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Abstract

Images are an important source of information for spacecraft navigation. Based
on an image and a known attitude, triangulation techniques (intersection or resec-
tion) are often used for positioning and navigation. In the resection problem, an
observer estimate its unknown location by using angle measurements to points at
known locations (i.e. landmarks), the localization performance depending on the
accuracy of the angle measurements. As a contribution to resection for spacecraft
navigation, we considers the dynamic image estimation problem based on radio
interferometry, i.e. image of radio source power, where the measurements are
sample covariance matrices (SCMs). Considering the case where several measure-
ments are available as well as a known dynamic linear model of image evolution,
a.k.a a linear state model, the minimum mean-squared error image estimator
(MMSE) is given by the Kalman filter (KF) or one of its variants. However stan-
dard Kalman-like filters are not a priori suitable for the problem at hand since
the measurements (i.e. SCMs) cannot be formulated analytically as a function of
state parameters to be estimated (i.e. radio source power). In fact, this lack of
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analytical formulation can be circumvented by a statistical linear fitting allow-
ing the SCMs to be expressed in terms of the state. This linear fitting introduces
an additive residual noise, equivalent to a measurement noise, whose covariance
matrix depends on the current state, a non-standard case for a measurement
model. The covariance matrix of the residual noise is derived whatever the dis-
tributions of the radio sources and of the additive noise at the samples level,
unveiling the contribution of their multivariate kurtosis. The proposed method
is evaluated on simulated data representative of a dynamic radio interferometry
framework. The results show that the proposed method is capable of effectively
tracking moving radio sources in complex scenes with theoretical guaranties when
the signal multivariate kurtosis is known.

Keywords: Kalman filter, Sample covariance matrix, Interferometry, Resection
problem

1 Introduction

Cameras, telescopes, and similar tools provide essential information for today’s
spacecraft. These devices serve various purposes, such as guiding, navigation and posi-
tioning. Relying on a known object attitude, digital images are used to identify known
landmarks in the observed scene to their apparent pixel locations. In the context of
guiding spacecraft, it is also known as ”angles-only” optical navigation [1]. Triangula-
tion (intersection or resection) from images is used in space navigation challenges like
finding your way based on known landmarks, tracking objects using angles, and even
guiding spacecraft with the help of stars for interstellar journeys [1]. We place our-
selves in the context of resection, i.e. the observer estimates its unknown location by
using angle measurements to points at known locations (i.e. landmarks). For instance,
using resection, one can figure out where a spacecraft is in cislunar space by look-
ing at known satellites or during interplanetary missions by tracking asteroids and
planets [2, 3]. As a contribution to resection for spacecraft navigation, we tackle the
dynamic stars image estimation problem based on radio interferometry, i.e. image of
radio source power, where the measurements are sample covariance matrices (SCMs),
a.k.a visibility matrices [4]. Indeed, such radio interferometric images estimate both
power and direction of arrival (DOA) of a radio source, and allow to identify the
DOA of radio sources of known power, provided that the power estimation is accurate
enough. We consider the case where several measurements are available as well as a
known dynamic linear model of image evolution, a.k.a a linear state model.

The design and use of state estimation techniques is fundamental in a plethora of
applications, such as robotics, tracking, guidance and navigation systems [5–7]. For
a linear dynamic system, the Kalman filter (KF) is the best linear minimum mean
square error (MSE) estimator. The most widespread solution for nonlinear systems is
to resort to system linearization, leading to the so-called linearized or extended KF
(EKF) [7]. In both cases, as well as for more advanced techniques such as sigma-point
filters [8], the main assumption is a perfect system knowledge [9]: (i) known process
and measurement functions, including their parameters, (ii) known inputs and (iii)
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noise statistics (i.e., first and second order moments for the KF and EKF). Thus,
usage of KF may not be possible or of poor performance if one (or more) of the above
requirements is not met [10].

Consequently, at first sight, Kalman-like filters do not seem to be usable for the
problem at hand since, although each individual sample may adhere to a linear para-
metric model, the finite horizon SCMs cannot be formulated analytically as a function
of state parameters to be estimated (radio source power). Fortunately, this lack of
analytical formulation can be circumvented by a statistical linear fitting, at least
under the assumptions of: a) a deterministic dynamic state model (no state noise),
and b) instantaneous linear observations from multiple radio sources in the presence
of additive noise (stochastic observation model), when the radio sources are mutually
independent and independent from the noise. The proposed linear fitting allows the
SCMs to be expressed in terms of the state parameters and introduces an additive
residual noise, equivalent to a measurement noise, whose covariance matrix depends
on the current state parameters, a non-standard case for a measurement model.
The covariance matrix of the residual noise is derived whatever the distributions of
the radio sources and of the additive noise at the samples level, unveiling the contri-
bution of their multivariate kurtosis [11] whose values depend on whether the radio
sources and noise distributions are heavy or light tailed. To support the discussion,
the proposed method is evaluated on simulated data representative of a dynamic radio
interferometic imaging framework.

2 Measurement Model

Let us consider a network composed of M antennas receiving signals at consecutive
short time integration (STI) intervals [tk, tk + ϵ], k ⩾ 0. During the k−th STI interval,
observations are i.i.d. realizations of a stochastic variable zk ∈ CM×1 consisting of a
linear mixture of signals coming from Q radio sources, sk ∈ CQ×1, in the presence of
an additive noise nk:

zk = Aksk + nk, (1)

with Ak ∈ CM×Q the system response matrix, and sk and nk being independent and
centered complex circular random vectors. Especially, we consider the case where we
only have access to the sample covariance matrix (SCM)

Ĉzk
=

1

N

N∑
n=1

zk(n)zk(n)
H∈ CM×M , (2)

where zk(n) is the n−th realization of zk,N is the number of samples and the subscript

H denotes the hermitian operator, i.e. zHk ≜ (z∗k)
T
. Asymptotically, i.e. when N tends

to infinity, Ĉzk
converges in probability to

Czk
= E

[
zkz

H
k

]
= AkE[sksHk ]AH

k +Cnk
.

(3)
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In practice, Ak is known and Cnk
∈ CM×M is known or can be measured at desired

precision.
Considering mutually independent source signals and denoting xk ∈ RQ×1

+ the
vector composed of individual source signal powers, a.k.a. intensities, the source signals
covariance matrix is diagonal and writes

E[sksHk ] ≜ diag (xk) ∈ RQ×Q, (4)

using the vector-to-matrix diag operator. Assuming independence among all nk and
sl for k, l ⩾ 1, the objective is to estimate the intensities xk, under the state model

xk = Fk−1xk−1, (5)

where the state-transition matrix Fk−1∈ RQ×Q is known a priori.

