
HAL Id: hal-04719333
https://hal.science/hal-04719333v1

Preprint submitted on 3 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Session Types for the Concurrent Composition of
Interactive Differential Privacy

Victor Sannier, Patrick Baillot, Marco Gaboardi

To cite this version:
Victor Sannier, Patrick Baillot, Marco Gaboardi. Session Types for the Concurrent Composition of
Interactive Differential Privacy. 2024. �hal-04719333�

https://hal.science/hal-04719333v1
https://hal.archives-ouvertes.fr

PREP
RINT

Session Types for the Concurrent Composition
of Interactive Differential Privacy

Victor Sannier1, Patrick Baillot1, and Marco Gaboardi2

1Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59 000 Lille, France
2Department of Computer Science, Boston University, USA

October 2, 2024

Abstract

Differential privacy (DP) is a statistical definition of
privacy which ensures that the outcome of a com-
putation by an analyst only depends in a negligible
way on the presence of a single record in the dataset.
This framework has been extended first to the inter-
active setting where the analyst can ask an adaptive
sequence of queries, and then to the concurrent in-
teractive setting where the adaptive queries can be
performed concurrently on the dataset. A key result
of such frameworks is that of composition theorems,
which allow data curators to combine several algo-
rithms to obtain a new algorithm that continues to
satisfy DP, with certain privacy parameters. Obtain-
ing composition theorems in the concurrent interac-
tive framework and for advanced notions of DP is
delicate and some results have been obtained recently
[1, 2]. On the other hand a variety of tools have been
proposed for certifying that some given analysis are
DP. Among them, the typing approach embodied by
the Fuzz language consists in using a functional pro-
gramming language and a type system ensuring that
well-typed programs can automatically be rendered
differentially private. However this setting does not
allow to represent concurrent interactive systems. We
thus propose to extend it by using as language a pro-
cess calculus similar to the π-calculus, and we define
a trace semantics for it which allows to formulate
the DP property as an approximation trace equiva-

lence. Moreover, we introduce a type system in the
approach of session types and prove a soundness re-
sult stating that if a system of processes is well-typed,
then it is differentially private.

1 Introduction

1.1 Verification of Differential Privacy
Differential privacy (DP) is a wide-spread and pop-
ular notion in the area of data protection [3, 4]. Its
advantages over some other privacy notions are that
it allows to obtain mathematically robust results and
that it enjoys in its various settings a key property
of composability: a data curator can combine vari-
ous DP algorithms in order to obtain a new DP al-
gorithm. The literature has proposed and explored
many notions of DP which account for various refine-
ment levels of privacy such as for instance pure or
(ϵ, 0)-DP, (ϵ, δ)-DP, Renyi-DP [5], f -DP [6] among
others. Depending on the variant of DP and on the
setting considered, the parameters obtained for the
resulting algorithm ensure a privacy bound that can
vary.

However, verifying in practice that certain specific
composed programs are differentially private can be
tedious and subtle [7]. See Gaboardi et al. [8], Bun
et al. [9] for results on the high complexity of this ver-
ification. For this reason, several tools based on pro-

1

gramming languages theory have been proposed for
assisting a programmer in checking whether a given
program is differentially private or not [10]. Among
them, the Fuzz approach [11] involves using a func-
tional language to write the analyst’s queries. It of-
fers a type system that statically ensures that a well-
typed query can automatically be rendered differen-
tially private.

This line of work in type-based differential pri-
vacy (DP) verification has continued and expanded
in various directions. For instance: DFuzz [12] ad-
vanced this area by offering more detailed sensitivity
analyses through the use of linear dependent types.
Some works have focused on dealing with (ϵ, δ)-DP
[13, 14, 15] and on considering the Euclidean metrics
for vectors and matrices [14]. Others [16, 17] have
explored how to handle various metrics within type
constructions.

Still, this one-shot setting where the DP property
is expressed for a single query is only a particular
situation and cannot account for some increasingly
common scenarios where the data analyst interacts
with the dataset in a sequential adaptive way and
the of primitives such as the Sparse Vector Tech-
nique (SVT) [18, 19], and the Private Multiplicative
Weights [20]. This leads to the study of interactive
mechanisms to obtain DP properties for such algo-
rithms.

Moreover in some cases analysts might want to per-
form multiple adaptive analyses on the same dataset
concurrently by interleaving their queries to several
differentially private mechanisms (see Figure 1, re-
produced from Vadhan and Zhang [21, Figure 3]).
They may, therefore, correlate their queries based on
the answers received from other mechanisms. This
setting can be seen as a type of multiparty inter-
action for which several composition theorems have
been proved in recent years for various differential
privacy definitions [1, 2].

Adversary

M1

...

Mn

Dataset

q1, a1, q2

q1, a1, q2

Figure 1: Concurrent composition of interactive
mechanisms, where the adversary can arbitrarily in-
terleave its queries

1.2 A Type System for the Concur-
rent Composition of Interactive
Differential Privacy

The fact that verifying whether an interaction in a
specific multiparty system satisfies differential pri-
vacy is even more challenging than in the original
single-query settings raises the question of how one
could extend the typing approach, as illustrated by
the Fuzz language, to this more complex framework.

The first ingredient needed is a language to rep-
resent distributed systems composed of adversaries
and mechanisms, in a mathematical way. We pro-
pose to turn towards process calculi derived from the
π-calculus [22, 23]. They have been successfully used
in the literature [24] to represent interaction proto-
cols and to offer a solid basis on which to reason on
the properties of such protocols.

The second ingredient required is a theory to rea-
son on the privacy information in this setting. In-
deed as the communication is not any more a simple
query-answer, but consists in two-way flows of infor-
mation between an analyst/adversary and each mech-
anism, one needs a representation of this communica-
tion and a suitable definition of DP. We propose for
this an operational semantics based on fully prob-
abilistic labelled transition systems for representing
the behaviour of the system, and to define DP in

2

this setting by drawing inspiration from the ideas in-
troduced in Vadhan and Wang [1]. We will need in
particular to formalise what each processes sees from
the computation and how to quantitatively compare
computations.

Finally the third ingredient is a type system for this
π-calculus, in which one could integrate the parame-
ters needed for the DP analysis. To address this, we
will introduce a type system in the format of session
types [24], an approach that has been extensively in-
vestigated in the literature, providing a robust and
versatile framework.

Once these three ingredients have been introduced,
our goal will be to prove a soundness theorem in the
following form: if a system of distributed mechanisms
is well-typed, then for any adversarial analyst the
global system composed of the analyst and the mech-
anisms satisfies a DP property, expressed with some
parameters given by the types. In particular, in our
type system, the role of composition theorems will be
fulfilled by the soundness of the typing rule for the
parallel composition of two (or more, by iterating)
mechanisms.

1.3 Contributions
In this article,

• we introduce a variant of the π-calculus with ses-
sions that includes constructs for finite replica-
tion and random number generation, and pro-
vide a probabilistic operational semantics for it;

• we provide typing rules that, in addition to en-
suring the usual safety properties, also track the
privacy parameters of the processes: specifically,
we introduce rules for the concurrent composi-
tion and the parallel composition of two interac-
tive processes;

• we offer a syntactical definition of the view of a
process to formally define interactive differential
privacy, and we prove that our typing rules are
sound with respect to this definition; and lastly

• we demonstrate how to write various programs
such as an implementation of the private Guess-
and-Check algorithm in our process calculus and

statically prove that it guarantees interactive dif-
ferential privacy.

2 Preliminaries
2.1 Differential Privacy
Differential privacy requires that the outcome of a
computation is approximately the same when a single
record, typically associated with a given individual,
is added to or removed from the input data [3].

Definition 2.1 ([4, Definition 2.4]) A ran-
domised algorithm M is (ϵ, δ)-differentially private
if for all X ⊆ Range(M) and for all adjacent inputs
x and y, we have

Pr[M(x) ∈ X] ≤ eϵ Pr[M(y) ∈ X] + δ . (1)

Remark 2.1 Each application domain may utilise
its own specific notions of input and adjacency. How-
ever, the most common case is that two databases are
considered adjacent if one can transition from one to
the other by simply adding or removing a record.

