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Abstract

Despite prior efforts, the vast majority of the AS-level topology
of the Internet remains hidden from BGP and traceroute vantage
points. In this work, we introduce metAScritic, a novel system in-
spired by recommender system literature, designed to infer inter-
connections within a given metro. metAScritic uses the intuition
that the connectivity matrix at a given metro is a low-rank sys-
tem, since ASes employ similar peering strategies according to
their infrastructures, traffic profiles, and business models. This ap-
proach allows metAScritic to accurately reconstruct the complete
peering connectivity by measuring a strategic subset of intercon-
nections that capture ASes’ underlying peering strategies. We eval-
uate metAScritic’s performance across six large metropolitan areas,
achieving an average F-score of 0.88 on various validation datasets,
including ground truth. metAScritic measures more than 86K edges
and infers more than 368K edges, compared to the 13K edges ob-
served for this subset of ASes in public BGP feeds – an increase of
24× what is currently seen. We study the impact of our inferred
links on Internet properties, illustrating the extent of the Internet’s
flattening and demonstrating our ability to better predict the impact
of route leaks and prefix hijacks, compared to relying only on the
existing public view.
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1 Introduction

The Internet comprises tens of thousands of autonomous systems
(ASes), with their interconnections determined by a complex in-
terplay of technical, geographic, commercial, political, and even
historical factors. An accurate and comprehensive view of the re-
sulting topology would greatly benefit operators, researchers and
policy-makers by (i) enabling the characterization of Internet prop-
erties such as resilience at a local and global scale, (ii) building more
faithful models of the Internet to improve the evaluation of novel
solutions, (iii) informing troubleshooting and guiding operations,
and (iv) providing the basis for understanding and predicting the ef-
fects of different stakeholders’ investments (e.g., state and regional
actors) on the network’s infrastructure.

Thus far, the research community has primarily depended on
Border Gateway Protocol (BGP) feeds and traceroute measurements
to create maps of the Internet’s topology for various purposes, such
as Internet modeling [46], detecting security threats [143], mapping
geopolitical tussles [134], and quantifying transit influence [57].

Most of the Internet is invisible from available vantage

points. Despite its criticality, the Internet AS topology is mostly
hidden from existing measurements. ASes typically only make
their peering links available to themselves and their customers
[58]. Hence, the peering links are only visible to vantage points
hosted inside one of the peer ASes or their customer ASes [118],
and no such strategically placed vantage points are available
in most ASes. The exact number of missed interconnections is
unknown, but previous studies indicate that the majority of peering
interconnections are invisible. Ager et al. found that the number of
existing peering links at a single Internet eXchange Point (IXP)
exceeded the total number of visible peering links on the entire
Internet according to publicly available BGP monitors [7]. A 2016
survey by Packet Clearing House (PCH) found nearly 2 million
peering interconnections, almost 20× what was observed by the
publicly available monitors [157]. These invisible links account
for a substantial portion of the total Internet traffic, and so their
detection is vital for developing a comprehensive understanding of
the Internet’s topology [15, 87].

The quantity of invisible links has likely increased because of
Internet flattening, a well-documented phenomenon of increased
peering between ASes that shortcuts the upper (more visible) tiers
of the Internet’s traditional hierarchy [2, 5, 15, 22, 37, 64]. Since
ASes lower in the Internet’s hierarchy and closer to its edge have
(by definition) fewer customers or no customers at all, their peer-
ing links are invisible to most of the Internet [118], and capturing
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them in aggregate would require vantage points spread across an
unrealistically large number of edge ASes. Assuming an optimistic
model where the presence of a single vantage point1 in any AS
could measure the peering links of all its upstreams, the current
set of publicly available vantage points suffice to capture the full
connectivity of only 6% of the ASes announced on the Internet in
September 2023. Consequently, a significant portion of the topol-
ogy remains elusive, despite decades of operators and researchers
making a case for increased visibility [36, 62, 72, 123, 151, 155, 156].
Inferential approaches are necessary. Because decades of effort
have only brought the community dwindling visibility, we argue
that we must stop relying only on measurements to yield our best
understanding of the Internet’s topology—instead, we must employ
inferential approaches to shed light on invisible portions of the
topology. To correctly translate insights from the visible segment of
the topology to the hidden one, we must consider the driving forces
behind AS interconnectivity. The peering strategy of an AS relies
on a complex set of factors. While we can figure out certain factors,
including geographic ones (e.g., presence in shared locations), eco-
nomic ones (e.g., compatibility between the business objectives and
market approaches), or political ones (e.g., diplomatic tension2), oth-
ers remain beyond our grasp, hidden in the evolving strategies that
are known only to insiders (e.g., two network operators disagreeing
on an interconnection3).

Although we cannot directly know these factors, our intuition is
that ASes’ strategies are based in part on known features and are
reflected in visible links, which are the partial outcomes of their
strategies. These features and known links provide information
about the likelihood of a link existing between two ASes. For ex-
ample, ASes that peer with Google are more likely to also peer
with Amazon than ASes that do not peer with Google (Fig. 1), as
they made a decision to connect to a large cloud/content provider
and so may connect to other cloud/content providers for similar
reasons. Additionally, if an AS that peers with Google is also known
to host many end-users and have predominantly inbound traffic,
it increases our confidence that Amazon, which serves a lot of
outbound traffic to end-users, may peer with it. We validate these
intuitions in the context of cloud providers, whose peering we mea-
sure via traceroutes out from the cloud (§2). The challenge lies in
combining topological knowledge obtained from visible links with
meta-information about ASes to capture factors driving peering
strategies and infer which invisible links are likely to exist.
Our solution - metAScritic.We introduce a novel system called
Metro AS Critic, shortened to metAScritic,4 which we designed
to measure and predict interconnections between ASes within a
metropolitan area (metro). Since connectivity in a metro is influ-
enced by factors that make two ASes mutually appealing, we frame

1Here we consider a vantage point to be either a BGP monitor in RouteViews [107] or
RIPE RIS [4] or a probe from RIPE Atlas [130] or Ark [24]
2As an illustrative example, the London Internet Exchange (LINX) has disconnected
Russian telecoms companies Megafon and Rostelecom following the Russian invasion
of Ukraine [108].
3For instance the IPv6 peering disputes that have led Hurricane Electric and Cogent
to have neither a peering nor a transit interconnection [89].
4“Metro” denotes the level of granularity at which we conduct our recommendations,
while “metAScritic” alludes to the website metacritic.com, which compiles reviews
for films, television shows, music albums, and video games, subsequently, settings in
which recommender systems were developed that we adapt to our problem.

the problem of discovering invisible interconnections as a recom-
mendation problem, where the goal is to determine likely peering
partners based on their properties. metAScritic combines knowledge
about AS features and existing connectivity from measurements
to predict which invisible interconnections exist (§3). To be clear,
metAScritic does not infer the business relationship between ASes
(e.g., customer-to-provider or peer-to-peer), nor does it provide
peering recommendations for an AS. Rather, it uses a recommender
system architecture to deduce interconnections likely to exist.

To mitigate the biases in the public measurements that under-
mine the efficacy of the recommender system, metAScritic conducts
targeted measurements to uncover links of ASes with few known
interconnections to capture their peering strategies. By adopting
this method, metAScritic does not just perform measurements; it
does so with the intent of aiding the inferential process.

The paper addresses the challenge of validation in the presence of
limited ground truth by creating a validation dataset that combines
multiple datasets (§4). The results show that metAScritic has an
average precision of 0.89 and a recall of 0.85 on all validation data
considered and for different training and testing splits.

We introduce two frameworks for using metAScritic. The first
progressively adds links from the highest to lower confidence scores,
allowing the construction of extended topologies with inferred links
at a target confidence level, while the second estimates network
properties such as existing paths or estimated catchments as ran-
dom variables, derived from the likelihood of each inferred link’s
existence (§5). We use the links derived from metAScritic in three
case studies: (i) we analyze the measured and inferred links, (ii)
quantify the impact of the additional links on hijack predictions,
and (iii) examine their effect on Internet flattening (§6).

