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ABSTRACT

Megadolodinae is a clade of tropical bunodont litopterns that includes three previously
recognized species from Miocene fossil sites from northern South America. Here, we report
an additional occurrence of Megadolodus molariformis from the Middle Miocene exposures
at the Fitzcarrald arch (Peruvian Amazonia), based on dental material, which represents the
southernmost record of the clade. This discovery further increases the faunal similarity
between Fitzcarrald and the coeval La Venta fauna of Colombia. Given the convergent
evolution of the bunodont dentition of megadolodines with suoids (Old World pigs and New
World peccaries), we tested the hypothesis of frugivory in megadolodines with a mesowear
angle approach using modern pigs and peccaries. These analyses differentiate the diet of
modern suoids and suggest that megadolodines had a more abrasive diet than most of these
taxa, except for the grazing warthogs. The dentition of megadolodines shows similar levels of
abrasion to modern babirusas, thereby suggesting that the latter may represent an
appropriate modern analog.

INTRODUCTION

The South American Native Ungulates (SANUs) are a disparate group of herbivorous ungulates
grouped into up to seven clades (Astrapotheria, Didolodontidae, Kollpaniinae, Litopterna,
Notoungulata, Pyrotheria, and Xenungulata) that occur in the South American fossil record
from the early Paleocene up to the Late Pleistocene (Croft et al., 2020). Because of their
isolation from other continents (Simpson, 1980), the SANUs represent natural evolutionary
experiments, characterized by convergent evolution of ecomorphologies similar to those of
ungulates in other continents. Some examples include the large astrapotheres that, like
proboscideans in other continents, had a trunk and tusks to strip vegetation (Johnson &
Madden, 1997), and some toxodontids like Hoffstetterius that had a keratinous horn on their
heads like those of rhinoceroses on other continents (Saint-André, 1993).

The megadolodine litopterns are another example of convergent evolution, closely
resembling suoids, today represented by Suidae (the ‘Old World’ pigs) and Tayassuidae (the
‘New World” peccaries), in their large, bunodont molars, and their robust femora and short
tibiae and metatarsal Ill relative to other modern ungulates (Cifelli & Villarroel, 1997; Orliac et
al., 2010). The two most well-studied megadolodine genera, Megadolodus and Neodolodus,
also possess sharp tusks, analogous to those of suoids (although formed from the incisors)
(Carrillo, Suarez et al., 2023a). Three Megadolodinae species are currently recognized —
Megadolodus molariformis, Neodolodus colombianus, and Bounodus enigmaticus, with M.
molariformis and N. colombianus previously identified from the late Middle Miocene of
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Colombia (Carrillo et al., 2018; Carrillo, Suarez et al., 2023a; Cifelli & Diaz, 1989; Cifelli &
Villarroel, 1997; Hoffstetter & Soria, 1986; McKenna, 1956), whilst B. enigmaticus is currently
only known from the Upper Urumaco Formation of Venezuela (Late Miocene) (Carlini et al.,
2006). The Megadolodinae therefore represent an extinct tropical ungulate clade, and one
illustrating the faunal links between western Amazonian localities.

During the Middle Miocene, a number of factors drove the formation of a wetland system
in Amazonia (Antoine et al.,, 2016; Hoorn, Wesselingh, Hovikoski et al., 2010; Hoorn,
Wesselingh, Ter Steege et al., 2010; Hoorn et al., 2022; Jaramillo et al., 2017). Global sea level
was intermittently high (Boonstra et al., 2015; Hoorn, 1993), and Andean uplift drove flexural
(Hoorn, 1993; Sacek, 2014) and dynamic subsidence in the foreland basins (Bicudo et al.,
2020; Eakin et al., 2014; Roddaz et al., 2010), as well as increased rainfall due to orogenic
effects (Poulsen et al., 2010). The Pebas Mega-Wetland System (PMWS), resulting from these
geological processes, covered ~1,000,000 km? and acted as an important biogeographic
feature, driving the origination of a range of clades (Antoine et al., 2016; Hoorn et al., 2022;
Marivaux, Adnet, Altamirano-Sierra, Pujos et al., 2016).