In practice, as mentioned in the introduction, prov-
ing that a given algorithm is differentially private is
a complex task. This is why the community has fo-
cused on developing automatic procedures to trans-
form an algorithm into a differentially private (DP)
algorithm with known privacy parameters, typically
through the addition of well-calibrated noise to its re-
sult. To accomplish this, it is necessary to understand
how the algorithm in question responds to slight mod-
ifications in its inputs, i.e., its sensitivity, which can
be intuitively regarded as an upper bound on its slope
at any point.

Definition 2.2 A function f between two metric
spaces (X, dX) and (Y, dY) is said to be s-sensitive
if, for all inputs x and x′ in X, we have

dY

(
f(x), f(x′)

)
≤ s · dX(x, x′) . (2)

Theorem 2.1 ([4, Theorem 3.6]) For all algo-
rithms f mapping to Rn that are s-sensitive with re-
spect to the L1 metric, the randomised algorithm

x 7→ (f1(x) + Y1, . . . , fn(x) + Yn) (3)

3

where Yi ∼ Laps/ϵ for all i is ϵ-differentially private.

Remark 2.2 See Ghosh et al. [25] for a discrete ver-
sion of this mechanism, using integers rather than
real numbers.

Further automation in verifying differential privacy
can involve statically analysing the sensitivity of a
program, notably through the use of dedicated type
systems.

In particular, Reed and Pierce [11] introduced
Fuzz, a typed functional programming language
where types are interpreted by metric spaces [26],
and whose type constructors are derived from lin-
ear logic [27]. Thus, A ⊗ B is interpreted as the
product space JAK⊗ JBK endowed with the L1-metric
(that is, dA⊗B

(
(a, b), (a′, b′)

)
= dA(a, a′) + dB(b, b′)),

JA ⊸ BK is the space of all 1-sensitive functions from
JAK to JBK, and for all sensitivities s, J!sAK is the
space JAK but endowed with the metric d!sA = s ·dA.
In addition to this denotational semantics, Fuzz is
also equipped with a big-step operational semantics
[11, Section 2.6], whose evaluation relation we write
as ↓.

Typing judgements are of the form
[x1 : A1]s1 , . . . , [xn : An]sn

⊢ e : A and are sound
when JeK is a 1-sensitive function from the product
space !s1JA1K ⊗ · · · ⊗ !sn

JAnK endowed with the L1
distance to the metric space JAK. They may also
read, “For all i, JeK is si-sensitive in the variable xi of
type Ai.” Let us provide two examples of deduction
rules of such judgements: the introduction and
elimination of the tensor product.

Γ ⊢ a : A ∆ ⊢ b : B ⊗I
Γ + ∆ ⊢ (a, b) : A⊗B

∆ ⊢ e : A⊗B Γ, [x : A]s, [y : B]s ⊢ c : C
⊗E

Γ + s∆ ⊢ let (x, y) = c in c : C

where the addition of two typing contexts is their
union, with pointwise addition of the sensitivity val-
ues, and s∆ is the context obtained by multiplying
each sensitivity value in ∆ by s.

Finally, a monadic constructor ⃝ parametrised by
a fixed ϵ ensures that if ⊢ f : A ⊸ ⃝B, then JfK is
ϵ-differentially private from JAK to JBK meaning that

we have performed the noise addition step within the
language itself.

Fuzz is the expression language we will consider
in the following, rather than merely a simply-typed
λ-calculus. The sensitivity analysis will be crucial,
for example, in the typing rule [T-NSend] (see Fig-
ure 3), and in the Guess-and-Check example (see Sec-
tion 6.3).

2.2 Interactive Differential Privacy
However, the framework we have considered so far
remains quite limited, as the communication is ter-
minated once a request has been sent and a result
obtained. As a consequence, it is not possible for the
server to correlate the noise it adds to the results sent
to the analyst in order to reduce its amplitude with-
out compromising privacy guarantees [18, 19]. For
this reason, a notion of differential privacy has been
introduced for interactive protocols.

Let us begin by recalling the definition provided by
Vadhan and Wang. An interactive protocol is a pair
of mutually recursive functions, referred to as parties,
and the view of a party is understood as “everything
it sees during the execution” [1, Definition 1.6]. We
write View(A∥M) for the view of A when interacting
with M , and View(M ∥ A) for the view of M when
interacting with A.

Definition 2.3 ([1, Definition 1.7]) A ran-
domised interactive algorithm M is (ϵ, δ)-
differentially private if for all adversaries A,
for all X ⊆ Range

(
View

(
A ∥ M(·)

))
and for all

adjacent inputs x and y, we have

Pr
[
View

(
A ∥M(x)

)
∈ X

]
≤ eϵ Pr

[
View

(
A ∥M(y)

)
∈ X

]
+ δ . (4)

Remark 2.3 Note that we will use the term “adver-
sary” throughout this paper, as we do not know the
intentions of A. However, in many cases, it will ac-
tually refer to a data analyst.

There are two concepts of composition for interac-
tive differential privacy. The first is parallel compo-
sition, where two processes work on disjoint subsets

4

of the input domain. Therefore, the combined pri-
vacy guarantee only depends on the worst guarantee
of each mechanism and not on their sum.

Theorem 2.2 ([28, Theorem 4]) Let Mi be mech-
anisms, each providing ϵ-differential privacy. Let Di

be arbitrary disjoint subsets of the input domain D.
The sequence of Mi(X ∩ Di) provides ϵ-differential
privacy.

The second is concurrent composition, where two
processes operate on the same data, potentially inter-
leaving their message sending and receiving. We will
only present one result from the literature as an illus-
tration, which is for (ϵ, δ)-differential privacy, where
the privacy parameters for all mechanisms are equal.

Theorem 2.3 ([1, Theorem 1.8]) If interactive
mechanisms M1, . . . , Mn are each (ϵ, δ)-differentially
private, then their concurrent composition is(
k · ϵ, (ekϵ − 1)/(eϵ − 1) · δ

)
-differentially private.

Accordingly, we will later introduce two typing
rules for composition, [T-Conc] and [T-Par], as
shown in Figure 3.

2.3 Process Calculi and Session Types
In order to write interactive programs, we shall use a
process calculus, specifically the π-calculus [22, 23],
rather than functional languages like the λ-calculus.
The core concept of the π-calculus is that of processes
communicating over channels, enabling two-way in-
teraction.

The syntax of the π-calculus we will use is defined
on Figure 2. The simplest process, denoted as 0, is
the trivial process that performs no actions. To cre-
ate a session, i.e., to open a communication chan-
nel between two processes, the syntax is ā(k) . P
for session requests and a(k) . P for session accep-
tance. A process can then send an expression e over
a channel k, and proceed as P , which is written as
k![e] . P . Conversely, a process can receive an expres-
sion over a channel k into a variable x and proceed
as P , denoted as k?(x) . P . The π-calculus also in-
cludes control structures such as conditional expres-
sions, if e then P else Q, which choose to continue

as process P or Q based on the evaluation of e. Ad-
ditionally, it supports branching and selection mech-
anisms, where a process can offer or choose amongst
several labelled branches with s ▷ { li : Pi | i ∈ I }
for label branching and s ◁ l . P for label selection.
Names and channels can be hidden within a process
using (νa)P for name hiding and (νk)P for channel
hiding.

Several type systems have been introduced for
this language, but we will focus on session types
(see Dezani-Ciancaglini and De’Liguoro [29] for an
overview), a type system that ensures communication
over a given channel adheres to a specified sequence
of actions, thus preventing mismatches and communi-
cation errors. The grammar of session types is given
in Figure 2. Specifically, the type ?A.α reads as “the
session expects a value of type A and then behaves
as a session with type α” (where A ranges over Fuzz
types). Conversely, !A . α reads as “the session sends
a value of type A and then behaves as a session with
type α.” Additionally, &i{li : αi} and ⊕i{li : αi}
are session types for branching and selection, respec-
tively.

The syntax we adopted here for the π-calculus with
sessions is essentially the one of Honda et al. in their
seminal paper [24], with some minor modifications
in notation and naming influenced by a more recent
paper [30] by the same lead author [30].

Remark 2.4 We made two omissions from the usual
syntax of the π-calculus with session types. First, we
chose not to include constructs for sending and re-
ceiving channels, that is for process delegation. While
such constructs can enhance modularity, facilitate ex-
ception handling, and increase concurrency [24, Sec-
tion 4.3], they are not strictly necessary and would
complicate the presentation. Second, we did not in-
clude recursive definitions. The rationale for this de-
cision and the alternative construct we use are dis-
cussed in Section 3.1.