2 Overview of approach

Confronted with the reality that a significant part of the Internet’s
topology is beyond the reach of current measurement techniques
[77, 118], we develop an inferential method. Inferential approaches
introduce a trade-off: they can significantly expand our visibility of
the topology, at the cost of adding uncertainty. For the inferences
to be useful despite their uncertainty, our approach quantifies the
uncertainty associated with each inferred link. This quantification
lets us adjust the trade-off between false positives (selecting only
highly likely links) and false negatives (including lower-likelihood
links) depending on the use case or account for this uncertainty
when applying our inferred topology in practical scenarios. Such a
compromise in precision is worthwhile when it enables a deeper
understanding of the Internet’s structure. For instance, inferential
techniques based on incomplete topology measurements are state
of the art for IP-to-AS mapping [101] and for characterizing AS
relationships [84]. We aim to close the gaps in network topology
by adopting a more flexible definition of topology discovery and
enable research that has been hindered by incomplete data.

To further elucidate the core principles underpinningmetAScritic,
we draw an analogy to a Tinder-like matchmaking system [33]. Just
as Tinder uses a variety of factors—such as shared interests and
geographic proximity—to recommend matches, metAScritic utilizes
business strategies, traffic patterns, and other network character-
istics to predict the likelihood of a peering link. In this analogy,

metacritic.com
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Figure 1: Correlation matrices between the peering relation-

ships of AWS, Google, IBM, Microsoft and (left) five key pub-

licly available features: Peering Policy (e.g., Open vs Selec-

tive), Traffic Profile (e.g., Inbound vs Outbound), Number of

Eyeballs, Size of the Customer Cone, and Country of Regis-

tration; and (right) the existence of other peering links with

other networks: AWS, Google, IBM, Microsoft and Cogent.

Peering Policies and Traffic Profiles provide the most valu-

able information for predicting connections withmost Cloud

Providers. Additionally, identifying a peering link with an-

other cloud provider is more informative than identifying a

connection with Cogent, a Tier 1.

ASes are like users, an AS’s peering strategy resembles a user’s
preferences, and the establishment of a peering link is akin to a
match. Our confidence in these predictions ranges from -1 (indicat-
ing no link likely exists) to 1 (indicating a high likelihood of a link),
reflecting the certainty of our inferences.

Identifying the right granularity for peering link inference.

The vast majority of peering links are established at peering fa-
cilities. However, metAScritic focuses on inferring AS links at the
metro level rather than at the facility level, as the metro level strikes
a practical balance between accuracy and feasibility: it captures
most of the possible interdomain connections while avoiding the
complexities of pinpointing interconnections to a specific peering
facility, which are more challenging to map with existing methods
[70], whereas mapping traceroutes and interconnections to met-
ros is well-supported by existing techniques [28, 48, 95, 137]. The
metro granularity is valuable for applications like latency prediction
[97], Point of Presence (PoP) mapping [149], network troubleshoot-
ing [150], and outage detection [69]. Our metro-level insights can
also be aggregated for AS-level analysis, which has been used for
monitoring BGP hijacks [143], making predictions about anycast
catchments [102, 140–142, 148, 158], improving overlay networks
[76], and interpreting geopolitical tussles on the Internet [57, 134].
Most large interconnection facilities are concentrated in a small
number of metros. According to iGDB [11], only 226 metros host
more than 50 ASes worldwide, and the top 10 metros account for
21% of all ⟨Metro,AS⟩ pairs. This concentration suggests that tar-
geting a limited number of metros will suffice to allow metAScritic
to capture a significant portion of missing links in the Internet’s
topology. While our framework is optimized for metro granularity,
we believe it can be adapted to other granularities in the future.

Understanding the motivations of peering decisions with

data. Peering decisions among ASes stem from multiple underly-
ing factors. These factors will be reflected in the AS’s established
peering interconnections with other ASes. Therefore, the visible
peers of an AS provide information about what may be its invisible
peers. Some AS attributes that reflect or influence its peering prac-
tices are publicly available. For instance, ASes can disclose whether
their traffic is predominantly inbound or outbound and their criteria
for peering—whether open to any requesting AS or more selective
[122]. ASes that host many users typically have heavy inbound
traffic [23] and are likely to connect with cloud/content providers
that host most of the user-facing services on the Internet. ASes
with selective peering policies seek partnerships that offer manifest
value, finding that establishing peering relationships with cloud
providers yields benefits in view of the considerable volume of
traffic these providers generate. Additionally, an AS peering with
one major cloud provider is likely to connect with others, driven
by similar customer demands and performance needs across many
hypergiants’ services.

We corroborated these insights using a dataset of measured (and
validated) peering links from cloud providers [15], and, for a com-
parison with other large networks that have different practices,
supplemented this data with interdomain links from Tier 1 ASes,
according to AS Rank [25].5 Figure 1 depicts the correlation be-
tween various AS properties (columns) and whether the AS peers
with each of four cloud providers (rows). The properties on the left
are various AS features (Peering Policy, Traffic Profile, Eyeballs,
Customer Cone, Country) and, on the right, the presence of peering
links with other cloud providers and Cogent (AWS, Google, IBM,
Microsoft, Cogent) where the color indicates whether the variable
is binary, categorical, or continuous. For categorical features, we
use the correlation ratio [139], while for continuous and binary
features, we compute Pearson’s correlation coefficient. The left side
of the figure highlights the correlations between an AS’s Peering
Policy (e.g., Open, Selective) and Traffic Profile (e.g., Inbound, Out-
bound) and it having a peering link with a given cloud provider. For
example, a correlation ratio of 0.37 between Microsoft and Peering
Policy indicates that an AS’s Peering Policy is moderately predictive
of its likelihood to peer with Microsoft. In particular, ASes with
selective peering policies are more likely to peer with Microsoft
than ASes with other policies. Other policies, such as open policies,
are less correlated, resulting in a moderate positive total correla-
tion. Overall, we find that ASes with a selective peering policy and
heavy inbound traffic are the most likely to be connected to cloud
providers. The right side shows moderately strong correlations
(0.27-0.54) between connections with one cloud provider and the
existence of a link with other cloud providers: an AS known to
peer with Microsoft is more likely to peer with Google than an
AS known to not peer with Microsoft. On the other hand, we see
no significant correlation with Cogent (0.02-0.06), nor with any
other Tier 1 ASes (results not shown, but correlations fall between
0.01 and 0.12). Furthermore, these correlations offer complemen-
tary insights, such that combining data on Peering Policy, Traffic

5Past research has shown that the peering connectivity of these Tier 1 ASes is fully
visible via the publicly available BGP collectors [120].
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Profile, and the existence of connections with other cloud providers
provides more information than any single feature or link alone.
Modeling the factors that shape peering decisions. The struc-
tured nature of peering decisions, where ASes with aligned business
or technical incentives are more likely to form links, suggests that
the connectivity matrix of ASes is likely to be shaped by the prop-
erties of the ASes. The limited number of underlying motivations—
whether it is traffic patterns, geographic proximity, or customer
demands—means that the set of plausible strategies is likely small,
resulting in a connectivity matrix that can be efficiently summa-
rized with few dimensions, making it low-rank. Low-rankedness
implies that, with the right model, we can accurately predict invisi-
ble peering links using the factors embodied in the visible ones. We
believe this low-rankedness holds for two main reasons:

First, the establishment of IXPs encourages multilateral peer-
ing relationships, often resulting in dense mesh networks among
ASes that use an IXP’s route server to exchange routes. The full
connectivity between this subset of ASes can be represented as a
connectivity matrix composed entirely of 1s, a matrix of rank 1.
While some ASes may choose not to connect to the route server or
restrict peering with specific members, we confirmed that low-rank
property holds in the 18 IXPs for which we found public peering
matrices (e.g., [92]). The rank ranges between 3.7% (NAPAFRICA
[111]) and 26% (INEX Dublin [81]) of the total connectivity matrix
dimension, with an average of 12.6%.6

Second, the similarity of business models among ASes, such as
ISPs, CDNs, Cloud Providers, and enterprise networks, pushes these
entities to form peering connections with a similar set of peers,
as we demonstrate in the previous example (Fig. 1). By modeling
factors that drive the formation of visible links and assuming these
same factors also influence the formation of unseen links, we can
effectively infer the invisible links. This transferability assumes that
(1) there is no fundamental difference between pairs of ASes that
peer where available vantage points have measured the link and
pairs where they have not (i.e., the decision to host a vantage point
does not stem from properties of an AS that would also impact its
(or its provider’s) peering strategy)7, except for (2) properties that
are observable and can be incorporated into the model. For example,
in Iran, both the probability of an AS hosting a vantage point and
its peering practices are influenced by the country’s regulatory
environment, and so our model will include an AS’s country of
registration to capture this effect. We discuss these assumptions in
greater detail in Section 5.3.