2.1 Linear discrete state-space model

One can construct a linear observation model in the asymptotic case, using the
vectorized covariance matrix as observation, i.e.

vec (Czk
) = [A∗

k ∗Ak]xk + vec (Cnk
) , (6)

with ∗ being the column-wise Kronecker product, also called the Khatri–Rao prod-
uct [12]. However, such linear model does not apply in the non asymptotic case. In
order to circumvent this limitation, we propose to apply a statistical linear fitting
model based on (6) where measurements are the vectorized SCMs, which are con-
catenated with their complex conjugates for the sake of optimality (see Appendix A),
i.e.

yk ≜

 vec
(
Ĉzk

)
vec
(
Ĉ∗

zk

) ∈ C2M2×1. (7)

At iteration k, the observation model is defined as

Hk ≜

[
A∗

k ∗Ak

Ak ∗A∗
k

]
∈ C2M2×Q, (8)

and the observation residual is defined as

vk ≜ yk −Hkxk. (9)

The observation residual vk corresponds to the approximation error of the vectorized
SCM by the linear model Hkxk.

In the following, a Kalman filter is derived for the estimation of xk based on SCMs
measurements. vk is considered as the observation noise according to the standard
KF formalism. This corresponds to a non-standard linear discrete state space (LDSS)
model for which the quantities of interest xk are involved in the observation noise.
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Section 3 design the KF in accordance with the definition of vk, that will induce xk

to appear in the KF algorithm. When needed, in particular in the covariance matrix
of vk, it is proposed to replace xk by an estimate in order to conserve the underlying
structure.

3 Design of the Kalman filter

3.1 Kalman filter existence

For such a LDSS model, without state noise, one needs to verify that

Cvk,yl
= E

[
(vk − E [vk]) (yl − E [yl])

H
]

(10)

is null for k ⩾ 2 and l < k in order to prove the existence of a Kalman filter [9]. The
verification is straightforward since yk and yl are independent and xk is deterministic,
i.e.

Cvk,yl
=E

[
(yk −Hkxk − E [yk −Hkxk]) (yl − E [yl])

H
]

=E
[
(yk − E [yk]) (yl − E [yl])

H
]

=Cyk,yl

=0.

(11)

3.2 Identification of first and second order statistics

The next step consists in evaluating the first and second order statistics of the
observation noise.

3.2.1 Mean of the observation noise

Since Ĉzk
is an unbiased estimate of Czk

, one has that

E[yk] =
[
vec (Czk

)
T
, vec

(
C∗

zk

)T ]T
=Hkxk + va

k,
(12)

where

va
k =

[
vec (Cnk

)
T
, vec

(
C∗

nk

)T ]T
(13)

is the asymptotic measurement noise. From (9), one obtains that E[vk] = E[yk]−Hkxk

and therefore
E[vk] = va

k. (14)
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3.2.2 Covariance of the observation noise

As xk is deterministic, one obtains Cvk
= Cyk

, with

Cyk
=E

[
(yk − E [yk]) (yk − E [yk])

H
]

=E


 vec

(
1
N

N∑
n=1

zk(n)z
H
k (n)

)
− E

[
vec

(
1
N

N∑
n=1

zk(n)z
H
k (n)

)]
vec

(
1
N

N∑
n=1

zk(n)
∗zTk (n)

)
− E

[
vec

(
1
N

N∑
n=1

z∗k(n)z
T
k (n)

)]


×

 vec

(
1
N

N∑
n=1

zk(n)z
H
k (n)

)
− E

[
vec

(
1
N

N∑
n=1

zk(n)z
H
k (n)

)]
vec

(
1
N

N∑
n=1

zk(n)
∗zTk (n)

)
− E

[
vec

(
1
N

N∑
n=1

z∗k(n)z
T
k (n)

)]


H


=
1

N
E

[(
vec
(
zkz

H
k

)
− E

[
vec
(
zkz

H
k

)]
vec
(
z∗kz

T
k

)
− E

[
vec
(
z∗kz

T
k

)] )( vec
(
zkz

H
k

)
− E

[
vec
(
zkz

H
k

)]
vec
(
z∗kz

T
k

)
− E

[
vec
(
z∗kz

T
k

)] )H
]

=
1

N
C( z∗

k ⊗ zk

zk ⊗ z∗
k

),
(15)

where ⊗ is the usual Kronecker product, such that z∗k ⊗ zk = vec(zkz
H
k ), zk ⊗ z∗k =

vec(z∗kz
T
k ) and zk(n) are N independent replicates of zk. Finally, one has that

Cvk
=

1

N

[
Cz∗

k⊗zk
Cz∗

k⊗zk,zk⊗z∗
k

C∗
z∗
k⊗zk,zk⊗z∗

k
C∗

z∗
k⊗zk

]
. (16)

Based on the independence of source signals and noises as well as their circu-
larity, Appendix B develops expression of Cz∗⊗z with respect to Kronecker product
properties. After dropping the index k in order to shorten expressions, one obtains

Cz∗⊗z =CT
z ⊗Cz +

Q∑
q=1

(
a∗q ⊗ aq

) (
a∗q ⊗ aq

)H
ρsqxq

2

+Cn∗⊗n −CT
n ⊗Cn.

(17)

for source signals (sq)q=1,...,Q and noises (nm)m=1,...,M following any distributions,

where xq = E
[
|sq|2

]
is the q−th coordinate of x, aq is the q−th column of A and

ρsq =
E
[(
s∗qsq

)2]
xq

2
− 2 (18)

is the normalized multivariate kurtosis of sq [11].
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Finally, note that for

P =

M∑
m=1

M∑
m′=1

(em ⊗ em′) (em′ ⊗ em)
T
, (19)

with (e1, . . . , eM ) the canonical basis of RM , one obtains that

eTm+M(m′−1)Cz∗⊗zPel+M(l′−1) = eTm+M(m′−1)Cz∗⊗zel′+M(l−1) (20)

from which the following equality holds:

Cz∗⊗z,z⊗z∗ = Cz∗⊗zP, (21)

for any distribution.