3 Syntax and Typing Rules
In this section, we will present the extensions we have
made to the syntax of the π-calculus, as previously

5

introduced, in order to represent the processes that
are of interest to us. These are processes capable of
generating random numbers in order to randomise
the output of a program and thereby anonymise the
input data to a certain extent. We also introduce typ-
ing rules that are very similar to the ones in Honda
et al. [24, Figure 1], with the primary distinction be-
ing the addition of privacy parameters (ϵ, δ) within
the typing judgements.

3.1 Process Replication and Random
Number Generation

We extend the syntax of processes provided in Fig-
ure 2 to include two new constructs: finite process
replication (which partially replaces recursive defini-
tions) and random number generation (RNG).

P, Q, . . . ::= · · · | ∗nP | Lapbk?(x) . P (5)

and accordingly the syntax of session types:

α ::= · · · | ∗nα . (6)

Note that generating a random number is equiva-
lent, syntactically, to receiving a number from a spe-
cial channel.

Remark 3.1 We allow finite process replication
rather than arbitrary replication as we do not want
a process to generate an infinite number of random
numbers during its execution. Indeed, we aim to for-
malise without extending the notion of interactive dif-
ferential privacy found in the literature. For instance,
Vadhan and Wang [1, Definition 1.5] generates bi-
nary strings before the interaction, and Lyu [2, Sec-
tion A.1.1] explicitly bounds the number of interac-
tion rounds.

3.2 Typing Judgements
We consider two kinds of typing judgements: Fuzz
judgements [11, Section 2.2] for expressions written
in a simple functional language

Γ ⊢Fuzz e : A

where Γ is a linear context mapping variables to types
(including function types and recursive types), and
process judgements

Γ ⊢ P ▷ ∆; (ϵ, δ)

where Γ is a classical context mapping expression
variables and session names to types, written A
and ⟨α, ᾱ⟩ respectively, (an environment), ∆ is a lin-
ear context mapping session channels to session types
(a typing), and (ϵ, δ) are privacy parameters. We say
that a context ∆ is completed when it only contains
end types [31, Section 2.2]. Anticipating the seman-
tics, such a judgement reads, “Under the environ-
ment Γ and the typing ∆, P is an (ϵ, δ)-differentially
private process.”

We write [Γ]s for the Fuzz context obtained by
adding a sensitivity annotation s to each expression
type in Γ and Γ1 ⨿ Γ2 for the disjoint union of Γ1
and Γ2 when they do not have any variable in com-
mon.

3.3 Operations and Relations
Before we can state the typing rules, we need to define
a number of operations and relations on processes and
typing contexts.

3.3.1 Congruence

First of all, the sets of free names, free variables and
free channels of a process P , as defined in the stan-
dard way (see Honda et al. [24, Section 2.2]), are
respectively denoted by fn(P), fv(P) and fc(P). We
write fu(P) for fn(P) ∪ fc(P). Henceforth, a substi-
tution (of free variables) for P is a function from the
set fv(P) to the set of values. A substitution is well-
typed for an environment Γ when it maps each free
name x ∈ fv(P) to a value that is consistent with the
type Γ(x).

Definition 3.1 Strong and weak congruence rela-
tions (denoted by ≡ and ∼=, respectively) are the
smallest relations that satisfy the following equations:

• if P ≡α Q (if P is α-equivalent to Q), then P ≡
Q,

6

Process P, Q, . . . ::= 0 inaction
| k![e] . P value sending
| k?(x) . P value reception
| if e then P else Q conditional
| s ▷ { li : Pi | i ∈ I } label branching
| s ◁ l . P label selection
| P ∥Q composition
| (νa)P name hiding
| ā(k) . P session request
| a(k) . P session acceptance
| (νk)P channel hiding

Session types α ::= ?A . α
| !A . α
| &i{li : αi}
| ⊕i{li : αi}
| end

Figure 2: Syntax of the π-calculus with session types

• ∗0P ≡ 0,

• (νu)0 ≡ 0, (νuu′)P ≡ (νu′u)P , and if u /∈ fu Q∪
fu Q, then (νu)P ∥ Q ≡ (νu)(P ∥ Q) and Q ∥
(νu)P ≡ (νu)(Q ∥ P),

• if P ≡ Q, then P ∼= Q,

• P ∥ 0 ∼= P and 0 ∥ P ∼= P ,

• P ∥Q ∼= Q ∥ P and P ∥ (Q ∥R) ∼= (P ∥Q) ∥R.

Remark 3.2 Contrary to Honda et al. [24, Sec-
tion 2.3], both Honda et al. [30, Figure 2] and
Yoshida and Vasconcelos [31, Figure 2] consider that,
in general, (νuu)P and (νu)P are not congruent pro-
cesses. We adhere to the latter works.

Most π-calculus systems with session types con-
sider only a single congruence relation. However, in
our approach, since we do not treat the processes
P ∥Q and Q∥P , as well as P ∥(Q∥R) and (P ∥Q)∥R
indifferently (see Definition 4.5 of process view, as
well as the typing and reduction rules), we distinguish
between strong congruence, for which the operation
∥ is neither commutative nor associative, and weak
congruence. This will lead in Section 4.1 to the intro-
duction of two additional reduction rules, [R-Comm]

and [R-Assoc]. In like manner, P ∥0 and P are only
weakly congruent, as their traces will have different
structures: the former is always a proper binary tree,
whereas the latter might be reduced to a leaf.

3.3.2 Composition of privacy parameters

We define ⋆, a binary operation between privacy pa-
rameters [1, Theorem 1.8], which will be used in the
rule [T-Conc] in the following way:

(ϵ1, δ1) ⋆ (ϵ2, δ2) = (ϵ1 + ϵ2, δ1 + eϵ1δ2) . (7)

Observe that this operation is neither commutative
nor associative.

Remark 3.3 In order to obtain tighter bounds, we
would consider a family of n-ary typing rules for con-
current composition, each with a corresponding n-ary
operation on privacy parameters,

3.3.3 Session types

In the communication between two processes over
a given channel, they perform symmetrical roles, as
each message received by one process is sent by the
other, and vice versa. For this reason, it is natural

7

to define the co-type of a session type. We accom-
plish this essentially in the same way as described by
Honda et al. [24, Definition 5.1], but with the addition
of considering the types involved in finite replication.

Definition 3.2 The co-type ᾱ of a session type α
is defined by structural induction using the follow-
ing equations: 1. ¯̄α = α, 2. ?A . α = !A . ᾱ,
3. &i{li : αi} = ⊕i{li : ᾱi}, 4. ∗nα = ∗nᾱ.

Definition 3.3 ([24, Definition 5.2]) We say that
two typings ∆1 and ∆2, which map session chan-
nels to session types, are compatible whenever for all
channels k in dom(∆1)∩dom(∆2), we have ∆1(k) =
∆2(k). In this case, we write ∆1 ≍ ∆2.

Definition 3.4 ([24, Definition 5.2]) The com-
position ∆1 ◦ ∆2 of two compatible typings ∆1
and ∆2 is defined by

(∆1 ◦∆2)(k)

=
{
⊥ if k ∈ dom(∆1) ∩ dom(∆2)
∆i(k) if k ∈ dom(∆i) \ dom(∆3−i)

(8)

3.4 Typing Rules
The typing rules for our process calculus are now
given in Figure 3. Most of them are standard for a
process calculus with session types (see Honda et al.
[24, Figure 1] and Yoshida and Vasconcelos [31, Fig-
ure 6]), except for the addition of privacy annota-
tions, which form a second linear context, alongside
the session context.

However, we draw the reader’s attention to the
following rules: [T-NSend] for the Laplace mecha-
nism; [T-Conc] for concurrent composition, [T-Par]
for parallel composition, and [T-Rep] for the finite
replication. Moreover, what was stated as a theorem
in Honda et al. [24, Theorem 5.4 (1)], assuming the
inclusion of the [T-Bot] typing rule from Yoshida
and Vasconcelos [31, Section 2.3], due to the non-
associativity of the ⋆ law used in [T-Conc] has to
be enforced in our case by the [T-Cong] structural
typing rule.

Example 3.1 As a running example, let us consider
an implementation of the one-round Laplace mecha-
nism for a fixed privacy parameter ϵ. Specifically, we
define

M = k?(f) . Lap1/ϵ?(r) . k![f(D) + r] . end
A = k![f] . k?(y) . end .