Therefore, we conceptualize our model as encompassing two
types of properties of an AS: (i) aspects of the identity of AS (e.g.,
business, economic, political, historical factors), approximated by
features of the AS, and (ii) its currently measured peering links,
which reflect outcomes of its peering policy. Just as Tinder combines
user demographics (e.g., age, location) with interaction history (e.g.,
likes, matches) to recommend connections, our model integrates AS
characteristics and PeeringDB profiles (akin to user demographics)
with known interconnections (interaction history) to infer unseen
connections (suggested matches). Just as the likelihood of a Tinder
6We found the peering matrices by searching for the keyword "IXP Manager and
Peering Matrix" on Google and crawling all the available matrices.
7Prior work has shown that ASes hosting RIPE Atlas showed little bias when compared
to those that do not, across a broad range of metrics [145].

user liking a profile can be predicted in part from the similarity of
the profile to others the user has liked and from how other users
similar to the user have responded to the profile, known intercon-
nections for two ASes inform how likely they are to interconnect.
Section 4 demonstrates that available measurements and AS prop-
erties capture these latent factors in ways that machine learning
techniques can use for inferences.8 To increase the reliability of
each inferred link, we include a reflexive component that evaluates
the model’s confidence in its predictions. This per-link assessment
enables users to manage the trade-off between false positives and
false negatives and to incorporate modeling of uncertainty into use
cases that can accommodate it (§5).
Finding the right representation. The previous paragraph high-
lighted the potential of a model to reveal which links are more
likely to exist but did not specify its characteristics. We now unveil
metAScritic’s primary insight: using matrix completion theory to
pinpoint what constitutes a good representation.

We transform the observed interconnections between ASes
found in publicly available traceroutes into entries within a
connectivity matrix. These data points not only confirm the
existence of interconnections between ASes but sometimes even
hint at a lack thereof (called “non-existence”) (§3.4). Using both
this positive and negative data, metAScritic initializes ‘ratings’ to
train a recommender system (§3.1). In some instances, findings
about a link in one metro can be extrapolated to another, a process
that enriches our representation (§3.3.2).
Improving representation through targeted measurements.

Public measurements are often skewed, heavily featuring ASes
that host or are near vantage points [34], while leaving others
underrepresented. This phenomenon is similar to a version of Tin-
der’s recommendation system being overly trained on a narrow
demographic, making it less effective at catering to a broader, more
diverse user base. To counteract this skew, we augment our dataset
with targeted measurements to uncover links in underrepresented
sections of the Internet in public datasets and move toward a more
balanced (and better) representation (§3.3).

The literature onmatrix completion highlights that, given certain
conditions—particularly when the entries in the matrix are revealed
randomly or distributed uniformly across the matrix [6, 29, 133]—
the completion can be achieved with high accuracy. Based on these
conditions, we crafted a test based on the matrix’s effective rank
[38] to estimate the quality of our representation and, consequently,
our capacity to discern peering strategies. Our approach involves in-
crementally issuing more traceroutes to raise the rank until the test
reveals that enough links have been measured, stopping once addi-
tional data ceases to affect the results (§3.2). In Tinder’s scenario,
this approach is similar to progressively showing users random
profiles and observing how well the matchmaking system predicts
their preferences as it gets factored in their swipes. This process is
stopped when it becomes clear that the system is capturing irrele-
vant data, like the users’ current mood, rather than their long-term
preferences. Unlike Tinder, metAScritic can dynamically adjust the
number of traceroutes performed to allow us to refine predictions

8Our model focuses on predicting associations rather than uncovering causal relation-
ships, which would require a more advanced level of causal inference, as described by
Judea Pearl [18].
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incrementally, something that Tinder’s recommendation system
cannot do. We integrate this approach into metAScritic, develop-
ing an iterative algorithm to ensure we gather enough ratings for
precise identification of the latent factors.
Translating inferences to interconnections. The ultimate objec-
tive of metAScritic is to map the ratings back to AS links in a metro.
While inferential approaches might raise reservations for some ap-
plications, we demonstrate that higher inferred ratings consistently
map to greater accuracy for inferred links. This property allows
users to customize thresholds to balance precision and recall based
on their specific requirements (§5.1). Additionally, we implement
techniques originating from explainable machine learning to offer
insight as to why links were inferred and to help users gauge the
reliability of the inferred links (§5.2).

3 Design

Var. Description
𝑚 Metro
ℓ𝑖𝑗𝑚 Link between ASes 𝑖 and 𝑗 at metro𝑚
M𝑚 Initial connectivity matrix at𝑚; M𝑖𝑗𝑚 ∈ [−1, 1]
C𝑚 Completed connectivity matrix at metro𝑚; C𝑖𝑗𝑚 ∈ {0, 1}
E𝑚 Balanced estimated connectivity matrix at𝑚; E𝑖𝑗𝑚 ∈ [−1, 1]
P𝑚 Probability of uncovering entry in E𝑚 ; P𝑖𝑗𝑚 ∈ [0, 1]
T𝑚 True (latent) connectivity matrix at𝑚; T𝑖𝑗𝑚 ∈ {0, 1}
𝜆 Threshold on E𝑖𝑗𝑚 to decide link (non)existence
𝜖 Fraction (probability) of exploration measurements
𝑛 Number of ASes in C𝑚

𝑟 Effective rank of E𝑚
Table 1: Notation used in the paper.

Given the impossibility of measuring all links in the Internet,
metAScritic uses matrix completion on a partial view of Internet
connectivity to infer a more complete view (§3.1), where the accu-
racy of the inferences in the more complete view depends on the
input partial view. We describe a principled approach to identify
if the partial view contains enough information to enable accu-
rate matrix completion (§3.2) and a system to iteratively collect
traceroute measurements and extract information to complement
the partial view until it contains enough information for a reliable
completion (§§ 3.3 and 3.4). Our notations are given in Table 1.

3.1 Inferring interconnections via completion

metAScritic builds the final binary connectivity matrix C𝑚 using
matrix completion on the estimated connectivity matrix E𝑚 built
from traceroute measurements. We detail now howwe employ com-
plementary features to improve completion, pick the recommender
system, and make a binary decision about the existence of a link.
Combining E𝑚 and AS features. We complement information
from traceroute measurements in E𝑚 with AS features describ-
ing the profile of an AS and its peering strategy. For example, the
traffic profile [122] or the number of users served by an AS [13]
are factors that could drive the peering decisions of the organiza-
tion maintaining the AS. A complete description of the features
can be found in Appendix C. When building our recommendation
system, we balance AS features, which inform peering strategies,
with known peering link data, which show the results of these

strategies but not the reasoning behind them. Too much focus on
AS attributes might overlook complex patterns observable in mea-
surements, while underestimating them could ignore the impact of
factors like economics or geopolitics [96, 103, 134]. We address this
challenge by making the weights applied to E𝑚 and AS features
hyperparameters of the model, configured during training.