Independent noise components

In particular, for a vector n composed of independent variables nm, Appendix C shows
that the kurtosis of the noise also appears in Cn∗⊗n, which is a diagonal matrix such
that

(Cn∗⊗n)m+M(m′−1),m+M(m′−1) =

{
(ρnm + 1)σ4

nm
, m = m′;

σ2
nm

σ2
nm′ , m ̸= m′,

(22)

where

ρnm
=

E
[
(n∗

mnm)
2
]

σ4
nm

− 2 (23)

and σnm
are respectively the normalized multivariate kurtosis and the variance of nm.

Gaussian noise distribution

For instance, for nm such that Re(nm) and Im(nm) are independent and follows the
same distribution D,

ρnm =
1

2
(kurtosis (D)− 3) . (24)

Since the kurtosis of a univariate real-valued Gaussian random variable is 3, ρnm
= 0

for Gaussian noise, but in general ρnm
̸= 0. Hence, for centered and Gaussian complex

circular noise, one has that
Cn∗⊗n = CT

n ⊗Cn, (25)

from which

Cz∗⊗z =CT
z ⊗Cz +

Q∑
q=1

(
a∗q ⊗ aq

) (
a∗q ⊗ aq

)H
ρsqxq

2, (26)
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Gaussian noise and signal distributions

It simplifies for centered and Gaussian complex circular signal and noise, for which

Cz∗⊗z =CT
z ⊗Cz. (27)

The latter can be proven by remarking that ρsq = 0 in (26), or following Appendix C
since z is a vector of centered and Gaussian complex circular random variables.

3.3 Kalman filter recursion

At iteration k, the current estimate writes

x̂k|k = x̂k|k−1 +Kk

(
yk − ŷk|k−1

)
, (28)

where state and measurement predictions are

x̂k|k−1 = Fk−1x̂k−1|k−1, ŷk|k−1 = Hkx̂k|k−1 + va
k. (29)

The observation noise covariance Cvk
is unknown since it depends on the current state

xk that has to be estimated. An estimate Ĉvk
is used, from which follows that the

innovation covariance matrix Sk|k−1≜ Cyk−ŷk|k−1
and hence the predicted and a poste-

riori estimate error covariance matrices, i.e. Pk|k−1≜ Cxk−x̂k|k−1
and Pk|k≜ Cxk−x̂k|k

respectively, are estimated. The optimal Kalman gain Kk is computed with the
recursion 

P̂k|k−1 = Fk−1P̂k−1|k−1F
H
k−1;

Ŝk|k−1 = HkP̂k|k−1H
H
k + Ĉvk

(πD

(
x̂k|k−1

)
);

Kk = P̂k|k−1H
H
k

(
Ŝk|k−1

)−1

;

P̂k|k = (I−KkHk) P̂k|k−1.

(30)

The measurement noise covariance estimate is constructed with the state prediction
x̂k|k−1. Since there is no non-negativity constraint on the estimation, one expect that
x̂k|k and x̂k|k−1 fluctuate around the mean value xk, such that the estimation of the
KF can include negative intensities. Typically, this corresponds to actual low or null
intensities and those negative estimates are kept in the recursion. On the other hand,
one needs to conserve the positiveness of the estimated measurement noise covariance
matrix, that is to use a projection of x̂k|k−1 on a certain domain D ⊆ RQ×1

+ (which
remains to apply a threshold on x̂k|k−1 coordinates). Hence, the considered noise

covariance estimate is Ĉvk
(πD

(
x̂k|k−1

)
), where πD is the projector on D. Even though

it is crucial that negative values of x̂k|k and x̂k|k−1 are retained in the recursion (29)
to fit with the analytic recursion (30) [5], the estimate that must be considered in
physical application is indeed its thresholded version πD

(
x̂k|k

)
(as in Section 4).

3.4 Performance analysis

Since the measurement noise covariance matrixCvk
involves the actual state to be esti-

mated and is thus unknown, the proposed KF is misspecified. Performances obtained
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by applying the designed KF on the actual signal model are suboptimal with respect
to the MSE, i.e. compared to what can ideally achieve the KF with a perfect knowl-
edge of the system (i.e. when Cvk

is known). Following the discussion in [13], the
performance obtained by applying the designed KF on the actual signal model is

Pp
k|k = Cxk−x̂k|k , (31)

and can be estimated by Monte Carlo simulations1. The error covariance matrix P̂k|k
computed by KF recursion (30) is an estimation of Pp

k|k. Typically, poor-quality esti-

mator of Cvk
leads to poor-quality performance estimator P̂k|k which decreases the

true performances Pp
k|k.

An ideal KF, corresponding to the best linear unbiased estimator (BLUE) in the
MSE sense, is constructed by considering the actual measurement noise covariance
Ĉvk

(xk) ≜ Cvk
(not feasible in practice). The error covariance matrix of the ideal

KF, denoted Pa
k|k, is computed by KF recursion and verifies that

Pp
k|k ⩾ Pa

k|k. (32)

There are different sources of misspecification that can combine and decrease KF
performances. Indeed, the very first hypotheses mentioned in Section 2 must be veri-
fied in order for the considered LDSS to apply: independence properties and validity
of the observation and state transition models (i.e. Ak and Fk). Systematic tests can
be applied in order to verify the validity of these hypothesis. Besides this, the pur-
pose of this work lies in the analytical expression of Cvk

and its usage in the KF:

using Ĉvk
(πD

(
x̂k|k−1

)
) constructed from (16) improves performances compared with

default model of Cvk
such as σ2I2M2 (it also improves accuracy of P̂k|k). This becomes

especially true for smaller samples size since estimation errors of Cz∗
k⊗zk

becomes
more significant in Cvk

expression (Cvk
≈ 0 in the asymptotic regime). Once expres-

sion (16) is used, a second source of error concerns Cnk
misspecification (e.g. validity

of the independence assumption of nk coordinates and (nk)m kurtosis) and the signal
kurtosis misspecification. The latter are also more significant for smaller sample sizes.

While x̂k|k is not thresholded during the KF recursion, one may consider πD

(
x̂k|k

)
as a final estimator. Yet performance of πD

(
x̂k|k

)
is not given analytically, but it can

be estimated by Monte Carlo simulations. These can be significantly better than for
x̂k|k, in particular for small or null values.