The following typing judgements are derivable for
α = ?(db ⊸ Num) . !Num . end,

D : Db, f : Db ⊸ Num ⊢M ▷ k : α; (ϵ, 0)
f : Db ⊸ Num ⊢ A ▷ k : ᾱ; (0, 1)

In order to obtain closed programs, we would need to
abstract the channels using [T-Acc] and [T-Req],
and add therefore a session name in the environment.
However, since we are focusing on communication
here, this is not necessary.

In the typing rules as well as in the previous exam-
ple, either because the process we are considering is
not meant to be combined with an adversary (as it is
an adversary itself) or because the process does not
preserve privacy, we chose (0, 1) as a neutral value for
the privacy parameters. This choice is always sound
in the sense of Section 4.3, as it is sound if and only
if a certain probability is less than 1.

An example of a typing rule that does not
preserve privacy is [T-If] for conditional expres-
sions. Intuitively, even if D and D′ are adjacent
databases, the processes if x ∈ D then P else Q
and if x /∈ D then P else Q can have arbitrarily
different behaviour.

Similarly, sending data as in the rule [T-Send]
does not ensure differential privacy because the data
could be private and might even include the entire
dataset. Therefore, to achieve meaningful privacy pa-
rameters, it is necessary to use a rule like [T-NSend],
which requires the process to first add noise to the
data based on its sensitivity relative to the dataset.
The sensitivity analysis for this process is conducted
using the Fuzz calculus.

Finally, our type system has a weakening property
that allows one to effectively use the [T-Par] rule

8

∆ completed
[T-Inact]

Γ ⊢ 0 ▷ ∆; (ϵ, δ)
Γ ⊢ P ▷ ∆, k : end; (ϵ, δ)

[T-Bot]
Γ ⊢ P ▷ ∆, k : ⊥; (ϵ, δ)

Γ ⊢ a : ⟨α, ᾱ⟩ Γ ⊢ P ▷ ∆, k : α; (ϵ, δ)
[T-Acc]

Γ ⊢ a(k) . P ▷ ∆; (ϵ, δ)
Γ ⊢ a : ⟨α, ᾱ⟩ Γ ⊢ P ▷ ∆, k : ᾱ; (ϵ, δ)

[T-Req]
Γ ⊢ ā(k) . P ▷ ∆; (ϵ, δ)

[Γ]+∞ ⊢Fuzz e : A Γ ⊢ P ▷ ∆, k : α; (ϵ, δ)
[T-Send]

Γ ⊢ k![e] . P ▷ ∆, k : !A . α; (0, 1)
[Γ]s ⊢Fuzz e : Num Γ ⊢ P ▷ ∆, k : α; (ϵ, δ)

[T-NSend]
Γ ⊢ Laps/ϵ′?(x) . k![e + x] . P ▷ ∆, k : !Num . α; (ϵ + ϵ′, δ)

Γ, x : A ⊢ P ▷ ∆, k : α; (ϵ, δ)
[T-Rcv]

Γ ⊢ k?(x) . P ▷ ∆, k : ?A . α; (ϵ, δ)
Γ, x : Num ⊢ P ▷ ∆; (ϵ, δ) ⊢Fuzz b : Num

[T-Lap]
Γ ⊢ Lapb?(x) . P ▷ ∆; (ϵ, δ)

[Γ]s ⊢Fuzz e : Bool Γ ⊢ P ▷ ∆; (ϵP , δP) Γ ⊢ Q ▷ ∆; (ϵQ, δQ)
[T-If]

Γ ⊢ if e then P else Q ▷ ∆; (0, 1)
Γ ⊢ P1 ▷ ∆, k : α1; (ϵ, δ) . . . Γ ⊢ Pn ▷ ∆, k : αn; (ϵ, δ)

[T-Br]
Γ ⊢ k ▷ {li : Pi}i∈I ▷ ∆, k : &i∈I{li : αi}; (ϵ, δ)

Γ ⊢ P ▷ ∆, k : αj ; (ϵ, δ) j ∈ I
[T-Selj]

Γ ⊢ k ◁ lj . P ▷ ∆, k : ⊕i∈I{li : αi}; (ϵ, δ)
Γ ⊢ P1 ▷ ∆1; (ϵ1, δ1) Γ ⊢ P2 ▷ ∆2; (ϵ2, δ2) ∆1 ≍ ∆2 [T-Conc]

Γ ⊢ P1 ∥ P2 ▷ ∆1 ◦∆2; (ϵ1, δ1) ⋆ (ϵ2, δ2)
Γ1 ⊢ P1 ▷ ∆1; (ϵ, 0) Γ2 ⊢ P2 ▷ ∆2; (ϵ, 0) ∆1 ≍ ∆2 [T-Par]

Γ1 ⨿ Γ2 ⊢ P1 ∥ P2 ▷ ∆1 ◦∆2; (ϵ, 0)
Γ, a : A ⊢ P ▷ ∆; (ϵ, δ)

[T-NHide]
Γ ⊢ (νa)P ▷ ∆; (ϵ, δ)

Γ ⊢ P ▷ ∆, k : ⊥; (ϵ, δ)
[T-CHide]

Γ ⊢ (νk)P ▷ ∆; (ϵ, δ)

Γ ⊢ P ▷ ∆; (ϵ, δ) P ≡ Q
[T-Cong]

Γ ⊢ Q ▷ ∆; (ϵ, δ)

Γ ⊢ P ▷ ∆ ⊢Fuzz n : Nat [T-Rep]
Γ ⊢ ∗nP ▷ ∗n∆;

(
nϵ, δ enϵ−1

eϵ−1
)

Figure 3: Process Typing Rules

9

with different privacy parameters in its premises or
the [T-Conc] rule with some variables used in only
one of the composed processes.

Theorem 3.1 (Weakening) If x /∈ Γ, a /∈ Γ, and
Γ ⊢ P ▷ ∆; (ϵ, δ), then Γ, x : A, a : ⟨α, ᾱ⟩ ⊢ P ▷ ∆; (ϵ +
ϵ′, δ + δ′).

4 Operational Semantics
4.1 Reduction Rules
We will provide an operational semantics for our pro-
cess calculus, presented as a fully probabilistic la-
belled transition system (FPLTS). We consider a fully
probabilistic system as the session types ensure the
absence of non-probabilistic non-determinism during
the reduction or a process. Moreover, the labels will
trace the execution, which we will use to define the
view of a party during an interaction.

Definition 4.1 ([32, Definition 6.1]) A fully
probabilistic labelled transition system (FPLTS) is
a triple (S, A, P) where

• S is a set of states (processes),

• A is a countable set of labels (actions),

• P : S ×A× S → [0, 1] is a transition probability
function such that for all states x,∑

α∈A

∑
t∈T

P (s, α, t) ∈ {0, 1} . (9)

To write the rules for such a transition system,
we use the notation introduced by Chatzikokolakis
and Palamidessi [33, Figure 1] for their process cal-
culus πprob. Specifically, we write

P
{

li−→
pi

Qi

}
i∈I

when for all i in I, a process P reduces to Qi with
probability pi and label li.

In our case, the labels are binary trees labelled at
the leaves by atoms. These atoms are intended to
trace one reduction step of a simple process, that

is one that does not involve the parallel construct.
An atom can be, for example, ϵv for a conditional
evaluating to a boolean value v, or αn,v for a value
exchange during an n-repetition (we may omit the
first element of the tuple when it is 1). Atoms can be
concatenated using the + operator1 to form lists of
atoms, a fact which will be helpful later when defining
multi-step reduction.

The complete set of reduction rules is presented in
Figure 4.

Note that [R-Lap], as expected, is the only rule
that introduces randomness, and it does so through
the discrete Laplace distribution. The other rules
merely propagate this randomness.

Definition 4.2 (Ghosh et al. [25, Example 2.1])
The discrete Laplace distribution with parame-
ter b > 0, is defined by the following probability mass
function over Z:

n 7→ e1/b − 1
e1/b + 1 × e−|n|/b︸ ︷︷ ︸

pn,b

. (10)

4.2 Trace and View of a Process
Now, we will define the view of a process during an
interaction, which is an essential component, as we
have seen, in the definition of interactive differential
privacy. To achieve this, we will begin by defining
the multi-step reduction relation and the trace of an
execution.

