the
model. In compartmental epidemic models, epistemic uncertainty is characterized
by imperfect knowledge of the characteristics of the pathogen and the macroscopic
behavior of the population, while statistical uncertainty (or internal noise) mod-
els the specificity of individuals with respect to infection and behavior. Most risk
assessment frameworks for infectious diseases only take into account epistemic
uncertainty. However, internal noise has a major impact on the evolution of epi-
demics that needs to be quantified [Penn et al., 2023]. One way of approaching
this issue is to perform a global sensitivity analysis to quantify how the uncertainty
in the output of a stochastic model is related to the uncertainty in its parameters,
but also to the internal noise. The approach we consider in this paper is based on a
representation of the stochastic model under the form of a deterministic function of
a set of epidemic parameters and a collection of variables modeling internal noise.
This approach has been successfully used in the framework of Markovian models.
In Le Maître et al. [2015], the authors used the random time-change representation
introduced in Ethier and Kurtz [1986], while the authors in Kouye et al. [2024]
used Gillespie algorithms [Gillespie, 1976].

The objective of our work is twofold. We first aim at extending the construction
introduced in Sellke [1983] and discussed hereafter to a general class of compart-
mental models in closed population. We then aim at performing a global sensitivity
analysis based on this extended construction, which can handle both Markovian
and non-Markovian dynamics.

Sellke [1983] introduced an ingenious construction used to sample the final
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size distribution of a SIR epidemic in a finite population. It relies on an individual-
based approach and it has the advantage to enable the simulation of a SIR epidemic
in both Markovian and non-Markovian frameworks. Since then, it has been studied
and extended in many ways. In Reinert [1995], non independent tolerance thresh-
olds of susceptible individuals to infection and non independent infectious periods
were considered. Andersson and Britton [2000] studied SIR-multitype epidemic
models. In Streftaris and Gibson [2012], the unit-rate exponential distribution of
thresholds was changed to a Weibull distribution. House [2014] generalized the
construction to the case of finite heterogeneous population, while Di Lauro et al.
[2022] focused on the age-dependent SIR model. An extension to the classical
SEIR (Susceptible-Exposed-Infectious-Recovered) model was introduced in Brit-
ton and Pardoux [2019b]. This extension is straightforward because, on the one
hand, the jumps in compartment E follow the same transition mechanism as those
in compartment I and, on the other hand, the individuals in compartment E are not
infectious. However, in the view of all these works, it appears that so far, the gener-
alizations of Sellke construction mainly focused on SIR-like model. For instance,
to the best of our knowledge, none of these works consider models with reinfection
and more generally compartmental models that include parallel infectious stages
(like SEIAR: Susceptible-Exposed-Infectious-Asymptomatic-Recovered) or such
that their corresponding graph includes cycles (or loops) like the classical SIS
(Susceptible-Infectious-Susceptible).

In our work, we extend Sellke construction to a more general class of compart-
mental models in closed populations. Throughout the paper, and for sake of clarity
in the presentation, we focus on the SEI1I2RS model. However, the methodol-
ogy easily generalizes to a general class of stochastic compartmental models in
closed population, including SIR-like models (a series of compartments in one
row), SEIAR-like models (the existence of compartments in parallel), but also
models with cycles. The SEI1I2RS model was chosen for its compactness, while
including multiple parallel infectious stages (I1 and I2) and cycles due to reinfec-
tion. The construction we propose inherits from the original Sellke construction
the ability to cover both Markovian and non-Markovian framework, depending on
the choice of probability distributions for holding times between consecutive state
transitions. One of the advantages of the construction we propose, and also of
the one of Sellke, is that it permits a clear identification of internal noise through
the behavior and characteristics of individuals. Using the extended construction,
we identify a representation of the epidemic process in the form of a determin-
istic function of uncertain epidemic parameters and variables modelling internal
noise. Based on this representation, we perform global sensitivity analysis of the
SEI1I2RS model both in Markovian and non-Markovian frameworks.

The paper is organized as follows. In Section 2 we review Sellke original con-
struction (Section 2.1) from which we identify a representation algorithm (Section
2.2) for the SIR model. Then in Section 3 we generalize Sellke construction to
a model which includes both loops due to reinfection and two parallel infectious
stages, the SEI1I2RS model from which we derive a representation algorithm.
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This algorithm is used in Section 4 for simulations. Section 5 presents the method-
ology and the numerical experiments of global sensitivity analysis based on the
representation algorithm. In particular we identify key factors (including epidemic
parameters but also variables modeling intrinsic randomness) or key parameter in-
teractions in both Markovian and non-Markovian frameworks. Finally the paper
finishes with concluding remarks (Section 6).

2 Sellke original construction, application to the identi-

fication of a deterministic representation of stochastic

(non)-Markovian SIR model

In Section 2.1 we recall the original Sellke construction from which we identify
in Section 2.2 a deterministic representation for the non-Markovian stochastic SIR
model.

2.1 Sellke construction

Consider the Susceptible-Infected-Recovered (SIR) model (see Figure 1) and as-
sume that the population is closed and comprises N individuals. We also assume
that at each time t ≥ 0, at most one transition can occur. In the following, we de-
note by {W θ(t) =

(
W θ

S(t),W
θ
I (t),W

θ
R(t)

)
, t ≥ 0} the jump process counting at

each time t ≥ 0 the number of individuals in each compartment, with θ = (β, γI),
β the transmission rate and 1/γI the mean sojourn time in I .

S I R

β
N
W θ

SW
θ
I γIW

θ
I

Figure 1: The classical SIR model.

Sellke [1983] proposed an individual-based construction for the SIR model. At
the start of the epidemic (t = 0), each individual of the population of size N is
labeled (i = 1, · · · , N ) and depending on his initial health status, he is given a set
of variables that characterize his behavior towards infection. More precisely, if the
individual labeled i is initially susceptible, he is given a threshold Qi > 0 and a
sojourn duration Li > 0 in I . If this individual is initially infectious, then he is
only given a sojourn duration Li in compartment I .

