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Abstract—Differential privacy (DP) is a statistical definition
of privacy which ensures that the outcome of a computation by
an analyst only depends in a negligible way on the presence
of a single record in the dataset. This framework has been
extended first to the interactive setting where the analyst can
ask an adaptive sequence of queries, and then to the concurrent
interactive setting where the adaptive queries can be performed
concurrently to the same database. An important advantage
of these frameworks is the presence of composition theorems,
which enable data curators to combine multiple differentially
private algorithms, resulting in a new algorithm that still satisfies
differential privacy. Deriving composition theorems within the
concurrent interactive framework, as well as for advanced
notions of DP, is a complex task, for which some progress has
been made in this area recently [1, 2]. On the other hand a
variety of tools have been proposed for certifying that some given
algorithms are differentially private. Among them, the typing
approach embodied by the Fuzz language consists in using a
functional programming language endowed with a type system
ensuring that well-typed programs can automatically be rendered
differentially private. However this setting does not allow to
represent concurrent interactive systems. We therefore propose
to extend it by using a process calculus similar to the π-calculus
as the language. This calculus is equipped with operational
semantics that enable us to express the DP property as a form
of approximate trace equivalence. Moreover, we introduce a type
system in the form of session types and prove a soundness result
stating that if a system of processes is well-typed, then it is
differentially private.

I. INTRODUCTION

A. Verification of Differential Privacy

Differential privacy (DP) is a wide-spread and popular
notion in the area of data protection [3, 4]. Its advantages
over some other privacy notions are that it allows to obtain
mathematically robust results and that it enjoys in its various
settings a key property of composability: a data curator can
combine various DP algorithms in order to obtain a new DP
algorithm. The literature has proposed and explored many
notions of DP which account for various refinement levels
of privacy such as (ϵ, 0)-DP (also known as pure differential
privacy), (ϵ, δ)-DP, Renyi-DP [5], f -DP [6] among others.
Depending on the variant of differential privacy and on the
setting considered, the parameters obtained for the resulting
algorithm ensure different privacy bounds.

However, verifying in practice that certain specific com-
posed programs are differentially private can be tedious and
subtle [7]. See also Gaboardi et al. [8], Bun et al. [9]
for results on the high complexity of this verification. For

this reason, several tools based on programming languages
theory have been proposed for assisting a programmer in
checking whether a given program is differentially private or
not [10]. Among them, the Fuzz approach [11] involves using
a functional language to write the analyst’s queries. It offers
a type system that statically ensures that a well-typed query
can automatically be rendered differentially private.

This line of work in type-based differential privacy (DP)
verification has continued and expanded in various directions.
For instance: DFuzz [12] offered more detailed sensitivity
analyses through the use of linear dependent types. Some
works have focused on dealing with (ϵ, δ)-DP [13, 14, 15]
and on considering the Euclidean metrics for vectors and
matrices [14]. Others [16, 17] have explored how to handle
various metrics within type constructions.

Still, this one-shot setting where the DP property is ex-
pressed for a single query cannot account for scenarios where
the data analyst interacts with a database in a sequential
adaptive way, and in particular for the use of primitives such
as the Sparse Vector Technique (SVT) [18, 19], and the Private
Multiplicative Weights [20].

Moreover, in some cases, a data analyst might want to
perform multiple adaptive analyses concurrently and inter-
leave their queries to several differentially private mechanisms
(see Figure 1, reproduced from Vadhan and Zhang [21, Fig-
ure 3]). They may, therefore, correlate their queries based on
the answers received from other mechanisms. This setting can
be seen as a type of multiparty interaction for which several
composition theorems have been proved in recent years for
various differential privacy definitions [1, 2].

B. A Type System for the Concurrent Composition of Interac-
tive Differential Privacy

Verifying whether an interaction within a multiparty system
satisfies differential privacy is even more challenging than in
the original single-query settings. This prompts the question of
how to adapt the typing approach, as demonstrated by the Fuzz
language, to accommodate this more complex framework.

The first ingredient needed is a language to represent
distributed systems composed of adversaries and mechanisms,
in a mathematical way. We propose to turn towards process
calculi derived from the π-calculus [22, 23]. They have been
successfully used in the literature [24] to represent interaction
protocols and to offer a solid basis on which to reason on the
properties of such protocols.
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Fig. 1: Concurrent composition of interactive mechanisms,
where the adversary can arbitrarily interleave its queries

The second ingredient is a theory to reason on the privacy
information in this setting. Indeed as the communication is
not any more a simple query-answer, but consists in two-way
flows of information between an analyst/adversary and each
mechanism, one needs a representation of this communication
and a suitable definition of differential privacy. We propose an
operational semantics based on probabilistic automata [25] to
represent the behaviour of the system. Within this framework,
we formalise what each process sees during an execution
and how to quantitatively compare different executions. From
this, we redefine interactive differential privacy, which was
originally described by Vadhan and Wang [1] for abstract
parties.

Finally, the third ingredient is a type system for this calculus
that keeps track of the privacy parameters of the processes.
Specifically, we will introduce a type system in the form
of session types [24], an approach that has been thoroughly
explored in the literature and offers a robust and versatile
framework.

Once these three ingredients have been introduced, we
will prove a soundness theorem in the following form: if a
system of distributed mechanisms is well-typed, then for any
adversarial analyst, the global system composed of the analyst
and the mechanisms satisfies differential privacy, expressed
with some parameters given by its type. In particular, within
our type system, the role of composition theorems will be
fulfilled by the soundness of the typing rule for the concurrent
composition of two or more mechanisms.

C. Contributions

In this article,

• we introduce a variant of the π-calculus with sessions
that includes constructs for finite replication and random
number generation, equipped with a probabilistic opera-
tional semantics;

• we provide typing rules that, in addition to ensuring the
usual safety properties, also track the privacy parameters
of the processes: notably, we introduce rules for the
concurrent composition and the parallel composition of
two interactive processes,

• we offer a syntactical definition of the view of a process
to formally define interactive differential privacy, and we
prove that our typing rules are sound with respect to this
definition; and lastly

• we demonstrate how to write various programs such
as an implementation of the private Guess-and-Check
algorithm in our process calculus and statically prove that
it guarantees interactive differential privacy.

II. PRELIMINARIES

A. (Non-Interactive) Differential Privacy

Differential privacy requires that the outcome of a computa-
tion is approximately the same when a single record, typically
associated with a given individual, is added to or removed
from the input data [3].

Definition 2.1 ([4, Definition 2.4]): A randomised algo-
rithm M is (ϵ, δ)-differentially private if for all X ⊆
Range(M) and for all adjacent inputs x and x′, we have

Pr[M(x) ∈ X] ≤ eϵ Pr[M(x′) ∈ X] + δ . (1)

Remark 2.1: Each application domain can use its own
specific definitions for input and adjacency. However, the most
common case is that two datasets are considered adjacent if
one can transform one into the other by simply adding or
removing a single record.

In practice, as mentioned in the introduction, proving that a
given algorithm is differentially private is a complex task. This
is why the community has focused on developing automatic
procedures to transform an algorithm into a differentially pri-
vate (DP) algorithm with known privacy parameters, typically
through the addition of well-calibrated noise to its result.
To accomplish this, it is necessary to understand how the
algorithm in question responds to slight modifications in its
inputs, i.e., its sensitivity, which can be intuitively regarded as
an upper bound on its slope at any point.