Few outcrops are available for the Middle Miocene interval in Western Amazonia (Antoine
et al.,, 2013; Boivin et al., 2021; Marivaux et al., 2020; Negri et al., 2010; Stutz et al., 2022;
Tejada-Lara et al., 2015) and much of our understanding of the faunal history of the region
comes from three coeval locations from the late Middle Miocene Laventan Stage/Age (13.5-
11.8 Ma: Madden et al.,, 1997) — La Venta in Colombia, and the Fitzcarrald Local Fauna and
the TAR-31 fossil-bearing locality in Peru (Negri et al. 2010; Antoine et al. 2013; Tejada-Lara et
al. 2015). (Antoine et al., 2013; Negri et al., 2010; Tejada-Lara et al., 2015). The La Venta area
in particular has been investigated for over a century (Carrillo, Jaramillo et al., 2023; Kay et al.,
1997) and has vyielded the most speciose vertebrate assemblage from northern South
America, with at least 75 mammal species that have been described (Carrillo, Jaramillo et al.,
2023; Wilson & Parker, 2023). In contrast, the Peruvian faunas of Fitzcarrald and TAR-31 have
been discovered much more recently. Pioneering fieldwork performed in 2005 and 2007
along the Rio Inuya, Rio Mapuya, and Rio Sepa led to the discovery of at least 24 mammalian
taxa making up the Fitzcarrald local fauna (Antoine et al., 2007; Bianucci et al., 2013; Goillot
et al., 2011; Pujos et al., 2013; Tejada-Lara et al., 2015). More recently, TAR-31 was discovered
in 2015 and investigated until 2019. In sharing most of its mammalian components with La
Venta (metatherians, xenarthrans, notoungulates, megadolodines, rodents, and a unique
primate), the TAR-31 locality has been unambiguously assigned to the Laventan Stage/Age
(Boivin et al., 2021; Marivaux et al., 2020; Stutz et al., 2022).

In this study, we add to the mammalian faunal list of the Fitzcarrald Local Fauna through
the recognition of a new record of a megadolodine litoptern from dental material (a single
isolated tooth) unearthed in a new locality in 2017 (named URU-208 — Rio Urubamba fossil-
bearing locality 208) by a team made up of several of us (POA, APP, FLC, LM, FP, and ASM; see
author contributions). Alongside this megadolodine, a dozen vertebrate taxa were recognized
at URU-208, including an unidentified stingray (dermal buckle), ray-finned fish (a large



pimelodid catfish plus cynodontid, anostomid, and serrasalmine characiforms), a
podocnemidid turtle (shell fragments), four crocodylomorphs (teeth of the sebecid cf.
Langstonia sp., the caimanines Caiman sp. and Purussaurus sp., and an unidentified
gavialoid), as well as two caviomorph rodents (a lower jaw and a molar assigned to
‘Scleromys’ sp. and Microsteiromys sp., respectively). We also consider the implications of this
taxon for understanding the paleoenvironmental conditions of Western Amazonia in the
Middle Miocene.

Megadolodines have been suggested to be frugivores based on their bunodont dentition
and thick enamel (Cifelli & Villarroel, 1997) and we use mesowear angles to quantify their diet
relative to modern suoids with variable ecologies. Finally, we introduce a novel mesowear
angle method for bunodont ungulates to test the hypothesis of similarity in the diets of
megadolodines with those of modern suoids.