Two types of events are responsible for the change of health status: infection
or recovery. Occurrence of infection events is linked to a function called the infec-
tious pressure defined as P (t) = β

N

∫ t

0 W
θ
I (s)ds so that if the individual labeled i

is initially susceptible, he remains susceptible as long as Qi > P (t) for t ≥ 0. This
function accounts for the pressure exerted by the mass of infectious on susceptible
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individuals. At time τSi = inf{s ≥ 0 | P (s) ≥ Qi}, the individual labeled i gets
infected and moves to compartment I (see Figure 2). Individuals with thresholds
which remain greater than the value of the infectious pressure escape infection. In
Figure 1 below, the labels of individuals have been chosen so that the sequence of
tolerance thresholds (Qi)1≤i≤N is increasing.

Q1

Q2

Q3

τS2 τS3

Q4

P (t)

τS1 τS4

⋄

⋄

⋄

⋄

Figure 2: An illustration of the evolution of infectious pressure t 7→ P (t). Marks
⋄ denote infection events. 0 < Q1 < Q2 < Q3 < Q4 are tolerance thresholds.
τS1 , · · · , τ

S
4 denote transition times from susceptible to infected associated with

thresholds Q1, · · · , Q4.

Remark 1. If the tolerance thresholds Qi, i = 1, . . . , N and the sojourn du-

rations Li, i = 1, . . . , N are independent from each other and independently

distributed under the standard exponential distribution, then the jump process

{W θ(t) , t ≥ 0} is a continuous-time Markov chain. Moreover, for any time

t ≥ 0, the infection rate is given by
β
N
W θ

S(t)W
θ
I (t) and the recovery rate is given

by γIW
θ
I (t). This is a classical result which can be found, e.g., in Britton and

Pardoux [2019a]. We briefly recall the main lines for the computation of the infec-

tion and recovery rates. Let us first focus on the computation of the infection rate.

For any t ≥ 0, the probability that an infection occurs at time t < s ≤ t + ∆,

conditionally to W θ(t), is equal to
∑

i:Xi(t)=S

P (Qi ≤ P (t+∆) | Qi > P (t)) =
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∑

i:Xi(t)=S

(
1− exp

(
−

β

N
W θ

I (t)∆

))
as the tolerance thresholds Qi are sampled

from the standard exponential distribution. Finally, this last expression is equiv-

alent to
β

N
W θ

S(t)W
θ
I (t)∆ as ∆ → 0. Regarding now the computation of the

recovery rate, suppose the individual labeled i is initially infected (t = 0) or enters

compartment I at time t > 0. Then, the probability that a recovery occurs t <

s ≤ t+∆, conditionally to W θ(t), is equal to
∑

i:Xi(t)=I

P (Li ≤ t+∆ | Li > t) =

W θ
I (t)× (1− exp (−γI∆)), which is equivalent to γIW

θ
I (t) as ∆→ 0.

2.2 A deterministic representation of the SIR model

Recall that the population is supposed closed and that individual initial health sta-
tuses, i.e. X1(0), . . . ,XN (0), are non-random with values in {S, I}. Then, it
appears that at time t ≥ 0, the number of susceptible individuals in the population
is equal to the number of initially susceptible individuals (i.e. Xi(0) = S) whose
tolerance threshold remains greater than the value of the infectious pressure at time
t, i.e. P (t). Thus

W θ
S(t) =

N∑

i=1

1Qi>P (t),Xi(0)=S (1)

with the convention Qi = 0 if Xi(0) = I . By definition, P (t) is deterministic
conditionally on {W (t) , s < t}. Thus W θ

S(t) is a deterministic function of the
sequence of tolerance thresholds conditionally on {W (s) , s < t}.

In order to explicit the number of infected individuals, notice that the com-
partment I includes at most two types of individuals: either initially infected in-
dividuals (infected at t = 0) who have not recovered yet, or initially susceptible
individuals who are infected but not yet recovered. Thus

W θ
I (t) =

∑N
i=1 1Li>t,Xi(0)=I +

∑N
i=1 1τSi +Li>t,Qi≤P (t),Xi(0)=S . (2)

Recall that τSi is defined as τSi = inf{s ≥ 0 | P (s) ≥ Qi} = P−1(Qi) with P−1

the generalized inverse of P . Thus, as P is non decreasing, τSI = is a determin-
istic function of Qi conditionally on {W (s) , s < t}. This yields, together with
Equation (2), that W θ

I (t) is a deterministic function of the sequence of tolerance
thresholds and the sequence of sojourn durations, conditionally on {W (s) , s < t}.
Relying on the assumption that the population is closed, it holds that for any t ≥ 0,
W θ

S(t) +W θ
I (t) +W θ

R(t) = N . Thus,

W θ
R(t) = N −W θ

S(t)−W θ
I (t) ∀ t ≥ 0, (3)

so that W θ
R(t) is a deterministic function of the sequence of tolerance thresholds

and the sequence of sojourn durations, conditionally on {W (s) , s < t}. Finally,
for θ := (β, γI) and Z a standardized version of Z̃ := {(Q1, L1), . . . , (QN , LN )},
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we deduce from Equations (1), (2) and (3) that there exists a deterministic function
f such that, for all t ≥ 0 and conditionally on {W θ(s), 0 ≤ s < t}, W θ(t) :=(
W θ

S(t),W
θ
I (t),W

θ
R(t)

)
= f(t, θ, Z). Moreover, if θ is sampled from a random

vector X independent of Z , then (f, Z) defines a deterministic representation of
(X,WX) in the sense that:

(
X,WX(·)

) D
= (X, f(·,X, Z)) . (4)

Such a representation will be a key stone for performing global sensitivity analysis
(see Section 5 for more details).

3 Extending Sellke construction

The construction of Sellke [1983] was originally introduced to study the distribu-
tion of the final size of epidemics modeled by the SIR model. A natural question
is whether such a construction can be extended to more complex compartmental
models. The answer is positive. In this section we focus on the extension of Sel-
lke construction to the SEI1I2RS model. This model is interesting as it includes
loops (individuals may be reinfected) and a branching compartment, i.e. a com-
partment which leads to more than one compartment, like compartment E in the
SEI1I2RS model.

3.1 Description of the SEI1I2RS model

The SEI1I2RS model presented in Figure 3 is a compartmental model with health
statuses {S,E, I1, I2, R} and six different types of transitions {(S,E), (E, I1),
(E, I2), (I1, R), (I2, R), (R,S)}. The different types of transitions between states
are described in Table 1.