Definition 2.2: A function f between two metric
spaces (X, dX) and (Y, dY ) is said to be s-sensitive if, for
all inputs x and x′ in X , we have

dY
(
f(x), f(x′)

)
≤ s · dX(x, x′) . (2)

Depending on the metric used in the output space to com-
pute the sensitivity of the function, we may then add noise that
is distributed according to different probability distributions.

Theorem 2.1 (Laplace mechanism [4, Theorem 3.6]): For
all algorithms f mapping to Rn that are s-sensitive with
respect to the L1 metric, the randomised algorithm

x 7→ (f1(x) + Y1, . . . , fn(x) + Yn) , (3)

where for all i Yi ∼ L(s/ϵ) (the Laplace distribution with
scale s/ϵ), is ϵ-differentially private.

Theorem 2.2 (Gaussian mechanism [4, Theorem 3.22]):
For all algorithms f mapping to Rn that are s-sensitive with
respect to the L2 metric, and for all privacy parameters ϵ > 0,
if σ2 > 2 ln(5/4δ) s2/ϵ2, then the randomised algorithm

x 7→ (f1(x) + Y1, . . . , fn(x) + Yn) , (4)



where for all i Yi ∼ N (0, σ2) (the Gaussian distribution with
mean 0 and variance σ2), is (ϵ, δ)-differentially private.

Remark 2.2: Although the numbers considered in the pre-
vious theorems are real numbers, meaning they are infinite
precision floating-point numbers—which do not correspond
to any computer architecture—Ghosh et al. [26] and Canonne
et al. [27] have proved discrete versions of these theorems that
can be used in place of them in a practical implementation.

As a consequence of the above theorems, automation in
verifying differential privacy can involve statically analysing
the sensitivity of a program, notably through the use of
dedicated type systems.

In particular, Reed and Pierce [11] have introduced Fuzz, a
typed functional programming language where types are inter-
preted by metric spaces [28], and whose type constructors are
derived from linear logic [29]. Thus, among other denotations,

• A ⊗ B is interpreted as the product space
JAK ⊗ JBK, endowed with the L1-metric (that is,
dA⊗B

(
(a, b), (a′, b′)

)
= dA(a, a

′) + dB(b, b
′)),

• JA ⊸ BK is the space of all 1-sensitive functions
from JAK to JBK, endowed with dA⊸B(f, f

′) =
maxx∈A dB

(
f(x), f(x′)

)
, and

• for all sensitivities s, J!sAK is the space JAK but endowed
with the metric d!sA = s · dA.

In addition to this denotational semantics, Fuzz is also
equipped with a big-step operational semantics [11, Sec-
tion 2.6], whose evaluation relation we write as ↓.

Typing judgements are of the form [x1 : A1]s1 , . . . ,
[xn : An]sn ⊢ e : A and are sound when JeK is a 1-sensitive
function from the product space J!s1A1K ⊗ · · · ⊗ J!snAnK
endowed with the L1 distance to the metric space JAK. They
may also read, “For all i, JeK is si-sensitive in the variable xi

of type Ai.” Let us provide two examples of deduction rules
of such judgements: the introduction and elimination of the
tensor product.

Γ ⊢ a : A ∆ ⊢ b : B ⊗I
Γ +∆ ⊢ (a, b) : A⊗B

∆ ⊢ p : A⊗B Γ, [x : A]s, [y : B]s ⊢ c : C
⊗E

Γ + s∆ ⊢ let (x, y) = p in c : C

where the addition of two typing contexts is their union, with
pointwise addition of the sensitivity values, and s∆ is obtained
by multiplying each sensitivity value in the context ∆ by s.

Finally, a monadic constructor ⃝ parametrised by a fixed ϵ
ensures that if ⊢ f : A ⊸ ⃝B, then JfK is ϵ-differentially
private from JAK to JBK. In other words, this type system
not only tracks the sensitivity of database queries but also
accounts for the differential privacy achieved after the noise
addition step.

Fuzz is the expression language we will consider in the
following, rather than merely a simply-typed λ-calculus. The
sensitivity analysis will be crucial, for example, in the typing
rule [T-NSEND] (see Figure 3), and in the Guess-and-Check
example (see Section VI-C).

B. Interactive Differential Privacy

The setting we have considered so far remains quite limited,
as the communication is terminated once a request has been
sent and a result obtained. As a consequence, it is not
possible for the server to correlate the noise it adds to the
results sent to the analyst in order to reduce its amplitude
without compromising privacy guarantees [30, 18, 19, 20].
As a reaction, a new notion of differential privacy has been
introduced for interactive protocols Vadhan and Wang [1].

An interactive protocol is a pair of mutually recursive
functions, referred to as parties, each with access to a random
number generator and some input data. The view of a party
is understood as “everything it sees during the execution” [1,
Definition 1.6]. We write View(A∥M) for the view of A when
interacting with M , and View(M ∥A) for the view of M when
interacting with A.

Definition 2.3 ([1, Definition 1.7]): A randomised inter-
active algorithm M is (ϵ, δ)-differentially private if for all
adversaries A, for all X ⊆ Range

(
View

(
A ∥ M(·)

))
and

for all adjacent inputs x and y, we have

Pr
[
View

(
A ∥M(x)

)
∈ X

]
≤ eϵ Pr

[
View

(
A ∥M(y)

)
∈ X

]
+ δ . (5)

Remark 2.3: Note that we will use the term “adversary”
throughout this paper, as we do not know the intentions of A.
However, in many cases, it will actually refer to a data analyst
who has no ill intentions.

There are two concepts of composition for interactive
differential privacy. The first is parallel composition, where
two processes work on disjoint subsets of the input domain.
Therefore, the combined privacy guarantee only depends on
the worst guarantee of each mechanism and not on their sum.

Theorem 2.3 ([31, Theorem 4]): Let Mi be mechanisms,
each providing ϵ-differential privacy. Let Di be arbitrary
disjoint subsets of the input domain D. The sequence of
Mi(X ∩Di) provides ϵ-differential privacy.

The second is concurrent composition, where two processes
operate on the same data, potentially interleaving their mes-
sages.

Definition 2.4 ([1, Definition 2.1]): Let M1, . . . ,Mn be
interactive mechanisms. Their concurrent composition M =
ConComp(M1, . . . ,Mn) is defined as follows:

• its random samples consist of (r1, . . . , rn), where rj are
the random samples for Mj ,

• its inputs consist of (x1, . . . , xn), where xj are the inputs
for Mj ,

• M(x,m0, . . . ,mi−1; r) ouputs either ‘halt’ if mi−1 can-
not be parsed as (j, q) where q is a query to Mj , or out-
puts Mj(xj ,m

j
0, . . . ,m

j
t−1; rj) where (mj

0, . . . ,m
j
t−1) is

the history of all queries to Mj .
We will present just one result from the literature on

concurrent composition as an illustration, which is for (ϵ, δ)-
differential privacy, where the privacy parameters for all mech-
anisms are equal.



Theorem 2.4 ([1, Theorem 1.8]): If interactive mechanisms
M1, . . . ,Mn are each (ϵ, δ)-differentially private, then their
concurrent composition is

(
k · ϵ, (ekϵ − 1)/(eϵ − 1) · δ

)
-

differentially private.

According to this distinction between concurrent and paral-
lel composition, we will later introduce two typing rules for
process composition, namely [T-CONC] and [T-PAR] (see Fig-
ure 3).

