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Abstract

In real world datasets of aerial images, the objects of interest are often miss-

ing, hard to annotate and of varying aspects. The framework of unsupervised

Anomaly Detection (AD) is highly relevant in this context, and Variational Au-

toencoders (VAEs), a family of popular probabilistic models, are often used.

We develop on the literature of VAEs for AD in order to take advantage of

the particular textures that appear in natural aerial images. More precisely we

propose a new VAE model with a Gaussian Random Field (GRF) prior (VAE-

GRF), which generalizes the classical VAE model, and we provide the necessary

procedures and hypotheses required for the model to be tractable. We show

that, under some assumptions, the VAE-GRF largely outperforms the tradi-

tional VAE and some other probabilistic models developed for AD. Our results

suggest that the VAE-GRF could be used as a relevant VAE baseline in place of

the traditional VAE with very limited additional computational cost. We pro-

vide competitive results on the MVTec reference dataset for visual inspection,

and two other datasets dedicated to the task of unsupervised animal detection
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in aerial images.

Keywords: Variational autoencoders, anomaly detection, Gaussian random

fields, aerial images

1. Introduction

This article introduces a new deep probabilistic model followed by its ap-

plication to real world data. First, a new model of Variational Autoencoders

(VAEs) with a Gaussian Random Field (GRF) prior is presented. This offers

a relevant way to model images with strong spatial correlations. Second, the

VAE-GRF is used in the context of Anomaly Detection (AD). More precisely,

we address the real world application of unsupervised detection of animals in

aerial images. Both of these topics are now presented.

1.1. Variational Autoencoders and some extensions

Our work focuses on VAEs. They are generative probabilistic models, widely

used in the context of anomaly detection. They are popular for several reasons.

First, they are derived from a sound probabilistic background and robust train-

ing procedures have been developed for such models. VAEs are also widely

used in unsupervised settings such as ours. Finally, since a VAE is a generative

model, samples can be generated from the model for any kind of purpose once

the model has been trained.

In this article, we introduce the VAE-GRF model for images which makes

use of a prior in the form of a stationary bi-dimensional GRF on the torus.

Indeed, we construct a convolutional latent space in which we assume that

the model learns a compressed representation of the input images. Therefore,

such an approach offers a refinement of the prior distribution over the latent

random variables as compared to the independent and identically distributed

standardized Gaussian prior from the traditional VAE context. We study the
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advantages of the VAE-GRF in terms of modeling. We also demonstrate how

the stationary and torus assumptions are used to develop a model with efficient

computations despite the full covariance structure of the prior.

Over the last few years, several works have considered more complex priors

for VAEs to be able to propose a more relevant modeling of the data. A recent

review is available in [11]. Following this review, our work fall in the category

called distributional VAEs, in which we consider plugging another (prior) dis-

tribution in the VAE model, without modifying the model architecture. Three

main works falls into this category. Hyperspherical VAEs [7] along with VAEs

with Gaussian mixture prior [10] are perharps the most popular works which

refine the prior law but they do not address the question of latent variable cor-

relations. The closest works to ours are perhaps VAEs with Gaussian Process

priors, as explored in [6], [30] or in [19]. Those works propose a Gaussian Process

to model inter-sample correlations, which, by design induces some correlations

on the latent random variables too. However the latent spaces they use are one

dimensional or factorized as Markov chains which differs from the convolutional

latent space we propose. Indeed, they aim at encoding inter-sample correlations

between hidden random variables while we aim at encoding the spatial correla-

tions in the latent space, for each sample. Therefore, following the previously

mentioned review and up to the best of our knowledge, our article is the first

study that addresses the question of spatial correlation within latent variables

of VAEs for image processing. We also propose an efficient way to implement

such a model.

Therefore, as opposed to these approaches, we use a bi-dimensional GRF,

which is more costly and requires different hypotheses to maintain a tractable

model (stationarity and torus). In addition, since AD is not the focus of these

approaches and since it remains unclear how Gaussian Process VAEs could be
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adapted for real-world image processing, we will discard them from comparisons.

1.2. Anomaly Detection in aerial images

In this article, we address the problem of unsupervised detection of animals

in aerial images. Detecting, tracking and counting animals are real-world appli-

cations that are more and more studied in the literature, especially thanks to

the unprecedented availability of Unmanned Aerial Vehicles (UAV) [1] [5] [26].

However, to the best of our knowledge, very few works consider the unsupervised

context, which does not require the tedious and costly annotation step [3]. As

the number of data keeps increasing, it becomes a necessity to develop reliable

unsupervised approaches which can solve these tasks.

In the unsupervised context, we can not use any annotation to learn a rep-

resentation of the animals. Moreover, in the context of animal detection with

UAV, most of the captured images are empty, i.e., they do not contain any

animal. For these reasons, in this article, we resort to the principles of unsu-

pervised AD in order to detect animals. AD is a vast research field and several

reviews have already been published on the topic [34] [27]. An introduction to

AD is proposed in Sec. 3.1. In the context of this article, the AD approaches

we will compare the VAE-GRF to are presented in Sec. 3.3.

1.3. Outline of the article

The outline of the article is the following. We first present the new VAE-

GRF model along with some theoretical backgrounds motivating the work. We

then briefly review unsupervised AD and assess the new VAE-GRF on the AD

task on a standard public dataset (dedicated to visual inspection). Finally, we

use the AD context to perform unsupervised animal detection in aerial images

from two datasets. In all the experiments, the new model is compared with

other state-of-the-art approaches.
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Remark: The code of the VAE-GRF model to reproduce the experiments

presented in this article is available at https://github.com/HGangloff/vae_grf.