S E

I2

I1

R

Figure 3: The SEI1I2RS model

This model enables to describe the propagation of an epidemic within a pop-
ulation with the following characteristics: existence of an incubation period for
the infected individuals, the presence of two categories of infectious individuals,
and the absence of permanent immunity (possible reinfection). For instance, it
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could be used to model the spread of SARS-CoV-2 by considering individuals in
compartment I1 as symptomatic and those in compartment I2 as asymptomatic.
To each type of transitions we associate a vector u = (u1, u2, u3, u4, u5), with
ui ∈ {−1, 0, 1} (see last column of Table 1).

Type of transition Type Transition vector
(S,E) infection u(S,E) := (−1, 1, 0, 0, 0)

(E, I1)
first type

infection activation
u(E,I1) := (0,−1, 1, 0, 0)

(E, I2)
second type

infection activation
u(E,I2) := (0,−1, 0, 1, 0)

(I1, R)
first type
recovery

u(I1,R) := (0, 0,−1, 0, 1)

(I2, R)
second type

recovery
u(I2,R) := (0, 0, 0,−1, 1)

(R,S) reinfection u(R,S) := (1, 0, 0, 0,−1)

Table 1: Description of the model transitions between states.

The succession over time of these transitions completely defines the states
of the epidemic process. The dynamics depend on a certain number of parame-
ters related to the epidemic characteristics. In the current modeling context, the
SEI1I2RS model depends on six epidemic parameters listed in Table 2.

Parameter Name Parameter Role
β transmission rate

1/µE mean sojourn duration in E

p
probability for an exposed
individual to move to I1

1/µ1 mean sojourn time in I1
1/µ2 mean sojourn time in I2
1/δ mean sojourn time in R

Table 2: Epidemic parameters.

In the following, θ := (β, µE , p, µ1, µ2, δ) is defined as the vector of epidemic
parameters. The set of values for θ is denoted by X ⊆ R6. We denote by W (t) :=
(WS(t),WE(t),WI1(t),WI2(t),WR(t)) so that W = {W (t), t ≥ 0} represents
the epidemic process corresponding to the SEI1I2RS model.
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3.2 Extension of Sellke construction for the SEI1I2RS model

The construction introduced in Sellke Sellke [1983] for the SIR model cannot be di-
rectly applied to the SEI1I2RS model as for this last model, there exists a branch-
ing compartment (compartment E) and the possibility of reinfection (R → S).
The existence of the branching compartment E induces a bifurcation thus, prelim-
inary to any transition from E, one has to active a selection mechanism to choose
either E → I1 or E → I2. Reinfection introduces loops in the structure of the
model. Indeed, it is possible for an individual to exit a compartment and to return
back to it after a finite number of transitions. The infection mechanism described
in Section 2 has thus to be generalized in a suitable way. This is the purpose of
what follows.

Infection mechanism: transitions S → E

As in Section 2, the infection mechanism still depends on a pressure function.
There are two groups of infectious individuals which exert pressure over suscepti-
ble individuals within the population. We define the pressure function as:

P : t 7→
β

N

∫ t

0
WI(s)ds (5)

with for any s ≥ 0, WI(s) = WI1(s) + WI2(s). With this formulation, we as-
sume that individuals in I1 and I2 share a common transmission rate β. One may
assume instead that each infectious group is characterized by its own transmis-
sion rate, say β1 and β2. In that case, the pressure function would be given by

t 7→

∫ t

0
(
β1
N

WI1(s) +
β2
N

WI2(s))ds.

We now describe the infection mechanism. If the individual labeled i is sus-
ceptible at initial time t = 0, he is assigned an initial tolerance pressure Qi,0 > 0
and he gets infected as soon as t ≥ Qi,0. Otherwise Qi,0 = 0. Then, each time
the individual labeled i becomes susceptible, he is assigned a new tolerance thresh-
old Qi,j+1 > 0 and he remains susceptible as long as the excess pressure remains
below that threshold. More precisely, if we denote by ηSi,j the entrance times of
individual labeled i in compartment S, then for t ≥ ηSi,j , the individual labeled
i remains susceptible as long as P (t) − P (ηSi,j) < Qi,j+1. He gets infected
at the first time the pressure function reaches and exceeds P (ηSi,j) + Qi,j+1, i.e.
τSi,j+1 = inf{t ≥ ηSi,j | P (t) ≥ P (ηSi,j) + Qi,j+1}. In the following we denote
by Qi the sequence (Qi,0, Qi,1, . . .). We also remark that the pressure function
computed at time t, P (t), is deterministic conditionally on {W (s) , s < t}.

Handling transitions from compartments E, I1, I2 and R

Transitions from compartments E, I1, I2 and R are handled as transition from
I in the original Sellke construction. As soon as an individual enters one of
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these compartments, he is assigned a sojourn duration. At the end of this pe-
riod, the individual leaves the compartment. In the following, we denote by Lα

i =
(Lα

i,0, L
α
i,1, . . .) the succesive sojourn durations of individual labeled i in compart-

ment α ∈ {E, I1, I2, R}, with Lα
i,0 = 0 except if individual labeled i is in com-

partment α at initial time t = 0. For an individual in compartment E, the transition
leads to compartment I1 with a probability p in (0, 1) and to compartment I2 with
probability 1 − p. The selection mechanism is modeled with a multinomial prob-
ability distribution (binomial in the present setting with only two infectious com-
partments), denoted byM ({E → I1, E → I2},p = (p, 1− p)). Then, each time
an individual leaves compartment E, a random variable is sampled from this multi-
nomial distribution to select either E → I1 or E → I2. The successive sampling
for individual labeled i are denoted by Mi = (Mi,1, . . .).

Retrieving the Markovian case

Similarly to what happens for the construction introduced by Sellke for the SIR
model, the transition mechanisms we introduced above lead to a continuous-time
Markov chain if one samples tolerance thresholds and sojourn durations adequately.
The precise result is stated in Proposition 1 below.

Proposition 1. Assume that

• the sequences Qi, L
α
i , α ∈ {E, I1, I2, R} and Mi, 1 ≤ i ≤ N are mutually

independent,

• the variables in each of these sequences are independent and identically

distributed,

• the tolerance thresholds are sampled from the standard exponential distribu-

tion,

• the sojourn durations in comparment α are sampled from the exponential

distribution with mean 1/λα, with:

λα =





µE if α = E,

µ1 if α = I1,

µ2 if α = I2,

δ if α = R.

