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Abstract

In industrial settings, measuring the quality of data used to
represent an intended domain of use and its operating con-
ditions is crucial and challenging. Thus, this paper aims to
present a set of metrics addressing this data quality issue in
the form of a library, named DQM (Data Quality Metrics),
for Machine Learning (ML) use. Additional metrics specific
to industrial application are developed in the proposed library.
This work aims also to assess various data and datasets types.
Those metrics are used to characterize the training and evalu-
ating datasets involved in the process of building ML models
for industrial use cases. Two categories of metrics are imple-
mented in DQM: inherent data metrics, are the ones evaluat-
ing the quality of a given dataset independently from the ML
model such as statistical proprieties and attributes, and model
dependent metrics which are those implemented to measure
the quality of the dataset by considering the ML model out-
puts such the gap between two datasets in regards to a given
ML model. DQM is used in the scope of the Confiance.ai pro-
gram to evaluate datasets used for industrial purposes such as
autonomous driving.

Introduction

The current paradigm in Machine Learning (ML) has been
largely model-centric, where the research contributions are
focused on enhancing models performances (Mazumder
et al. 2024), whereas the learning of ML model is largely
based on the information contained in the data. Recently, the
Data Centric for Artificial Intelligence (DCAI) has emerged
as a concept (Zha et al. 2023) to better master the ML model
decisions. Furthermore, as reported by Mazumder et al.,
many ML industrialization difficulties and drops in perfor-
mance often do not result from the model itself but from the
data used to train it. Hence, taking into account the DCAI
method would improve the Al life cycle process (Hutchin-
son et al. 2021; Polyzotis et al. 2018). The DCAI concept
is also explored in the standardization and certification pro-
cesses to be integrated in data management (Picard et al.
2020).

As stated before, the core of the data-centric approach is
to select the best data from the broad pole of the available
data. The evaluation of the quality of this selection have to
be assessed and quantified following a set of specific metrics
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(Aroyo et al. 2022). In this work, we focused on the propo-
sition and the implementation of a set of generic metrics to
evaluate data quality for Al usage in the specific industrial
domain. Our proposed work can be summarized into two
main contributions:

* Proposition of industrial library assembling a set of rele-
vant approaches for each selected data quality metric.

* Development of new metrics to integrate the industrial
specification and requirements.

The rest of the paper is organized as follows: first, we re-
view the state of the art related to data quality metrics. Then,
give a description of the proposed approach, detailing the
metrics for both categories, model-dependent and inherent
data quality. Following this, we outline the implementation
of these metrics, including the types of data already consid-
ered and the methods used. Next, we present the results of
our experiments and provide a discussion on the findings. Fi-
nally, we conclude the paper and discuss the future perspec-
tives, highlighting potential directions for further research
and development.

Related Works

The multitude of data types (multivariate vectors, numerical,
images, 3D clouds points, times series, etc) and the related
requirements and objectives increase the number of data
quality approaches. In addition, some specification needs
may challenge a specific knowledge and expertise related to
the application domain. Therefore, the dataset and its quality
become central during the whole ML process, from the con-
ception and specification until deployment going through
training and test sets design. Indeed, as reported by Zha
et al. (Zha et al. 2023), the scientific contributions consid-
erably increased during the five past years in DCAI as a
data-engineering strategy that improves the performance of
a given Al system (Kumar et al. 2024; Polyzotis and Zaharia
2021). The strategy can be focused on data quality boosting,
data augmentation, extrapolation, etc.

Several DCAI automated tools and libraries are proposed
in the literature. Dcbench (Eyuboglu et al. 2022) was pro-
posed to evaluate Data-centric Al development. Another
benchmark named DataPerf was proposed by Mazumder
et al. (Mazumder et al. 2024) to evaluate the impact of
datasets. An other implementation of DCAI was proposed
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Figure 1: Data-centric approach view

by Luley et al. (Luley et al. 2023). This implementation in-
tegrates the industrial constraints such as small datasets and
specific context by adding expertise knowledge. By focusing
on image data, Kastryulin et al. (Kastryulin et al. 2022) pro-
posed a python library, under PIQ name, for image quality
assessment.

Despite the approaches and libraries developed in the lit-
erature, the industrial requirements and specifications are
rarely considered. In the current work, we propose a python
library to qualify the quality of data used for ML purposes.
Adjustments of these metrics is performed to link the data
quality to the specifications and the requirements. An appli-
cation of the developed methods is applied on industrial data
use case.