2. Variational Autoencoders with Gaussian Random Field prior

2.1. Gaussian Random Fields
2.1.1. Definition

The probability density function of a GRF [33] with mean µµµ and covariance

matrix Σ (forming a set of parameters {µµµ,Σ}) is given by

p(xxx) = (2π)−
n
2 |Σ|− 1

2 exp

(
−1

2
(xxx−µµµ)TΣ−1(xxx−µµµ)

)
, (1)

where |·| refers to the determinant of a matrix and n is the dimension of xxx.

The GRF will be associated to the regular graph defined by an image: a node

is associated to each pixel and nodes linked with each other in the graph are

adjacent pixels (we consider the 8-nearest neighbors for each pixel). Then xxx =

{x}s∈S where S is the set of nodes of the graph.

In the rest of the paper, we will consider GRFs with stationary mean and

stationary covariance matrix, i.e., the mean is the same for each xs and the

covariance between two xs only depends on their distance (distance that will be

defined later).

2.1.2. Spectral properties

In this article, along with the stationarity assumption, we will formulate the

torus assumption on our images. In the torus assumption, the image borders

are supposed wrapped like on a torus. One can observe that a stationary GRF

defined on an image with torus assumption will have a covariance matrix which

is block-circulant with circulant blocks [33]. Therefore, such a covariance matrix

does not need to be fully stored, it is entirely defined by a smaller matrix called

the base matrix. Indeed, for a matrix of dimension lx× ly, its covariance matrix
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C has dimension lxly×lxly. However, if both the stationarity and torus assump-

tions are made, the covariance matrix is block-circulant with circulant blocks

and is entirely defined by its base matrix, base(C), with dimension lx × ly. All

details about circulant and block-circulant matrices can be found in [33]. Ma-

trix operations for block-circulant matrices with circulant blocks are efficiently

computed with the Fourier transforms and are called the spectral properties1.

The formulas we use in the article are given in App. Appendix A.

2.2. VAE-GRF: model definition
2.2.1. Generative model architecture

Recall that VAEs are generative probabilistic models which aim at modeling

a distribution over the observations pθθθ(xxx) with the help of latent random vari-

ables zzz, such that, pθθθ(xxx) =
∫
pθθθ(xxx,zzz)dzzz =

∫
pθθθ(xxx|zzz)pθθθ(zzz)dzzz. However, in VAEs,

computing the posterior pθθθ(zzz|xxx) = pθθθ(xxx,zzz)/pθθθ(xxx) = pθθθ(xxx,zzz)/
∫
pθθθ(xxx|zzz)pθθθ(zzz)dzzz

is intractable (the model likelihood, at the denominator, is, in general, an in-

tractable integral). In VAEs, we thus introduce a variational distribution qφφφ(zzz|xxx)

that aims at approximating pθθθ(zzz|xxx) and whose parameters φφφ are learnt during

the optimization process.

The VAE-GRF model we propose is first composed of a stochastic encoding

network, with input xxx, which maps to a convolutional latent space associated to

the realizations of a random variable zzz, following the ideas from [35] [13]. Thus,

zzz has dimension N = nx × ny × nz (width×height×depth). The outputs of the

encoder, L = diag(σ2
1 , . . . , σ

2
N ) and mmm ∈ RN , parametrize a variational posterior

distribution, qφφφ(zzz|xxx), chosen as independent Gaussian random variables; we then

have qφφφ(zzz|xxx) = N (zzz;mmm,L). For a reason that will be clarified later, we factorize

on the depth dimension such that qφφφ(zzz|xxx) =
∏nz

k=1 N (zzzk;mmmk, Lk), and then Lk =

1For example a one-dimensional circular convolution of a M -length signal has computa-
tional complexity O(M2). This reduces to O(M logM) thanks to the Fast Fourier Transform
algorithm [12].
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diag((σ2
k)1, . . . , (σ

2
k)nxny ). The model is then composed of a stochastic decoder

network whose output λλλ = (λ1, . . . , λlxly ) parametrizes a product of independent

Continuous Bernoulli random variables [25], pθθθ(xxx|zzz) =
∏lxly

k=1 CB(xk, λk). A

realization of this stochastic decoder corresponds to a reconstruction, denoted

x̂xx, of the input image xxx by the model.

2.2.2. GRF prior

Let us first be more specific about the structure of the latent space with GRF

prior with parameters θ̄θθ. We consider the zero-mean stationary and toroidal

GRF prior on the nx × ny dimension2 and we consider the components of zzz to

remain independent on the depth dimension nz. Hence pθ̄θθ(zzz) = N (zzz; 000,Σ) =∏nz

k=1 N (zzzk; 000,Σk), where Σk are Symmetric Positive Definite (SPD) matrices,

and the computations can still be done in a parallel manner on this dimension

because the computations fall back to nz parallel computations involving bi-

dimensional GRFs which shared parameters. We go one step further by sharing

the parameters between these GRFs, thus, pθ̄θθ(zzz) =
∏nz

k=1 N (zzzk; 000,Σ). Note that

such a parameter sharing is also proposed in the one dimensional case of the

factorized Gaussian Process VAEs of [19]. Note also that, since the diagonal

covariance matrix used in the standardized Gaussian prior in the classical VAE

model is comprised in the set of the SPD matrices yielding a GRF, the VAE-

GRF model is a strict generalization of the classical VAE model.