C. Process Calculi and Session Types

In order to write interactive programs, we shall use a process
calculus, specifically the π-calculus [22, 23], rather than a
functional language like the λ-calculus.

The syntax of the π-calculus we will use is defined on Fig-
ure 2. The simplest process, denoted as 0, is the trivial process
that performs no actions. To create a session, i.e., to open a
communication channel between two processes, the syntax is
ā(k).P for session requests and a(k).P for session acceptance.
A process can then send an expression e over a channel k,
and proceed as P , which is written as k![e] . P . Conversely,
a process can receive an expression over a channel k into
a variable x and proceed as P , denoted as k?(x) . P . The
π-calculus also includes control structures such as conditional
expressions, if e then P else Q, which choose to continue as
process P or Q based on the evaluation of e. Additionally, a
process can offer or choose amongst several labelled branches
with s ▷ { li : Pi | i ∈ I } for label branching and s ◁ l . P for
label selection. Names and channels can be hidden within a
process using (νa)P for name hiding and (νk)P for channel
hiding.

Several type systems have been developed for this language,
but we will concentrate on session types (introduced by
Tekeuchi et al. [32] and extended by Honda et al. [24]; see
Dezani-Ciancaglini and De’Liguoro [33] for an overview).
These session types ensure that communication over a speci-
fied channel follows a particular sequence of actions, thereby
preventing mismatches and communication errors. The gram-
mar of session types is given in Figure 2. Most notably, the
type ?A . α reads as “the session expects a value of type A
and then behaves as a session with type α” (where A ranges
over Fuzz types), !A . α reads as “the session sends a value
of type A and then behaves as a session with type α”, and
&i{li : αi} and ⊕i{li : αi} are session types for branching
and selection, respectively.

The syntax we adopted here for the π-calculus with ses-
sions is essentially the one of Honda et al. in their seminal
paper [24], with some minor modifications in notation and
naming influenced by a more recent paper by the same lead
author [34].

However, we chose not to include constructs for sending
and receiving channels, that is for process delegation. While
such constructs can enhance modularity, facilitate exception
handling, and increase concurrency [24, Section 4.3], they are
not strictly necessary and would complicate the presentation.
Besides, we did not include recursive definitions. The rationale

for this decision and the alternative construct we use are
discussed in Section III-A.

We also introduced two constructs that we will discuss next.

III. SYNTAX AND TYPING RULES

In this section, we will present the extensions we have made
to the syntax of the π-calculus, as previously introduced, in
order to represent the processes that are of interest to us. These
are processes capable of generating random numbers in order
to randomise the output of a program and thereby anonymise
the input data to a certain extent.

A. Server Replication and Random Number Generation

We extend the syntax of processes provided in Figure 2 to
include two new constructs: finite server replication (which
partially replaces recursive definitions) and random number
generation (RNG).

P,Q, . . . ::= · · · | ∗nk?(x) . P
| Lapb?(x) . P | Gaussσ?(x) . P

(6)

and accordingly the syntax of session types:

α ::= · · · | ∗n?A . α . (7)

Note that generating a random number is equivalent, syn-
tactically, to receiving a number from a special channel.

Remark 3.1: Our constructs for generating random numbers
resemble using the restriction operator ν in the applied π-cal-
culus [35] for generating random keys and nonces. The main
difference between the two approaches is that, in our context,
the random numbers are used as noise and must be sampled
from a specific probability distribution to apply Theorems 2.1
and 2.2, which we indicate in our syntax. Furthermore, our
constructs are not affected by structural rules.

Remark 3.2: We allow finite server replication rather than
arbitrary replication as we do not want a process to generate
an infinite number of random numbers during its execution.
Indeed, we aim to formalise without extending the notion
of interactive differential privacy found in the literature. For
instance, Vadhan and Wang [1, Definition 1.5] generates binary
strings before the interaction, and Lyu [2, Section A.1.1]
explicitly bounds the number of interaction rounds.

B. Typing Judgements

We consider two kinds of typing judgements: Fuzz judge-
ments [11, Section 2.2] for expressions written in a simple
functional language

Γ ⊢Fuzz e : A

where Γ is a linear context mapping variables to types
(including function types and recursive types), and process
judgements

Γ ⊢ P ▷∆; (ϵ, δ)

where Γ is a classical context mapping expression variables
and session names to different types, written A and ⟨α, ᾱ⟩
respectively, ∆ is a linear context mapping session channels



Process P,Q, . . . ::= 0 inaction
| k![e] . P value sending
| k?(x) . P value reception
| if e then P else Q conditional
| s ▷ { li : Pi | i ∈ I } label branching
| s ◁ l . P label selection
| P ∥Q composition
| (νa)P name hiding
| ā(k) . P session request
| a(k) . P session acceptance
| (νk)P channel hiding

Session types α ::= ?A . α
| !A . α
| &i{li : αi}
| ⊕i{li : αi}
| end

Fig. 2: Syntax of the π-calculus with session types

to session types and (ϵ, δ) are privacy parameters. Anticipating
the semantics, the above a judgement reads, “Under the
environment Γ and the typing ∆, P is an (ϵ, δ)-differentially
private process.”

We write [Γ]s for the Fuzz context obtained by adding
a sensitivity annotation s to each expression type in the
environment Γ and Γ1⊔Γ2 for the disjoint union of Γ1 and Γ2.
Moreover, we say that a typing ∆ is completed when it only
contains end types [36, Section 2.2].

C. Operations and Relations
Before we can state the typing rules, we need to define a

number of operations and relations on processes and typing
contexts.

1) Congruence: First of all, the sets of free names, free
variables and free channels of a process P , as defined in
the standard way (see Honda et al. [24, Section 2.2]), are
respectively denoted by fn(P ), fv(P ) and fc(P ). We write
fu(P ) for fn(P ) ∪ fc(P ). Henceforth, a substitution (of free
variables) for P is a function from the set fv(P ) to the set
of values. A substitution is well-typed for an environment Γ
when it maps each free name x ∈ fv(P ) to a value that is
consistent with the type Γ(x).

Definition 3.1: Strong and weak congruence relations (de-
noted by ≡ and ∼=, respectively) are the smallest equivalence
relations that satisfy the following equations:

• if P ≡α Q (if P equivalent to Q up to the renaming of
bound variables), then P ≡ Q,

• ∗0P ≡ 0,
• (νu)0 ≡ 0, (νuu′)P ≡ (νu′u)P , and if u /∈ fuQ∪ fuQ,

then (νu)P ∥Q ≡ (νu)(P ∥Q) and Q∥(νu)P ≡ (νu)(Q∥
P ),

• if P ≡ Q, then P ∼= Q,
• P ∥ 0 ∼= P and 0 ∥ P ∼= P ,
• P ∥Q ∼= Q ∥ P and P ∥ (Q ∥R) ∼= (P ∥Q) ∥R.
Remark 3.3: Contrary to Honda et al. [24, Section 2.3], both

Honda et al. [34, Figure 2] and Yoshida and Vasconcelos [36,

Figure 2] consider that, in general, (νuu)P and (νu)P are not
congruent processes. We adhere to the latter works.

Most π-calculus systems with session types consider only a
single congruence relation. However, in our approach, since we
do not treat the processes P ∥Q and Q∥P , as well as P ∥(Q∥R)
and (P ∥ Q) ∥ R indifferently (see Definition 4.7 of process
view, as well as the typing and reduction rules), we distinguish
between strong congruence, for which the operation ∥ is
neither commutative nor associative, and weak congruence.
This will lead in Section IV-A to the introduction of two
additional reduction rules, [R-COMM] and [R-ASSOC]. In like
manner, P ∥0 and P are only weakly congruent, as their traces
will have different structures: the former is always a proper
binary tree, whereas the latter might be reduced to a leaf.