Picking the recommender system. Despite the ubiquitousness
of neural networks in modern recommender systems, we opt for a
simpler linear model trained with ALS [83]. This choice is driven
by three main rationales. First, deep learning models are less in-
terpretable, which complicates extracting insights, making them
less trustworthy [74]. Second, the performance gains are negligi-
ble compared to our simpler approach (Appx. E.2). Third, neural
network architectures do not provide a metric to assess whether
enough links have been measured to perform good completion,
whereas our linear approach does via the effective rank (§3.2).

Recovering the links. To map link existence estimates in
E𝑚—continuous values in [−1, 1]—into a binary determination of
whether a link exists, we use a threshold 𝜆. Varying 𝜆 allows us
to be conservative or aggressive, trading off between precision
and recall (§5.1). By default, we search to pinpoint the 𝜆 that
maximizes the F-score, resulting in a configuration that combines
good accuracy and recall. Section 5.1 discusses how varying 𝜆
affects the inferences and how different use cases benefit from
choosing different thresholds.

3.2 Assessing if completion is trustworthy

Accurate completion of a matrix with an effective rank 𝑟 requires
at least 𝑟 entries in each row and column [133], where the effective
rank of a matrix determines the smallest number of dimensions
required to reconstruct the full matrix within a small error margin.
Applied to our case, knowing the effective rank of an AS connectiv-
ity matrix would tell us whether we have measured sufficient links
to enable an accurate completion.

In practice, the actual effective rank is unknown, sowe estimate it
in an iterative fashion. We initialize the target effective rank 𝑟1 = 1.
In each iteration 𝑖 , we randomly remove 3 entries per row, which
we use to evaluate the accuracy of completion at the currently
estimated effective rank. For each AS with fewer entries than our
current rank estimate, we conduct targeted traceroutes until we
reach our effective rank or hit a limit of successive traceroutes that
fail to reveal the (non)-existence of any new links. We provide more
details on the theory behind our work in Appendix B).

After these measurements, we compute the matrix completion’s
mean squared error (MSE) using the removed entries from the
rows with more than 𝑟𝑖 entries. Rows with fewer than 𝑟𝑖 entries
are temporarily set aside to ensure precise rank estimation but get
completed during the final completion (§3.1). We increment our
rank estimate 𝑟𝑖 by 1 and repeat the process. If the MSE does not
improve over several iterations, we conclude the estimation, setting
the effective rank to the one with the lowest MSE. This iterative
process helps us zero in on the matrix’s true effective rank, with
the MSE decreasing initially and then stabilizing as we approach
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this rank. The stopping condition saves measurement budget and
is justified experimentally (§4.2).9

Our methodology requires conducting sufficient measurements
to discover 𝑟 entries from as many rows as possible. Its efficacy
is contingent on the presence of well-positioned vantage points.
However, we do not possess a formal definition of what qualifies
as ‘sufficient’ vantage points. As we ignore rows with fewer than
𝑟𝑖 rows after a few batches for the prediction of the rank, limited
vantage points could result in underestimating ranks and unreli-
able matrix completions. The impact of available vantage points is
detailed based on our empirical findings in Section 4.4.

3.3 Tracerouting toward an accurate completion

A reliable completion at a given estimated effective rank requires at
least that many known entries per AS. This section describes how
metAScritic issues traceroutes from RIPE Atlas [130] to achieve that
property. Although it is apparent which ASes need more informa-
tion, it is not obvious which traceroutes to issue. A traceroute to
or from a “deficient” AS may only traverse one of the AS’s known
interconnections, and other traceroutes may not traverse the AS.
Given the large number of vantage points and potential targets
relative to RIPE Atlas rate limits [41], the challenge is selecting
traceroutes that will efficiently uncover connectivity.

metAScritic maintains a matrix P𝑚 , with the same dimensions as
E𝑚 , where each entry P𝑖𝑗𝑚 represents the current estimate of the
probability that it can strategically select a traceroute to fill E𝑖𝑗𝑚 .
We first describe how we select the traceroutes given P𝑚 (§3.3.1)
and then how we derive the entries in P𝑚 (§3.3.2).

3.3.1 Exploitation and exploration. To reduce the time it takes to
collect traceroute measurements and better integrate with RIPE
Atlas, metAScritic issues traceroute measurements in batches. We
select the traceroutes in a batch iteratively, updating the number of
known entries in each row of E𝑚 assuming that previously selected
measurements in the batch will be successful.

metAScritic uses two processes to select traceroutes. Exploitation
traceroutes employ P𝑚 to select traceroutes likely to fill entries in
E𝑚 that will uncover its rank. More precisely, we select exploitation
traceroutes greedily by choosing the row 𝑖 in E𝑚 with the least
number of filled entries (i.e., the AS with the smallest number of
existing or non-existing links) but with at least one P𝑖𝑗𝑚 > 0.1,
breaking ties at random. We then select the entry P𝑖𝑗𝑚 in that row
with the highest estimated probability of success.

Exploration traceroutes do not use P𝑚 and are a mechanism to
counteract errors in probability estimations in P𝑚 . We select ex-
ploration traceroutes by choosing the row 𝑖 and column 𝑗 in E𝑚
such that the sum of the number of entries in row 𝑖 and column
𝑗 is minimized and then picking the traceroute with the highest
probability of determining whether or not that link exists. If there
is no traceroute that can measure that entry, we keep iterating until
we find a pair (𝑖, 𝑗) with a possible traceroute. We use a parameter
𝜖 to control the probability of issuing an exploitation or exploration
traceroute. Through empirical analysis detailed in Section 4, we

9Even if a larger effective rank 𝑟𝑖 > 𝑟 were to yield a lower MSE, it might not be
preferable as a larger effective rank requires more traceroutes per row for accurate
completion and may not generalize when applied to rows in E𝑚 that have far fewer
entries than 𝑟𝑖 .

find that our estimated probabilities of success in P𝑚 strongly cor-
relate with filling entries in E𝑚 , and that a split of 0.9 exploitation
and 0.1 exploration yields good results in practice. The fraction
of exploration traceroutes could be increased to compensate for
scenarios where P𝑚 is less accurate (e.g., when the entries in P𝑚
do not correlate with the output of a batch). In each batch, we limit
the number of exploration traceroutes per row to 1 to prevent the
exploration from focusing on one particular row. Throughout the
construction of E𝑚 , we limit the number of exploration traceroutes
per entry in E𝑚 to 1 to prevent repeated tries of measurements that
are unlikely to succeed.

3.3.2 Estimating the probability of a traceroute to be informative.

For each link ℓ𝑖𝑗𝑚 , our goal is to identify (vantage point, target)
pairs whose traceroutes have a high likelihood of showing the
existence or the non-existence of ℓ𝑖𝑗𝑚 . If a traceroute does provide
such information, we say it is informative. We compute P𝑚 by
looking at whether previous traceroutes from the same source or
to the same destination traversed the AS 𝑖 , AS 𝑗 , or metro𝑚.
Categorizing vantage points and targets. For a possible link ℓ𝑖𝑗𝑚 ,
we categorize vantage points and targets based on their geographi-
cal and topological relationship to the link. Those geographically
and topologically closer to 𝑚 and AS 𝑖 are more likely to yield
useful information about the existence of ℓ𝑖𝑗𝑚 , but in some cases,
distant vantage points may be the only ones available. For each
vantage point, we categorize whether it is in the metro𝑚, the same
country (but not in the same metro), the same continent (but not
in the same country), or elsewhere. We also categorize whether it
is in AS 𝑖 , 𝑖’s customer cone, or outside 𝑖’s customer cone. Vantage
points are then categorized into one of the 12 categories based on
the cross-product of geographical and topological locations.