We emphasize the fact that, even when it is not mentioned, we never fully

compute the full covariance matrix Σ but only its base matrix. Then, note that

the estimation of the covariance matrix Σ needs to yield a SPD matrix. In

our work, to ensure this requirement, the covariance matrix Σ is assumed to be

generated by Matern correlation functions [23] which form a class of correlation

2In all the following we consider, without loss of generality, that lx = ly and nx = ny :
square input images and square latent space images.
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functions defined in R2 by the general equation: ∀a ∈ R2,∀b ∈ R2,

ρν(a, b; r) =
21−ν

Γ(ν)

(√
2ν

∥a− b∥t
r

)ν

Kν

(√
2ν

∥a− b∥t
r

)
, (2)

where Γ is the gamma function, Kν is the modified Bessel function of the second

kind, ν is a non-negative parameter, r is the non-negative range parameter and

∥.∥t is the Euclidean distance on an image (of dimensions lx × ly) with torus

assumption. For a = (a1, a2) ∈ R2, b = (b1, b2) ∈ R2, the Euclidean distance on

the torus is defined by

∥a− b∥t =
(
min(|a1 − b1|, lx − |a1 − b1|)2

+min(|a2 − b2|, ly − |a2 − b2|)2
) 1

2

.

(3)

From Eq. (2) several standard correlation functions can be derived:

• the exponential or Matern- 12 (Eq. (2) with ν = 1
2 ) correlation function on

the torus which reads

ρ1/2(a, b; r) = exp

(
−∥a− b∥t

r

)
. (4)

• the Matern- 32 (Eq. (2) with ν = 3
2 ) correlation function on the torus which

reads

ρ3/2(a, b; r) =

(
∥a− b∥t

r
+ 1

)
exp

(
−∥a− b∥t

r

)
. (5)

• the Gaussian or Matern-∞ (Eq. (2) with ν → ∞) correlation function on

the torus which reads

ρ∞(a, b; r) = exp

(
−
(
∥a− b∥t

r

)2
)
. (6)

These instances of the Matern correlation function are commonly used in spa-

tial statistics [14] [23]. They differ in the way they induce a decrease with

the distance in the correlation between the random variables. Fig. 1 illustrates

the different correlation functions that will be experimentally compared in Ap-
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Figure 1: Illustration of some specific instances of Matern correlation function. We have r = 2
for all curves.

pendix Appendix B.1.

Note that to form the covariance matrix, it remains to multiply the corre-

lation function with the GRF variance σ2, leading to the following covariance

between two random variables (zk)s and (zk)s′ , ∀k ∈ {1, . . . , nz}:

Cov((zk)s, (zk)s′) = (Σ)s,s′ = σ2ρ(s, s′; r). (7)

We also note that the variance parameter σ2 and the range r are constants

for the whole GRF to respect a stationary covariance structure (and for all

the nz GRFs). Since we assume that the mean parameter µµµ = 000, the set

of parameters defining the GRF prior is θ̄θθ = {r, σ2}. In our approach, the

prior parameters will be learnt as additional parameters for the network by log-

likelihood maximization of the observed image xxx over which we also assume the

same GRF structure as prior. This latter GRF has parameter {r̃, σ̃2}. Using the

estimation of θ̄θθ, we get the GRF over zzz parameter with the assumed relations:
rk = λr̃,

σ2 = σ̃2,

(8)

where λ is set to the ratio of the latent image size over the input image size:

λ = ⌊nx

lx
⌋ = ⌊ny

ly
⌋. The details about these computations are given in Sec. 2.3.2.
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Remark: Importantly, in the VAE-GRF, the encoder, the latent space

and the decoder of the model have exactly the same number of parameters

as the classical VAE and, overall, the VAE-GRF does not make use of any

additional module. We only need to store two more scalar parameters in the

VAE-GRF model: the range and the variance of the prior. Indeed, we propose

a refinement in the prior modeling, yielding improved results, thus with a very

limited additional computational cost.

2.3. Training the model

Classically, VAEs are trained by maximizing a lower-bound on the log-

likelihood, called the Evidential Lower Bound (ELBO), denoted Eθθθ,φφφ(xxx), which

reads

log pθθθ(xxx) ≥ Eqφφφ(zzz|xxx)[log pθθθ(xxx|zzz)]−KL(qφφφ(zzz|xxx)||pθ̄θθ(zzz))︸ ︷︷ ︸
Eθθθ,φφφ(xxx)

, (9)

where KL denotes the Kullback-Leibler divergence between two probability dis-

tributions.

For more flexibility in the training, we use the β-ELBO [18] (with an addi-

tional stop gradient operator) which reads

Eθθθ,φφφ,β(xxx) = Eqφφφ(zzz|xxx)[log pθθθ(xxx|zzz)]− βKL(qφφφ(zzz|xxx)||pθ̄θθ(zzz)). (10)

The reason for introducing the β scalar is that we can modulate how strong

we want the posterior to fit to the prior, in other words, how strong the GRF

assumption is.

Then, the VAE-GRF is trained by alternatively optimizing the prior param-

eters θ̄ and the VAE-GRF parameters (θθθ,φφφ) by maximizing, respectively, the
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log-likekihood and the ELBO:
maxθ̄θθ log pθ̄θθ(xxx),

maxθθθ,φφφ Eθθθ,φφφ,β(xxx).

(11)

From the practical viewpoint we use the Adam optimizer [20] to update the

VAE-GRF parameters. On the other hand, we use the Rprop optimizer [32] to

update the two prior parameters, thus benefiting from an adaptative learning

rate.