Proposed Approach

In this section, we present our approach to assess the quality
of datasets for ML use. This assessment methods are assem-
bled in DQM (Data Quality Metrics), a Python library de-
veloped to quantify the quality of datasets used in ML sys-
tems in industrial settings. It aims to create a comprehensive
framework able to assess the essential attributes of a dataset.
The metrics implemented in our library are divided into two
main categories: inherent data (data-dependent) metrics and
model-dependent metrics as illustrated in Figure 1, which
summarizes also the DCAI concept presented in the previ-
ous sections. In the following, we present each metric as de-
fined by the Confiance.ai! program in its deliverable (Adjed
et al. 2023), and describe the content of each category while

' A French community dedicated to the design and industrialisa-
tion of trustworthy critical systems based on artificial intelligence
www.confiance.ai

detailing all its implemented methods.

Inherent-Data Metrics

Inherent-data or data-dependent metrics define the intrinsic
properties and quality aspects of a dataset, from a statisti-
cal point of view, independent of any specific ML model or
task; in other words, they assess the dataset’s characteris-
tics based solely on the data itself. Data-dependent metrics
are measurements developed to quantify the quality of the
dataset regarding the requirements and the specifications of
the use case. Three metrics are developed in the proposed
library which are 1) diversity, 2) representativeness and 3)
completeness.

Diversity The diversity of a dataset is defined (in Confi-
ance.ai program) as the assessment / verification of the pres-
ence of all required information to define the intended do-
main of use and its operating conditions. It is used to quan-
tify to which extent the dataset fits the specifications de-
scribed by the final user. The diversity is upheld once the
presence of at least one occurrence of each requirement is
verified. In other words, the existence of one data sample for
each requirement is sufficient to qualify the dataset as di-
verse.

In the scope of this work, we implemented three methods to
quantify the diversity of a given dataset. Two methods from
the literature which are Simpson Index given by equation (1)
and Gini-Simpson Index given by equation (2). These meth-
ods are mostly used in biology to quantify the diversity of a
given environment. In addition to these two state-of-the-art
measures, we propose a new method, named Relative Diver-
sity, in order to account for industrial requirements, given by
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where N is the total number of samples in the dataset and n;
the number of samples in each class. Simpson index ranges
between 0 and 1; where a value of 1 indicates no diversity
and 0, infinite diversity.
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where R is the number of types (classes) in the dataset, p; is
the proportion of each class in the dataset, with p; = n;/N
where n; is the number of samples in each class and N is
the total number of samples in the dataset.

RD = i Oéidi (3)

where, d; represents the diversity of the class ¢ and «; is a
wight parameter with ) . o; = 1. The parameter « is set by
defaultto o = %, and can be adjusted to fit the requirements.

Representativeness Representativeness is crucial in de-
termining how well the dataset reflects the population from
which it is drawn. The Confiance.ai program defines the rep-
resentativeness as the conformity of the distribution of the
key characteristics of the dataset to a given specification (re-
quirements, operating conditions, ...etc). The methods im-
plemented to measure the representativeness are: the chi-
squared (x?) and the Kolomogorov-Smirnov (KS) tests in
addition to a new approach based on Entropy Information
baptised Granular Relative Theoretical Entropy (GRTE).
Regarding the x? test, it is a robust statistical method used
for various purposes, for instance, to assess the goodness-of-
fit of theoretical distributions, and to test the independence
or homogeneity of variables. Additionally, several tests like
Fisher and Student tests are derived from X2- In our work,
we focused on the goodness-of-fit test, which is defined by
equation (4)

n
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where 7 is the number of bins, O; and E; represent the ob-
served and expected counts in the ¢-th bin, respectively.

The KS test is a non-parametric approach usually used to
assess if the observed data corresponds to a specified theo-
retical distribution. This test is based on the comparison of
observed and theoretical cumulative distributions. The mea-

sure of the KS test is defined by equation (5)
ks = max (|Fy(z) — Fe(2)|) ®)

where F; and F, are the theoretical and empirical cumula-
tive distributions, respectively.