2) Composition of privacy parameters: We define ⋆, a
binary operation between privacy parameters [1, Theorem 1.8],
which will be used in the rule [T-CONC] in the following way:

(ϵ1, δ1) ⋆ (ϵ2, δ2) = (ϵ1 + ϵ2, δ1 + eϵ1δ2) . (8)

Observe that this operation is neither commutative nor asso-
ciative.

Remark 3.4: To achieve tighter bounds at the expense of
increased complexity, we could add a set of n-ary typing rules
for concurrent composition to our typing system, each with a
corresponding n-ary operation on privacy parameters.

3) Session types: In the communication between two pro-
cesses over a given channel, each process performs a sym-
metrical role to the other. For each message received by one
process, there is a corresponding message sent by the other
process, and vice versa. For this reason, it is natural to define
the co-type of a session type. We accomplish this mostly in
the same way as described by Honda et al. [24, Definition
5.1], but with the addition of considering the types involved
in finite replication.

Definition 3.2: The co-type ᾱ of a session type α is
defined by structural induction using the following equations:



1) ¯̄α = α, 2) ?A . α = !A . ᾱ, 3) &i{li : αi} = ⊕i{li : ᾱi},
4) ∗nα = ∗nᾱ.

Definition 3.3 ([24, Definition 5.2]): We say that two typ-
ings ∆1 and ∆2, which map session channels to session types,
are compatible whenever for all channels k in dom(∆1) ∩
dom(∆2), we have ∆1(k) = ∆2(k). In this case, we write
∆1 ≍ ∆2.

Definition 3.4 ([24, Definition 5.2]): The composition ∆1 ◦
∆2 of two compatible typings ∆1 and ∆2 is defined by

(∆1 ◦∆2)(k)

=

{
⊥ if k ∈ dom(∆1) ∩ dom(∆2)

∆i(k) if k ∈ dom(∆i) \ dom(∆3−i)
(9)

D. Typing Rules

The typing rules for our process calculus are given in Fig-
ure 3. Most of them are standard for a process calculus with
session types (see Honda et al. [24, Figure 1] and Yoshida and
Vasconcelos [36, Figure 6]), except for the addition of privacy
annotations, which form a second linear context, alongside the
session context. However, we draw the reader’s attention to the
following rules:

• [T-NSEND-LAP] for the Laplace mechanism;
• [T-NSEND-GAUSS] for the Gaussian mechanism;
• [T-CONC] for concurrent composition;
• [T-PAR] for parallel composition; and
• [T-REP] for finite replication.

Moreover, what was stated as a theorem in Honda et al. [24,
Theorem 5.4 (1)], assuming the inclusion of the [T-BOT]
typing rule from Yoshida and Vasconcelos [36, Section 2.3],
has to be enforced in our case by the [T-CONG] structural
typing rule due to the non-associativity of the ⋆ law used in
[T-CONC].

Note that this type system can be straightforwardly extended
to incorporate, for example, the Laplace and Gaussian mech-
anisms over vectors (where the L1 and L2 vector metrics no
longer coincide) rather than integers. This can be achieved by
embedding Plurimetric Fuzz, as described by Sannier and Bail-
lot [16], which analyses sensitivity according to vector metrics,
as our expression language, instead of using Fuzz [11].

Example 3.1: As a running example, let us consider an
implementation of the one-round Laplace mechanism for a
fixed privacy parameter ϵ. Specifically, we define

M = k?(f) . Lap1/ϵ?(r) . k![f(D) + r] . end

A = k![f ] . k?(y) . 0 .

The following typing judgements are derivable for α =
?(Data ⊸ Int) . !Int . end,

D : Data, f : Data ⊸ Int ⊢M ▷ k : α; (ϵ, 0)

f : Data ⊸ Int ⊢ A ▷ k : ᾱ; (0, 1)

Example 3.2: A variation of Example 3.1 would be to use
the Gaussian mechanism instead of the Laplace mechanism.

For all (ϵ, δ) and all σ such that σ2 > 2/ϵ2 ln(5/4δ), we can
derive the typing judgement

D : Data, f : Data ⊸ Int ⊢M ▷ k : α; (ϵ, δ)

for the following mechanism

M = k?(f) .Gaussσ?(r) . k![f(D) + r] . end .

where α is of the same session type as above.
(To obtain closed programs from the above examples, one

would have to abstract the channels using the [T-ACC] and
[T-REQ] typing rules, and thus add a session name to the
environment.)

In the typing rules as well as in the previous example,
either because the process we are considering is not meant
to be combined with an adversary (as it is an adversary itself)
or because the process does not preserve privacy, we chose
(ϵ, δ) = (0, 1) as a neutral value for the privacy parameters.
This choice is always sound in the sense of Section IV-C, as it
is sound if and only if a certain probability is less than δ = 1.

An example of a typing rule that does not preserve
privacy is [T-IF] for conditional expressions. Intuitively,
even if D and D′ are adjacent datasets, the processes
if x ∈ D then P else Q and if x /∈ D then P else Q can
have arbitrarily different behaviour.

Similarly, sending data as in the rule [T-SEND] does not
generally ensure differential privacy. The data could indeed be
private (it might even consist of the entire dataset), or it could
leak private information. This situation occurs, for example,
when the noise r, which is used to mask the output y of a
function operating on a dataset, is revealed (as knowing both
y and y+ r is sufficient to infer the value of y.) Therefore, in
order to achieve meaningful privacy parameters, it is necessary
to use a rule like [T-NSEND], which requires the process
to first add newly generated noise to the data based on its
sensitivity relative to the dataset. The sensitivity analysis for
this process is conducted using the Fuzz calculus.

Finally, our type system has a weakening property (see The-
orem 5.8) that allows one to use the [T-PAR] rule with different
privacy parameters in its premises, or to use the [T-CONC]
rule with some variables used in only one of the composed
processes.

IV. OPERATIONAL SEMANTICS

A. Reduction Rules

We will provide an operational semantics for our process
calculus in the form of a probabilistic automaton (probabilistic
automata were introduced by Segala and Lynch [25, Sec-
tion 3.1] and simplified by Chatzikokolakis and Palamidessi
[37, Section 2.2]), the labels of which will trace the execution
of a process. Moreover, in the next section, we will use these
labels to define the view of a party during an interaction.

Definition 4.1: Given a set S of states and a set A of actions
(also known as labels), a probabilistic automaton is defined
as a triple (S, T, s0) where s0 ∈ S is an initial state, and
T ⊆ S ×Dist(A× S) is a set of transition groups.