2.3.1. The ELBO term

The ELBO is composed of a first term similar to a cross-entropy which favors

reconstructions similar to the input, it is called the reconstruction term and its

computation is the same as classically done in VAEs. The Kullback-Leibler

divergence term3 can be interpreted as a regularization term which pushes the

posterior to match the prior during the training. We have by definition

KL(qφφφ(zzz|xxx)||pθ̄θθ(zzz)) = Eqφφφ(zzz|xxx)

[
log

qφφφ(zzz|xxx)
pθ̄θθ(zzz)

]
, (12)

and we can show that

KL(qφφφ(zzz|xxx)||pθ̄θθ(zzz)) = KL(N (zzz;mmm,L)||N (zzz; 000,Σ)),

=
1

2

nk∑
k=1

(
− log|Lk| − nxny + log|Σ|

+ tr(Σ−1mmmkmmm
T
k ) + tr(Σ−1Lk)

)
,

(13)

where tr refers to the trace operator. In Sec. 2.4, we explain how the compu-

tations of Eq. (13) can remain cheap in our VAE-GRF model, thanks to the

stationary GRF prior on torus.

3In this section, we ignore the stop gradient operator whose role has been clarified in the
previous section.
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Remark: In the common case of a VAE with a standardized Gaussian as

prior [21], Eq. (13) falls back to

KL(qφφφ(zzz|xxx)||pθ̄θθ(zzz)) = KL(N (zzz;mmm,L)||N (zzz; 000, I)),

=
1

2

N∑
i=1

(
− log σ2

i − 1 +m2
i + σ2

i

)
.

(14)

2.3.2. The log-likelihood term

The second term of the loss function is the log-likelihood of the observed

image upon which we assume a stationary GRF prior on the torus. With θ̄θθ

defined as before, we have

log pθ̄θθ(xxx) = − lxly
2

log 2π − 1

2
log|Σ̄| − 1

2
xxxT Σ̄−1xxx, (15)

where Σ̄ is the covariance matrix generated from the selected correlation function

and the parameter θ̄θθ. Again, the spectral properties are usable, and the details

for the computation of Eq. (15) are given in Sec. 2.4.

2.4. Computational efficiency

Recall that the stationarity of the GRF and the torus assumption make the

properties detailed in Sec. 2.1.2 usable. The latter are a critical element in our

approach. We now detail how the terms in the objectives (Eq. (11)) can be

efficiently computed both in terms of time and memory complexity. We review

each of the terms that are found in Eqs. (13) and (15). A naive computation of

these terms would be impossible because they would lead to excessive memory

allocations for standard GPUs. Thus, in the VAE-GRF:

• All determinants can be computed directly with Eq. (A.3).

• All matrix inversions can be computed with Eq. (A.1).

• The term tr(Σ−1mmmmmmT ) can be computed by first computing Σ−1mmm. We
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then multiply this result element-by-element with mmmT and sum the result-

ing vector.

• The term tr(Σ−1L) is equivalent to multiplying each element of the di-

agonal matrix L = diag(σ2
1 , . . . , σ

2
n) by the element at position (0, 0) of

matrix Σ−1 and then summing the resulting matrix.

Note that all the operations involve the base matrices of the full covariance

matrices and thus, no matrix with greater dimension than nx × ny is stored

or allocated. Moreover, an increase in time efficiency is also due to the use of

Fourier transforms in the spectral properties. This way, all these operations

can be implemented on GPU, differentiated and computed in a batched manner

thanks to the Pytorch [29] library.

Example: Let us consider, for example, the naive computation of Σ−1mmmk

(with a non stationary Σ−1). In such case Σ−1 has dimension 1024 × 1024

and we would need to allocate batches of size 1024 × 1024 × 256. Consider a

batch size of 16 and 32-bit float precision, the latent space alone would require

16 × 1024 × 1024 × 256 × 32bits ≈ 16GBytes without our specific hypothesis.

This represents allocations for the computation of the KL term only and thus

illustrates that the procedure we develop is crucial for the VAE-GRF to be

implemented on standard GPUs.

3. Unsupervised anomaly detection

3.1. Principle

Anomaly Detection (AD) refers to the task of detecting observations that

deviate from some underlying concept of normality [16]. It is an popular research

topic with a vast literature [31] but recently, it has been revolutionized by deep

learning approaches which have yielded new state-of-the-art results thanks to the
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unprecedented possibilities of capturing and modeling the normality [34]. The

most popular family of approaches to AD is composed of the reconstruction-

based methods, in which distances (ℓ-2 distance, SSIM distance [37], etc.) are

computed between the inputs and the reconstructions in order to locate the

anomalies. The summary works of [2] and [38] illustrate these approaches upon

which we base our work.

The principle of unsupervised AD is the following. A representation of the

normality is learnt thanks to a deep model which is trained on normal samples

devoid of anomalies. Then, at testing time, metrics can be used to detect a

change in behaviour of the model when the latter is presented an anomalous

sample. VAEs and Vector Quantized (VQ)-VAEs are popular models for this

unsupervised task. The former models have appeared first [2] [38] [22] [9] while

the latter models have been explored very recently [36] [13].

Remark: Strictly speaking, in the setting of this article, the approach

should be called weakly supervised since some supervision is needed to make

sure the training is done only on images without anomalies. However, in this

context, unsupervised and weakly supervised are found interchangeably in the

literature.

3.2. VAE-GRF for Anomaly Detection

We now precisely describe our VAE-GRF model for AD. The model is clas-

sically trained on a dataset of normal samples to learn a representation of the

normality. Then, we propose to detect the anomalies at testing time from an

original metric defined on the latent space coupled with a reconstruction based

metric.