3.5 Kalman filter initialization

KF formalism supposes that the first and second order moments of x0 and vk for
k ⩾ 0 are known, which in the case of a deterministic state vector xk amounts to
know x0. However, x0 is unknown and must be estimated (which is the aim of the

1Note that the recursive estimation procedure of Pp
k|k presented in [13] is not tractable in practice since

Cvk
is unknown.
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present paper); therefore, the filter must be initialized with an estimate x̂0|0 and its
corresponding mean square error P0|0 = Cx̂0|0 .

A plethora of estimators can be used [14], provided that the associated covariance
is known. Among them, a linear unbiased estimator x̂0|0 is of particular interest since
the unbiased property is conserved by the KF. It can be obtained by a Distortionless
Response Filter (DRF) K0 verifying K0H0 = IQ, which would give

x̂0|0 = K0 (y0 − E [y0]) and P0|0 = K0Cv0
KH

0 . (33)

Among the DRFs, the Minimum Variance Distortionless Filter (MVDRF) given by

K0 =
(
HH

0 C−1
v0

H0

)−1
HH

0 C−1
v0

, (34)

minimizes the covariance (hence the MSE), is used in this work.

However, in some practical cases (including the one under consideration), Cv0 is
not invertible, and a specific form must be used. Based on a compact eigen value
decomposition (EVD) of the measurement noise covariance and a compact singular
value decomposition (SVD) of the measurement model, i.e.

Cv0

compact EVD
= WDWH and H0

compact SVD
= UΣVH ; (35)

for U such that [U U] forms an orthonormal basis of R2M2

and

WHU compact SVD
= UΣVH , (36)

Appendix D shows that the MVDRF writes

K0 = VΣ−1UH −VΣ−1UHWDU
(
UHDU

)−1
Σ−1VHUH . (37)

It is clear from (33) that, any DRF implementation supposes to know the obser-
vation noise covariance matrix Cv0 , which, due to the unconventional construction of
the KF, depends on the current state x0. As for k ⩾ 1, the KF must be computed by
substituting Cv0 by an estimate Ĉv0 .

In the following results, at initialization, the observation noise covariance matrix
Ĉv0

injected in the MVDRF initialization is built with a beamforming estimator

x̂BF
0|0 = diag

(
AH

k

(
Ĉz0

−Cn0

)
Ak

)
⊙ diag (A∗

kAk)
−1

(38)
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where ⊙ is the Hadamar product. By construction

E
[(

x̂BF
0|0

)
q

]
= (x0)q +

Q∑
q′=1,q′ ̸=q

(x0)q′

∣∣aHq aq′
∣∣2∣∣aHq aq
∣∣2 ⩾ (x0)q (39)

for q = 1, . . . , Q, and
(
x̂BF
0|0

)
q
can be considered as an unbiased estimator of an upper

bound of (x0)q and in practice
(
x̂BF
0|0

)
q
≫ (x0)q. Then from Appendix E one obtains

Ĉv0

(
x̂BF
0|0

)
⩾ Cv0

, (40)

which implies that the performance of the KF are upper bounded by P̂0|0 [13] (i.e.

the KF estimate P̂0|0 is pessimistic). In particular,

P̂0|0 ⩾ Pp
0|0 ⩾ Pa

0|0, (41)

which is not necessarily verified for k > 0.

4 Application to dynamic imaging for spacecraft
navigation

As a contribution to resection for spacecraft navigation, we tackle the dynamic stars
image estimation problem based on radio interferometry, i.e. image of radio source
power. Indeed, as higlighted below, such radio interfeometric images estimate both
power (i.e. xq) and DOA of a radio source (i.e. uq in (42)), and allow to identify the
DOA of radio sources of known power, provided that the power estimation is accurate
enough.
For instance, in order to achieve a satisfactory DOA resolution, modern radio astron-
omy observatories are interferometers which consist of a network of M antennas,
possibly scattered around the globe. Considering their respective positions rm ∈ R2,
wavelength λ and gain function gm(.) for m = 1, . . . ,M , the transfer function asso-
ciated to a band-limited signal modulated by a carrier frequency fc = c/λ is given
by

a(u) =

(
g1 (u) e

2jπ
rT1 u

λ , . . . , gM (u) e2jπ
rTMu

λ

)T

, (42)

where u ∈ R2 is the DOA, i.e. the unit vector oriented towards the source of
the signal, and c is the speed of light in a vacuum. Given an image of Q pixels,
there are respectively Q direction of arrivals uq defining the array response matrix
A = (a(u1), . . . ,a(uQ))∈ CM×Q [4]. During the k−th STI interval, signals from the
different radio sources are complex circular, mutually independent. Hereinafter, they
are concatenated in a vector sk∈ CQ×1. The signal received by the network of anten-
nas zk∈ CM×1 is modeled as (1), where nk∈ CM×1 is the measurement noise of the
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interferometer, which is complex circular, Gaussian distributed and independent of
the source signals sk. The observed visibility matrix, i.e. the SCM Ĉzk

∈ CM×M , is
computed as in (2) from N independent and identically distributed realizations of zk.

The proposed formalization of the KF provides an estimate of the time-varying
power of the radio sources based on Ĉzl

measurements for 0 ⩽ l ⩽ k in the case of
a deterministic state model (5) and which can be computed iteratively. The source
power estimation can be used to identify and track landmarks of known power, their
DOAs being used for resection.

4.1 Results

The considered network has a “Y” shape, similarly to the Karl G. Jansky Very Large
Array (VLA) observatory [15] and is composed of 27 independent antennas divided
in three branches. The method is evaluated on a synthetic image composed of Q =
22×22 pixels, with a state-transition model Fk∈ RQ×Q being a rotation matrix which
corresponds to a rotation of the image by a fixed angle of 90 deg between each STI
interval. Fk is supposed to be known from an inertial motion sensor. Without loss
of generality, all the gains gm are considered equal to 1. Different sample sizes are
considered for the SCM construction, that is N = 105 and N = 103 samples of
bivariate signals sk and Gaussian noises nk. A constant normalized noise covariance
matrix is considered as Cnk

≜ IM . Signals have independent real and imaginary parts
following a Laplace distribution, i.e. ρsq = 3/2. The wavelength is taken such that

λ ≜ 1, which remains to express coordinates of antennas as function of the wavelength.