Lemma 4.1 If P
{

li−→
pi

Qi

}
i
, and for all i we have

Qi

{ l′
j−→

p′
j

Rj

}
j
, then for all i and j, the trees ki and lj

have the same shape.

Proof. The only notable case is that of the [R-
Cong] reduction rule. We have explicitly ensured in
Definition 3.1 that strong congruence preserves the
shape of processes. □

This lemma allows us to define the two-step reduc-
tion relation using tree concatenation as follows.

1Consider the cons operator from languages in the LISP
family.

10

e ↓ ⊤
[R-True]

if e then P else Q
{

ϵ⊤−−→
1

P
} e ↓ ⊥

[R-False]
if e then P else Q

{
ϵ⊥−−→
1

P
}

e ↓ v
[R-Val]

k![e] . P ∥ k?(x) . Q
{ (α1,v,α1,v)−−−−−−−→

1
P ∥Q[v/x]

} [R-Chan]
a(k) . P ∥ ā(k) . Q

{ (χk,χk)−−−−−→
1

(νk)(P ∥Q)
}

[R-Sel]
k ◁ li . P ∥ k ▷ {li : Pi}i

{ (δi,δi)−−−−→
1

P ∥ Pi

}
P

{
li−→
pi

Pi

}
i [R-Hide]

(νu)P
{

li−→
pi

(νu)Pi

}
i

P
{

li−→
pi

Pi

}
i [R-Conc]

P ∥Q
{ (li,∅)−−−→

pi

Pi ∥Q
}

i

[R-Lap]
Lapb?(x) . P

{
γn−−→

pn,b

P [n/x]
}

n∈Z

e ↓ v
[R-Rep]

k![e] . P1 ∥ ∗nk?(x) . P2

{ (αn,v,αn,v)−−−−−−−→
1

P1 ∥ (P2[v/x] ∥ ∗n−1k?(x) . P2)
}

P ′
{

li−→
pi

Q′
i

}
i

P ≡ P ′ (∀i)(Qi ≡ Q′
i)

[R-Cong]
P

{
li−→
pi

Qi

}
i

P1 ∥ P2

{ (li,ri)−−−−→
pi

Qi1 ∥Qi2

}
i [R-Comm]

P2 ∥ P1

{ (ri,li)−−−−→
pi

Qi2 ∥Qi1

}
i

P1 ∥ (P2 ∥ P3)
{ (l1,(l2,l3))−−−−−−→

pi

P1i ∥ (P2i ∥ P3i)
}

i [R-Assoc]
(P1 ∥ P2) ∥ P3

{ ((l1,l2),l3)−−−−−−→
pi

(P1i ∥ P2i) ∥ P3i

}
i

Figure 4: Process Reduction Rules

11

Definition 4.3 The concatenation t1 + t2 of two bi-
nary trees t1 and t2, which are labelled at the leaves
and have the same shape, is the binary tree obtained
by concatenating the labels leaf by leaf.

Example 4.1 The concatenation of
(
a, (b, c)

)
and(

d, (e, [f, g])
)

is the tree
(
[a, d], ([b, e], [c, f, g])

)
.

Definition 4.4 For any two processes P and Q, let
XP R be the set of all processes Q such that P can
reduce to Q with probability pP Q and label lP Q, and
Q can reduce to R with probability pQR and label lQR.
Now, for a given label l, let XP R,l be the subset
of XP R that consists of the processes Q such that
lP Q + lQR = l. We say that P reduces in two steps
to R with probability p and label l whenever XP R,l is
non-empty and p =

∑
Q∈XP R,l

pP Q · pQR. We then
write

P
{

li−→
pi

2 Ri

}
to account for all such R.

This construction generalises by induction to any
number of steps, and we write −→∗ for the transitive
and reflexive closure of −→. We then call a possible
label for this multi-step reduction a trace —which is a
binary tree labelled at the leaves with lists of atoms—
and we denote by T the set of all possible traces.

Finally, given an appropriate countable probabil-
ity space Ω, the trace Tr(P) of the execution of a
process P , where

P
{

li−→
pi

∗ Pi

}
i
,

is the naturally defined random variable such that for
all i

Pr[Tr(P) = li] = pi .

Remark 4.1 The definition of traces we have pro-
vided is quite intricate and subtle, as it involves using
trees instead of lists. For an explanation involving
lists, see, for example, Bian and Abate [34, Defini-
tion 6].

In order to gain some intuition on the behaviour of
traces, consider the following lemma.

Lemma 4.2 For all processes P and Q, the proba-
bility that Tr(P ∥Q) is a leaf equals 0.

Proof. The only reduction rules that can apply to a
concurrent composition are [R-Val], [R-Chan], [R-
Sel], [R-Rep], and the structural rules [R-Comm]
and [R-Assoc]. The labels of the conclusion of each
of these rules form a binary tree with two subtrees.
□

Now, we define the view of a party during an inter-
action as the left subtree of the trace of the execution.

Definition 4.5 The view of a process A interacting
with a process M , written as View(A ∥ M), is the
following random variable: Left

(
Tr(A ∥M)

)
, that is,

ω 7→ Left
(
Tr(A ∥M)(ω)

)
.

Remark 4.2 Except in rare particular cases, we
have View(A ∥M) ̸= View(M ∥A).

Example 4.2 Taking the same example as before
(Example 3.1), for every integer n,

Pr
[
Tr(A[f] ∥M [D]) = (ln, rn)

]
= pn,1/ϵ ,

where ln = [αf , αf(D)+n], and rn = [αf , γn, αf(D)+n].
In addition, for all n, we have Pr[View(A ∥ M) =
ln] = pn,1/ϵ and Pr[View(M ∥ A) = rn] = pn,1/ϵ.
Note that by summing over all integers n, we find
that the probability that the trace of this execution and
view of either party is of the given form equals 1. In
particular, in contrast to M , which always has access
to it, as shown by the presence of γn in its view, the
adversary A never has access to the generated random
value. This prevents them from subtracting the value
from the final result to infer private information.

4.3 Differential Privacy as Approxi-
mate Trace Equivalence

We say that a process M is differentially private when
M [S] and M [S′] have approximately the same trace
when interacting with an adversary, provided that S
and S′ are sufficiently close.

Definition 4.6 Given an environment Γ and a typ-
ing ∆, we say that a process M is (ϵ, δ)-differentially

12

private if for all adjacent substitutions S and S′ that
are well-typed for Γ, for all adversary processes A
such that A ∥M [S] (and A ∥M [S′]) are closed pro-
cesses, and all X ⊆ Range(M), we have the following
inequality:

Pr
[
View(A ∥M [S]) ∈ X

]
≤ eϵ Pr

[
View(A ∥M [S′]) ∈ X

]
+ δ . (11)

In practice, for straightforward cases, S and S′ will
often be substitutions involving a single variable. The
entire database and the adjacency of two substitu-
tions thus correspond to the adjacency of their asso-
ciated databases. However, this relation is subject to
redefinition depending on the specific area of appli-
cation.

Remark 4.3 Baier et al. [32, Theorem 4] have
shown that their notion of approximate trace equiva-
lence for labelled Markov chains is induced by a form
of approximate probabilistic bisimulation. We there-
fore expect that one could rephrase our definition of
interactive differential privacy in the latter frame-
work and obtain the same metatheoretical properties
as those in Section 5.

5 Metatheoretical Properties
We must prove that our type system provides suffi-
cient conditions to ensure interactive differential pri-
vacy for processes (according to Definition 4.6); in
other words we need to show its soundness. To
achieve this, the most crucial part is to show that
the choice of privacy parameters is sound.

Let us begin by stating some properties regarding
the traces and views of processes.

Lemma 5.1 For all processes P , Q and R and
traces t1, t2 and t3, we have

Pr
[
Tr

(
(P ∥Q) ∥R

)
=

(
(t1, t2), t3

)]
= Pr

[
Tr

(
P ∥ (Q ∥R)

)
=

(
t1, (t2, t3)

)]
. (12)

Proof. This is a consequence of the structural re-
duction rule [R-Assoc]. □

We write Left∗(T) for the inverse image of T under
the function Left, which is the set { t ∈ T | Left(t) ∈
T }.

Lemma 5.2 For all processes P , Q and R and sets
of traces T , we have

Pr
[
View

(
(P ∥Q) ∥R

)
∈ Left∗(T)

]
= Pr

[
View

(
P ∥ (Q ∥R)

)
∈ T

]
. (13)

Proof.