We show that the VAE-GRF is a robust approach, competitive with com-

parable approaches from the state-of-the-art provided that some assumptions

15



Input xxx
Encoder

pθθθ(zzz) = N (zzz,000, I)

Classic VAE

pθθθ(zzz) = N (zzz,000,Σ)

VAE-GRF

Decoder
Reconstruction x̂xx

Figure 2: The classic VAE and VAE-GRF architectures. We illustrate the pixel-wise MAD
metric (Eq. 16) computed from the latent space in both cases. The interpretability and
improved results of the metric can be seen in the case of the VAE-GRF as opposed to VAE
with classical standardized Gaussian prior.

hold on the datasets. Indeed, we will show that the new metric defined on the

latent space requires, as expected, that the stationary and torus assumptions

made for the GRF hold. This is the case for some texture images as we illustrate

in Sec. 3.5, and also for some aerial images in remote sensing as we present in

Sec. 4.

Let us now introduce our new metric for AD that will be used in all the

following experiments. Let MAD (from Mean Absolute Deviation) be the nx×

ny anomaly map that we compute from the latent space. Each of the pixel of

the anomaly map is computed as the mean absolute deviation from the mean

of the same location of the output of the convolutional encoder zzz, i.e., ∀x ∈

{1, . . . , nx},∀y ∈ {1, . . . , ny},

MADx,y =
1

nz

nz∑
k=1

∣∣∣∣∣zx,y,k − 1

nz

nz∑
k=1

zx,y,k

∣∣∣∣∣ . (16)

Then, the MAD anomaly map is upsampled to the dimension of the original

image and AD can be performed.

Let us also define a reconstruction-based anomaly map, called SM , which
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uses the Structural Similarity Index Measure (SSIM) [37]. For each pixel i, we

have:

SM(xi) = SSIM(pppi, qqqi) =
(2µpppµqqq + c1)(2σpqpqpq + c2)

(µ2
ppp + µ2

qqq + c1)(σ2
ppp + σ2

qqq + c2)
, (17)

where pppi (resp. qqqi) is a patch around pixel i of xxx (resp. x̂xx). µp, σp and σpq

represent, respectively, the mean, the standard deviation and the covariance of

the patches. The scalars are set to c1 = 0.01 and c2 = 0.03 [37].

From the two previous anomaly maps we form a new original anomaly map

using an element-wise multiplication, which is denoted MAD ⊙ SM . The two

anomaly maps MAD and MAD ⊙ SM are at the core of our contribution for

improved AD, along with the GRF prior. These anomaly maps will then be

compared with state-of-the-art models presented in the next section.

For completeness, Fig. 2 graphically illustrates the model and MAD anomaly

map. The encoder-decoder structure is, however, identical to that of a tradi-

tional VAE. This is remarkable since the improvements we propose are based

only on an original refinement of the probabilistic model.

3.3. Related work

To date, most of the best performing methods are based on feature ex-

traction [8] [24]. The latter always perform slightly better than VAE-based

approaches. However, generative models offer other possibilities to work with

aspects related to the probabilistic framework, sample generation or latent space

interpretability [36] [19].

Such aspects are also crucial to our study, thus we will compare the VAE-

GRF with generative models from the literature: comparable generative models

are based on a baseline VAE and also rely on a modelization refinement. More-

over, we favor related works with no additional modules attached (e.g. discrim-

inator modules [35]). In such setting, we are able to fully evaluate the gain

offered by the GRF prior and the new AD metrics.
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We now list the most notable comparable approaches:

• We compare our MAD and MAD ⊙ SM metrics to the already existing

SM metric introduced in [4].

• An interesting idea quite similar to ours is the Visually Explained Vari-

ational Autoencoder (VEVAE) [22]. However the code is not available

and we were not able to replicate their study. Hence we compare the

VAE-GRF to the VE-VAE on the MVTec experiment only in Sec. 3.5.

• AD metrics similar to ours have also been introduced in [38]. The mag-

nitude of the gradient of the loss |Eθθθ,φφφ(xxx)| is used as a metric to localize

anomalies and it can be multiplied by another anomaly map. Hence we

also straightforwardly test the metric |Eθθθ,φφφ(xxx)| ⊙ SM .

• We also test the iterative procedure proposed by [9]. It consists in a refine-

ment of the VAE reconstruction. We limit this approach to 15 iterations

of projection because it is very slow and empirically performed best. The

refinement is performed before computing the SM anomaly map: we refer

to this approach as SM grad.

Thus, except for VEVAE, all the comparable approaches are from our reim-

plementations because the code were unavailable. All these reimplementations

have the same classic VAE baseline described in Sec. 3.4 (except for the VE-

VAE).

3.4. Network architecture

All the inputs are resized to the size 256× 256 (lx = ly = 256). Then:

• The encoder consists in the first three layers of the ResNet18 neural net-

work [17], followed by a 1×1 convolutional layer setting the depth dimen-

sion to 2 ∗ 256 = 512 (kernel size 1, stride 1 and padding 0).
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• The latent space image has width and height 32 (nx = ny = 32) and depth

nz = 256.

• The decoder is first composed of a deconvolutional layer with input di-

mension 256 and output 128 (kernel size 1, stride 1, and padding 0). It is

then stacked with three deconvolutional layers (kernel size 4, stride 2 and

padding 1), each followed by a ReLU activation and Batch Normalization.