We reuse these geographic and topological categories for targets
with one change. Given that any IP address can be used as a target,
whereas sources are limited to available vantage points, we do not
consider targets announced by ASes outside AS 𝑗 ’s customer cone,
which are very unlikely to uncover unknown connectivity for 𝑗
[118]. Instead, we add a category for targets that belong to AS 𝑗 and
are adjacent (in an existing traceroute) to an IP address belonging
to an IXP in metro𝑚. We break ties across all targets for a given
strategy using the responsiveness in the ISI hitlist [55].

A pair composed of a category for a vantage point and a category
for a target is called a measurement strategy, e.g., measuring from
a vantage point in AS 𝑖’s in metro𝑚 to a target in 𝑗 in the same
country. For each link ℓ𝑖𝑗𝑚 , the set of (vantage point, target) pairs
are grouped by measurement strategy (144 in total). Note that a
(vantage point, target) pair can belong to different strategies for
different links.
Initial Estimation of P𝑚 . For each strategy, we select a set of
random (vantage point, target) pairs, if available, to conduct tracer-
outes and bootstrap its initial probability of success. Appendix D.6
describes how we apply hierarchical modeling to transfer knowl-
edge across metros, employing the probability of success of each
strategy at other metros to initialize their probability of success at a
new metro𝑚 using less than 20% as many traceroutes. metAScritic
maintains an estimated probability of collecting informative tracer-
outes using each strategy for each link ℓ𝑖𝑗𝑚 . The probabilities of
running an informative measurement when using a strategy are
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initialized with identical values across all links but evolve indepen-
dently after initialization. In particular, we increase the estimated
success probability for strategies based on the number of available
vantage points and potential targets for a specific link. This adjust-
ment favors measurements using strategies with a larger pool of
(vantage point, target) pairs. The value of P𝑖𝑗𝑚 is set to the highest
estimated probability of success across all strategies for ℓ𝑖𝑗𝑚 .

Updating P𝑚 . Each batch of traceroutes prompts an update in
the count of both informative and total traceroutes that result in
a recalibration of the probability of success as new measurements
are collected. Should a traceroute yield no valuable insights about
the target link ℓ𝑖𝑗𝑚 (§3.4), we reduce the corresponding strategy’s
success probability. This conservative approach prevents excessive
measurements of any single link ℓ𝑖𝑗𝑚 using one strategy, thereby
enhancing diversity in the selection process. The reduction factor
strikes a balance between repeating measurements on elusive links
and avoiding undue penalties for unsuccessful attempts. This ap-
proach, along with our partition of (vantage point, target) pairs into
strategies, allows P𝑚 to quickly identify links ℓ𝑖𝑗𝑚 and ASes 𝑖 for
which we lack good vantage points, steering exploitation tracer-
outes towards fruitful measurements and supporting effective use
of the limited probing budget.

Choosing specific vantage points.We often find that multiple
vantage points are available for a given target link ℓ𝑖𝑗𝑚 and strat-
egy selected using P𝑚 . This is particularly the case for strategies
involving large geographical areas and the customer cone of large
transit providers. However, not all vantage points within a strategy
have the same probability to provide information about a link ℓ𝑖𝑗𝑚 .
metAScritic records and evaluates the performance of each vantage
point in detecting links associated with AS 𝑖 . Vantage points are
scored based on the highest fraction of previous measurements that
have confirmed the existence or non-existence of links in an AS 𝑖 .
When choosing vantage points, we adopt a biased random selection
method that favors those with higher scores. Traceroute targets
within a strategy are chosen randomly.

3.4 From traceroutes to links/non-links

We identify that a link exists whenever a traceroute traverses two
consecutive hops belonging to different ASes. We map traceroutes
into AS-paths using bdrmapit [101] and geolocate interconnections
between ASes using a combination of IXP prefix databases [78, 82,
122], rDNS reverse engineering [95], and RTT-based constraints
[70, 114] (Appendix D for details).

However, identifying that a link does not exist is more challeng-
ing and is not a problem that has been addressed previously, to the
best of our knowledge. A link ℓ𝑖𝑗𝑚 at metro𝑚 may exist and not be
observed because, for example, (i) we lack a nearby vantage point to
observe ℓ𝑖𝑗𝑚 ; (ii) intradomain routing policies of ASes 𝑖 and 𝑗 steer
traffic through another interconnection at a different metro (for
load balancing or cost reasons); or even (iii) violations of valley-free
routing [66]. To navigate these challenges, we only conclude ℓ𝑖𝑗𝑚
does not exist if (i) AS 𝑖 and AS 𝑗 have consistent routing policies
at metro 𝑚 and (ii) there exists a traceroute originating from a
well-positioned vantage point between ASes 𝑖 and 𝑗 that traverses a
transit provider at𝑚, two notions we detail now.

We say AS 𝑖 consistently routes towards AS 𝑗 in a location (metro,
country, or continent) if AS 𝑖 always uses the same type of link
(direct interconnection or via an intermediate transit) when for-
warding traffic towards destinations in AS 𝑗 located at that location.
We define an AS 𝑖 as having a consistent routing policy if it has con-
sistent routing toward all ASes 𝑗 in the metro. Identifying ASes with
consistent routing policies is detailed in Appendix D.5. We found
that inconsistent routing policies are more common among major
CDNs, cloud providers, and transit providers.

We say a vantage point is well-positioned to identify links at a
given metro 𝑚 for AS 𝑖 if it has never issued a measurement or
has previously issued a measurement that traversed an interface
belonging to AS 𝑖 located at𝑚. This ensures the vantage point’s
capability to assess connectivity for AS 𝑖 in𝑚. If a traceroute from
this vantage point observes an intermediate transit provider be-
tween two ASes with consistent routing 𝑖 and 𝑗 , it strongly suggests
that a direct interconnection ℓ𝑖𝑗𝑚 does not exist. Identification of
these well-placed vantage points is performed by analyzing already
run traceroutes for each (AS, metro) pair.

Transferring links between locations. For some links ℓ𝑖𝑗𝑚 , the
scarcity of well-positioned vantage points constrains our ability
to measure them. To work around this, we introduce the idea of
geographic transferability, which builds on the observation that a
link ℓ𝑖𝑗𝑚 has a higher likelihood of existing if ASes 𝑖 and 𝑗 have
other interconnections close to metro 𝑚. This idea is supported
by the common practice among ASes to exchange routes with
peers in shared locations to enhance redundancy, load-balancing,
and resilience [115]. Appendix E.4 studies in detail the validity
of our assumption and reveals that between 42–65% of measured
interconnections exist across all locations where the two ASes are
collocated. Geographic transferability significantly increases data
retention in our model, capturing more information than if we were
only considering the metro area.

To account for the uncertainty in this transferability of informa-
tion from one metro to another, we assign different values to E𝑖𝑗𝑚
for each AS pair 𝑖 and 𝑗 , based on the geographic location of their
interconnection. Specifically, we use values of 1, 0.7, 0.4, and 0.1
to correspond to an interconnection’s presence in the same metro
𝑚, the same country, the same continent, or a different location,
respectively. Similarly, for non-existent links, if both ASes 𝑖 and 𝑗
have consistent routing policies at the given granularity and only
transit links are seen across all the paths that traversed them, we
consider the transit link geographically closest to𝑚. In this case, a
direct interconnection between ASes 𝑖 and 𝑗 has a higher likelihood
of existing the further away the transit is from𝑚. This accounts
for the possibility that the vantage point is far from 𝑚 (i.e., not
very well placed, low P𝑖𝑗𝑚), and both ASes 𝑖 and 𝑗 are unwilling
to carry the traffic to𝑚. We fill E𝑖𝑗𝑚 with a value of -1, -0.7, -0.4,
and -0.1, depending on where the closest transit link is geolocated
(metro, country, continent, or elsewhere). If we have both inter-
connections and transit links between ASes 𝑖 and 𝑗 , we fill E𝑖𝑗𝑚
with the biggest absolute value. Although this approach may lead
to occasional inaccuracies (i.e., mistakenly inferring connections in
one metro when they only exist in another), the overall increase
in the amount of data we can include in the matrix E𝑚 for matrix
completion outweighs these errors.
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Figure 2: Interaction between metAScritic’s modules.