Then, the process {W (t) , t ≥ 0} is a homogeneous continuous-time Markov chain

with transition rate functions provided in Table 3 below.
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Type of transition Rates
(S,E) β

N
·WS · (WI1 +WI2)

(E, I1) p · µE ·WE

(E, I2) (1− p) · µE ·WE

(I1, R) µ1 ·WI1

(I2, R) µ2 ·WI2

(R,S) δ ·WR

Table 3: Transition rates for the Markovian model.

The proof of Proposition 1 is based on classical arguments. It is postponed to
the Appendix A.

3.3 A deterministic representation of the SEI1I2RS model

As in the original Sellke construction, assume that the N individuals of the closed
population are labeled i = 1, . . . , N . Recall that the health status of the indi-
vidual labeled i at time t ≥ 0 is the random variable Xi(t) taking values in
V = {S,E, I1, I2, R}. As already mentioned, such an individual is character-
ized by a vector of sequences (Qi, L

E
i , L

I
i , L

R
i ,Mi). Moreover these sequences

are infinite as, due to the presence of loops in the model, an individual may visit
a compartment infinitely many times. Let us now define τSi,j , j ≥ 1, as the jth
exit time of individual labeled i from compartment S. We set τSi,0 = 0 except
if individual labeled i is in compartment S at time t = 0, in which case we set
τSi,0 = inf{t > 0 such that P (t) ≥ Qi,0}. For j ≥ 0, the following recurrence
relation holds:

τSi,j+1 = inf{t > τSi,j +∆S
i,j+1 such that P (t) ≥ P (τSi,j +∆S

i,j+1) +Qi,j+1} (6)

with ∆S
i,j+1 the cumulated sojourn duration of individual number i in compart-

ments other than S before his (j + 1)th arrival in S. It is given by:

∆S
i,j+1 =





LE
i,j+1 + LI

i,j+1 + LR
i,j+1 if Xi(0) = S,

LE
i,j + LI

i,j+1 + LR
i,j+1 if Xi(0) = E,

LE
i,j + LI

i,j + LR
i,j+1 if Xi(0) = I ,

LE
i,j + LI

i,j + LR
i,j if Xi(0) = R.

(7)

Note that τSi,j+∆S
i,j+1 is the time when the individual labeled i becomes susceptible

for the j + 1-th time. Thus, as long as the infection pressure is below P (τSi,j +

∆S
i,j+1)+Qi,j+1, this individual remains in S. Overall, it turns out that the number
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of susceptible individuals can be reformulated as:

WS(t) =

N∑

i=1

∑

j≥0

1τSi,j+∆S
i,j+1≤t<τSi,j+1

. (8)

Now, by Equation (6) and System (7), and as P is non decreasing with P (t) deter-
ministic conditionally on {W (s) , s < T}, the sequence {τSi,j, j ≥ 0} is a deter-
ministic function of {Qi, L

E
i , L

I
i , L

R
i } conditionally on {W (s) , s < t}. We then

deduce from Equation (8) that WS := {WS(t), t ≥ 0} is a deterministic function
of {Qi, L

E
i , L

I
i , L

R
i , i = 1, . . . , N} conditionally on {W (s) , s < t}.

Similarly, exit times of individuals from other compartments obey explicit re-
currence formulas. Indeed, if α ∈ V \ {S}, it holds that:

ταi,j+1 = ταi,j +∆α
i,j+1 (9)

with

∆α
i,j+1 =





τSi,j − τSi,j−1 +
∑

S<γ≤α

(
Lγ
i,j+1 − Lγ

i,j

)
if Xi(0) = S,

τSi,j − τSi,j−1 +
∑

S<γ≤Xi(0)

(
Lγ
i,j − Lγ

i,j−1

)

+
∑

Xi(0)<γ≤α

(
Lγ
i,j+1 − Lγ

i,j

)
if Xi(0) > S and α > Xi(0),

τSi,j+1 − τSi,j +
∑

S<γ≤α

(
Lγ
i,j+1 − Lγ

i,j

)

if Xi(0) > S and α ≤ Xi(0),
(10)

and with ταi,0 = 0 except if Xi(0) = α in which case ταi,0 = Lα
i,0. Details leading

to (10) are postponed to Appendix B. The quantity ∆α
i,j+1 corresponds to the

time spent by the individual labeled i outside the α compartment before his (j +
1)-th visit to α, added to the time he spends in α during this new stay. Thus,
ταi,j + ∆α

i,j+1 − Lα
i,j+1 corresponds to the time at which this individual enters the

compartment α so that for t ∈ [ταi,j +∆α
i,j+1 − Lα

i,j+1, τ
α
i,j+1), Xi(t) = α. Thus:

Wα(t) =
N∑

i=1

∑

j≥0

1τα
i,j

+∆α
i,j+1−Lα

i,j+1≤t<τα
i,j+1

. (11)

Now, by Equation (9) and System (10), and as P is non decreasing with P (t)
deterministic conditionally on {W (s) , s < t}, the sequences {ταi,j , j ≥ 0} and

{∆α
i,j, j ≥ 1} are deterministic functions of {Qi, L

E
i , L

I
i , L

R
i } conditionally on

{W (s) , s < t}. We then deduce from Equation (11) that Wα := {Wα(t), t ≥ 0}
is a deterministic function of {Qi, L

E
i , L

I
i , L

R
i , i = 1, . . . , N} conditionally on

{W (s) , s < t}.
The description of the different exit times through recurrence formulas enables

to build an algorithm that describes any trajectory of the epidemic process. Such
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an algorithm is presented in Algorithm 1 below. As in Table 1, for any (α,α′) ∈
V ×V, the transition vector uα,α′ is a 5-dimensional vector.

In Algorithm 1, RGQ denotes the sequence of thresholds (Q1, . . . , QN ) with
Qi = (Qi,0, Qi,1, . . .). If Xi(0) = S, then (Qi,j)j≥0 is a sequence of i.i.d. random
variables modeling successive thresholds. Otherwise Qi,0 = 0 and (Qi,j)j≥1 is
a sequence of i.i.d. random variables modeling successive thresholds. Then for
α ∈ {E, I1, I2, R}, RGα denotes the sequences (Lα

1 , . . . , L
α
N ) of successive so-

journ times in α, for each individual i = 1, . . . , N . Finally, RGM denotes the
sequences (M1, . . . ,MN ) with Mi = (Mi,j)j≥1 a sequence of i.i.d. random vari-
ables distributed from the multinomial distribution over {E → I1, E → I2} with
parameter p.