∆ completed
[T-INACT]

Γ ⊢ 0 ▷∆; (ϵ, δ)

Γ ⊢ P ▷∆, k : end; (ϵ, δ)
[T-BOT]

Γ ⊢ P ▷∆, k : ⊥; (ϵ, δ)
Γ ⊢ a : ⟨α, ᾱ⟩ Γ ⊢ P ▷∆, k : α; (ϵ, δ)

[T-ACC]
Γ ⊢ a(k) . P ▷∆; (ϵ, δ)

Γ ⊢ a : ⟨α, ᾱ⟩ Γ ⊢ P ▷∆, k : ᾱ; (ϵ, δ)
[T-REQ]

Γ ⊢ ā(k) . P ▷∆; (ϵ, δ)

[Γ]s ⊢Fuzz e : A Γ ⊢ P ▷∆, k : α; (ϵ, δ)
[T-SEND]

Γ ⊢ k![e] . P ▷∆, k : !A . α; (0, 1)

Γ, x : A ⊢ P ▷∆, k : α; (ϵ, δ)
[T-RCV]

Γ ⊢ k?(x) . P ▷∆, k : ?A . α; (ϵ, δ)

[Γ]s ⊢Fuzz e : Int Γ ⊢ P ▷∆, k : α; (ϵ, δ)
[T-NSEND-LAP]

Γ ⊢ Laps/ϵ′?(x) . k![e+ x] . P ▷∆, k : !Int . α; (ϵ+ ϵ′, δ)

[Γ]s ⊢Fuzz e : Int Γ ⊢ P ▷∆, k : α; (ϵ, δ) σ2 > 2 ln(1.25/δ′) s2/ϵ′
2

[T-NSEND-GAUSS]
Γ ⊢ Gaussσ?(x) . k![e+ x] . P ▷∆, k : !Int . α; (ϵ+ ϵ′, δ + δ′)

Γ, x : Int ⊢ P ▷∆; (ϵ, δ) k ∈ {Lapb,Gaussσ}b,σ>0
[T-RAND]

Γ ⊢ k?(x) . P ▷∆; (ϵ, δ)

[Γ]s ⊢Fuzz e : Bool Γ ⊢ P ▷∆; (ϵP , δP ) Γ ⊢ Q ▷∆; (ϵQ, δQ)
[T-IF]

Γ ⊢ if e then P else Q ▷∆; (0, 1)

Γ ⊢ P1 ▷∆, k : α1; (ϵ, δ) . . . Γ ⊢ Pn ▷∆, k : αn; (ϵ, δ)
[T-BR]

Γ ⊢ k ▷ {li : Pi}i∈I ▷∆, k : &i∈I{li : αi}; (ϵ, δ)
Γ ⊢ P ▷∆, k : αj ; (ϵ, δ) j ∈ I

[T-SELj]
Γ ⊢ k ◁ lj . P ▷∆, k : ⊕i∈I{li : αi}; (ϵ, δ)

Γ ⊢ P1 ▷∆1; (ϵ1, δ1) Γ ⊢ P2 ▷∆2; (ϵ2, δ2) ∆1 ≍ ∆2
[T-CONC]

Γ ⊢ P1 ∥ P2 ▷∆1 ◦∆2; (ϵ1, δ1) ⋆ (ϵ2, δ2)

Γ1 ⊢ P1 ▷∆1; (ϵ, 0) Γ2 ⊢ P2 ▷∆2; (ϵ, 0) ∆1 ≍ ∆2
[T-PAR]

Γ1 ⊔ Γ2 ⊢ P1 ∥ P2 ▷∆1 ◦∆2; (ϵ, 0)

Γ, a : ⟨α, ᾱ⟩ ⊢ P ▷∆; (ϵ, δ)
[T-NHIDE]

Γ ⊢ (νa)P ▷∆; (ϵ, δ)

Γ ⊢ P ▷∆, k : ⊥; (ϵ, δ)
[T-CHIDE]

Γ ⊢ (νk)P ▷∆; (ϵ, δ)

Γ ⊢ P ▷∆; (ϵ, δ) P ≡ Q
[T-CONG]

Γ ⊢ Q ▷∆; (ϵ, δ)

Γ ⊢ k?(x) . P ▷∆, k : ?A . α; (ϵ, δ) ⊢Fuzz n : Nat
[T-REP]

Γ ⊢ ∗nk?(x) . P ▷∆, k : ∗n?A . α;
(
nϵ, δ enϵ−1

eϵ−1

)
Fig. 3: Process Typing Rules

The central idea is that the selection between transition
groups is done non-deterministically, whereas the selection
of a transition within a group is made probabilistically. In
particular, when there is a single transition group for every
initial state, we say that the reduction is fully probabilistic.

To write the rules for probabilistic automata, we use the
notation from the process calculus πprob [37, Figure 1].
Specifically, we write

P
{

li−→
pi

Qi

}
i∈I

when for all i in I , a process P reduces to Qi with proba-
bility pi and label li, meaning that

(
P, ({(li, Qi)}i, p)

)
is a

transition group.
In our case, the labels are binary trees labelled at the leaves

by atoms. These atoms are intended to trace one reduction

step of a simple process, that is one that does not involve
the parallel construct. An atom can be, for example, ϵv for
a conditional evaluating to a boolean value v, or αn,v for a
value exchange during an n-repetition (we may omit the first
element of the subscript tuple when it is equal to 1.) Atoms can
be concatenated using the + operator to form lists of atoms,
which will be helpful later when defining multi-step reduction.

The complete set of reduction rules is presented in Figure 4.

Note that [R-LAP] and [R-GAUSS], as expected, are the
only rules that introduce randomness, and they do so through
the discrete Laplace distribution and discrete normal distribu-
tion, respectively.

Definition 4.2 (Ghosh et al. [26, Example 2.1]): The discrete
Laplace distribution with parameter b > 0, is defined by the



e ↓ ⊤
[R-TRUE]

if e then P else Q
{

ϵ⊤−−→
1

P
} e ↓ ⊥

[R-FALSE]
if e then P else Q

{
ϵ⊥−−→
1

P
}

e ↓ v
[R-VAL]

k![e] . P ∥ k?(x) . Q
{

(α1,v,α1,v)−−−−−−−→
1

P ∥Q[v/x]
} [R-CHAN]

a(k) . P ∥ ā(k) . Q
{

(χk,χk)−−−−−→
1

(νk)(P ∥Q)
}

[R-SEL]
k ◁ li . P ∥ k ▷ {li : Qi}i

{
(δi,δi)−−−−→

1
P ∥Qi

}
P
{

li−→
pi

Pi

}
i

[R-HIDE]
(νu)P

{
li−→
pi

(νu)Pi

}
i

P
{

li−→
pi

Pi

}
i

[R-CONC]
P ∥Q

{
(li,∅)−−−→
pi

Pi ∥Q
}
i

[R-LAP]
Lapb?(x) . P

{
γL,b,n−−−−→
pn,b

P [n/x]
}
n∈Z

[R-GAUSS]
Gaussσ?(x) . P

{
γG,σ,n−−−−→
qn,σ

P [n/x]
}
n∈Z

e ↓ v
[R-REP]

k![e] . P1 ∥ ∗nk?(x) . P2

{
(αn,v,αn,v)−−−−−−−→

1
P1 ∥ (P2[v/x] ∥ ∗n−1k?(x) . P2)

}
P
{

li−→
pi

Qi

}
i

P ≡ P ′ (∀i)(Qi ≡ Q′
i)

[R-CONG]
P ′

{
li−→
pi

Q′
i

}
i

P1 ∥ P2

{
(li,ri)−−−−→
pi

Qi1 ∥Qi2

}
i

[R-COMM]
P2 ∥ P1

{
(ri,li)−−−−→
pi

Qi2 ∥Qi1

}
i

P1 ∥ (P2 ∥ P3)
{

(l1,(l2,l3))−−−−−−→
pi

P1i ∥ (P2i ∥ P3i)
}
i

[R-ASSOC]
(P1 ∥ P2) ∥ P3

{
((l1,l2),l3)−−−−−−→

pi

(P1i ∥ P2i) ∥ P3i

}
i

Fig. 4: Process Reduction Rules

following probability mass function over Z:

n 7→ e1/b − 1

e1/b + 1
× e−|n|/b︸ ︷︷ ︸

pn,b

. (10)

Definition 4.3 (Canonne et al. [27, Definition 1]): The
discrete normal distribution with parameter σ > 0, is defined
by the following probability mass function over Z:

n 7→ 1∑
n∈Z e−n2/2σ2 × e−n2/2σ2

︸ ︷︷ ︸
qn,σ

. (11)

The other reduction rules merely propagate this randomness.