3.5 Piecing the steps together

Having described the components of metAScritic, we now describe
how they work together, as depicted in Figure 2. metAScritic takes
a metro as input and outputs its inferences as to interconnections
between ASes within that metro. To do so, metAScritic constructs
a connectivity matrix (§3.4). One of metAScritic’s key insights is
that we can estimate the rank of the true matrix T𝑚 on the fly.
This step allows metAScritic to identify entries to fill in order to
infer the remaining entries using matrix completion. To fill those
entries, metAScritic relies on an algorithm that performs targeted
traceroutes in rounds to estimate the effective rank of the matrix
and fill in enough connectivity entries for an accurate completion
(§3.2). These targeted traceroutes are selected based on a probability
matrix estimating their likelihood to measure an interconnection’s
existence or non-existence (§3.3). After measuring enough entries,
we finally perform our matrix completion C𝑚 and translate the
inferred ratings into binary links by fixing a threshold (§3.1).

4 Evaluation

In this section, we evaluate the effectiveness of each of the compo-
nents that make up metAScritic by answering the following ques-
tions: Can metAScritic (i) identify AS interconnections with high
recall and precision (§4.1), (ii) precisely estimate the effective rank
of the connectivity matrix (§4.2), (iii) estimate the likelihood of
a traceroute uncovering (or ruling out) a targeted link (§4.3), (iv)
identify connectivity for ASes with limited vantage point without
excessively inferring links where confidence is low (§4.4)?
Overview: metAScritic has an average Area Under the Precision-
Recall Curve (AUPRC) score over six metros of 0.91 on different
testing datasets. It achieves this performance (§4.1) while using only
0.3% of the number of measurements that an exhaustive approach
would demand (Appx. E.3). metAScritic is capable of finding the
true underlying effective rank of a generated connectivity matrix
in a controlled environment (Appx. E.5) and is likely to find a bet-
ter effective rank than alternative approaches in the wild (§4.2).
metAScritic can effectively uncover links between ASes that lack
vantage points while still adopting a conservative approach when
data is too sparse (§4.4). metAScritic can predict whether a tracer-
oute will be informative with high accuracy (§4.3).

4.1 End-to-end performance

We evaluate metAScritic on 6 metros with validation datasets ob-
tained from multiple sources. We chose these 6 metros because
they are geographically distributed across the world and together
amount to approximately 11% of all the ⟨Metro, AS⟩ pair according
to iGDB. We use the public traceroutes from RIPE Atlas and CAIDA
Ark from the first week of February 2023 and targeted traceroutes
from RIPE Atlas from February 2023 to August 2023 to obtain E𝑚 .
This amounts to a total of more than 3 billion traceroutes, among
which 1.8 billion traverse ASes hosted in one of the metros.
Precision and recall: For eachmetro, we initialize the connectivity
matrix E𝑚 with the public traceroutes and then run the subsequent
steps of metAScritic except the completion. We evaluate the per-
formance of the completion using precision-recall curves for each
metro under two splits: (i) A stratified split, which removes 20% of
the entries per row. (ii) A completely-out split, which removes all
the entries of random rows removed until 20% of the entries of E𝑚
are removed. This split simulates the case where there are ASes
with no good vantage points and targets.

Figure 3: Precision-Recall curves for metAScritic across six

metros for two splits. The high AUPRC scores (0.85-0.96)

highlight metAScritic’s capacity to accurately differentiate

between existing and non-existing links.

In Figure 3, we present the precision-recall curves for six metros.
The curves’ proximity to the graph’s top right corner indicates
metAScritic high recall and precision. The high AUPRC, ranging
from 0.85 to 0.96, demonstrates metAScritic’s ability to identify
true positives while maintaining a high level of precision. The
worst performance is achieved with the completely-out split, with
an average AUPRC equal to 0.88. ROC Curves are also shown in
Appendix E.2 with an average Area-Under-Curve (AUC) of 0.98.

The completely-out split has worse results largely because most
bad inferences are for ASes with fewer known existent and non-
existent links than the estimated rank, justifying the need for sup-
plemental targeted measurements. This observation also suggests
two important properties of metAScritic: greater reliability in infer-
ences for ASes with existing entries exceeding the estimated rank
prior to completion and a point of diminishing returns when reveal-
ing more adjacencies for a specific AS. As detailed in Appendix E.8,
ASes with fewer known links than the estimated rank are more
prone to misclassification. Conversely, 93.1% of cases with more
entries than the estimated rank achieved a recall above 0.9.
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Validation on external datasets. External validation plays a vital
role because relying solely on cross-validation is susceptible to
limitations of the input data—a system displaying high recall and
precision with flawed data may be fundamentally ineffective.

A common hurdle is the scarcity of reliable ground truth data.
To navigate this, we have combined six different external datasets,
each shedding light on aspects of AS-level topology from various
angles. The first dataset contains the peering links of two ASes:
those of Vultr, a cloud provider, inferred from AS-paths observed
on complete routing tables they export to the PEERING Testbed
[138] across 30 PoPs around the globe, including 5 of our 6 metros;
those of Google, obtained by replicating prior work’s methodology
which consists of using a VM in every region [15]. The second
dataset contains inferred peering links from Albakour et al. to infer
IP aliases belonging to the same router [9]. In both instances, we
geolocate the interconnections (Appx. D) and only consider those
occurring within one of our metros. The third dataset contains links
inferred from public BGP AS-paths tagged with BGP Communities
known to tag interconnection locations, following the procedure
outlined in prior work [67]. The fourth dataset corresponds to all the
interconnections located at a single metro by iGDB [11]. The fifth
dataset contains peering links obtained from measurements using
Looking Glass servers from 12 different ASes used in recent papers
[71, 162]. The sixth dataset contains the peering links obtained using
IXP-manager from IXPs that openly share bilateral and multilateral
peering matrices [1]. Our differentiation of bilateral peering and
multilateral peering is supported by prior research findings, which
showed that the majority of routes announced to route servers
often lead to destinations outside the continent, typically involving
three or more AS hops [125]. These routes are thus less likely to be
discovered in our measurements. Additionally, another study has
noted that multilateral peering accounts for only a minor portion of
total traffic [129]. None of the validation datasets constitute ground
truth, but those from Vultr and Google are the closest, allowing us
to evaluate both precision and recall. The other validation datasets
only evaluate the recall, as they only provide information about a
set of existing links. The setup of metAScritic is the same as before,
except that we perform the completion with all the entries in E𝑚 ,
as opposed to only 80% as in the cross-validation datasets. On the
datasets from Vultr and Google, we have an average precision of
0.88 and recall of 0.91. On our other datasets, where we can only
compute the recall, metAScritic has an even higher recall than on our
testing dataset, with an average of 0.89 for the alias links, 0.98 for
the BGP communities, 0.92 for the iGDB links, 0.90 for the looking
glasses and 0.99 for the bilateral links and 0.68 for the multi-lateral
links. More details on each metro can be found in Table 4.

4.2 Can metAScritic select the right entries to

measure to improve accuracy?

The efficacy of the completion module is intrinsically tied to the
quality of the traceroutes provided as input (§3.1). As delineated
in Section 3.2, capturing an accurate representation hinges upon
recovering the true effective rank. To this end, we engineered an
iterative measurement selection mechanism. However, in the real
world, there exists no way to know the true effective rank of the real
connectivity matrix T𝑚 unless one has direct access to the matrix.

Strategies Precision Recall Estimated Rank

Greedy 0.71 0.64 20
IXP-mapped 0.83 0.79 30
Random 0.67 0.65 18

Only Exploration 0.64 0.61 23
Only Exploitation 0.85 0.87 31

metAScritic (𝜀 = 0.1) 0.93 0.96 35

Table 2: Comparison of several targeted measurement strate-

gies. metAScritic performs best.