Institutional abbreviations

AMU-CURS, Colecciéon Paleontolégica de la Alcaldia Bolivariana de Urumaco, Urumaco,
Venezuela; KNM, National Museums of Kenya, Nairobi, Kenya; MNHN, Muséum national
d’Histoire naturelle, Paris, France; MPV, Museo Paleontoldgico de Villavieja, Villavieja,
Colombia; MUN-STRI, Mapuka Museum, Universidad del Norte, Barranquilla, Colombia;
MUSM, Museo de Historia Natural de la Universidad Nacional Mayor San Marcos, Lima, Pery;
MZH, Finnish Museum of Natural History, Helsinki, Finland; RMCA, Royal Museum for Central
Africa, Tervuren, Belgium; VPPLT, Vigias del Patrimonio Paleontolégico, Museo de Historia
Natural La Tatacoa, Villavieja, Colombia; UCMP, University of California Museum of
Paleontology, Berkeley, California, U.S.A.; UMZC, University Museum of Zoology Cambridge,
Cambridge, U.K.; UNC, Departamento de Geociencias, Universidad Nacional de Colombia,
Bogota, Colombia.

MATERIALS AND METHODS

Geological Context

The specimen was unearthed during an expedition in the Fitzcarrald Arch in 2017. The URU-
208 outcrop (S10°42.579" W73°37.255’) is situated on the right bank of the Rio Urubamba,
upstream Atalaya city (Ucayali Department, Peruvian Amazonia), at the base of the cliffs
located immediately downstream of the Santa Clara Native Community. The concerned
deposits, assigned to the Middle to Late Miocene Ipururo Formation (Espurt et al., 2007;
LAGESA & C.F.G.S., 1997), consist of pinkish channelized conglomerates intercalated with silts
and clays, forming an island by the dry season. The tooth was found in situ, embedded within
a loose conglomerate with a sandy matrix, which allowed for manual preparation.



Both the fossil-bearing facies and associated faunal elements (especially the
crocodylomorph community and the rodents) allow us to consider URU-208 as a new locality
of the Fitzcarrald Local Fauna, consistently Laventan in age (Antoine et al., 2007; Tejada-Lara
et al,, 2015).

Mesowear Analysis

We compare the mesowear signal of specimens of megadolodine litopterns to the signal from
modern suoids to examine the diet of these fossil taxa. We largely focus on tropical rainforest
suoids (e.g., Babirusa, Dicotyles, and Tayassu) as potential ecological analogs but also
included some larger open-habitat taxa (Phacochoerus) and ecologically more generalist taxa
(Sus) for comparison. As far as we are aware, all modern suoid specimens included here were
from wild individuals.

When possible, the modern specimens were scanned using the Polycam 3D scanning
application (Polycam Inc., 2023), using the photogrammetry mode on an iPhone XR, and
these scans were then loaded into Blender v3.1.0 (Blender Online Community, 2022). For
some modern specimens, measurements were taken manually using a handheld digital angle
measuring device (Saarinen et al., 2015). For megadolodine specimens, we used published 3D
models (Carrillo, Suarez et al., 2023b), Polycam scans of the dentition of museum specimens,
and in some cases, angles were measured from photographs taken from a buccal and lingual
direction using Fiji, an open-source software package for image processing (Schindelin et al.,
2012).

The mesowear angle methodology used principles that have been applied to other groups,
including proboscideans (Saarinen et al., 2015), xenarthrans (Saarinen & Karme, 2017) and
toxodontids (Wilson et al., 2024). In Phacochoerus and in two Megadolodus specimens (UNC-
TATAC1 and UCMP 39270), angles were measured from the base of well-developed dentine
valleys to the highest point of the ridges surrounding these valleys. In Phacochoerus, dentine
valleys were chosen that were considered to represent a medium stage of wear, usually
roughly halfway along the tooth (Saarinen et al.,, 2015). In the other specimens, we used
intercusp facet angles as a mesowear angle (Saarinen & Lister, 2023; Saarinen et al., 2015;
Xafis et al., 2020) (Figure 1), with the angles measured between cusp tips and the valleys
between them along intercusp wear facets. For all specimens (when possible), we took
measurements on the buccal and lingual sides of the left and right dentition in both upper
and lower jaws. We then separately averaged these angles for both the upper and lower
dentitions, given that there were differences in the angles between the two. Where
appropriate, we measured these intercusp facet angles on the second molar, but when this
was either too heavily worn or unworn, either the first or third molar was used instead.
Regardless of which tooth was used, the angles were measured between the metacone and
the paracone and between the hypocone and the protocone in the upper molars (Table S1) as
well as between the metaconid and the entoconid, and the protoconid and the hypoconid in



the lower molars (Table S2). We tested for differences in mesowear angles between extant
taxa using a non-parametric Kruskal-Wallis test. Visualizations of the resulting mesowear
angles were made using ggplot2 (Wickham, 2016) for R 4.1.1 (R Core Team, 2021).