Algorithm 1 defines a deterministic function f such that, for all t ≥ 0 and con-
ditionally on {W θ(s), s < t), W θ(t) = f(t, θ, Z), with θ = (β, µE , p, µ1, µ2, δ)
and Z = (RGQ, RGE , RGI1 , RGI2 , RGR, RGM ). Also, if θ is sampled from a
random vector X with X and Z mutually independent, then (f, Z) defines a deter-
ministic representation of

(
X,WX

)
in the sense that:

(
X,WX(·)

) D
= (X, f(·,X, Z)) .

As already mentioned, such a representation is a key stone for global sensitivity
analysis (see Section 5 for more details).

Algorithm 1:

Data: ξ0(= w(0)), T
inputs : θ = (β, µE , p, µ1, µ2, δ),

Z = {RGQ, RGE , RGI1 , RGI2 , RGR, RGM}
output: w = {w(t); t ∈ [0, T ]}
/* Initialization */

1 t← 0, w(t)← ξ0, PS(t)← 0, j ← 0
2 N ← wS(t) + wE(t) + wI1(t) + wI2(t) + wR(t)
/* Draw thresholds for initially susceptible individuals */

3 for i such that Xi(0) = S do

4 Draw Qi,j using the seed RGQ

5 Q̃i,j ← Qi,j

6 end

/* Draw sojourn variables for individuals initially in

E, I1, I2, R */

7 for α ∈ {E, I1, I2, R} do

8 for i such that Xi(0) = α do

9 Draw Lα
i,j using the seed RGα

10 ταi,j ← Lα
i,j

11 end

12 end
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while t < T do
/* Pick the smallest threshold */

13 Q̃min ← min{Qi,j : i such that Xi(t) = S}
14 Pderiv ← (β/N)× (wI1(t) + wI2(t))

/* Compute putative next infection time */

15 τS ← t+
(
Q̃min − PS(t)

)
/Pderiv

/* Compute putative next exit time from other

compartments */

16 for α ∈ {E, I1, I2, R} do

17 τα ← min{ταi,j | i such that Xi(t) = α}

/* Compute next event time */

18 τ ← min{τα : α ∈ {S,E, I1, I2, R}}
/* Find next exit compartment */

19 α∗ ← argmin {τα ∈ {S,E, I1, I2, R}}
/* Compute pressure value at next exit time */

20 PS(τ)← PS(t) + Pderiv × (τ − t)
/* Identify the individual that makes the transition */

21 if α∗ = S then

22 i∗ ← argmin {Qi,j | Xi(t) = S}
23 Delete Qi∗,j

24 else if α∗ ∈ {E, I1, I2, R} then

25 i∗ ← argmin {τα
∗

i,j | Xi(t) = α∗}

26 Delete τα
∗

i∗,j

/* Pick randomly destination compartment for a transition

from E */

27 if α∗ = E then

28 Using the seed RGM , draw (E, I1) or (E, I2) with probability p
or 1− p respectively.

29 else
/* Destination compartment for transitions from other

compartments */

30 γ⋆ ← E if α∗ = S
31 γ⋆ ← R if α∗ = I1 or α∗ = I2
32 γ⋆ ← S if α∗ = R

/* Updates */

33 w(τ )← w(t) + uα∗,γ⋆

34 t← τ , j ← j + 1
35 if γ⋆ = S then

36 Draw Qi∗,j using the seed RGQ

37 Q̃i∗,j ← P (t) +Qi∗,j

38 if γ⋆ ∈ {E, I1, I2, R} then

39 Draw Lγ⋆

i∗,j using the seed RGγ⋆

40 τγ
⋆

i∗,j ← t+ Lγ⋆

i∗,j 14



In the framework of Proposition 1, the sequences of independent and iden-
tically distributed random variables Qi, LE

i , LI
i and LR

i are mutually indepen-
dent and all sampled from an exponential distribution, and the resulting process
{W (t) , t ≥ 0} is a homogeneous continuous-time Markov chain. Now, if the
sequences of independent and identically distributed random variables Qi, LE

i , LI
i

and LR
i are mutually independent and if at least one of them is sampled from any

non negative continuous probability distribution, different from the exponential
distribution, and the other ones are sampled from an exponential distribution, then
the corresponding process is non-Markovian.

4 Simulations

In this section, we present simulations of the SEI1I2RS model, obtained from
Algorithm 1. We highlight differences between outputs depending on whether the
model is Markovian or not. For this purpose, we consider the following epidemic
scenario inspired from COVID-19 pandemic. The population is assumed to be
composed of 2505 individuals with 5 initially exposed individuals (i.e. WE(0) =
5). Population size is chosen arbitrary but not too large in order to avoid unneces-
sary computation burdens for our study which is methodological and do not claim
to be a real case study. Regarding the epidemic characteristics, we assume that the
incubation period 1/µE fluctuates uniformly over [4.5, 5.8] with mean 5.1 [Lauer
et al., 2020]. Infectious periods 1/µ1 and 1/µ2 are respectively fixed to 1/µ1 = 5
and 1/µ2 = 5 according to Davies et al. [2020] (see Supplementary Table 1 in their
paper). We then set the transmission rate to β = 0.442, so that for 1/µ1 = 5 and
1/µ2 = 5, the basic reproduction number R0 := β/ (p× µ1 + (1− p)× µ2) =
2.21, which seems reasonable. In addition, we set the proportion p to 18, 1% (see
Prague et al. [2020]). In order to set the average period of loss of immunity 1/δ, we
rely on Schuler et al. [2021]. In this paper, authors conclude that reinfection occurs
from 90 to 180 days after recovery. Therefore, we set 1/δ = 135 corresponding to
the mean of a uniform distribution over [90, 180].

For these parameter values, two scenarios are considered for simulations, which
correspond to the Markovian framework and a non-Markovian alternative. In both
cases, sojourn times in a given compartment are independently and identically dis-
tributed (i.i.d.) from Gamma distributions. For a Gamma distribution, length of
memory can be read in the shape parameter. Indeed, a Gamma distribution with
shape parameter equal to one coincides with an exponential distribution; thus it is
used to model the Markovian setting characterized by memoryless. To model sce-
narios with memory, we use in the following Gamma distributions with shape pa-
rameter greater than one. More precisely, we compare two scenarios. The Marko-
vian scenario corresponds to exponential sampling of sojourn times in E, I1, I2 and
R, with parameter chosen to fit respectively mean duration in E, I1, I2 and R. We
also consider a non-Markovian scenario, with sojourn times in E, I1 and I2 sam-
pled from a Gamma distribution with shape parameter equal to four (see [Davies
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et al., 2020, Supplementary Table 1]) and scale parameter chosen to fit respectively
mean duration in E, I1 and I2. The shape parameter for sojourn times in R is cho-
sen equal to 1. We assume that the immune system of individuals lose completely
immunity from one infection to the other. Tolerance thresholds are drawn in both
Markovian and non-Markovian experiments from an exponential distribution with
parameter 1.