While entropy alone provides valuable insights into the ran-
domness or the uncertainty within a dataset, it does not fully
quantify the information required for representativeness. To
address this, we propose a new method based on entropy,

Granular Relative and Theoretical Entropy (GRTE). It com-
pares the observed entropy with the expected entropy to pro-
vide a more comprehensive measure of data representative-
ness. GRTE is defined by equation (6)

CRTE — exn (-2 \H(Pr(E)()l - H(Pr(O))) ©

where H represents the entropy, Pr(E) and Pr(O) denote
the expected and observed values, respectively. The param-
eter a > 1 adjusts the sensitivity of the measure; in our
implementation, we used o = 1.

GTRE values range from 0 (for non representative data) to
1 (for fully representative data). The granularity parameter
is the number of bins which monitors the granularity of the
required information in each bin.

Completeness In Confiance.ai program, the completeness
metric is defined as the degree to which subject data asso-
ciated with an entity has values for all expected attributes
and related entity instances in a specific use case. It refers to
the proportion of well-filled information in a given dataset
(Juddoo and George 2020). Furthermore, completeness does
not measure only the missing information, but it also en-
compasses the data to be excluded (Chehreghan and Ali Ab-
baspour 2018). The method implemented to asses the com-
pleteness is the Completeness Ratio given by equation (7)

Filled it
Completeness Ratio = M o
# Total items

where # defines the number of elements.

Model-Dependent Metrics

Model-depend metrics consider the couple dataset-model to
characterize the overall quality. In the following, we dis-
cuss the implemented methods to measure the domain gap
between two datasets and the coverage of the space of the
intended purpose by the elements generated by the pair
dataset-model.

Domain Gap Domain gap is defined as the distance be-
tween two distributions P and () in a given space. In the
context of a computer vision task, the domain gap between
two images datasets refers to the difference in semantic, tex-
tures and shapes between the two. A significant domain gap
would lead to an important drop of the model’s performance
which makes its outputs unreliable for industrial applica-
tions. In the following we define six methods to measure
the domain gap between two images datasets: Central Mo-
ment Discrepancy (CMD), which quantifies the difference
between distributions by comparing their central moments;
Kullback-Leibler divergence for Multivariate Normal distri-
butions (KLMVN), Maximum Mean Discrepancy (MMD),
Wasserstein distance, Proxy A Distance (PAD), and Frechet
Inception Distance (FID). Each method measures the dis-
tance between two distributions P(up, Xp) and Q(ug, Xg)
given specific conditions that will be indicated in its defini-
tion. For each method, the closer to zero the result is, the
closer the distributions P and () are.

CMD is a distance between two probability distributions
P and Q on a compact interval [a,b]Y. For X ~ P and



Y ~ @, CMD is defined by (Zellinger et al. 2019) as in
equation (8)
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where E(X) is the expectation of X, and
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is the central moment vector of order k, where kK € N*. For
k = 2, CMD corresponds to variance, k = 3 to skewness
and k£ = 4 to kurtosis of probability distributions.

Wasserstein distance is used to compare finite probabil-
ity distributions. It is defined by (Riischendorf 1985) as in
equation (9)
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where d(z,y) is a distance function and T'(P, Q) is the set
of all joint distributions whose marginals are P and Q).

MMD is a distance between two probability distributions
P and @ defined by (Gretton et al. 2012) as the distance be-
tween their mean embeddings in a given Reproducing Ker-
nel Hilbert Space (RKHS) given by equation (10).

W,(P,Q) = < inf

YEr(P,Q)

MMD? (P, Q) = lup — pqll3
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where k is a RKHS.
PAD is an empirical approximation of H-divergence. It is
defined by (Ganin et al. 2016) and given by equation (11)

PAD(P, Q) = 2(1 — 2¢) (11)

where ¢ is the binary classifier model’s error rate which has
been trained to distinguish between samples from P and Q.

FID computes a distance between two normal multivariate
distributions. It is mainly used in image generation task to
compare the quality of the generated data with the real data.
According to (Heusel et al. 2017) the formula is defined by
equation (12)

FID(P,Q) = ||up — poll;

(12)
T (zp +90 -2 EPEQ)
where Tr defines the trace.

KLMVN is a distance that quantifies the gap between two
normal distributions with positive defined covariance ma-
trices pp and pg. It is defined by (Contreras-Reyes and
Arellano-Valle 2012) and given by equation (13)

Dxr (PlQ) = = tr (zélzp)
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where £ is the vector dimension from the data.

1
2
1
2
1
2
13)

Coverage According to Confiance.ai prgram definition,
the coverage of a couple "Dataset + ML Model” is the ability
of the execution of the ML Model on this dataset to generate
elements that match the expected space. The approaches of
coverage are integrated from neural coverage developed by
(Yuan, Pang, and Wang 2023) provided in their repository 2.