B. Trace and View of a Process
Now, we will define the view of a process during an

interaction, which is an essential component of the definition
of interactive differential privacy.

a) Multi-step reduction:

Lemma 4.1: If P
{

li−→
pi

Qi

}
i
, and for all i we have Qi

{ l′j−→
p′
j

Q′
j

}
j
, then for all i and j, the trees li and l′j have the same

shape.

Proof: The only notable case is that of the [R-CONG]
reduction rule. We have explicitly ensured in Definition 3.1
that strong congruence preserves the shape of processes.

This lemma allows us to define the two-step reduction
relation using tree concatenation as follows.

Definition 4.4: The concatenation t1+t2 of two binary trees
t1 and t2, which are labelled at the leaves and have the same
shape, is the binary tree obtained by concatenating the labels
leaf by leaf.

Example 4.1: The concatenation of
(
a, (b, c)

)
and(

d, (e, [f, g])
)

is the tree
(
[a, d], ([b, e], [c, f, g])

)
.

Definition 4.5 (Two-step reduction of a fully probabilistic
automaton): For any two processes P and R, let XPR be
the set of all processes Q such that P can reduce to Q with
probability pPQ and label lPQ, and Q can reduce to R with
probability pQR and label lQR. Now, for a given label l, let
XPR,l be the subset of XPR that consists of the processes Q
such that lPQ + lQR = l with a non-zero probability. We say
that P reduces in two steps to R with probability p and label l
whenever XPR,l is non-empty and p =

∑
Q∈XPR,l

pPQ ·pQR.
We then write

P
{

li−→
pi

2Ri

}



to account for all such R.
Starting from a process P , given a function to resolve the

nondeterminism (that is a scheduler [37, Section 2.2]), the
resulting automaton becomes fully probabilistic. Consequently,
it is associated with a fully probabilistic two-step reduction
(see Definition 4.5), which corresponds to a single transition
group.

Definition 4.6 (Two-step reduction of a probabilistic au-
tomaton): The two-step reduction for the non-deterministic
probabilistic automaton generated by P is defined as the union
over all possible schedulers of the associated transition groups.

Note that two transition groups obtained by two different
schedulers can, in fact, be the same. This occurs when the
diamond property is satisfied for the associated one-step
reductions.

Example 4.2: Let P such that P
{

li−−→
1/2

Pi

}
i∈{1,2}

and Q

such that Q
{

r−→
1

R
}

. The process P ∥ Q can be reduced
according to two transition groups in one step, that is

P ∥Q
{

(li,∅)−−−→
1/2

Pi ∥Q
}
i∈{1,2}

and P ∥Q
{

(∅,r)−−−→
1

P ∥R
}

(the latter is obtaiend by applying [R-CONC] followed by [R-
COMM]), but according to only one group in two steps, that
is P ∥Q

{
(li,r)−−−→
1/2

2Pi ∥R
}
i∈{1,2}

.

Lemma 4.2: For all processes P , all numbers k, and
every transition group

(
P, ({(li, Qi)}i, p)

)
of the probabilistic

automaton with the initial state P , which is generated by
k iterations of the rules presented in Figure 4, it holds that∑

i pi = 1.
Lemma 4.3: For every process P , there exists a number n

such that the probabilistic automaton with initial state P ,
generated by n iterations of the rules in Figure 4, has a single
transition group and all the processes it reaches are in normal
form1.

Proof: The π-calculus with session types enjoys the
strong normalisation property [38]. Moreover, all normalisa-
tion paths have the same length.

From the two lemmas above, we can deduce the existence
of a normalisation relation.

Theorem 4.4: There exists a fully probabilistic normaliza-
tion, denoted by⇒, that is associated with the reduction rules
of Figure 4.

b) Traces: We then call a possible label for this normal-
isation a trace—which is a binary tree labelled at the leaves
with lists of atoms—and we denote by T the set of all possible
traces.

Finally, given an appropriate countable probability space Ω,
for any process P such that

P
{

li=⇒
pi

Pi

}
i
,

its trace Tr(P ) is the naturally defined random variable such
that for all i

Pr[Tr(P ) = li] = pi .

1Recall that a process is in normal form if it cannot be reduced any further.

In order to gain some intuition on the behaviour of traces,
consider the following lemma.

Lemma 4.5: For all processes P and Q, the probability that
Tr(P ∥Q) is a leaf equals 0.

Proof: The only reduction rules that can apply to a
concurrent composition are [R-VAL], [R-CHAN], [R-SEL],
[R-REP], and the structural rules [R-COMM] and [R-ASSOC].
The labels of the conclusion of each of these rules form a
binary tree with two subtrees.

c) Views: Now, we define the view of a party during an
interaction as the left subtree of the trace of the associated
execution.

Definition 4.7: The view of a process A interacting with a
process M , written as View(A∥M), is the following random
variable: Left

(
Tr(A∥M)

)
, that is, ω 7→ Left

(
Tr(A∥M)(ω)

)
.

Remark 4.1: Except in rare particular cases, we have
View(A ∥M) ̸= View(M ∥A).

Example 4.3: Taking the same example as before (Exam-
ple 3.1), for every integer n,

Pr
[
Tr(A[f ] ∥M [D]) = (ln, rn)

]
= pn,1/ϵ ,

where ln = [αf , αf(D)+n], and rn = [αf , γL,1/ϵ,n, αf(D)+n].
In addition, for all n, we have Pr[View(A∥M) = ln] = pn,1/ϵ
and Pr[View(M ∥ A) = rn] = pn,1/ϵ. Note that by summing
over all integers n, we find that the probability that the trace
of this execution and view of either party is of the given form
equals 1. In particular, in contrast to M , which always has
access to it, as shown by the presence of γL,1/ϵ,n in its view,
the adversary A never has access to the generated random
value n. This prevents them from substracting n from the final
result f(D) + n to infer the private information f(D).

C. Differential Privacy as Approximate Trace Equivalence

We say that a process M is differentially private when M [S]
and M [S′] have approximately the same trace when interacting
with an adversary, provided that S and S′ are sufficiently close.

Definition 4.8: Given an environment Γ and a typing ∆, we
say that a process M is (ϵ, δ)-differentially private if for all
adjacent substitutions S and S′ that are well-typed for Γ, for
all adversary processes A such that A∥M [S] (and A∥M [S′])
are closed processes, and all X ⊆ Range(M), we have the
following inequality:

Pr
[
View(A ∥M [S]) ∈ X

]
≤ eϵ Pr

[
View(A ∥M [S′]) ∈ X

]
+ δ . (12)

In practice, S and S′ will often be substitutions involving
a single variable, which represents the entire dataset, and the
adjacency of two substitutions will correspond to the adjacency
of their associated datasets. However, this relation is subject
to redefinition depending on the specific area of application.