This architecture originates from ideas found in [22] or [13].

3.5. Effects of the GRF prior: experiments on MVTec textures
3.5.1. Presentation

In this section we experimentally investigate the role of the prior in the VAE-

GRF model. This experiment is based on the texture images from the MVTec

dataset [4] which is the standard dataset for AD. The dataset provides normal

and abnormal (defective) RGB images of industrial goods from 15 different

categories. The results reported below compare the VAE-GRF with Matern- 32

correlation function to other models. In Appendix B.1, we compare several

choices of correlation functions.

3.5.2. Results

Tab. 1 and 2 summarize the results in terms of pixel-wise area under the

receiver operating characteristic curve (ROCAUC), computed with the final

anomaly map and the ground truth. This is the classical score used for AD.

Compared to the traditional VAE model (Tab. 1), on the images which respect

the most the stationary GRF assumption, i.e. texture images, the VAE-GRF

performs better, especially when it comes to the new metrics we introduced

(see the MAD or MAD ⊙ SM metric on Leather, Tile and Wood). On images

where the hypothesis of a stationary GRF is the most erroneous (see Carpet or

Hazelnut), the MAD metric does not increase. We then can see the interest

of the refinement in the VAE modeling and the potential gain in the MAD
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Category VAE VAE-GRF
SM MAD MAD ⊙ SM SM MAD MAD ⊙ SM

Stationary
textures

Leather (β = 100) 0.97 0.92 0.94 0.95 0.95 0.980.980.980.980.98
Tile (β = 0.01) 0.93 0.69 0.93 0.93 0.87 0.950.950.950.950.95
Wood (β = 100) 0.70 0.75 0.76 0.78 0.860.860.860.860.86 0.80

Non stationary
textures

Carpet (β = 0.01) 0.91 0.60 0.920.920.920.920.92 0.90 0.61 0.91
Grid (β = 0.01) 0.96 0.66 0.96 0.95 0.76 0.970.970.970.970.97
Hazelnut (β = 1) 0.94 0.94 0.96 0.980.980.980.980.98 0.91 0.980.980.980.980.98

Table 1: ROCAUC scores for pixel-wise AD on the texture images from the MVTec dataset.
Best scores appear in bold and second best are underlined. Scores from the main contribution
of this article are in purple.

metric, as well as its limitations when the stationary GRF prior assumption is

violated. That is why we only focus our analysis on MVTec texture images.

Similar conclusions can be made when we compare to the other approaches in

the literature (Tab. 2). The VAE-GRF is always on par or better than the

state-of-the-art results. The best gains coming from the texture images.

Note also that, globally, both our VAE and GRF-VAE are competitive

against state-of-the-art approaches which also suggests that the proposed archi-

tecture and training procedures are highly relevant and optimized (see Sec. 3.4).

Finally, Fig. 3 illustrates the experiment on some images of the MVTec database.

Remark: The choice of the correlation function as well as the choice of the

hyperparameter β is empirically made in our study through gridsearch proce-

dures that we present in Appendix B.1 and Appendix B.2.

4. Unsupervised animal detection in aerial images with VAEs-GRF

In this section we present how the VAE-GRF model can be used to solve

the real world problem of detection in aerial images, where the landscape can

be assumed to be well modeled by a stationary texture. We focus on the task

of unsupervised animal detection on two different datasets. The context of
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Category VAE-GRF Liu et al. [22] Zimmerer et al. [38] Dehaene et al. [9]
MAD ⊙ SM VEVAE |∇xxxEθθθ,φφφ(xxx)| |∇xxxEθθθ,φφφ(xxx)| ⊙ SM SM grad

Stationary
textures

Leather 0.980.980.980.980.98 0.95 0.55 0.94 0.95
Tile 0.950.950.950.950.95 0.80 0.62 0.78 0.78

Wood 0.800.800.800.800.80 0.77 0.54 0.76 0.74

Non stationary
textures

Carpet 0.910.910.910.910.91 0.78 0.61 0.89 0.89
Grid 0.970.970.970.970.97 0.73 0.54 0.92 0.90

Hazelnut 0.980.980.980.980.98 0.980.980.980.980.98 0.80 0.980.980.980.980.98 0.92

Table 2: ROCAUC scores for pixel-wise AD on the texture images from the MVTec dataset.
Comparisons with other methods. Best scores appear in bold and second best are underlined.
Scores from the main contribution of this article are in purple.
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Figure 3: Selected illustrations for the MVTec experiment. Anomaly maps and reconstructions
from our proposed approach. Top row: original image. Middle row: the anomaly maps
overlaying the VAE-GRF reconstruction. Bottom row: The segmented anomalies. From left
to right: the Leather, Tile, Wood, Carpet, Grid and Hazelnut categories.
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AD described previously is used here. Indeed, many images are empty in our

datasets and we can consider animals as anomalies.

In the following experiments, we show that the VAE-GRF model and the

associated metrics are relevant and provide competitive results against state-of-

the-art approaches.

4.1. Livestock dataset
4.1.1. Presentation

The open Livestock dataset [15] regroups aerial images of livestock over

grassland in which animals have been annotated. We again wish to perform

an unsupervised detection of the animals using an AD approach. It is possible

since we have a total of 3430 empty images to perform training and 890 images

containing at least one animal.

4.1.2. Experiments & Results

The network described in Sec. 3.5 is used here, as well as the pixel-wise AD

metrics from Sec. 3.2.