Performances of the KF are illustrated in Figure 1 in terms of MSE, defined as

MSEp
(
x̂k|k

)
= E

(∥∥xk − x̂k|k
∥∥2
2

)
. (43)

Considered images and KF estimates are displayed in Figure 3. The assumed KF

performance obtained from KF recursion M̂SE
(
x̂k|k

)
= trace

(
E
[
P̂k|k

])
, the true

KF performance MSEp
(
x̂k|k

)
= trace

(
Pp

k|k

)
(computed by Monte Carlo simula-

tions) and the lower bound MSEa
(
x̂k|k

)
= trace

(
Pa

k|k

)
(computed by KF with

Ĉvk
(xk) ≜ Cvk

) are given with respect to the number of iterations. It is observed

that for such reasonable configuration, M̂SE
(
x̂k|k

)
⩾ MSEp

(
x̂k|k

)
⩾ MSEa

(
x̂k|k

)
for k ⩾ 0, although it was proved only for k = 0. One shows that those three

(i.e. M̂SE
(
x̂k|k

)
, MSEp

(
x̂k|k

)
and MSEa

(
x̂k|k

)
) appear to converge towards each

other along time. MSEp
(
πD

(
x̂k|k

))
is presented for D = RQ×1

+ , illustrating that the
truncated estimator can achieve better performances than the ideal KF.

Figures 1 and 3 present the results for N = 103 and N = 105. Notably, the KF can
reach the same performance with a lower sample size but with an increasing iteration
number. For N = 105, the true KF MSE is below −50 db10 for k ⩾ 3, while it is for
k ⩾ 120 with N = 103. Indeed, performances increase with the number of samples, i.e.
as the SCM Ĉzk

converges to Czk
. The effect of the sample size N is clearly visible in
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Fig. 1: MSE lower bound MSEa
(
x̂k|k

)
(black circles), MSE predicted by KF

M̂SE
(
x̂k|k

)
(pink boxes), MSE actually achieved MSEp

(
x̂k|k

)
(blue crosses) of the

proposed FK and MSE achieved by the thresholded estimates MSEp
(
πRQ×1

+

(
x̂k|k

))
(green plus signs), for (a) N = 105 and (b) N = 103 samples. Initialization was per-
formed with a MVDRF.

the expression of the observation noise covariance matrix (16): increasing N reduces
the variance of the observation noise vk, and therefore reduces the estimation error.

The MVDRF is limited to a low number of pixels (it can go up to M(M−2) = 675
pixels). Other estimators could be used in a general context, e.g. x̂0|0 ≜ x̂BF

0|0 . Perfor-
mances of the latter are illustrated in Figures 2 and 4. The associated error covariance
matrix expression is not known, and it is considered that P̂0|0 ≜ 2diag

(
x̂0|0 ⊙ x̂0|0

)
.

Two sets of direction of arrival are considered: the same as previously with Q = 22×22
and one with a better resolution of Q = 30× 30. While there is no performance lower
bound for Q = 30 × 30 since Q > M(M − 2), it is shown that the KF still improves
over recursion.

A key model property, in order for the KF to converge, is the validity of Pk|k. For
instance, the proposed filter may not work for high resolution images as the observation
model Hk will be to bad conditioned, corrupting the estimation of Pk|k at each step
(the number of considered direction of arrivals depends on the number of antennas).

5 Conclusion and perspectives

Autonomous spacecraft navigation relies on the availability of trustworthy measure-
ments from which reference elements are tracked. For instance, radio interferometric
images can be used to identify known radio sources from their power, provided that
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Fig. 2: KF performances with a beamforming initialization for different image size:
Q = 22 × 22 (a) and Q = 30 × 30 (b). The MSE lower bound MSEa

(
x̂k|k

)
(black

circles), MSE predicted by KF M̂SE
(
x̂k|k

)
(pink boxes), MSE actually achieved

MSEp
(
x̂k|k

)
(blue crosses) of the proposed FK and MSE achieved by the thresholded

estimates MSEp
(
πRQ×1

+

(
x̂k|k

))
(green plus signs) are given for N = 103.

the estimation is accurate enough. In this context, this work proposes a formaliza-
tion of the Kalman filter for the dynamic estimation of radio source power based on
empirical covariance measurements, considering any signal and noise distributions.
The proposed filter is misspecified but conserves the structure of the observation noise
covariance matrix during the recursion. As such, the state and the filter accuracy are
estimated conjointly. It is shown that the observation noise covariance matrix expres-
sion involves the multivariate kurtosis of the source signals and noise. An application
on simulated data representative of a dynamic radio interferometic imaging framework
was presented, highlighting the applicability of the proposed filter. Given that the
observation model is well conditioned, one can compute a lower performance bound
towards which the predicted and true filter performances converge along iterations.
Future work will focus on state-transition model with additive state noise.
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Appendix A Estimation of real-valued state with
complex measurements

Let consider a linear observation model

y = Hx+ v, y,v ∈ CN , x ∈ RP . (A1)

A complex, affine estimator of x writes x̂ = Ky+a with x̂ ∈ CP , K ∈ CP×N , a ∈ CP

and
Ky = (Kr + jKj) (yr + jyj) = (Kryr −Kjyj) + j (Kryj +Kjyr)

and thus

(Ky + a)− x = (Kryr −Kjyj + ar − x) + j (Kryj +Kjyr + aj) . (A2)
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The mean square error matrix writes

P (K) = E
[
((Ky + a)− x) ((Ky + a)− x)

H
]

= E

[
((Kryr −Kjyj + ar − x) + j (Kryj +Kjyr + aj))

× ((Kryr −Kjyj + ar − x) + j (Kryj +Kjyr + aj))
H

]
= E

[
((Kryr −Kjyj + ar − x) + j (Kryj +Kjyr + aj))

×
(
(Kryr −Kjyj + ar − x)

T − j (Kryj +Kjyr + aj)
T
) ]

=

E
[
(Kryr −Kjyj + ar − x) (Kryr −Kjyj + ar − x)

T
]

+E
[
(Kryj +Kjyr + aj) (Kryj +Kjyr + aj)

T
]

+j

E
[
(Kryj +Kjyr + aj) (Kryr −Kjyj + ar − x)

T
]

−E
[
(Kryr −Kjyj + ar − x) (Kryj +Kjyr + aj)

T
] (A3)

Then ∀w ∈ RP

wTP (K)w= wTE
[
(Kryr −Kjyj + ar − x) (Kryr −Kjyj + ar − x)

T
]
w

+wTE
[
(Kryj +Kjyr + aj) (Kryj +Kjyr + aj)

T
]
w

+ j
(
wTE

[
(Kryj +Kjyr + aj) (Kryr −Kjyj + ar − x)

T
]
w

−wTE
[
(Kryr −Kjyj + ar − x) (Kryj +Kjyr + aj)

T
]
w
)

=E
[(
wT (Kryr −Kjyj + ar − x)

)2]
+ E

[(
wT (Kryj +Kjyr + aj)

)2]
.