RESULTS

Systematic Paleontology
MAMMALIA Linnaeus, 1758
PLACENTALIA Owen, 1837
LITOPTERNA Ameghino, 1889
Family PROTEROTHERIIDAE Ameghino, 1887
Subfamily MEGADOLODINAE Cifelli & Villarroel, 1997
Genus Megadolodus McKenna, 1956
Megadolodus molariformis McKenna, 1956

Figure 2A-D.

Referred Material -- MUSM 4963, isolated right upper molar (M17?)

Description -- MUSM 4963 is a low-crowned bunodont upper molar with four roots. It is
roughly quadrangular in occlusal view, with a length of 15.36 mm and a maximum width of
19.20 mm. It has been superficially eroded (smooth enamel surface) in a channel before
deposition in the lpururo conglomerate. It has thick enamel, characteristic of M. molariformis
(Cifelli & Villarroel, 1997) and has a well-developed bulbous/inflated paracone, metacone,
protocone, and hypocone, alongside a strong mesiolingual cingulum. Buccally, only the
mesostyle is visible (very small but well-defined). The metastyle and parastyle are absent. The
metaconule and paraconule are both conspicuous. The metaconule is equidistant between
the metacone and the hypocone. The protocone is displaced distally compared to a
buccolingual straight line connecting the paracone and paraconule. A preprotocrista connects
the protocone to the paraconule and a preparaconular crista extends mesiobuccally to reach
the base of the mesial flank of the paracone, where a parastyle would occur (although there
is no parastyle). Such cristae are missing for the metaconule, which is isolated. There are four
divergent roots (two buccal and two lingual), elongated buccolingually and compressed
mesiodistally.

Remarks -- MUSM 4963 is morphologically indistinguishable from specimens of Megadolodus
molariformis known from the late Middle Miocene mammal assemblage in La Venta,
Colombia (Carrillo, Suarez et al., 2023a; Cifelli & Villarroel, 1997). M1 and M2 in M.



molariformis are very similar in overall morphology. In the two known Colombian specimens
with upper teeth (UNC TATAC1 and VLPPT 1588), the M2 is the largest tooth, and the
dimensions of MUSM 4963 are slightly smaller than those for previously described second
upper molars in M. molariformis. On the basis of the size of the tooth, we consider it more
likely that it represents a right M1. The currently uncatalogued dental specimen from TAR-31
is a fragment of occlusal surface, the pattern of which is fully compatible with an upper molar
of M. molariformis (Boivin et al., 2021; Carrillo, Suarez et al., 2023a; Cifelli & Villarroel 1997).
Nevertheless, its fragmentary condition impedes further comparison with MUSM 4963.

Mesowear Angles

The mesowear angles in modern suoids show a large degree of interspecific variation, from
<90°in Dicotyles tajacu and some specimens of Sus scrofa scrofa for example to >140°in the
two species of Phacochoerus (Figure 3). The mesowear angles in both lower (Kruskal-Wallis
test: x? = 48.771, df = 12, p-value < 0.0001) and upper (Kruskal-Wallis test: x* = 51.148, df =
11, p-value < 0.0001) dentitions significantly differed between the species measured here. In
many of the modern taxa, there is a large degree of intraspecific variation, which we propose
reflects the variable, generalist diet of modern suoids. In general, there was more variation
between different modern taxa in the upper molars and the angles measured in the upper
toothrows were slightly higher than those in the lower toothrows. Of the 54 specimens for
which both upper and lower teeth were available, 64.8 % had higher mesowear angles in the
upper dentition. The differences between modern taxa largely reflected known differences in
their dietary preferences (e.g., Phacochoerus is known to consume more abrasive material as
a result of a grazing lifestyle) (Souron, 2018), although the precise diet of each specimen was
not known.