Pr
[
View

(
(P ∥Q) ∥R

)
∈ Left∗(T)

]
=

∑
t1∈Left∗(T)

∑
t2∈T

Pr
[
Tr

(
(P ∥Q) ∥R

)
= (t1, t2)

]
=

∑
t1∈T

∑
t2∈T

∑
t3∈T

Pr
[
Tr

(
(P ∥Q) ∥R

)
=

(
(t1, t2), t3

)]
=

∑
t1∈T

∑
t2∈T

∑
t3∈T

Pr
[
Tr

(
P ∥ (Q ∥R)

)
=

(
t1, (t2, t3)

)]
=

∑
t1∈T

∑
t2∈T

Pr
[
Tr

(
P ∥ (Q ∥R)

)
= (t1, t2)

]
= Pr

[
View

(
P ∥ (Q ∥R)

)
∈ T

]
.

Note that we use Lemma 5.1 to prove the third equal-
ity. □

Corollary 5.3 The [T-Conc] typing rule is sound.

The proof by Vadhan and Wang of the concur-
rent composition theorem becomes more straightfor-
ward in our framework, given that the ad hoc post-
processing step on the view of the combined adver-
sary is reduced to merely taking its left subtree.
Proof. Without loss of generality, we restrict our
analysis to the case where δ1 = δ2 = 0, see [1, Theo-
rem 3.3]. Let S and S′ be two adjacent substitutions,
we want to show that for all sets T ,

Pr
[
View

(
A ∥ (M1[S] ∥M2[S])

)
∈ T

]
≤ eϵ1+ϵ2 Pr

[
View

(
A ∥ (M1[S′] ∥M2[S′])

)
∈ T

]
.

To this end, since eϵ1eϵ2 = eϵ1+ϵ2 , it suffices to show
that we can perform one substitution at a time, that
is,

Pr
[
View

(
A ∥ (M1[S] ∥M2[S])

)
∈ T

]
≤ eϵ1 Pr

[
View

(
A ∥ (M1[S′] ∥M2[S])

)
∈ T

]
.

13

This inequality indeed holds, which we will prove
by introducing a combined adversary and using
Lemma 5.2:

Pr
[
View

(
A ∥ (M1[S] ∥M2[S])

)
∈ T

]
= Pr

[
View

(
(A ∥M1[S]) ∥M2[S]

)
∈ Left∗(T)

]
≤ eϵ2 Pr

[
View

(
(A ∥M1[S]) ∥M2[S′]

)
∈ Left∗(T)

]
= eϵ2 Pr

[
View

(
A ∥ (M1[S] ∥M2[S′])

)
∈ T

]
The inequality arises from our hypothesis that M2 is
an ϵ2-differentially private process. □

Lemma 5.4 The [T-Par] typing rule is sound.

Proof. See Theorem 2.2. □

Lemma 5.5 The [T-Rep] typing rule is sound.

Proof. This result follows from Vadhan and Wang
[1, Theorem 1.8], who obtain better privacy parame-
ters than those achieved by repeatedly applying the
⋆ law, as discussed in Section 3.3.2. □

Finally, we can the soundness theorem and the
same good properties for our language as Honda
et al. [24, Theorem 5.4].

Theorem 5.6 (Soundness) If Γ ⊢ M ▷ ∆; (ϵ, δ),
then M is an (ϵ, δ)-differentially private process.

This implies that if a process M is well-typed, then
it is (ϵ, δ)-differentially private (as defined in Defi-
nition 4.6), and discloses only a limited amount of
private information when interacting with any ad-
versary A that meets the given assumptions. This
is particularly notable as the well-typedness of the
process is proved by a finite derivation.

Theorem 5.7
• Typing is preserved by reduction:

If Γ ⊢ P ▷ ∆; (ϵ, δ) and P
{

li−→
pi

∗ Qi

}
, then for

all i, we have Γ ⊢ Qi ▷ ∆; (ϵ, δ).

• A typable program never reduces into an error.

To be precise, the second point means that the type
system ensures communication safety (only data of
the expected type are exchanged) and session fidelity
[29, Section 2].

AFM

(a) Example 1

AM1 M1

(b) Example 2

M1

M2

A

(c) Example 3

Figure 5: Interaction between the different processes
of the example section

6 Examples
6.1 The Forwarder Process
To demonstrate how our type system accounts for
communication between mechanisms themselves, and
not merely the interaction between mechanisms and
an adversary, let us consider the scenario where a
process that does not own any private data acts as an
intermediary between a mechanism and an adversary
(see Figure 5a) that is a man in the middle (MITM)
for our running example (Example 3.1).

Given a 1-Lipschitz function (also known as a 1-
sensitive function) from Db to Num, a database D,
and channels k and k′ of session type α = ?(Db ⊸
Num) . !Num . end, or of its co-type ᾱ, we define

A = k′![f] . k′?(x) . 0
F = k′?(f) . k![f] . k?(x) . k′![x] . 0

M = k?(f) . Lap1/ϵ?(r) . k![f(D) + r] . 0 .

Even though, when reducing A[f] ∥ (F ∥M [D]), the
adversary A, and indeed every possible well-typed ad-

14

versary, only interacts with F , which owns no private
information and is therefore differentially private for
all privacy parameters, F ∥M [D] is correctly typed
as ϵ-differentially private by our typing rules.

6.2 A Database Split between Two
Servers

To illustrate the rule of parallel composition and the
fact that a substitution for a mechanism may involve
more than one variable, let us consider two processes
M1 and M2 that exhibit identical behaviour (for in-
stance, both implementing the Laplace mechanism)
but have access to different halves of the database,
and a data analyst who wants to roughly estimate
the total number of entries. By applying [T-Par],
we get

D1 : Db, D2 : Db ⊢M1∥M2 ▷k1 : α, k2 : α, k : β; (ϵ, 0)

for the straightforward session types α and β.
The validity of this judgement involves well-typed

adjacent substitutions. In this context, a substitution
for M1 ∥M2 consists of two databases, D1 and D2.
To achieve the correct notion of adjacency for the
combined databases, these halves must be disjoint
sets.

Let count be the 1-sensitive function that counts
the number of elements in a set. The analyst may be
represented by the following process, using a special
channel k as an output to a device like a screen:

A = k1![count].k2![count].k1?(c1).k2?(c2).k![c1+c2].0

(All five other possible orderings between message
sending and receiving are well-typed, which illus-
trates that an adversary can arbitrarily interleave its
queries to the two mechanisms [1, Section 1.4].)

6.3 The Private Guess-and-Check Al-
gorithm

Let us show that our language is expressive enough
to write the Guess-and-Check algorithm (see Algo-
rithm 1, taken from Lyu [2, Algorithm 1]), and that
our type system can prove it preserves privacy (see
Theorem 6.1).

Let us begin by informally describing the algo-
rithm. An adversary sends queries —which consist
of a function to be executed on the database and
an expected response— to a central server. If the
guess is approximately correct, then the adversary is
informed and no privacy budget is consumed. Con-
versely, if the guess is far from the correct answer,
the adversary is informed and provided with a value
that is approximately correct. The interaction ceases
after a certain number of rounds, unless the privacy
budget is completely depleted beforehand.

Data: private dataset X, error
tolerance E ≥ 0, privacy
parameter ϵ > 0, maximum number of
negative queries c ≥ 1, number of
interaction rounds T

ρ← Lap(1/ϵ);
for i = 1, 2, . . . , T do

Receive the next query (fi, τi);
γi ← Lap(c/ϵ);
if |fi(X)− τi|+ γi ≥ E + ρ then

vi ← f(X) + Lap(c/ϵ);
report (wrong, vi);
t← t + 1;
if t = c then halt;

else
report pass

end
end

Algorithm 1: Private Guess-and-Check [2, Al-
gorithm 1]

Remark 6.1 In the following, it will be more con-
venient to use a functional syntax similar to the
ML programming language, rather than mathemati-
cal syntax.

This algorithm can be viewed as a variant of the
Sparse Vector Technique [18, 19]. As a result, the
latter can serve as a foundational component to sim-
ulate the Guess-and-Check algorithm.