Implementation

DQM is implemented as a Python library to promote its
adoption and usage in the ML community. Table 1 gives a
comprehensive overview of the metrics with the data types
supported for each one in the current version. Figure 2 pro-
vides a representation of the structure of DQM; as shown,
the metrics are classified as follow: 1) diversity, 2) represen-
tativness and 3) completeness for inherent data metrics; 4)
domain gap and 5) coverage for model-dependent metrics.
As shown in Table 1, the current version of DQM is meant to
handle only image datasets for domain gap methods. They
rely on Pytorch for image transformations (e.g. reshape, ro-
tation, normalization, etc) and pre-built models to extract
features from data. However, the user can freely add his cus-
tomized transformations and models via a configuration file.
We provide the user with notebooks explaining how to use
each method and guidelines to handle data and models de-
pendencies.

Results and Discussion

In this section, we discuss some of the experiments con-
ducted using DQM library on selected datasets for au-
tonomous driving tasks. We start by presenting the datasets
and the experimental protocol followed for each method
then share and discuss the results.

Datasets

Valeo Deep Perception (VDP) is a proprietary dataset by
Valeo of fish-eye cameras images of urban scenes captured
in 4 different cities: Paris, Nuremburg, Stuttgart and Califor-
nia. It contains 132k images with some variableness in the
driving environment (urban, highway and parking), weather,
lightning level, etc. This dataset is shared and used in Con-
fiance.ai program as one of the industrial use cases.

A preprocessing of the raw fish-eye images by a re-
projection on a cylindrical viewpoint was made on the entire
dataset to help increase the performance of convolutional
neural networks based models. Valeo made a subset of the
dataset available online under the name of Valeo WoodScape
(Yogamani et al. 2019) for open source use.

*https://github.com/Yuanyuan- Yuan/NeuraL-Coverage
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BDD100K by (Yu et al. 2020) is a large-scale and diverse
dataset that deals with the theme of autonomous driving
tasks; containing 100k videos and more than 100k images
with annotations such as weather condition, geographic lo-
cation, bounding boxes for object detection, ...etc.

Synthetic Night Images is a small collection of 10k night
images generated through a day-to-night style transfer using
a JoliGEN model (JoliGEN 2024). The source images are
selected from the daytime images in the BDD100K dataset.
Figure 3 shows a sample of these images.

Experiments and Results

In the following, we share a part of our experiments on the
above datasets to illustrate the potential of DQM for both
categories, inherent and model-dependent metrics.

Inherent-Data Metrics For inherent data metrics, we ap-
plied RD and GRTE methods to capture the quality of the
VDP dataset from a statistical point of view.

Relative Diversity This experiment aims to evaluate how
many of the expected modalities for the VDP dataset are
present in the actual VDP dataset modalities. An example
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in DQM.

Source images
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Figure 3: Examples of night image generation using style
transfer day to night.

for sky cover modalities, is given in Table 2.

Required sky cover | VDP sky cover
sunny cloudy
clear obscured/invisible

cloudy overcast
obscured/invisible clear

Table 2: Example of required and present modalities for
VDP’s relative diversity assessment

The Relative Diversity method gives the following output:
» Categorical diversity = 0.6
» Same modalities = 3
» Missing modalities (requirements) = 1
¢ Additional modalities (in the dataset) = 1

GRTE In this experiment, we applied GRTE method to
the VDP dataset on the car variable distribution to determine

if it is closer to a normal or a uniform distribution. This eval-
uation is performed using discrete values; therefore, we used
bins to have different precision levels for each distribution
representation.

The results presented in Figure 4 show that the variable data
distribution is closer to a normal distribution rather than a
uniform one. In fact, normal distribution compatibility is
more than 80% until 15 bins, while the uniform distribution
matching does not exceed 60%. Starting 20 bins, both distri-
butions matching decrease to fall towards zero. Thus, for the
same dataset, the representativeness estimation is dependent
on the granularity parameter (number of bins). For instance,
if a granularity of 10 bins is sufficient for the given use case,
then the dataset contains around 90% of the required infor-
mation following a normal distribution, whereas, if a granu-
larity of 50 bins is needed, then the dataset contains less than
20% of the required information following a normal distri-
bution.