(A4)

On the other hand, one may consider the following observation model:(
yr

yj

)
=

[
Hr

Hj

]
x+

(
vr

vj

)
(A5)

for which a real and affine estimator of x writes x̂ = [Kr Kj ]

(
yr

yj

)
+ ar = Kryr +

Kjyj + ar x̂ ∈ RP , Kr,Kj ∈ RP×N , ar ∈ RP . Its mean square error matrix is

P ([Kr Kj ]) = E
[
(Kryr +Kjyj + ar − x) (Kryr +Kjyj + ar − x)

T
]
.

Then, ∀w ∈ RP ,

wTP ([Kr −Kj ])w = E
[(
wT (Kryr −Kjyj + ar − x)

)2] ≤ wTP (Kr + jKj)w

(A6)

16



which leads to

∀w ∈ RP , wTP
(
[Kr Kj ]

b
)
w ≤ wTP

([
Kb

r −Kb
j

])
w ≤ wTP

(
Kb = Kb

r + jKb
j

)
w.

(A7)
Finally, it was proved that the performance of a linear estimator based on the concate-
nation of real and imaginary parts of a complex valued observation is upper bounded
by the performance of an estimator based only on complex measurements. The lat-
ter also apply for the concatenation of complex-valued observations and its complex
conjugate, as presented in this work. The demonstration derives froms the relation[

yr

yj

]
=

1

2

[
IN IN

−jIN jIN

] [
y
y∗

]
. (A8)

Appendix B Covariance of measurement’s
vectorized SCM

This section provides expression of Cz∗
k⊗zk

in order to implement (15). To proceed,
one starts to write

Cz∗⊗z = Rz∗⊗z −mz∗⊗zm
H
z∗⊗z, (B9)

where the subscript k is dropped in order to simplify expressions, with

Rz∗⊗z = E
[
(z∗ ⊗ z) (z∗ ⊗ z)

H
]
, (B10)

and
mz∗⊗z = E [z∗ ⊗ z] . (B11)

The latter is developed from the general form of z

z =

Q∑
q=1

aqsq + n (B12)

as
mz∗⊗z = vec (Cz) , (B13)

where

vec (Cz) = vec

(
Q∑

q=1

xqaqa
H
q + vec (Cn)

)

=

Q∑
q=1

xqa
∗
q ⊗ aq + vec (Cn) . (B14)

The former is developed from
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z∗ ⊗ z =

Q∑
q=1

Q∑
q′=1

a∗q ⊗ aq′
(
s∗qsq′

)
+ n∗ ⊗ n

+

Q∑
q′=1

(sq′n
∗)⊗ aq′ +

Q∑
q=1

a∗q ⊗
(
s∗qn
)
, (B15)

which, given that s, n are independent and composed of respectively Q and M circular
random variables, leads to

Rz∗⊗z =

Q∑
l=1

Q∑
l′=1

Q∑
q=1

Q∑
q′=1

(
a∗q ⊗ aq′

)
(a∗l ⊗ al′)

H
E
[
s∗qslsq′s

∗
l′
]
+

(
Q∑

q=1

a∗q ⊗ aqx
2
q

)
E [n∗ ⊗ n]

H

+

(
Q∑

q=1

x2
qE
[
(n∗ ⊗ aq) (n

∗ ⊗ aq)
H
])

+

Q∑
q=1

x2
qE
[
(n∗ ⊗ aq)

(
a∗q ⊗ n

)H]

+

Q∑
q=1

x2
qE
[(
a∗q ⊗ n

)
(n∗ ⊗ aq)

H
]
+

Q∑
q=1

x2
qE
[(
a∗q ⊗ n

) (
a∗q ⊗ n

)H]

+ E [n∗ ⊗ n]

(
Q∑

q=1

a∗q ⊗ aqx
2
q

)H

+ E
[
(n∗ ⊗ n) (n∗ ⊗ n)

H
]

(B16)

where xq ≜ E
[
|sq|2

]
. Since

E
[
s∗qslsq′s

∗
l′
]
=


xqxq′ , if q = l ̸= q′ = l′;
xqxl , if q = q′ ̸= l = l′;

E
[
|sq|4

]
, if m = l ̸= l′ = m′;

0 , elsewhere,

(B17)

and

E
[
(n∗ ⊗ aq) (n

∗ ⊗ aq)
H
]
= E

[
nnH

]∗ ⊗ aqa
H
q

= C∗
n ⊗ aqa

H
q

E
[
(n∗ ⊗ aq)

(
a∗q ⊗ n

)H]
= E

[(
n⊗ a∗q

) (
a∗q ⊗ n

)T ]∗
= 0

E
[(
a∗q ⊗ n

)
(n∗ ⊗ aq)

H
]
= E

[(
a∗q ⊗ n

) (
n⊗ a∗q

)T ]
= 0
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E
[(
a∗q ⊗ n

) (
a∗q ⊗ n

)H]
= a∗qa

T
q ⊗ E

[
nnH

]
=
(
aqa

H
q

)∗ ⊗Cn

one has that

Rz∗⊗z =

Q∑
q=1

Q∑
q′=1

(
a∗q ⊗ aq′

) (
a∗q ⊗ aq′

)H
xqxq′

+

Q∑
q=1

Q∑
q′=1

(
a∗q ⊗ aq

) (
a∗q′ ⊗ aq′

)H
xq′xq

+

Q∑
q=1

(
a∗q ⊗ aq

) (
a∗q ⊗ aq

)H (E [(s∗qsq)2]− 2xq
2
)

+

(
Q∑

q=1

xqa
∗
q ⊗ aq

)
vec (Cn)

H
+

((
Q∑

q=1

xqa
∗
q ⊗ aq

)
vec (Cn)

H

)H

+C∗
n ⊗

(
Q∑

q=1

xqaqa
H
q

)
+

(
Q∑

q=1

xqaqa
H
q

)∗

⊗Cn

+ E
[
(n∗ ⊗ n) (n∗ ⊗ n)

H
]
.