The Sparse Vector Technique responds to at most
c incorrect queries (for an error tolerance of E) out
of N total queries about a database D. It interacts

15

on a channel k and uses a memory cell named a to
store its internal state. A memory cell is an object
with two methods named read and write. For a
detailed definition in terms of processes that use the
branching and selection constructs, refer to Honda
et al. [24, Example 3.3, Example 3.4].
SVT(c, E, N, D, k, a) =
Lap(1/epsilon)?(rho);
a.write 1;
repeat N times

k?(f, v);
let t = a.read () in
if t >= c then k![0] else
Lap(c/epsilon)?(gamma);
k![abs (f(D) - v) + gamma < E + rho];

end
a.write (t + 1);

end

Given the environment Γ = {c : Nat, E : Num, N :
Nat, D : Db, a : Cell(Nat)} and the typing ∆ = {k :
∗N

(
?(Db ⊸ Num⊗Num).!Num.end

)
}, the following

typing rule is sound [19, Theorem 2]:

[T-SVT]
Γ ⊢ SVT(c, E, N, D, k, a) ▷ ∆; (3ϵ, 0) (14)

Note the crucial usage of a type of the form A ⊸
B for 1-Lipschitz functions from JAK to JBK, which
is present in Fuzz [11, Section 2.1] but absent in a
standard simply typed λ-calculus.

From there, we can follow the reasoning of Lyu [2,
Appendix B].

Theorem 6.1 ([2, Theorem 5]) The Guess-and-
Check algorithm is 4ϵ-differentially private.

Proof. The Guess-and-Check algorithm can be sim-
ulated with SV T ∥ L (with the appropriate substi-
tution for the free variables) where L implements
the Laplace mechanisms. Moreover, (3ϵ, 0) ⋆ (ϵ, 0) =
(4ϵ, 0). □

7 Related work
We have already mentioned in the introduction some
references to type systems for non-interactive differ-
ential privacy of functional programs, including the

Fuzz language [11] and its extensions. A generalisa-
tion of this approach to handle interactive differential
privacy has been proposed in Winograd-Cort et al.
[35], it consists in a two-layer language and does not
deal with any concurrency aspects.

Concerning probabilistic versions of the π-calculus,
Chatzikokolakis and Palamidessi [33] defined the
πprob-calculus, a variant of π-calculus with proba-
bilistic choice, and Das et al. [36] introduced a lan-
guage for probabilistic session types, and similarly to
πprob uses a construction for probabilistic branching.
However none of these two papers is motivated by
differential privacy. Our approach differs in that we
substitute the probabilistic choice with a mechanism
for generating random numbers. This is crucial for
our type system, as it allows us to manage non-trivial
(ϵ, δ) bounds, which would not be possible with prob-
abilistic choice.

Xu [37] investigated DP properties in a probabilis-
tic process calculus, but this calculus is a variant
of CCS, a less expressive language. In particular it
does not explicitly represent mechanisms such as the
Laplace mechanisms.

Some other works like [38, 39] explore DP proper-
ties for probabilistic labelled transition systems and
relate them to some bisimilarity distances [39]. How-
ever their focus is quite different as they do not con-
sider a process syntax as we do in the present paper,
and they do not address concurrent interactive DP.

8 Future Work
First, we would like to determine whether our cal-
culus, or an extension of it, could guarantee privacy
properties in other contexts, particularly in the realm
of local differential privacy [40, 41] where there is no
central aggregator.

Moreover, if future research in the field of inter-
active differential privacy were to explore the gen-
eration of an infinite sequence of random numbers
instead of just a finite one (see Section 3.1) propos-
ing a new definition of a private process, and if they
proved composition theorems for this new definition,
we could replace our replication primitive with recur-
sive definitions. This would raise interesting seman-

16

tic issues, particularly in relation to measure theory,
since the probability spaces involved would have the
cardinality of the continuum.

Finally, as outlined in the section on the semantics
of our system, one may investigate the consequences
of replacing our current formal definition of interac-
tive differential privacy, which is expressed in terms
of approximate trace equivalence, with an alternative
framework based on approximate bisimulation.

References
[1] S. Vadhan and T. Wang, “Concurrent composi-

tion of differential privacy,” in Theory of Cryp-
tography, ser. Lecture Notes in Computer Sci-
ence, vol. 13043. Springer, 2021, pp. 582–604.

[2] X. Lyu, “Composition theorems for interactive
differential privacy,” in NIPS’22: Proceedings of
the 36th International Conference on Neural In-
formation Processing Systems, 2022, pp. 9700–
9712.

[3] C. Dwork, F. McSherry, K. Nissim, and
A. Smith, “Calibrating noise to sensitivity in
private data analysis,” in Theory of Cryptogra-
phy, ser. Lecture Notes in Computer Science, vol.
3876. Springer, 2006, pp. 265–284.

[4] C. Dwork and A. Roth, “The algorithmic foun-
dations of differential privacy,” Foundations and
Trends in Theoretical Computer Science, vol. 9,
no. 3–4, pp. 211–407, 2014.

[5] I. Mironov, “Rényi differential privacy,” in
30th IEEE Computer Security Foundations
Symposium, CSF 2017, Santa Barbara, CA,
USA, August 21-25, 2017. IEEE Computer
Society, 2017, pp. 263–275. [Online]. Available:
https://doi.org/10.1109/CSF.2017.11

[6] J. Dong, A. Roth, and W. J. Su, “Gaussian dif-
ferential privacy,” Journal of the Royal Statisti-
cal Society: Series B (Statistical Methodology),
2021.

[7] D. Kifer, S. Messing, A. Roth, A. Thakurta, and
D. Zhang, “Guidelines for implementing and

auditing differentially private systems,” CoRR,
vol. abs/2002.04049, 2020. [Online]. Available:
https://arxiv.org/abs/2002.04049

[8] M. Gaboardi, K. Nissim, and D. Purser, “The
complexity of verifying loop-free programs as dif-
ferentially private,” in 47th International Collo-
quium on Automata, Languages, and Program-
ming (ICALP 2020), ser. Leibniz International
Proceedings in Informatics, vol. 168, 2020.

[9] M. Bun, M. Gaboardi, and L. Glinskih, “The
complexity of verifying boolean programs as dif-
ferentially private,” in 2022 IEEE 35th Com-
puter Security Foundations Symposium, 2022.

[10] G. Barthe, M. Gaboardi, J. Hsu, and B. C.
Pierce, “Programming language techniques
for differential privacy,” ACM SIGLOG News,
vol. 3, no. 1, pp. 34–53, 2016. [Online]. Available:
https://doi.org/10.1145/2893582.2893591

[11] J. Reed and B. C. Pierce, “Distance makes the
types grow stronger,” in ICFP’10: Proceedings
of the 15th ACM SIGPLAN international con-
ference on Functional programming, 2010, pp.
157–168.

[12] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan,
and B. C. Pierce, “Linear dependent types for
differential privacy,” in POPL’13: Proceedings of
the 40th annual ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages,
2013, pp. 357–370.

[13] A. Azevedo de Amorim, M. Gaboardi, J. Hsu,
and S. Katsumata, “Probabilistic relational rea-
soning via metrics,” in 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS
2019, Vancouver, BC, Canada, June 24-27,
2019. IEEE, 2019, pp. 1–19. [Online]. Available:
https://doi.org/10.1109/LICS.2019.8785715

[14] J. P. Near, D. Darais, C. Abuah, T. Stevens,
P. Gaddamadugu, L. Wang, N. Somani,
M. Zhang, N. Sharma, A. Shan, and D. Song,
“Duet: an expressive higher-order language
and linear type system for statically enforcing

17

https://doi.org/10.1109/CSF.2017.11
https://arxiv.org/abs/2002.04049
https://doi.org/10.1145/2893582.2893591
https://doi.org/10.1109/LICS.2019.8785715

differential privacy,” Proc. ACM Program.
Lang., vol. 3, no. OOPSLA, 2019. [Online].
Available: https://doi.org/10.1145/3360598

[15] M. Toro, D. Darais, C. Abuah, J. P.
Near, D. Árquez, F. Olmedo, and É. Tanter,
“Contextual linear types for differential privacy,”
ACM Trans. Program. Lang. Syst., vol. 45,
no. 2, pp. 8:1–8:69, 2023. [Online]. Available:
https://doi.org/10.1145/3589207

[16] V. Sannier and P. Baillot, “A linear type sys-
tem for Lp-metric sensitivity analysis,” in 9th
International Conference on Formal Structures
for Computation and Deduction, ser. Leibniz In-
ternational Proceedings in Informatics, vol. 299,
2024.