Markovian Non-Markovian
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Figure 4: Evolution over time of quantiles of order 0.1 to 0.9 of the number of
individuals in I2 (top) and the one of recovered individuals (bottom). Quantiles are
computed from 1000 independent trajectories in both Markovian (left) and non-
Markovian (right) frameworks.

Using Algorithm 1, we simulate independently 50 sample paths or trajecto-
ries of the epidemic process over time period [0, 500], for both Markovian and
non-Markovian scenarios described above. Internal noise in Algorithm 1 is repre-

sented by Z = (Q,LE , LI1 , LI2 , LR,M). Each realization q(i) (respectively ℓE
(i)

,
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ℓI1
(i)

, ℓI2
(i)

, ℓR
(i)

and m(i)) of Q (respectively LE , LI1 , LI2 , LR and M ) is ob-
tained from a pseudorandom number generator initialized with a random seed z

(i)
1

(respectively z
(i)
2 , z(i)3 , z(i)4 , z(i)5 and z

(i)
6 ). Within each scenario, two trajectories

differ only through the realization of Z . These simulations are provided in Figure
C.1 in Appendix C. Differences can be observed from one scenario to the other.
However, to limit the sampling impact of any conclusion, we simulate 1000 inde-
pendent trajectories in both Markovian and non-Markovian frameworks, and plot
in Figure 4 the evolution over time of quantiles of different order (ranged from 0.1
to 0.9) for the number of individuals in I2 (top) and for the number of recovered
individuals (bottom). On Figure 4, we read that out of our thousand simulations,
at least 50% show a trend towards extinction for the non-Markovian scenario (top
right), whereas this proportion falls to 20% for the Markovian scenario (top left).
We also remark a significant difference in the peak for the dynamics of individuals
in I2 between the two scenarios (top line). The peak is significantly higher in the
non-Markovian setting (top right) due to memory effect induced by the Gamma
sampling of sojourn times.

With these simulations, we highlight the importance of modeling memory ef-
fects as they truly influence model outputs. To better account for the impact of
memory effects, we perform in the next section a global sensitivity analysis.

5 Global sensitivity analysis of the SEI1I2RS model

This section is devoted to global sensitivity analysis of the SEI1I2RS model. We
first review variance based sensitivity analysis in Section 5.1. Then in Section
5.2 we explain how to perform a global sensitivity analysis for a stochastic model
based on a deterministic representation of the model, i.e. a deterministic function
of the epidemic parameters and the variables modelling the internal noise. Finally
in Section 5.3, we present numerical experiments for global sensitivity analysis of
the SEI1I2RS model.

5.1 Sobol’ indices

Let X = (X1, · · · ,Xp) with p ∈ N∗ be a random vector with known proba-
bility distribution. Let f be a real function taking p real arguments. Assume
Var(f(X)) < +∞. Moreover, suppose that X1, · · · ,Xp are mutually independent
so that Sobol’-Hoeffding decomposition [Sobol’, 1993, Hoeffding, 1948] yields:

Var (f(X)) =
∑

u⊆{1,··· ,p},u 6=∅

Var (fu (Xu)) , (12)

where, for each u ⊆ {1, · · · , p}, fu is a function of Xu =: {Xj , j ∈ u} such
that E [fu (Xu) | Xv] = 0 for every v ( u. Based on (12), Sobol’ [1993] intro-
duced variance-based sensitivity indices, nowadays known as Sobol’ indices. In
this paper we focus on first-order and total Sobol’ indices.
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First-order Sobol’ indices Let u be a nonempty subset of {1, · · · p}. The first-
order Sobol’ index of Xu is defined as:

SXu =
Var (E [f(X) | Xu])

Var(f(X))
· (13)

Such an index is a ratio of the variance of the part of the output due only to the
variation of Xu and the global variance. It is the so-called main effect of Xu.

Total Sobol’ indices The total Sobol index of Xu is defined as

STXu = 1−
Var (E [f(X) | X∼u])

Var(f(X))
, (14)

where X∼u = {Xj , j 6∈ u}. This index summarizes the main effect of Xu as well
as its interactions with all other inputs of the model. Indeed, for any j ∈ {1, . . . , p},
we have:

STj =
∑

u⊆{1,...,p} such that j∈u

SXu .

Remark 2. The definition of first-order and total Sobol’ indices can be extended to

models with vectorial or functional output. For a vectorial output (Y1, . . . , Yp), and

for any input parameter Xi, it is possible to compute the so-called aggregated first-

order (or total) Sobol’ index by computing the weighted sum of first-order (or total)

Sobol’ indices for each scalar output Yj weighted by the variance of Yj . We refer

to Lamboni et al. [2011], Gamboa et al. [2014] for the explicit definition. If the

output of the model of interest is a function of time, it can be reduced to a vectorial

output through discretization of time. As an alternative, first-order and total indices

defined in Equations (13) and (14) can be computed at each discretized time.

5.2 Deterministic representation of stochastic models

Let X ,Y and Z be three nonempty measurable spaces. A stochastic model g is
defined as follows. For each set of input parameters x ∈ X , the model output
g(x, ·) is a random variable with values on Y , so that a realization of such an output
is under the form g(x, ω), where ω belongs to some σ-algebra. In the paradigm of
global sensitivity analysis, uncertain parameters are modeled by a random vector
X. In the following, we make the usual assumption that for every x ∈ X , X
and g(x, ·) are mutually independent. In other words, uncertain parameters are
independent from internal noise.

Definition 1. [Kouye et al., 2024, Section 2.2] Let f : X × Z → Y be a deter-

ministic function. Let Z be a random variable with values in Z , whose probability

distribution is known, with Z and X mutually independent. Then (f, Z) is said

to be a deterministic representation of the stochastic model g if (X, g(X, ·))
D
=

(X, f(X, Z)), where
D
= means equality in distribution. The random variable Z

controls the internal noise of the stochastic model.
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Remark 3. In particular, if for every set of input parameters x ∈ X , g(x, ·)
D
=

f(x,Z), then (X, g(X, ·))
D
= (X, f(X, Z)).