(B18)

It results from (B9) that

Cz∗⊗z =

Q∑
q=1

Q∑
q′=1

(
a∗q ⊗ aq′

) (
a∗q ⊗ aq′

)H
xqxq′

+

Q∑
q=1

(
a∗q ⊗ aq

) (
a∗q ⊗ aq

)H
ρsqxq

2

+C∗
n ⊗

(
Q∑

q=1

x2
qaqa

H
q

)
+

(
Q∑

q=1

x2
qaqa

H
q

)∗

⊗Cn +Cn∗⊗n

(B19)
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where ρsq is defined as (18). On the other hand, remarking that

CT
z ⊗Cz =

Q∑
q=1

Q′∑
q′=1

xqxq′
(
a∗q ⊗ aq′

) (
a∗q ⊗ aq′

)H
+

(
Q∑

q=1

xqa
∗
qa

T
q

)
⊗Cn

+CT
n ⊗

(
Q∑

q=1

xqaqa
H
q

)
+CT

n ⊗Cn

(B20)

leads to the final equation:

Cz∗⊗z =CT
z ⊗Cz +

Q∑
q=1

(
a∗q ⊗ aq

) (
a∗q ⊗ aq

)H
ρsqxq

2

+
(
Cn∗⊗n −CT

n ⊗Cn

)
.

(B21)

Appendix C Covariance of a vectorized SCM

Let n be a vector of centered and independent complex circular random variables nm

form = 1, . . . ,M , then for
(
e1, . . . , e

2
M

)
being the canonical basis of RM2

, one has that

eTm+M(m′−1)Cn∗⊗nel+M(l′−1) = CeT
m+M(m′−1)

(n∗⊗n),eT
l+M(l′−1)

(n∗⊗n)

= C(em′⊗em)T (n∗⊗n),(el′⊗el)
T (n∗⊗n)

= C(eT
m′n

∗)⊗(eT
mn),(eT

l′n
∗)⊗(eT

l n)

(C22)

and thus

eTm+M(m′−1)Cn∗⊗nel+M(l′−1) = E [n∗
m′nmn∗

l nl′ ]− E [nmn∗
m′ ]E [n∗

l nl′ ] , (C23)

where m, m′, l, l′ ∈ {1, . . . ,M}.
On one hand, for n being a vector of centered and Gaussian complex circular

random variables, the fourth-order cumulant

κi,j,k,l = E
[
nin

∗
jnkn

∗
l

]
− E

[
nin

∗
j

]
E [nkn

∗
l ]− E [nin

∗
l ]E

[
nkn

∗
j

]
(C24)

is null, i.e. κi,j,k,l = 0, which implies that

E
[
nin

∗
jnkn

∗
l

]
= E

[
nin

∗
j

]
E [nkn

∗
l ] + E [nin

∗
l ]E

[
nkn

∗
j

]
(C25)

and then

eTm+M(m′−1)Cn∗⊗nel+M(l′−1) =E [nmn∗
l ]E [nl′n

∗
m′ ]
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=(Cn)m,l (Cn)l′,m′

from (C23). Finally, one has directly that

Cn∗⊗n = CT
n ⊗Cn. (C26)

On the other hand, for n being a vector of independent and centered complex
circular random variables following any distribution, one has from (C23) that

eTm+M(m′−1)Cn∗⊗nel+M(l′−1) =


E
[
|nm|4

]
− E

[
|nm|2

]2
, if m = m′ = l = l′;

E
[
|nm|2

]
E
[
|nl′ |2

]
, if m = l ̸= l′ = m′;

0 , elsewhere,
(C27)

where E
[
|nm|2

]
= σ2

nm
, E
[
|nl′ |2

]
= σ2

nl′
and

E
[
|nm|4

]
− E

[
|nm|2

]2
= (ρnm + 1)σ4

nm
(C28)

where

ρnm
=

E
[
|nm|4

]
E
[
|nm|2

]2 − 2. (C29)

In particular, ρnm = 0 for Gaussian random variables, which implies (C26).
In summary, it was proved that (C26) applies for a vector n of centered and

Gaussian complex circular random variables, and that (C27) applies for centered and
independent complex circular random variables following any distribution.

Appendix D Computation of the MVDRF

Given a linear observation model

y = Hx+ v, y,v ∈ CN×1, x ∈ CP×1, H ∈ CN×P , (D30a)

such that
rank (H) = P ≤ N, rank (Cv) = R ≤ N, (D30b)

the general form of a DRF is (denoting LH = K)

x̂ = mx + LH
(
y −my

)
=
(
IP − LHH

)
mx + LH (y −mv)

(D31)
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with 
x̂ = x+ LH (v −mv) ;

IP = LHH;

E
[
(x̂− x) (x̂− x)

H
]
= LHCvL.

The MVDRF (provided that it exists) is then the DRF such that

Lb = argmin
L

{
LHCvL s.t. LHH = IP

}
. (D32)

Considering that nor H and Cv are full rank, one denotes

H
compact SVD

= UΣVH , (D33a)

Cv
compact EVD

= WDWH (D33b)

and U, W such that [UU], [WW] are unitary matrices. The considered filter is of the
form

L = UT+ UT (D33c)

with
T ∈ CP×P , T ∈ C(N−P )×P . (D33d)

Thus

LHH = THΣVH (D34)

from which the distortionless condition is equivalent to

T = Σ−1VH . (D35)

One has that

LHCvL =
(
UΣ−1VH + UT

)H
Cv

(
UΣ−1VH + UT

)
=
(
UΣ−1VH + UT

)H
WDWH

(
UΣ−1VH + UT

)
=
(
WHUΣ−1VH +WHUT

)H
D
(
WHUΣ−1VH +WHUT

)
(D36)

with
WHU ∈ CR×(N−P ), rank

(
WHU

)
= Q ≤ min (R,N − P ) . (D37)

Then, one applies a last decomposition

WHU compact SVD
= UΣVH . (D38a)

Given g ∈ CP , one obtains

gH
(
LHCvL

)
g =

∥∥(WHUΣ−1VH +U
(
ΣVHT

))
g
∥∥2
D

(D38b)
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where ∥z∥2D = zHDz. Considering the oblique projector

ΠD
U = U

(
UHDU

)−1
UHD ∈ CR×R, (D38c)

then

gH
(
LHCvL

)
g =

∥∥ΠD
U

(
WHUΣ−1VH +U

(
ΣVHT

))
g
∥∥2
D

+
∥∥(IR −ΠD

U

) (
WHUΣ−1VH +U

(
ΣVHT

))
g
∥∥2
D

=
∥∥∥U((UHDU

)−1
UHDWHUΣ−1VH +ΣVHT

)
g
∥∥∥2
D

+
∥∥(IR −ΠD

U

)
WHUΣ−1VHg

∥∥2
D

(D38d)

from which one can conclude

gH
(
LHCvL

)
g ≥

∥∥(IR −ΠD
U

)
WHUΣ−1VHg

∥∥2
D
,

i.e.