The measured angles in the megadolodine litopterns generally suggest that they were at
the more abrasive end of the dietary spectrum of our taxonomic sample, with larger
(shallower) mesowear angles than most suoids measured here. There is a large degree of
overlap between the mesowear angles in these fossil taxa and those of Babyrousa babyrussa
specimens, as well as similarities with Sus verrucosus and Sus scrofa andamanensis, although
the latter two taxa are represented with only a single specimen and should therefore be
treated with caution. In the megadolodine taxa where more than a single specimen could be
measured, we find some degree of intraspecific variation, suggesting a variable, generalist
diet similar with that of modern suoids. In the case of the lower jaw of Neodolodus
colombianus, three specimens were measured, which varied in mesowear angle by ~40°.
MUN-STRI 16716 (132.5°) is a highly worn lower jaw from the Castilletes Formation of La
Guajira, Colombia, whilst VLPPT 1696 is a lightly worn specimen from La Venta (91.5°). The
variability in N. colombianus could result from habitat-related differences in diet or from wear
stage. We have here included all megadolodines regardless of wear stage for completeness,
but this example highlights the effect that this factor may cause in interpretation of diet by
mesowear.



DISCUSSION

Southernmost Record of a Megadolodine

The recognition of M. molariformis in the Fitzcarrald fauna of Peruvian Amazonia represents
the southernmost occurrence of Megadolodinae, with the Peruvian records expanding the
range of this subfamily by ~1,500 km southwards. It strengthens the close relationship
between the Fitzcarrald Local Fauna, TAR-31, and La Venta mammalian assemblages, with at
least 12 terrestrial mammal genera (and possibly as many as 19) shared between these three
faunas (Boivin et al., 2021; Carrillo et al., 2015; Marivaux et al., 2020; Stutz et al., 2022;
Tejada-Lara et al., 2015). The high faunal similarity between these localities presumably
related to a partial continuity in the PMWS (Benites-Palomino et al.,, 2020, 2024; Salas-
Gismondi et al. 2015, 2016). Combining data from these three assemblages with those from
elsewhere, e.g. Contamana, Peru (CTA-57 and CTA-44 l|ocalities; Antoine et al., 2016), the
Castilletes Formation, Colombia (Amson et al., 2016; Carrillo et al., 2018; Moreno et al., 2015;
Suarez et al., 2016) and Miocene Ecuador (Cadena & Roman-Carrion, 2018; Madden, 1990;
Roman-Carrion et al., 2021), there is increasing evidence for faunal and environmental
consistency in the Middle Miocene of Western Amazonia. During this period, northwestern
South America was dominated by the PMWS (Boonstra et al.,, 2015; Hoorn, Wesselingh,
Hovikoski et al., 2010; Hoorn, Wesselingh, Ter Steege et al., 2010; Jaramillo et al., 2017; Mora
et al., 2010), and the Colombian, Peruvian, and Ecuadorian faunas were all recorded on the
western edge of the PMWS (Antoine et al.,, 2007, 2016; Benites-Palomino et al., 2020;
Marivaux et al., 2020), which would have acted as an important biogeographic barrier for
terrestrial mammals (Hoorn et al., 2022).