GRTE for normal and unifrom distribution

10+ — normal
uniform

0.8 4

0.6 4

GRTE

0.4+

0.24

0.0+

T T T T T T T T
0 10 20 30 40 50 60 70 80
number of bins

Figure 4: Results of GRTE metric depending on the granu-
larity parameter (number of bins).

Model-Dependent Metrics In the following, we will dis-
cuss the experiments conducted to measure the domain gap
between two datasets using the MMD method.

MMD The main goal of this experiment was to mea-
sure the domain gap between pairs of image datasets: VPD,
BDD100K and a synthetic night images dataset. To better
capture the domain gap induced by lightning conditions, we
used subsets of each dataset representing daytime and night-
time scenes. In addition, we wanted to assess the gap be-
tween the images captured by similar cameras from differ-
ent positions on the vehicle (front, left, right and rear view).
Finally, identify the dataset size at which MMD stabilizes by
varying the size of the datasets at each run.

Figure 5 gives a snap on the images contained in each dataset
/ subset and Table 3 gives a detailed view of the datasets and
subsets used for each goal.

We used a Resnet18 (He et al. 2016) as a features extractor
on both source and target datasets and selected a linear ker-
nel for the MMD distance.

Table 3 gives the results of the experiments. We notice a
large domain gap between datasets from different sources as
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Source Dataset Target Dataset dataset size = 10 | dataset size = | dataset size = | dataset size =
100 400 1000
VDP VDP ~0 ~0 ~0 ~0
BDD100K VDP 47.5 22.9 24.1 34.1
VDP night VDP day front camera 42.5 55.6 56.3 55.7
BDD100K night VDP night 38.6 44.3 45.6 47.2
VDP night Synthetic night 38.6 45.1 434 42.6
BDD100K night Synthetic night 4.6 2.3 2.8 2.5
VDP day front camera Synthetic night 61.2 79.2 75.7 73.1
VDP day front camera | VDP day rear camera 12.5 6.0 7.7 6.9
VDP day front camera | VDP day left camera 11.1 7.7 8.2 7.8
VDP day right camera | VDP day left camera 5.0 9.3 7.9 8.5

Table 3: Summary of MMD scores on different datasets and subsets: BDD100K, VDP and a synthetic night images dataset.

in VDP vs BDD100K; and with different levels of lightning
(daytime vs nighttime) as in VDP night vs VDP day front
camera. The gap grows bigger when we have two datasets
coming from different sources and with different lightning
conditions as in VDP day front camera vs synthetic night ex-
periment. The domain gap is relatively small in the subsets
of the VDP dataset with different positions of the camera,
given that the images are from similar cameras in the same
lightning conditions. These observations remain consistent
with human intuition. It is worth noting that the gap created
by applying a style transfer on BDD100K images to create
nighttime lightning conditions is small as shown by the ex-
periment BDD100K night vs synthetic night; which can be
a promising avenue to investigate for applying style transfer
to simulate lightning and weather conditions.

Regarding the effect of the dataset size on the method sta-
bility, we notice that MMD converges starting dataset size
of 100 samples. However, this observation depends on the
diversity of the datasets involved.

Conclusion and Perspectives

In this work, we have addressed the critical challenge of
evaluating data quality within the context of industrial ML
processes, focusing on various metrics as identified in the
Confiance.ai program. Our approach involved the imple-
mentation of a comprehensive set of metrics to assess data
quality, categorized into inherent data metrics and model-
dependent metrics.

To assess the inherent quality of data, we implemented meth-
ods from the state of the art, such as Simpson Index, Gini-
Simpson Index for diversity, x? and Kolmogorov-Smirnov
tests for representativeness and a completeness measure. We
developed a relative diversity measure to account for indus-
trial requirements as well as an entropy representativeness
method (GRTE). In the other hand, for model dependent
metrics, we focused in this paper on the measures imple-
mented for domain gap evaluation on image datasets using
Central Moments Discrepancy, Wasserstein distance, Max-
imum Mean Discrepancy Kullback-Leibler divergence and
H-divergence. We utilized our library DQM to assess the
quality of different datasets both open source and proprietary
used in actual industrial use cases provided by the Confi-
ance.ai program. In addition, The library is integrated in a
larger Al system called DebiAl ((Mansion et al. 2024)).
Future work includes expanding the existing methods to
other data types for instance time series and scaling the li-
brary to allow its use on very large datasets intended for
foundation models.
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