Instead, we compare the accuracy of metAScritic’s algorithm for
selecting which link ℓ𝑖𝑗𝑚 to measure against five alternatives: (1) a
strategy that picks links ℓ𝑖𝑗𝑚 at random; (2) a strategy that uses only
exploration measurements, selecting ℓ𝑖𝑗𝑚 for ASes 𝑖 and 𝑗 with the
fewest filled entries regardless of the probability of success in P𝑖𝑗𝑚 ;
(3) a strategy that uses only exploitativemeasurements, selecting the
AS 𝑖 with the fewest filled entries and then the entry with the high-
est probability of success in P𝑖𝑗𝑚 ; (4) greedy, where the links ℓ𝑖𝑗𝑚
with the highest probability of being informative P𝑖𝑗𝑚 are selected
first, and (5) the algorithm described in IXP-mapped [17], a prior
traceroute selection technique that is designed to uncover the links
in an IXP. Once a link ℓ𝑖𝑗𝑚 is selected, all strategies use metAScritic’s
source and target ranking for that entry. We limit our analysis to
Sydney as it requires a significant number of measurements.

To do a head-to-head comparison, we run metAScritic’s rank es-
timation approach, compute the number of measurements it issued,
and set that as the budget to be used by all the other strategies and
IXP-mapped. For the other techniques, the effective rank 𝑟 of the
resulting matrix is carried out post-hoc by adjusting it as a hyper-
parameter [56]. For each possible effective rank 𝑟 , we run matrix
completion and compute the F-score of the inferred links against
the extensive measurements collected at Sydney (Appx. E.3). We
set 𝑟 to the value that maximizes the F-score.

Table 2 shows that metAScritic performs better than all the other
approaches, with a precision of 0.93 and recall of 0.96. Techniques
that focus on exploiting the entries (IXP-mapped and Only Exploita-
tion) result in an average precision of 0.84 and recall of 0.83. The
Pure Greedy, Random, and Only Exploration techniques result in
the worst performance with precision ranging from 0.64 to 0.71 and
recall ranging from 0.61 to 0.65. The estimated rank is also higher
for metAScritic, indicating that its measured entries are capturing
more complexity about the underlying structure of the connectivity
matrix compared to the other techniques. Appendix E.5 presents a
complementary evaluation showing that metAScritic also achieves
better performance than the alternate strategies in a controlled
scenario. In the controlled scenario, we simulated a complete topol-
ogy (hence, with a known matrix rank) and progressively removed
edges to mimic our partial topologies. This controlled experiment
confirmed that metAScritic not only outperforms alternative strate-
gies but also recovers the correct effective rank.

4.3 Can metAScritic estimate the probability of

a traceroute to be informative?

Section 4.2 showed that metAScritic does a good job at determining
the entries that need to be measured, allowing accurate completion.
Recall that P𝑚 estimates the probability of an entry to be filled inE𝑚
if we choose to issue a traceroute for it. We now evaluate whether
our estimated probabilities in P𝑚 are accurate by looking at whether
the traceroutes that we select fit their estimated probabilities.
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Figure 4: CDF of the estimated probabilities, for different sets

of traceroutes. Overall, the set of informative traceroutes is

quite close to the perfect prediction line.

Results:We extract all the targeted traceroutes from the end-to-
end evaluation (§4.1) and their estimated probability of measuring
the existence or the non-existence of a link (i.e., being informative)
before issuing them, and look at whether they were actually in-
formative or not. Figure 4 shows the CDF of how different sets of
traceroutes performed: the ones that found existing links, those
that indicated non-existing links, the ones that gave us informa-
tion (the combination of the previous two), and those that did not
yield useful information. Ideally, we would like to observe a ‘per-
fect prediction line’ that matches a straight line in the graph. Our
analysis reveals the informative measurements closely match this
ideal, with a Kolmogorov-Smirnov distance of 0.04, indicating that
our approach to categorizing sources and destinations by topology
and geography effectively predicts the likelihood of traceroutes
being informative. It is also important to note that these estima-
tions do not need absolute accuracy; instead, they must act as good
tie-breakers to select between different measurement strategies.

4.4 Can metAScritic identify connectivity for

ASes lacking vantage points?

A critical aspect of metAScritic is its ability to infer connectivity
for ASes even when there are limited or no vantage points avail-
able. This section evaluates metAScritic’s performance under such
conditions, focusing on how well it can uncover invisible links that
traditional measurement-based approaches might miss. We explore
two key dimensions: first, how well metAScritic performs in identi-
fying connections for ASes lacking vantage points, and second, how
metAScritic handles connectivity inference across different cities
with varying vantage point coverage. Together, these evaluations
help us understand how metAScritic balances its inferences and
moderates the transfer of knowledge from observable connections
to the hidden parts of the topology, reducing inference confidence
where data is insufficient.
Identifying connectivity for ASes lacking vantage points: To
assess metAScritic’s performance for ASes where there are limited
or no vantage points available, we explore two key questions: (i)
does metAScritic assign lower confidence ratings for links where
measurements provide less information (e.g., ASes lacking well-
placed vantage points), and (ii) can metAScritic still make high-
confidence inferences in these challenging conditions?

Figure 5 illustrates the relationship between the presence of
probes in the AS or its customer cones and the absolute value
of rating. It shows the distribution of inferred ratings across all

Figure 5: Relationship between probe coverage and the abso-

lute value of inferred rating.When we have vantage points at

one end of an AS pair, inferred ratings are generally higher

than when we do not. However, even when we have no van-

tage points, we can still infer some links with high confi-

dence, which would likely remain invisible if we were only

using measurements.

metros and AS pairs for three main categories: AS pairs with a
vantage point at either end, AS pairs with a vantage point within
the customer cone at either end but not in the ASes themselves,
and AS pairs without any vantage point in their customer cone. A
higher rating means higher confidence. Unsurprisingly, AS pairs
without vantage points are the most common to receive the lowest
confidence scores, but metAScritic can still infer some links with
high confidence. These links would be impossible to detect with
measurement-only methods. In contrast, ASes hosting vantage
points tend to produce higher confidence inferences.
Probe coverage in different cities: The availability of vantage
points within ASes (or within its customers) in a given metro or
country impact metAScritic’s ability to make accurate inferences.
In particular, if most ASes hosted in a metro only have poorly
positioned vantage points, metAScritic may exhaust all available
measurements and struggle to accurately infer connectivity. Al-
though we lack a formal methodology to determine a priori the
minimum number or placement of vantage points needed, we dis-
cuss some insights from running metAScritic across multiple metros.
Figure 6 shows the distribution of the best available vantage points
(§3.3.2) for every AS across all the 120 metros that host more than
50 ASes, according to iGDB [11]. In iGDB, these cities collectively
amount to more than 95% of the potential city-level peering links
on the Internet. The metros are ordered by the total percentage
of ASes covered by at least one type of vantage point. We have
highlighted in bold the metros where we ran metAScritic. São Paulo
stands out as a metro where metAScritic struggled to infer connec-
tivity accurately, with 86% of ASes with no probes in any category.
This presents a challenge in a metro where the largest IXP in the
world carries the most traffic volume [113], creating an expectation
for rich connectivity. With such limited vantage point visibility, the
accuracy of metAScritic’s inferences is more challenging to guaran-
tee. In contrast, most European metros have much broader probe
coverage, especially when focusing on probes located in the same
metro or country as the AS or its customer, which gives us more
data points to learn the underlying structure of the peering matrix
in the metro. This increased visibility makes it more likely that our
matrix completion will be accurate, leading to more reliable infer-
ences from metAScritic. These examples reflect a broader pattern
of geographical disparities. Most metros with more than 50 ASes
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have at least one type of vantage point in at least half of their ASes,
but all African and Latin American metros have fewer than 60% of
their ASes covered by any probes. The relatively low number of
African and Latin American metros in the figure highlights that
the peering ecosystem is thin according to iGDB [11].