Although these Western Amazonian terrestrial environments are generally assumed to be
similar, their exact nature is unclear (Carrillo, Jaramillo et al., 2023). Several studies,
particularly of La Venta, suggest that the environment was likely to have been forested,
though with closely associated freshwater habitats (Catena & Croft, 2020; Croft, 2001; Kay &
Madden, 1997a,b; Spradley et al., 2019; Wilson & Parker, 2023), even if the extent to which
there were open patches, possibly related to the action of megaherbivores (Kay & Madden,
1997a), is unknown (Carrillo, Jaramillo et al, 2023). Particularly given the limited
paleobotanical data in La Venta (Carrillo, Jaramillo et al., 2023), one potential method of
paleoenvironmental reconstruction during this period is through ecometrics, using the
relationship between environmental variables and functional traits on a community level (e.g.
the relationship between mean community hypsodonty and rainfall; Eronen et al., 2010;
Fortelius et al., 2002; Liu et al., 2012; Oksanen et al., 2019; Short et al., 2021; Vermillion et al.,
2018).

Bunodonty has been recognized as a significant trait in previous ecometric studies (e.g., Liu
et al.,, 2023; Saarinen et al.,, 2021). Modern bunodonts are typically omnivorous or
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frugivorous and a high proportion of bunodonts in a community indicates a warm, wet, and
forested environment in other continents (Saarinen et al., 2021). Bunodonty is prevalent in
modern primates, but the preservation of primates in the Miocene is sparce (Zliobaité &
Fortelius, 2021), and with the exception of La Venta (Carrillo, Jaramillo et al., 2023b; Kay &
Madden, 1997a,b) and TAR-31 (Marivaux et al., 2020), primates have largely not yet been
recognized in the Middle Miocene sites of Western Amazonia (e.g. Fitzcarrald; Marivaux,
Adnet, Altamirano-Sierra, Boivin et al., 2016). The recognition of a bunodont taxon in the
Fitzcarrald fauna is significant as it represents the first evidence of this important trait here
and suggests that bunodonty could be a valuable characteristic for paleoenvironmental
reconstruction in South America. It also reinforces the importance of continued fieldwork and
taxonomic collections work for trait-based environmental reconstructions, because the
identification of M. molariformis changes community trait averages for the Fitzcarrald fauna.

Bunodont Mesowear and Modern Megadolodine Analogs

We find that mesowear angles differ between suoid species, reflecting dietary differences
(Figure 3) (Leus & Macdonald, 1997; Souron, 2018) and propose that these differences in
mesowear angles can be used for dietary predictions in the fossil record of bunodont
ungulates (both megadolodines and fossil suoids). Dietary differences between modern wild
pigs have previously been identified using 3D dental topography (Rannikko et al., 2020), with
Phacochoerus found as having a higher angularity and orientation patch count and lower
mean surface slope, sharpness, and relief index for example. However, the mesowear angles
that we measure here are faster and easier to measure than these methods, while
nonetheless providing similar results. Furthermore, the mesowear angles specifically
concentrate on worn features of the molar surface (dentine valleys and enamel facets) and
can thus be argued to be more closely associated with wear effect specifically than for
example mean surface slope. The angles are consistent with those from other taxa (Saarinen
& Karme, 2017; Saarinen et al., 2015), with a larger (shallower) angle corresponding to a diet
high in abrasive material.

However, the threshold between a browsing and grazing signal in modern suoids seems to
be higher than in other taxa (Saarinen & Karme, 2017; Saarinen & Lister, 2023; Saarinen et al.,
2015). We propose this could be a result of minute abraded brachydont (MABRA) syndrome
(Fortelius & Solounias, 2000), given the relatively small size of most modern forest suoids. On
the other hand, the comparatively high angles of the grazing Phacochoerus in relation to
grazing proboscideans might also result from small size, as a combination of relatively thick
enamel and small size of the dentine pits at the cusp tips. Additionally, with a very high
percentage of grass in its diet, 90-100% according to Codron et al. (2007), Phacochoerus may
have a more heavily grass-dominated diet than any extant or extinct proboscidean species
(see Saarinen & Lister, 2016, 2023; Xafis et al., 2020) for comparative dietary information
from proboscideans).