Tab. 3 gives the score in terms of pixel-wise ROCAUC, for all the models

(we have discarded some of the worst performing approaches, ranking according

to the MVTec results). We can see that the VAE-GRF performs best with the

MAD⊙SM metric. Again, the improvements brought by the GRF prior could

be expected since the images seem to really fit the stationary GRF hypothesis.

Fig. 4 provides a graphical illustration of the experiment over some images of

the dataset.

Remark: The MAD metric is all the more interesting as it is a metric which

is only computed from the latent space, i.e., at testing time, we do not need

to perform any computations with the decoder. This then represents an inter-

esting computational gain (one can calculate that this saves more than 40, 000

two dimensional convolutions when using the decoder described in Sec. 3.4).
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VAE VAE-GRF Zimmerer et al. [38] Dehaene et al. [9]
MAD ⊙ SM MAD ⊙ SM |∇xxxEθθθ,φφφ(xxx)| |∇xxxEθθθ,φφφ(xxx)| ⊙ SM SM grad

ROCAUC 0.77 0.800.800.800.800.80 0.77 0.52 0.68

Table 3: ROCAUC scores for pixel-wise AD on the images from the Livestock dataset. For
VAE and VAE-GRF model, we have β = 0.1. We used the Matern- 3

2
correlation function.

Best scores appear in bold and second best are underlined. Scores from the main contribution
of this article are in purple.
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Figure 4: Selected illustrations of the detection of our model in the Livestock dataset experi-
ment using the VAE-GRF model with Matern- 3

2
correlation function. Top row: original image

with ground truth. Middle row: VAE-GRF reconstruction with the anomaly map overlaid.
Bottom row: ground truth segmentation.

Moreover, being independent of the reconstruction can be very interesting on

complex datasets where reconstructions are unreliable as it will be shown in the

next experiment.

4.2. Semmacape dataset
4.2.1. Presentation

The Semmacape dataset4 comprises 165 aerial images collected in the Gironde

estuary and Pertuis sea Marine Nature Park, France, in 2020. Birds and dol-

4https://semmacape.irisa.fr/
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phins have been manually annotated, the images were then subdivided into

patches giving rise to 345 images with an animal and 138, 544 empty images.

Such a large number of empty images enables us to learn the normality (surface

of the sea) and then to detect animals as anomalies. We will perform pixel-wise

AD assessment with the previously introduced models.

4.2.2. Experiments & Results

The network described in Sec. 3.5 is used here; we are in the same experi-

mental setting as before.

Tab. 4 gives the scores for the models in terms of precision, recall and F1

scores. First of all, probably because of the complexity of the dataset (many

images are corrupted by the sun glare), the SM anomaly map seems particularly

unreliable. Among all comparable models, the VAE-GRF with MAD ⊙ SM

metric seems to be the best performing, we argue that this is due to the fact that

is operates using information from the latent space. It is thus less insensitive

to the reconstructed images, which are of rather poor quality because of the

noise corruption (a low SM metric was observed in practice). We also provide

a comparison to the best results achieved so far on this dataset in [3] with a

much more complex model combining the PaDiM approach [8] and Normalizing

Flows (NF) [28]. We can conclude that our VAE-GRF is competitive with the

PaDIM + NF (which is not a generative approach). We also notice that, when

brought to this complex and real dataset, the performances of the approaches

from [38] and [9] collapse. Fig. 5 graphically illustrates the experiment.

5. Conclusion

We have introduced a stationary GRF prior in the VAE model and shown

how such a more complex prior (with full covariance matrix) can be embedded

in a VAE model while preserving efficient computations. We have also demon-

strated, in the context of AD, that such refinement in the modeling is relevant
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VAE VAE-GRF Zimmerer et al. [38] Dehaene et al. [9] Berg et al. [3]
MAD MAD |∇xxxEθθθ,φφφ(xxx)| |∇xxxEθθθ,φφφ(xxx)| ⊙ SM SM grad PaDiM + NF

F1 0.514 0.7140.7140.7140.7140.714 0.281 0.138 0.099 0.530
Recall 0.677 0.600 0.349 0.134 0.130 0.7570.7570.7570.7570.757

Precision 0.415 0.8810.8810.8810.8810.881 0.236 0.143 0.080 0.408

Table 4: ROCAUC scores on image-wise AD on the Semmacape dataset. Scores for PadiM
+ NF are from [3]. For the VAE and the VAE-GRF model, we have β = 1 and we used the
Matern- 3

2
correlation function. Best scores appear in bold and second best are underlined.

Scores from the main contribution of this article are in purple.
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Figure 5: Selected illustrations of the detection of our model in the Semmacape dataset
experiment using the VAE-GRF model with Matern- 3

2
correlation function. Top row: original

image. Bottom row: VAE-GRF reconstruction with the anomaly map overlaid. Bottom row:
with ground truth bounding box (green) and prediction (red). The right column describes a
typical very complex image, with a lot of sun glares which are moreover confused with the
white bird (at the bottom).
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for specific images, notably, for texture images. To do so, we have introduced

two new metrics yielding competitive results against comparable state-of-the-

art VAE models for AD tasks on several datasets. Our results suggest that the

VAE-GRF might replace the VAE baseline for many tasks, as we show how the

stationary assumption does not introduce any additional computational cost.

Indeed, VAE-GRF might offers an efficient and relevant prior for many practi-

cal applications, especially for the processing of images that exhibit textures.