A strategy to perform global sensitivity analysis of a stochastic model g is to
first identify a deterministic representation (f, Z) of g and then to compute Sobol’
indices as in Section 5.1 by considering the deterministic model f with augmented
input vector (X, Z). Let j ∈ {1, . . . , p}. Then the impact of the different sources
of uncertainty on model output are measured by the computation of Sobol’ indices:
SXj

quantifies the impact of Xj , SZ measures the impact of Z , the variable that
controls the stochasticity of the model. We also calculate the total Sobol’ index
STXj

, in order to quantify the impact of Xj alone or in interaction with other
epidemic parameters Xj′ , j′ 6= j or with Z , and the total Sobol’ index STZ .

In the next section, we apply this methodology to perform a global sensitiv-
ity analysis of simulations of the SEI1I2RS model obtained from Algorithm 1
presented in Section 3.3.

5.3 Sensitivity analysis

In this section, we perform a global sensitivity analysis for two different quantities
of interest in the SEI1I2RS model. We compare the results obtained in a Marko-
vian framework and in a non-Markovian framework. As the results are different,
this highlights the importance of taking into account the memory (if any) effect
when modeling an epidemic. Throughout this section, we can think about I1 and
I2 as the compartments for asymptomatic and symptomatic infectious individuals.
Each epidemic parameter is sampled from a uniform distribution whose support is
set according to the literature on COVID-19. Indeed, even if we do not pretend to
consider a real case study, we aim to consider a realistic setting.

Two quantities of interest are under study. The first quantity is the dynamics
over time of infected individuals, namely WE(t), t ∈ [0, 500]. The second quan-
tity is the moment the peak of the number individuals in I2 is reached, namely
argmaxt∈[0,500]WI2(t). In the context of COVID-19, this corresponds to the mo-
ment the peak of the number of symptomatic individuals is reached. In practice,
this quantity is of particular interest. It is linked to the overload of the medical
system, which proved to be a major problem during the COVID-19 epidemic.

Numerical setting

In our numerical experiments, we consider the Markovian and the non-Markovian
frameworks described in Section 4. The size of the population, as well as initial
conditions, are also chosen as in Section 4. Epidemic parameters β, p, µE , µ1, µ2

and δ are sampled uniformly (the range of variation for each parameter is described
in Table 4).
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Parameter Name Nominal value Range of variation
β 0.442 [0.23, 0.53]

1/µE 5.1 days [4.5, 5.8]

p 0.181 [0.167, 0.192]

1/µ1 5 days [5, 8]

1/µ2 5 days [5, 8]

1/δ 135 days [90, 180]

Table 4: Nominal values and range of variation of uncertain epidemic parameters

To sample the variable Z , that controls internal noise, we sample the seed of
pseudo-random number generator uniformly in {1, · · · , 109}. We compute Sobol’
indices by using the function soboljansen of the R-package sensitivity
[Iooss et al., 2020]. Each evaluation of Sobol’ indices uses a n-sample of (p, µE , µ1,
µ2, δ, Z) with n = 2500. The time-dependent output WE(t), t ∈ [0; 500] is eval-
uated on a regular grid t0 = 0, . . . , tm = 500 with m = 1000. Then we can
compute Sobol’ indices at each time ti of the grid, or alternatively compute aggre-
gated Sobol’ indices (see Remark 2 for a definition). To account for variability due
to input sampling, each Sobol’ index is evaluated Nrep = 30 times.

Results for WE(t), t ∈ [0,500] Figure 5 shows the evolution over time of first-
order (top) and total (bottom) Sobol’ indices. For both Markovian and non-Markovian
scenarios we consider, we note that, except during the first phase of the epidemic,
when the impact of internal noise Z is the strongest, β is the most important input.
Only slight differences can be observed on the evolution of the influence of β from
one scenario to the other. Though, a significant difference can be observed for the
impact of internal noise Z between both scenarios. We observe that Z has much
more impact in the Markovian scenario. This is even clearer on Figure 6, where
we have plotted first-order and total aggregated Sobol’ indices to summarize the
influence of inputs on the dynamical output WE(t), t ∈ [0, 500].
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First-order Sobol’ indices
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Figure 5: Time evolution of the median of a sample of Nrep = 30 realizations of
first-order (top) and total (bottom) Sobol’ index estimators in Markovian (left) and
non-Markovian (right) frameworks. The estimators are built from an input sample
of size n = 2500.
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First-order aggregated indices
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Figure 6: Boxplots obtained from Nrep = 30 realizations of first-order (left) and
total (right) aggregated Sobol’ index estimators in our Markovian (red) and non-
Markovian (blue) scenarios. The estimators are built from an input sample of size
n = 2500.
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Results for argmaxt∈[0,500]WI2(t) On Figure 7 are plotted the results for first-
order and total Sobol’ index estimation.
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Figure 7: Boxplots obtained from Nrep = 30 realizations of first-order (top) and
total (bottom) Sobol’ index estimators in our Markovian (red) and non-Markovian
(blue) scenarios. The estimators are built from an input sample of size n = 2500.

We note that β is always the most important input for this quantity of interest.
From the plots of first-order indices, β explains a little bit more than 37.5% of
the variance of the output in the Markovian scenario, while in the non-Markovian
one, this proportion increases up to 55%. Considering the total Sobol’ indices, the
dominance of the influence of β is confirmed. In addition, there are significant
differences in the total effects of all other input parameters between the Markovian
scenario and the non-Markovian one. The larger difference is observed in the total
effect of Z . The impact of internal noise is greater in the Markovian scenario than
in the non-Markovian one. To highlight the pure interaction effects, we compute
for each input parameter the value of the total Sobol’ index minus the one of the
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first-order Sobol’ index. Corresponding boxplots are plotted in Figure 8.
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Figure 8: Boxplots obtained from Nrep = 30 realizations of pure interaction effects
in our Markovian (red) and non-Markovian (blue) scenarios. The estimators are
built from an input sample of size n = 2500.