Low-abrasion diets were recorded for several forest-dwelling omnivorous modern taxa,
including Dicotyles tajacu, Sus scrofa, and Potamochoerus larvatus. In tropical forests, D.
tajacu is primarily frugivorous, though also consumes a high proportion of leaves and fibres,
particularly in the dry season (Desbiez et al., 2009; Keuroghlian & Eaton, 2008). Sus scrofa has
an extremely varied diet, largely consisting of plant material, though it is an opportunistic
feeder, and the diet likely varies between individuals (Keuling et al., 2018). In a record of P
larvatus diet from the southern and eastern Cape, South Africa, Seydack (1990) found that
the majority of confsumed food was from leaf litter and subterranean sources.

As in proboscideans, the relatively shallow dentine valleys found in the two warthog
species studied here reflect a grazing lifestyle. Butynski & de Jong (2018) have described
Phacochoerus africanus as a “hypergrazer”, with a diet consisting of over 90% C4 grasses
(Codron et al., 2007). Phacochoerus aethiopicus similarly mostly consumes C4 grasses (86%)
(Nyafu, 2009). The fact that this strong grazing diet was reconstructed in the mesowear
angles supports the application of these methods to suoids.

In other taxonomic groups, differences in mesowear angles are often considered to reflect
changes in dietary abrasion associated with consumption of grasses (Saarinen & Karme, 2017;
Saarinen et al., 2015; Wilson et al., 2024). At an elevated mesowear angle relative to the
previous species mentioned are a heterogeneous group of suoids containing Hylochoerus
meinertzhageni, Tayassu pecari, Sus barbatus, Sus scrofa cristatus, and Potamochoerus
porcus. Hylochoerus meinertzhageni largely feeds on grasses in tropical rainforest
environments (D'Huart, 1976), although these grasses are presumably relatively less abrasive
than in other environments. Potamochoerus porcus consumes a large number of seeds as
part of its diet (Melletti et al., 2018), and whilst our sample of this species is small, it is
conceivable that hard seed predation would cause elevated abrasion compared to P. larvatus.
This is also possible for T. pecari, as compared with D. tajacu, the seeds consumed by this
species tend to be harder, presumably driving greater tooth wear (Kiltie, 1982). Sus barbatus
seeks out the hard nuts of dipterocarps during masting (Caldecott, 1991; Leus & Macdonald,
1997; Luskin & Ke, 2018), and again the significant consumption of these nuts may be a part
of the abrasive signal. An alternative factor that might influence abrasion is soil intake during
rooting. However, we observe that some taxa which show high incidence of rooting behaviour
(e.g., Sus scrofa scrofa) (Keuling et al., 2018) have relatively sharp mesowear angles, and so
we consider seed consumption a more likely hypothesis.

The megadolodines generally possess mesowear angles that are slightly higher than those
in most modern suoids, thereby suggesting that they had a more abrasive diet than most of
these living taxa. However, a variety of explanations could produce this result. One is
increased grass intake, whilst another explanation could be the consumption of abrasive soil
material. During the Middle Miocene, there was volcanic activity close to La Venta in
Colombia (Mora-Rojas et al., 2023; Zapata et al., 2023). The prevalence of volcanic ash would
increase dietary abrasion relative to regions without volcanic activity (Madden 2015; Smith et
al.,, 1977). In contrast to La Venta, no evidence for volcanism has been observed in Peru
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around Tarapoto or Fitzcarrald. It is conceivable that this could explain why MUSM 4963 has a
mesowear angle lower than in most La Venta Megadolodus specimens (Figure 3A), although
the value observed for MUSM 4963 is within the range of those at La Venta, and
interindividual variability seems more likely. Mesowear analyses of other taxa at La Venta will
help us understand more about the paleoenvironment here, but other methodological
approaches are needed for the non-bunodont ungulates, including the other proterotheriid
litopterns Mesolicaphrium sanalfonense and Villarroelia totoyoi (Carrillo, Suarez et al., 2023a;
Cifelli & Guerrero, 1997).