Remark 4.2: Bian and Abate [39, Theorem 4] have shown
that their notion of approximate trace equivalence for labelled
Markov chains is induced by a form of approximate probabilis-
tic bisimulation. We therefore expect that one could rephrase
our definition of interactive differential privacy in the latter



framework and obtain the same metatheoretical properties as
those in Section V.

V. METATHEORETICAL PROPERTIES

We must prove that our type system provides sufficient con-
ditions to ensure interactive differential privacy for processes
(according to Definition 4.8); in other words we need to show
its soundness. To achieve this, the most crucial part is to show
that our choices of privacy parameters are sound.

Let us begin by stating some properties regarding the traces
and views of processes.

Lemma 5.1: For all processes P , Q and R and traces t1,
t2 and t3, we have

Pr
[
Tr

(
(P ∥Q) ∥R

)
=

(
(t1, t2), t3

)]
= Pr

[
Tr

(
P ∥ (Q ∥R)

)
=

(
t1, (t2, t3)

)]
. (13)

Proof: This is a consequence of the structural reduction
rule [R-ASSOC].

We write Left∗(T ) for the inverse image of T under the
function Left, which is the set { t ∈ T | Left(t) ∈ T }.

Lemma 5.2: For all processes P , Q and R and sets of
traces T , we have

Pr
[
View

(
(P ∥Q) ∥R

)
∈ Left∗(T )

]
= Pr

[
View

(
P ∥ (Q ∥R)

)
∈ T

]
. (14)

Proof:

Pr
[
View

(
(P ∥Q) ∥R

)
∈ Left∗(T )

]
=

∑
t1∈Left∗(T )

∑
t2∈T

Pr
[
Tr

(
(P ∥Q) ∥R

)
= (t1, t2)

]
=

∑
t1∈T

∑
t2∈T

∑
t3∈T

Pr
[
Tr

(
(P ∥Q) ∥R

)
=

(
(t1, t2), t3

)]
=

∑
t1∈T

∑
t2∈T

∑
t3∈T

Pr
[
Tr

(
P ∥ (Q ∥R)

)
=

(
t1, (t2, t3)

)]
=

∑
t1∈T

∑
t2∈T

Pr
[
Tr

(
P ∥ (Q ∥R)

)
= (t1, t2)

]
= Pr

[
View

(
P ∥ (Q ∥R)

)
∈ T

]
.

Note that we use Lemma 5.1 to prove the third equality.
The proof by Vadhan and Wang of the concurrent composi-

tion theorem becomes more straightforward in our framework,
given that the ad-hoc post-processing step on the view of the
combined adversary is reduced to merely taking its left subtree.

Corollary 5.3: The [T-CONC] typing rule is sound.
Proof: Without loss of generality, we restrict our analysis

to the case where δ1 = δ2 = 0, see [1, Theorem 3.3].
Let S and S′ be two adjacent substitutions, we want to show

that for all sets T ,

Pr
[
View

(
A ∥ (M1[S] ∥M2[S])

)
∈ T

]
≤ eϵ1+ϵ2 Pr

[
View

(
A ∥ (M1[S

′] ∥M2[S
′])
)
∈ T

]
.

To this end, since eϵ1eϵ2 = eϵ1+ϵ2 , it suffices to show that we
can perform one substitution at a time, that is,

Pr
[
View

(
A ∥ (M1[S] ∥M2[S])

)
∈ T

]
≤ eϵ1 Pr

[
View

(
A ∥ (M1[S

′] ∥M2[S])
)
∈ T

]
.

This inequality indeed holds, which we will prove by intro-
ducing a combined adversary and using Lemma 5.2:

Pr
[
View

(
A ∥ (M1[S] ∥M2[S])

)
∈ T

]
= Pr

[
View

(
(A ∥M1[S]) ∥M2[S]

)
∈ Left∗(T )

]
≤ eϵ2 Pr

[
View

(
(A ∥M1[S]) ∥M2[S

′]
)
∈ Left∗(T )

]
= eϵ2 Pr

[
View

(
A ∥ (M1[S] ∥M2[S

′])
)
∈ T

]
The inequality arises from our hypothesis that M2 is an ϵ2-
differentially private process.

Lemma 5.4: The [T-NSEND-LAP], [T-NSEND-GAUSS],
and [T-PAR] typing rules are sound.

Proof: See Theorems 2.1 to 2.3.
Lemma 5.5: The [T-REP] typing rule is sound.

Proof: This result follows from Vadhan and Wang [1,
Theorem 1.8]. The authors achieve improved privacy parame-
ters compared to what we would obtain by repeatedly applying
the [T-CONC] rule, as discussed in Section III-C2.

Finally, we obtain the following soundness theorem: if a
process M is well-typed, then it is (ϵ, δ)-differentially private
(as defined in Definition 4.8), and discloses only a limited
amount of private information when interacting with any
adversary A that meets the given assumptions.

Theorem 5.6 (Soundness): If Γ ⊢ M ▷∆; (ϵ, δ), then M is
an (ϵ, δ)-differentially private process.

Note that even though our semantics differ, a process written
in the fragment of our language that is common to Honda et al.
is reducible according to their semantics if and only if it is
reducible according to ours. As a consequence, we obtain the
same good properties for our language as Honda et al. [24,
Theorem 5.4].

Theorem 5.7:
• Typing is preserved by reduction:

If Γ ⊢ P ▷∆; (ϵ, δ) and P
{

li−→
pi

∗Qi

}
, then for all i, we

have Γ ⊢ Qi ▷∆; (ϵ, δ).
• A typable program never reduces into an error.
To be precise, the second point means that the type system

ensures communication safety (only data of the expected type
are exchanged) and session fidelity [33, Section 2].

Moreover, as previously mentioned, one can freely add vari-
ables to the typing contexts or increase the privacy parameters.

Theorem 5.8 (Weakening): If x /∈ Γ, a /∈ Γ, and Γ ⊢
P ▷∆; (ϵ, δ), then Γ, x : A, a : ⟨α, ᾱ⟩ ⊢ P ▷∆; (ϵ+ ϵ′, δ+ δ′).

VI. EXAMPLES

A. The Forwarder Process

To demonstrate how our type system accounts for com-
munication between mechanisms themselves, and not merely
the interaction between mechanisms and an adversary, let us
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Fig. 5: Interaction between the different processes of the
example section

consider the scenario where a process that does not own any
private data acts as an intermediary between a mechanism and
an adversary (see Figure 5a), that is as a man in the middle
(MITM) for our running example (Example 3.1).

Given a 1-Lipschitz function (also known as a 1-sensitive
function) from Data to Int, a dataset D, and channels k and k′

of session type α = ?(Data ⊸ Int) . !Int . end, or of its co-
type ᾱ, we define

A = k′![f ] . k′?(x) . 0

F = k′?(f) . k![f ] . k?(x) . k′![x] . 0

M = k?(f) . Lap1/ϵ?(r) . k![f(D) + r] . 0 .

Even though, when reducing A[f ] ∥ (F ∥ M [D]), the ad-
versary A, and indeed every possible well-typed adversary,
only interacts with F , which owns no private information and
is therefore differentially private for all privacy parameters,
F ∥M [D] is correctly typed as ϵ-differentially private by our
typing rules.