Since the stationary assumption for the GRF prior remains a strong assump-

tion, future work might consider relaxing this assumption and we might study

ways to introduce non-stationary GRF prior while preserving the tractability of

the model.
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Appendix A. Spectral computations

We now detail the formulas mentioned in Sec. 2.1.2. More details on the ele-

ments of this section can be found in [33]. Very useful properties, linked with the

Fourier transform, are available for circulant and block-circulant matrices. We

only recall the formulas for block-circulant matrices that are used in this study.

In the following properties, DFT2 (resp. IDFT2) is the 2 dimensional (resp.

inverse) Fourier transform, ⊙ is the element-wise matrix multiplication and •

is the element-wise exponentiation of the elements of the matrix. Note that in

the next equations, we consider orthonormal Fourier transforms (normalized by

1√
lxly

, where lx × ly is the matrix dimensionality).

Appendix A.1. Inverse of a block-circulant matrix

Let C be a block-circulant matrix, then we have

base(C−1) =
1

lxly
IDFT2(DFT2(base(C)) • (−1)). (A.1)

Appendix A.2. Product of block-circulant matrices

Let C and D be two block-circulant matrices, then we have

base(CD)=
√
lxlyIDFT2(DFT2(base(C))⊙DFT2(base(D))). (A.2)

Appendix A.3. Eigenvalues of a block-circulant matrix

Let C be a block-circulant matrix, then the matrix filled with the eigenvalues

of C is

Λ =
√

lxlyDFT2(base(C)). (A.3)

Appendix A.4. Product of block-circulant matrix with vector

Let vvv be the column major vector obtained from n × N matrix V, then

uuu = Cvvv is obtained from

U =
√
lxlyDFT2(DFT2(base(C))⊙ IDFT2(V )). (A.4)
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Category VAE-GRF with exponential CF VAE-GRF with Matern- 32 CF VAE-GRF with Gaussian CF
SM MAD MAD ⊙ SM SM MAD MAD ⊙ SM SM MAD MAD ⊙ SM

Stationary
textures

Leather β = 100 0.85 0.91 0.94 0.95 0.95 0.980.980.980.980.98 0.88 0.94 0.95
Tile β = 0.01 0.77 0.83 0.84 0.93 0.87 0.950.950.950.950.95 0.78 0.57 0.77
Wood β = 100 0.73 0.75 0.78 0.78 0.860.860.860.860.86 0.80 0.72 0.68 0.75

Non stationary
textures

Carpet β = 0.01 0.86 0.70 0.90 0.90 0.61 0.910.910.910.910.91 0.86 0.65 0.89
Grid β = 0.01 0.82 0.64 0.85 0.95 0.76 0.970.970.970.970.97 0.82 0.61 0.85
Hazelnut β = 1 0.95 0.80 0.96 0.98 0.91 0.980.980.980.980.98 0.94 0.84 0.96

Table B.5: ROCAUC scores for pixel-wise AD on the texture images from the MVTec dataset.
CF stands for Correlation Function. Best scores appear in bold and second best are underlined.

Appendix B. Additional experiments

Appendix B.1. Impact of the correlation function

We report in Tab. B.5 the results of the VAE-GRF model on the MVTec

dataset for different choice of correlation function use to parameterize the prior.

We see that the results with the Matern-3/2 correlation function are better

and more consistent across the experiments, hence our choice in the rest of the

article. We also find again that the SM metric can always be improved using the

MAD metric, for example, through the straightforward element-wise product

that we proposed in MAD ⊙ SM .

Appendix B.2. Impact of the β hyperparameter

We report in Tab. B.6 the results of the VAE-GRF model on the MVTec

dataset for different choice of the hyperparameter β. First we see that it seems

quite hard to predict the best β a priori. Second, the results when β = 0 (i.e.

when our model becomes a deterministic AutoEncoder (AE)) are in accordance

with those known in the literature for this model (see e.g. [4]). As expected, the

MAD metric gives its worst results when β = 0; the AE model proscribes its

usage. Indeed our hypothesis of GRF prior upon which the metric relies is not
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Category AutoEncoder (β = 0) VAE-GRF with β = 0.01
SM MAD MAD ⊙ SM SM MAD MAD ⊙ SM

Stationary
textures

Leather 0.63 0.80 0.72 0.64 0.80 0.73
Tile 0.93 0.64 0.92 0.93 0.87 0.950.950.950.950.95

Wood 0.78 0.68 0.80 0.75 0.72 0.78

Non stationary
textures

Carpet 0.90 0.38 0.87 0.90 0.61 0.910.910.910.910.91
Grid 0.96 0.46 0.94 0.95 0.76 0.970.970.970.970.97

Hazelnut 0.95 0.93 0.95 0.95 0.90 0.96

Category VAE-GRF with β = 1 VAE-GRF with β = 100
SM MAD MAD ⊙ SM SM MAD MAD ⊙ SM

Stationary
textures

Leather 0.91 0.93 0.96 0.95 0.95 0.980.980.980.980.98
Tile 0.80 0.80 0.84 0.39 0.77 0.65

Wood 0.64 0.79 0.78 0.860.860.860.860.86 0.80 0.80

Non stationary
textures

Carpet 0.86 0.73 0.90 0.47 0.63 0.60
Grid 0.82 0.61 0.84 0.74 0.63 0.74

Hazelnut 0.980.980.980.980.98 0.91 0.980.980.980.980.98 0.980.980.980.980.98 0.90 0.980.980.980.980.98

Table B.6: ROCAUC scores for pixel-wise AD on the texture images from the MVTec dataset.
The Matern- 3

2
correlation function is used. Best scores appear in bold and second best are

underlined.

enforced at all in this case. The lack of interpretability of the latent space is a

common drawback of AE architectures.
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