Given the variation within the diet of the suoids measured here, we believe that higher
angles in megadolodines are most likely due to the increased consumption of hard fruits and
seeds. In another group of fossil ungulates with no living relatives (e.g., Chalicotheriidae),
microwear analyses have supported the idea that an abrasive mesowear signal is related to
consumption of hard items such as fruit, seeds, and nuts (Schulz & Fahlke, 2009; Schulz et al.,
2007; Semprebon et al., 2011). Future studies may similarly use other dietary proxies like
microwear to corroborate the mesowear results here. However, one modern suoid taxon
studied here, Babyrousa babyrussa, overlaps with the mesowear signal from the
megadolodines.

Quantitative analyses of the diet of babirusas are limited, though it seems that they largely
favor the consumption of fruit and seeds, particularly including the toxic Pangium (Leus,
1996; Leus & Macdonald, 1997; Macdonald, 2018; Sheherazade et al., 2018; Tulung et al.,
2013). Contrary to other suids, babirusas do not have a well-developed rostral bone (os
rostrale) in their nose, and this has been suggested to affect their dietary ecology, as they do
not show the same level of rooting as other suoids (MacDonald, 1993). Megadolodine skulls
are largely not available for comparison of this trait, with only one specimen from Neodolodus
colombianus (VPPLT 1696). In this specimen, there are similarly no anterior rostral bones,
though this could be because of damage, given that portions of the premaxilla and maxilla are
missing (Carrillo, Suarez et al., 2023a). The ecological analogy of the megadolodines to
modern babirusas, as indicated by the similar mesowear angles, is consistent with the
interpretation of Cifelli and Villarroel (1997) that they were probably largely fruit eaters.

CONCLUSION

We describe a bunodont upper molar from the late Middle Miocene Fitzcarrald Local Fauna
of Peruvian Amazonia as belonging to Megadolodus molariformis. This record further
increases the faunal similarity between Fitzcarrald and other Middle Miocene faunas from
Western Amazonia, including La Venta (Colombia) and TAR-31 (Tarapoto area, Peru). This
similarity increases the confidence in assignment of the fauna of the Fitzcarrald arch to the
Laventan stage.
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We use a novel mesowear angle approach in suoids to test the hypothesis of frugivory in
megadolodines, including Megadolodus. Modern suoids vary significantly in their mesowear
angles, reflecting differences in their dietary ecology. The most similar modern suoid (in terms
of mesowear angles) is the babirusa, which may represent a reasonable analog, given that no
modern relatives remain. The variability in modern suoids suggests that the mesowear angles
used here are potentially applicable more generally, and we suggest they could be applied to
other types of ungulates, including fossil suoids in South America and in other continents.
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Figure 1. Intercusp facet angles measured in modern suoids and megadolodines from 3D
scans. A, intercusp angle between paracone and metacone in right upper molar (M2); B,
intercusp angle between paraconid and metaconid in right lower molar (m2) (Babyrousa
babyrussa, UMZC H.12999, buccal view). 6 — measured intercusp angle.
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Figure 2. A-F, Megadolodus molariformis upper dentition; A-D, Megadolodus molariformis
right M1 (MUSM 4963) from the URU-208 locality of the Fitzcarrald Local Fauna in occlusal
(A), buccal (B), distal (C), and mesial (D) views, respectively; E, UNC TATAC1, right maxilla with
PA-M3. F. VPPLT 1588, left maxilla with M1-3; G, map of the occurrences of Megadolodinae
in northern South America. Megadolodus molariformis silhouette from phylopic.org
(Zimices/Julidan Bayona, CC BY 3.0 DEED). Scale bar = 10 mm.
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Figure 3. Mesowear angles for the extant suoids and megadolodine litopterns measured in
this study. Megadolodines highlighted in red. A, upper dentition; B, lower dentition.
Photographs are (top-bottom) VLPPT-1696, AMU-CURS 40, UNC TATAC1, MUSM 4963, VPPLT
974, and MUN-STRI 16716.
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Figure 4. Artistic reconstruction of Megadolodus molariformis from the Middle Miocene URU-

208 locality of the Fitzcarrald Local Fauna. Reconstruction by Miguel Hernandez.
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