6 Conclusion

In epidemiology, compartmental modeling plays a key role in the quantitative
study and understanding of the spread of epidemics. Two frameworks are avail-
able to modelers in stochastic modeling: the Markovian framework and the non-
Markovian framework. The Markovian framework consists in using Markovian
processes such as continuous-time Markov chains, i.e. memoryless processes, to
model epidemics. The advantage of this framework is that an arsenal of mathe-
matical tools is available to facilitate theoretical analysis. On the other hand, the
non-Markovian framework is more difficult to deal with theoretically, but it is more
general and more realistic, as it does not rely on the absence of memory. The choice
of one of these frameworks has consequences for the lessons or conclusions that
can be drawn from the study of the resulting epidemic process.

In this paper, we use sensitivity analysis to highlight the differences between
different scenarios, with or without memory effects. These differences appear in
the influence of epidemic parameters but also in the influence of intrinsic noise
on epidemic dynamics. The key stone for our sensitivity analysis is the exten-
sion of Sellke construction to more complex models. Note that, although we fo-
cused the presentation on the SEI1I2RS model, our construction easily extends
to any closed-population compartmental model with loops and parallel compart-
ments. Our extension of Sellke construction inherits its ability to simulate exact
trajectories of a same model in a Markovian context (by sampling exponential dis-
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tributions for sojour times) but also in a non-Markovian context (by replacing ex-
ponential sampling by, e.g., Gamma sampling).

In future work, it would be interesting to compare simulation results obtained
from Algorithm 1 based on our extension of Sellke construction to other algo-
rithms dedicated to non-Markovian dynamics (e.g. Vestergaard and Génois [2015],
Boguñá et al. [2014], Masuda and Rocha [2018]). In particular, robustness to in-
ternal noise may vary from one algorithm to the other, with an impact on global
sensitivity analysis results, as studied in Kouye et al. [2024] in the Markovian con-
text.
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A Proof of Proposition 1

Let t ≥ 0 and denote by w the current state of W with P (W (t) = w) > 0. Let
∆ > 0. In the following, ∆ will tend to zero.
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Infection rate: The probability of infection between t and t+∆ is:

P
(
W (t+∆)−W (t) = u(S,E) | W (t) = w

)

=
∑

i:Xi(t)=S P
(
Qi,j+1 + P (ηSi,j) ≤ P (t+∆) | Qi,j+1 + P (ηSi,j) > P (t)

)

=
∑

i:Xi(t)=S

(
1− P

(
Qi,j+1 + P (ηSi,j) > P (t) + β

N
(WI1(t) +WI2(t))∆ + o(∆) |

Qi,j+1 + P (ηSi,j) > P (t)
))

=
∑

i:Xi(t)=S

(
1− exp

(
− β

N
(WI1(t) +WI2(t))∆ + o(∆)

))

= WS(t)
(
1− exp

(
− β

N
(WI1(t) +WI2(t))∆ + o(∆)

))
.

As∆→ 0, WS(t)
(
1− exp

(
− β

N
(WI1(t) +WI2(t))∆ + o(∆)

))
/∆→ β

N
WS(t)(WI1(t)+

WI2(t)) =
β
N
WS(t)WI(t).

Transitions E→ I1: The probability P
(
W (t+∆)−W (t) = u(E,I1) |W (t) = w

)

computes as

P
(
W (t+∆)−W (t) = u(E,I1) |W (t) = w

)

=
∑

i:Xi(t)=E P
(
LE
i,j+1 + ηEi,j ≤ t+∆,Mi,j+1 = (E, I1) | L

E
i,j+1 + ηEi,j > t

)

=
∑

i:Xi(t)=E P (Mi,j+1 = (E, I1))
(
1− P

(
LE
i,j+1 + ηEi,j > t+∆ | LE

i,j+1 + ηEi,j > t
))

=
∑

i:Xi(t)=E p (1− exp(−µE∆)) = pWE(t) (1− exp(−µE∆)) .

As ∆ → 0, pWE(t) (1− exp(−µE∆)) /∆ → pµEWE(t). Computations for
transitions E→ I2 are similar.

Other transitions (α1,α2) We have:

P
(
W (t+∆)−W (t) = u(α1,α2) | W (t) = w

)

=
∑

i:Xi(t)=α1
P
(
Lα1
i,j+1 + ηα1

i,j ≤ t+∆ | Lα1
i,j+1 + ηα1

i,j > t
)

=
∑

i:Xi(t)=α1

(
1− P

(
Lα1
i,j+1 + ηα1

i,j > t+∆ | Lα1
i,j+1 + ηα1

i,j > t
))

=
∑

i:Xi(t)=α1
(1− exp(−µα1∆)) = Wµ1(t) (1− exp(−µα1∆)) ,
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with µα1 =





µ1 if α1 = I1,

µ2 if α1 = I2,

δ if α1 = R.

B Proof of (10) in Section 3.3

Let α ∈ {S,E, I,R}.

For j ≥ 0, Xi(0) > α,

∆α
i,j+1 =

∑

α<γ≤Xi(0)

Lγ
i,j +

∑

γ>Xi(0)

Lγ
i,j+1 +

∑

γ≤α

Lγ
i,j+1 . (15)

For j ≥ 0, Xi(0) = α,

∆α
i,j+1 =

∑

γ

Lγ
i,j+1 . (16)

For j ≥ 0, Xi(0) < α,

∆α
i,j+1 =

∑

γ>α

Lγ
i,j +

∑

γ≤Xi(0)

Lγ
i,j +

∑

Xi(0)<γ≤α

Lγ
i,j+1 . (17)

We now apply the above equations to α = S.

For j ≥ 0, Xi(0) > S,

τSi,j+1 − τSi,j =
∑

S<γ≤Xi(0)

Lγ
i,j +

∑

γ>S

Lγ
i,j+1 + LS

i,j+1 . (18)

For j ≥ 0, Xi(0) = S,

τSi,j+1 − τSi,j =
∑

γ 6=S

Lγ
i,j+1 + LS

i,j+1 . (19)

Now, to prove (10),

• Xi(0) = S, α 6= S, combine (17) and (19);

• Xi(0) > S and α < Xi(0), combine (15) and (18);

• Xi(0) > S and α = Xi(0), combine (16) and (18);

• Xi(0) > S and α > Xi(0), combine (17) and (18).
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C Plots
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Figure C.1: 50 independent trajectories over time period [0, 500] of number of
individuals in compartments S, I1, I2 and R in Markovian framework (a, b, c) and
non-Markovian framework (d, e, f).
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