B. A Database Split between Two Servers

To illustrate the rule of parallel composition and the fact
that a substitution for a mechanism may involve more than
one variable, let us consider two processes M1 and M2 that
exhibit identical behaviour (for instance, both implementing
the Laplace mechanism) but have access to different halves
of the dataset. Let us also consider a data analyst A who
wants to approximately estimate the total number of entries by
summing up the results obtained from querying M1 and M2

using the count function. By applying [T-PAR], we get

D1 : Data, D2 : Data ⊢M1 ∥M2 ▷ k1 : α, k2 : α; (ϵ, 0)

for the straightforward session type α.

The validity of this judgement involves well-typed adjacent
substitutions. In this context, a substitution for M1 ∥ M2

consists of two datasets, D1 and D2. To achieve the correct
notion of adjacency for the combined dataset, these halves
must be disjoint sets.

Let count be the 1-sensitive function that counts the number
of elements in a set. The analyst may be represented by the
following process, using a special channel k as an output to a
device like a screen:

A = k1![count] . k2![count] . k1?(c1) . k2?(c2) . k![c1 + c2] . 0

(All five other possible orderings between message send-
ing and receiving are well-typed, which illustrates that an
adversary can arbitrarily interleave its queries to the two
mechanisms [1, Section 1.4].)

C. The Private Guess-and-Check Algorithm

Let us show that our language is expressive enough to write
the Guess-and-Check algorithm (see Algorithm 1, taken from
Lyu [2, Algorithm 1]), and that our type system can prove it
preserves privacy (see Theorem 6.1).

Let us begin by informally describing the algorithm. An
adversary sends queries—which consist of a function to be
executed on the dataset and an expected response—to a central
server. If the guess is approximately correct, then the adversary
is informed and no privacy budget is consumed. Conversely,
if the guess is far from the correct answer, the adversary is
informed and provided with a value that is approximately cor-
rect. The interaction ceases after a certain number of rounds,
unless the privacy budget is completely depleted beforehand.

Data: private dataset X , error tolerance E ≥ 0, privacy
parameter ϵ > 0, maximum number of negative
queries c ≥ 1, number of interaction rounds T

ρ← L(1/ϵ);
for i = 1, 2, . . . , T do

Receive the next query (fi, τi);
γi ← L(c/ϵ);
if |fi(X)− τi|+ γi ≥ E + ρ then

vi ← f(X) + L(c/ϵ);
report (wrong, vi);
t← t+ 1;
if t = c then halt;

else
report pass

end
end

Algorithm 1: Private Guess-and-Check [2, Algorithm 1]

Remark 6.1: In the following, it will be more convenient
to use a functional syntax similar to the ML programming
language, rather than mathematical syntax.

This algorithm can be viewed as a variant of the Sparse
Vector Technique [18, 19]. This algorithm responds to at most
c incorrect queries (for an error tolerance of E) out of N total



queries about a dataset D. It interacts on a channel k and uses
a memory cell named a to store its internal state.

Remark 6.2: A memory cell is an object with two methods
named read and write. For a detailed definition in terms
of processes that use the branching and selection constructs,
refer to Honda et al. [24, Example 3.3, Example 3.4].

SVT(c, E, N, D, k, a) =
Lap(1/epsilon)?(rho);
a.write 1;
repeat N times

k?(f, v);
let t = a.read () in
if t >= c then k![0] else
Lap(c/epsilon)?(gamma);
k![abs (f(D) - v) + gamma < E + rho];

end
a.write (t + 1);

end

Given the environment Γ = {c : Nat, E : Int, N : Nat, D :
Data, a : Cell(Nat)} and the typing ∆ = {k : ∗N?

(
(Data ⊸

Int)⊗ Int
)
. !Int .end}, the following typing rule is sound [19,

Theorem 2]:
[T-SVT]

Γ ⊢ SVT(c, E,N,D, k, a) ▷∆; (3ϵ, 0) (15)

Note the crucial usage of a type of the form A ⊸ B for
1-Lipschitz functions from JAK to JBK, which is present in
Fuzz [11, Section 2.1] but absent in a standard simply typed
λ-calculus.

Remark 6.3: Even though we can write the sparse vector
technique using our language, which eliminates the need to
introduce additional reduction rules, we are unable to derive
the above typing judgement from the rules shown in Figure 3
because verifying its soundness requires probabilistic reason-
ing. Therefore, we consider the sparse vector technique (SVT)
as a primitive and accept this typing judgement as a typing
rule, a common decision in this context [11].

From there, we can follow the reasoning of Lyu [2, Ap-
pendix B].

Theorem 6.1 ([2, Theorem 5]): The Guess-and-Check
algorithm is 4ϵ-differentially private.

Proof: The Guess-and-Check algorithm can be simulated
with SV T ∥ L (with the appropriate substitution for the
free variables) where L implements the Laplace mechanisms.
Moreover, (3ϵ, 0) ⋆ (ϵ, 0) = (4ϵ, 0).

VII. RELATED WORK

We have already given in the introduction some references
to type systems for non-interactive differential privacy of
functional programs, including the Fuzz language [11] and
its extensions. A generalisation of this approach to handle
interactive differential privacy has been proposed in Winograd-
Cort et al. [40], it consists in a two-layer language and does
not deal with any concurrency aspects.

Concerning probabilistic versions of the π-calculus,
Chatzikokolakis and Palamidessi [37] defined the πprob-
calculus, a variant of π-calculus with probabilistic choice,
and Das et al. [41] described a language for probabilistic

session types, and similarly to πprob used a construction for
probabilistic branching. However none of these two papers is
motivated by differential privacy. Our approach departs from
those because we substitute the probabilistic choice with a
construct for generating random numbers. This is crucial for
our type system, as it allows us to manage non-trivial (ϵ, δ)
bounds, which would not be directly feasible with probabilistic
choice.

Xu [42] investigated DP properties in a probabilistic process
calculus, but this calculus is a variant of CCS, a less expres-
sive language. In particular it does not explicitly represent
mechanisms such as the Laplace or Gaussian mechanisms. On
the other hand, Ding et al. [43] considered a variant of the
π-calculus, not for differential privacy but rather for location
privacy (which involves trying to conceal the exact location
of a user).

Some other works [44, 45, 46] connect differential privacy
to trace distances or bisimilarity distances for probabilistic
labelled transition systems. However, their approach is quite
different from ours, as they do not consider a process calculus
as we do in this paper, nor do they address the concurrent
composition of interactive differential privacy.

VIII. FUTURE WORK

First, we would like to investigate whether we could employ
more refined probabilistic reasoning to derive well-known
mechanisms, such as the sparse vector technique (see Sec-
tion VI-C), rather than treating them as primitives.

Then, we aim to determine whether our process calculus and
its associated type system can be applied to other concepts of
differential privacy.

• If future research were to explore the generation of an
infinite sequence of random numbers instead of just a
finite one (see Section III-A) thus proposing a new defini-
tion of a private process, and if they proved composition
theorems for this new definition, we could replace our
replication construct with recursive processes. This would
raise interesting semantic issues, particularly in relation
to measure theory, since the probability spaces involved
would have the cardinality of the continuum.

• We would also like to determine if we could ensure pri-
vacy properties in different contexts, particularly within
the field of local differential privacy [47, 48], where there
each party possesses a portion of the private data.

Finally, as outlined in Section IV-C, one may investigate
the consequences of replacing our current formal definition of
interactive differential privacy, which is expressed in terms of
approximate trace equivalence, with an alternative framework
based on approximate bisimulation.
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