[17] j. wunder, A. Azevedo de Amorim, P. Bail-
lot, and M. Gaboardi, “Bunched fuzz: Sensi-
tivity for vector metrics,” in Programming Lan-
guages and Systems: ESOP 2023, T. Wies, Ed.
Cham: Springer Nature Switzerland, Apr. 2023,
pp. 451–478.

[18] C. Dwork, M. Naor, T. Pitassi, and G. N.
Rothblum, “Differential privacy under contin-
ual observation,” in Proceedings of the 42nd
ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA,
5-8 June 2010, L. J. Schulman, Ed. ACM, 2010,
pp. 715–724.

[19] M. Lyu, D. Su, and N. Li, “Understanding the
sparse vector technique for differential privacy,”
in Proceedings of the VLDB Endowment, vol. 10,
no. 6, 2017, pp. 637–648.

[20] M. Hardt and G. N. Rothblum, “A multiplica-
tive weights mechanism for privacy-preserving
data analysis,” in 51th Annual IEEE Symposium
on Foundations of Computer Science, FOCS
2010, October 23-26, 2010, Las Vegas, Nevada,
USA. IEEE Computer Society, 2010, pp. 61–70.

[21] S. Vadhan and W. Zhang, “Concurrent composi-
tion theorems for differential privacy,” in STOC
2023: Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, 2023.

[22] R. Milner, Communicating and Mobile Systems:
the π-Calculus. Cambridge University Press,
1999.

[23] R. Milner, J. Parrow, and D. Walker, “A calcu-
lus of mobile processes Pt. 1,” Information and
Computation, vol. 100, no. 1, pp. 1–40, 1992.

[24] K. Honda, V. T. Vasconcelos, and M. Kubo,
“Language primitives and type discipline for
structured communication-based program-
ming,” in Proceedings of ESOP, ser. Lecture
Notes in Computer Science, vol. 1381, 1998, pp.
122–138.

[25] A. Ghosh, R. Roughgarden, and M. Sun-
dararajan, “Universally utility-maximizing pri-
vacy mechanisms,” in STOC’09: Proceedings of
the forty-first annual ACM symposium on The-
ory of computing. Association for Computing
Machinery, 2009, pp. 351–360.

[26] A. Azevedo de Amorim, M. Gaboardi, J. Hsu,
S. ya Katsumata, and I. Cherigui, “A seman-
tic account of metric preservation,” in POPL’17:
Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages,
ser. ACM SIGPLAN Notices, vol. 52, no. 1,
2017, pp. 545–556.

[27] J.-Y. Girard, “Linear logic,” Theoretical Com-
puter Science, vol. 50, no. 1, pp. 1–102, 1987.

[28] F. D. McSherry, “Privacy integrated queries: An
extensible platform for privacy-preserving data
analysis,” in SIGMOD’09: Proceedings of the
2009 ACM SIGMOD International Conference
on Management of data, 2009.

[29] M. Dezani-Ciancaglini and U. De’Liguoro, “Ses-
sions and session types: An overview,” in WS-
FM’09: Proceedings of the 6th international con-
ference on Web services and formal methods,
2009, pp. 1–28.

[30] K. Honda, N. Yoshida, and M. Carbone, “Mul-
tiparty asynchronous session types,” ACM SIG-
PLAN Notices, vol. 43, no. 1, pp. 273–284, 2008.

18

https://doi.org/10.1145/3360598
https://doi.org/10.1145/3589207

[31] N. Yoshida and V. T. Vasconcelos, “Lan-
guage primitives and type discipline for struc-
tured communication-based programming revis-
ited: Two systems for higher-order session com-
munication,” in Proceedings of the 1st Inter-
national Workshop on Security and Rewriting
Techniques (SecReT’06), ser. Electronic Notes
in Theoretical Computer Science, vol. 171, no. 4.
Elsevier, 2007, pp. 73–93.

[32] C. Baier, B. Engelen, and M. Majster-
Cederbaum, “Deciding bisimilarity and similar-
ity for probabilistic processes,” Journal of Com-
puter and System Sciences, vol. 60, no. 1, pp.
187–231, 2000.

[33] K. Chatzikokolakis and C. Palamidessi, “A
framework for analyzing probabilistic protocols
and its application to the partial secrets ex-
change,” Theoretical Computer Science, vol. 389,
no. 3, pp. 512–527, 2007.

[34] G. Bian and A. Abate, “On the relationship
between bisimulation and trace equivalence in
an approximate probabilistic context,” in Foun-
dations of Software Science and Computation
Structures, ser. Lecture Notes in Computer Sci-
ence, vol. 10203, 2017, pp. 321–337.

[35] D. Winograd-Cort, A. Haeberlen, A. Roth,
and B. C. Pierce, “A framework for adaptive
differential privacy,” Proc. ACM Program. Lang.,
vol. 1, no. ICFP, pp. 10:1–10:29, 2017. [Online].
Available: https://doi.org/10.1145/3110254

[36] A. Das, D. Wang, and J. Hoffmann, “Prob-
abilistic resource-aware session types,” Proc.
ACM Program. Lang., vol. 7, no. POPL,
pp. 1925–1956, 2023. [Online]. Available:
https://doi.org/10.1145/3571259

[37] L. Xu, “Modular reasoning about differential
privacy in a probabilistic process calculus,” in
Trustworthy Global Computing - 7th Interna-
tional Symposium, TGC 2012, Newcastle upon
Tyne, UK, September 7-8, 2012, Revised Selected
Papers, ser. Lecture Notes in Computer Science,
C. Palamidessi and M. D. Ryan, Eds., vol. 8191.

Springer, 2012, pp. 198–212. [Online]. Available:
https://doi.org/10.1007/978-3-642-41157-1_13

[38] M. C. Tschantz, D. K. Kaynar, and A. Datta,
“Formal verification of differential privacy
for interactive systems (extended abstract),” in
Twenty-seventh Conference on the Mathematical
Foundations of Programming Semantics, MFPS
2011, Pittsburgh, PA, USA, May 25-28, 2011,
ser. Electronic Notes in Theoretical Computer
Science, M. W. Mislove and J. Ouaknine, Eds.,
vol. 276. Elsevier, 2011, pp. 61–79. [Online].
Available: https://doi.org/10.1016/j.entcs.2011.
09.015

[39] D. Chistikov, A. S. Murawski, and D. Purser,
“Bisimilarity distances for approximate dif-
ferential privacy,” in Automated Technology
for Verification and Analysis - 16th Interna-
tional Symposium, ATVA 2018, Los Angeles,
CA, USA, October 7-10, 2018, Proceedings,
ser. Lecture Notes in Computer Science,
S. K. Lahiri and C. Wang, Eds., vol. 11138.
Springer, 2018, pp. 194–210. [Online]. Available:
https://doi.org/10.1007/978-3-030-01090-4_12

[40] A. Evfimievski, J. Gehrke, and R. Srikant,
“Limiting privacy breaches in privacy preserv-
ing data mining,” in PODS’03: Proceedings
of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database
systems, 2003, pp. 211–222.

[41] S. P. Kasiviswanathan, H. K. Lee, K. Nissim,
S. Raskhodnikova, and A. Smith, “What can we
learn privately?” in 2008 49th Annual IEEE
Symposium on Foundations of Computer Sci-
ence, 2008.

19

https://doi.org/10.1145/3110254
https://doi.org/10.1145/3571259
https://doi.org/10.1007/978-3-642-41157-1_13
https://doi.org/10.1016/j.entcs.2011.09.015
https://doi.org/10.1016/j.entcs.2011.09.015
https://doi.org/10.1007/978-3-030-01090-4_12

	Introduction
	Verification of Differential Privacy
	A Type System for the Concurrent Composition of Interactive Differential Privacy
	Contributions

	Preliminaries
	Differential Privacy
	Interactive Differential Privacy
	Process Calculi and Session Types

	Syntax and Typing Rules
	Process Replication and Random Number Generation
	Typing Judgements
	Operations and Relations
	Congruence
	Composition of privacy parameters
	Session types

	Typing Rules

	Operational Semantics
	Reduction Rules
	Trace and View of a Process
	Differential Privacy as Approximate Trace Equivalence

	Metatheoretical Properties
	Examples
	The Forwarder Process
	A Database Split between Two Servers
	The Private Guess-and-Check Algorithm

	Related work
	Future Work