LHCvL ≥ VΣ−1UHW
(
IR −ΠD

U

)H
D
(
IR −ΠD

U

)
WHUΣ−1VH . (D38e)

The equality holds for(
UHDU

)−1
UHDWHUΣ−1VH +ΣVHT = 0

⇕

−Σ−1
(
UHDU

)−1
UHDWHUΣ−1VH = VHT. (D38f)

Let V ∈ C(N−P )×((N−P )−Q) be such that [V V] is a unitary matrix, then since T ∈
C(N−P )×P ,

T =
(
VVH + VVH

)
T = [V V]

[
VHT
VHT

]
,

which leads to

T = −V
(
Σ−1

(
UHDU

)−1
UHDWHUΣ−1VH

)
+ VA, (D38g)

where
A ≜ VHT ∈ C((N−P )−Q)×P (D38h)

and thus

L = U
(
Σ−1VH

)
− UV

(
Σ−1

(
UHDU

)−1
UHDWHUΣ−1VH

)
+ UVA. (D38i)

One deduces that there is an infinity of solutions which minimize LHCvL (D38i) :
since there is no constraint on A, the solution has ((N−P )−Q)×P degrees of freedom.
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One may consider the solution with minimal Frobenius norm

tr
(
LHL

)
= tr

(
(UB− UVA+ UVA)H (UB− UVA+ UVA)

)
= tr

(
BHB

)
+ tr

(
AHA

)
+ tr

(
AHA

)
i.e.

L = U
(
Σ−1VH

)
− UVΣ−1

(
UHDU

)−1
UHDWHUΣ−1VH , (D39a)

by setting A = 0 (i.e. no unnecessarily additional assumption is made).

Appendix E Upper bound of the measurement
noise cocariance

This section proves that for a given estimation x̂k|k verifying
(
x̂k|k

)
q
⩾ (xk)q ∀q ∈

{1, . . . , Q}, one have that Ĉvk
(x̂k|k) ⩾ Ĉvk

(xk), where Ĉvk
(xk) ≜ Cvk

.

Let x, x′ ∈ RQ
+ be such that x′

q ⩾ xq ∀q ∈ {1, . . . , Q}, where the subscript k is
dropped in order to simplify formulas. Since

Ĉz(x) =

Q∑
q=1

xqaqa
H
q +Cn, (E40)

one has that

Ĉz(x
′)T ⊗ Ĉz(x

′)− Ĉz(x)⊗ Ĉz(x) =

Q∑
q=1

Q∑
l=1

(
x′
qx

′
l − xqxl

) (
aqa

H
q

)T ⊗
(
ala

H
l

)
+

Q∑
q=1

(
x′
q − xq

) (
aqa

H
q

)T ⊗Cn

+

Q∑
q=1

(
x′
q − xq

)
CT

n ⊗
(
aqa

H
q

)
,

(E41)

with
(
aqa

H
q

)T ⊗
(
ala

H
l

)
,
(
aqa

H
q

)T ⊗Cn and CT
n ⊗

(
aqa

H
q

)
being three hermitian and

positive matrices. Hence, Ĉz(x
′)T ⊗ Ĉz(x

′)− Ĉz(x)⊗ Ĉz(x) is a linear combination
of positive hermitian matrices with positive coefficients, and thus

Ĉz(x
′)T ⊗ Ĉz(x

′) ⩾ Ĉz(x)⊗ Ĉz(x). (E42)
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On the other hand, from (17), one has that

Ĉz∗⊗z(x
′)− Ĉz∗⊗z(x) = ĈT

z (x
′)⊗ Ĉz(x

′)− ĈT
z (x)⊗ Ĉz(x)

+

Q∑
q=1

(
a∗q ⊗ aq

) (
a∗q ⊗ aq

)H
ρsq

(
x′
q
2 − xq

2
) (E43)

which (from the same argument) yields to

Ĉz∗⊗z(x
′) ⩾ Ĉz∗⊗z(x). (E44)

Finally, remarking that from (16), Cv(x
′)−Cv(x) is the sum of

1

N

[
Cz∗⊗z(x

′)−Cz∗⊗z(x) 0
0 C∗

z∗
k⊗z(x

′)−C∗
z∗⊗z(x)

]
(E45)

and

1

N

[
0 Cz∗

k⊗zk,zk⊗z∗
k
(x′)−Cz∗

k⊗zk,zk⊗z∗
k
(x)

C∗
z∗
k⊗zk,zk⊗z∗

k
(x′)−C∗

z∗
k⊗zk,zk⊗z∗

k
(x) 0

]
(E46)

which are positive hermitian matrices since

CH
z∗
k⊗zk,zk⊗z∗

k
(x) = PTCH

z∗⊗z(x)

= PTCz∗⊗z(x)

= Cz⊗z∗,z∗⊗z(x)

= Cz⊗z∗(x)P

= (Cz∗⊗z(x)P)
∗

= C∗
z∗
k⊗zk,zk⊗z∗

k
(x),

(E47)

one can conclude that
Cv(x

′) ⩾ Cv(x). (E48)
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Fig. 3: Actual images (left) and KF estimates πRQ
+

(
x̂k|k

)
(right) at k = 0, 1, 5 and

30 ((b), (c), (d) and (e) respectively) for N = 105 (middle) and N = 103 (right)

samples. The beamforming estimation (a) is used to initialize Ĉv0 for the MVDRF
estimation (b).
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Fig. 4: Actual images (left) and KF estimates πRQ
+

(
x̂k|k

)
(right) at k = 0, 1, 5 and 30

((a), (b), (c) and (d) respectively) for N = 103 samples.
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