These insights guide us in predicting where metAScritic will
likely perform better or worse. Specifically, based on the ranks com-
puted in our study (Tbl. 4), we estimate that having approximately
5% to 15% of edges measurable is necessary to accurately infer
metro-wide properties with higher confidence where the percent-
ages are derived by dividing the matrix dimension by the estimated
rank. Below this threshold, confidence decreases, and the results
should be interpreted with greater caution.

5 Using the data

Researchers and operators are accustomed to links measured
through traceroute or BGP paths, and so using links inferred by our
system will require a shift in how links are used and how results are
interpreted, to account for the uncertainty in inferences. Although
using these links will introduce new challenges, it is important to
remember that even links identified through traceroutes are, in
essence, also inferential. For instance, Arnold et al. reported a false
positive rate of 11-15% in their inferred links [15], and Marder et al.
reported an error rate of 1.2-8.9% in their mapping technique [101].
Yet, these inaccuracies have not diminished the value of traceroutes
in mapping AS-level connectivity, and over time, practitioners have
learned to understand and often work around errors introduced
by this tool [16, 99, 152]. In this section, we discuss how the
research and operational communities might harness the insights
from metAScritic. Even in cases where researchers are skeptical
about inferential techniques, our system can be utilized to conduct
targeted measurements to uncover peering links in a metro.

5.1 Using an adapted threshold

Bounding analysis by sweeping through thresholds: When
translating the ratings inferred from metAScritic to binary values
that capture whether two ASes are interconnected, the chosen
threshold significantly affects the resulting topology. As the thresh-
old decreases, more links are added but their precision diminishes,
a phenomenon we explore in Figure 15. By analyzing the topol-
ogy at various thresholds, we can increase our confidence in the
relevance of the findings. Take, for instance, studies exploring the
vulnerability of national Internet traffic to external observation
and interference [49, 57, 90, 134]. Since these studies rely solely
on BGP collectors for collecting topology data, they are likely to
overstate the influence of a few key transit providers in controlling
the nation’s Internet routes, when compared to topologies that
factor in concealed peering links. These studies could be improved
by reassessing their findings as they sweep through thresholds, in-
cluding more peering links. The robustness of their findings across
diverse thresholds enhances their reliability.
Enabling probabilistic reasoning: Another strategy is to assign
each link a probability of existing based on its precision at a given
threshold. This approach enables probabilistic analysis and esti-
mation of Internet properties as random variables. For example,
RIPE could couple a probabilistic topology with our analysis of how

vantage points are likely to measure the existence of a link (§3.3.2),
to identify the best locations to deploy new RIPE Atlas vantage
points [14, 124]. Depending on RIPE objectives, the best locations
could be those predicted to (i) uncover the most previously unseen
links, (ii) those predicted to remove the most uncertainty from the
topology or (iii) a combination of those two criteria.
Balancing precision and recall: In Appendix F.3, we explore the
trade-off between precision and recall as threshold values are ad-
justed. Our analysis shows that inferred edges with a 0.9 threshold
have a 97-99% likelihood of being accurate. These high-confidence
inferred edges, found in just six metro areas, reveal over 226K pre-
viously unseen peering links —equivalent to 0.7× the total peering
links in the entire CAIDA AS relationship dataset [94].

5.2 Explain the outputs

Although metAScritic achieves high precision for higher thresholds
(§5.1), it is important to recognize that its outputs are still not en-
tirely error-free. This is similarly true for traceroute-inferred links.
However, a fundamental distinction exists: Errors in traceroute-
inferred interconnections can be explained. They mainly stem from
non-responsive, invisible routers [31, 47, 99], off-path third-party
addresses [80, 93, 159], or rare cases of “lying devices” using unau-
thorized IP addresses [91, 135]. In contrast, the inaccuracies in infer-
ential approaches do not have clearly defined origins. Nonetheless,
to enable some interpretation of the output, we use Shapley val-
ues, which quantify the contribution of each feature to individual
predictions [106]. In our context, to compute the Shapley values
of the features, we consider all possible combinations of features,
or “coalitions,” and compute how the inclusion or exclusion of a
feature affects the system’s recommendation. The Shapley value for
each feature is then calculated as the average of its marginal contri-
butions across these coalitions. In reality, the number of coalitions
increases exponentially, so we use the SHAP library to approxi-
mate it [128]. This approach offers a comprehensive understanding
of each feature’s influence on the recommendation and provides
visibility on how and why metAScritic makes its decisions.

Appendix F.2.1 describes our comprehensive analysis across all
features. We summarize the findings here: The model primarily
relies on the number of existing and non-existing links from tracer-
outes. Additionally, information about the shared footprint of ASes,
their customer cone size, and individual AS attributes (captured
through one-hot encoding) are the most informative. Conversely,
features from PeeringDB contribute minimally to metAScritic’s de-
cisions, which is consistent with prior research [67]. This does not
imply that these factors do not correlate with the existence of a
peering link but rather that the model prioritizes other features.
Appendix F.2.2 provides an example of how Shapley values can be
used to understand metAScritic’s inferences for a specific link.

5.3 Limitations

Measurement limits:Our measurements rely on two assumptions.
First, we assume that traceroutes can reliably identify peering links
between ASes and in a specific metro with high confidence. In
reality, many factors can influence traceroute probes, as discussed in
Section 5.3, potentially affecting the input data to our recommender
system and, by extension, our final results. Second, we assume
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Figure 6: Distribution of the best vantage points present in RIPE Atlas for the metros housing more than 50 ASes. Arrows ↓
indicate Metros where metAScritic has been run. While coverage is generally close across EU and NA metros, there exist some

disparities for certain African and Latin American metros, which may affect inference accuracy in these regions.

that we have enough traceroutes to infer whether the observed
routing behavior also holds consistently across unobserved paths
at different geographic levels (§3.4). However, missed inconsistent
measurements—whether due to temporal changes or destination-
specific variations—could lead to incorrectly labeling an AS as
consistent, which may result in wrongly inferring that certain links
do not exist when they could.

Rank limits: metAScritic operates under the assumption that
the true rank of the peering matrix in a city can be identified with
enough measurements (§3.2). While this would be trivially true if
we had vantage points everywhere and an unlimited measurement
budget, there are cases where available vantage points have no
visibility into whether a certain link exists, making accurate rank
estimation impossible to guarantee and causing our algorithm that
estimates ranks to potentially fail. The algorithm assumes conver-
gence, such that adding more measurements no longer changes
the best-performing rank for the completion. While this assump-
tion works well in controlled scenarios (Appx. E.5), we lack formal
proof of its general validity. Proving such guarantees is challeng-
ing, especially since the result may only hold for some matrices.
Understanding these limits remains an open problem.

Inferential limits: metAScritic rests on two key assumptions:
(1) The decision to host a vantage point does not influence the
AS’s peering strategy, except for (2) observable properties that we
can account for in the model. As metAScritic ingests more data
about these observable properties, it becomes increasingly adept
at identifying how these properties influence peering decisions.
This learning process enables the system to refine its predictions
by accounting for the impact of these properties on the outcome. In
causal inference, this property is known as conditional ignorability,
or unconfoundedness [121]. Simply put, given a treatment 𝑇 (i.e.,
the presence of a vantage point), a covariate 𝑋 (i.e., AS features,
whether invisible or observable), and the potential outcomes (i.e.,
the existence of a peering link), unconfoundedness assumes that,
conditional on 𝑋 , the potential outcomes are independent of the
treatment 𝑇 . However, these assumptions can break down when
certain latent factors influence all observable variables in ways we
cannot untangle. For example, a political factor, such as government
policy, may affect both the likelihood of an AS hosting a vantage
point and its peering strategy. If this political factor is unobserved
and unaccounted for, any resulting analysis may incorrectly at-
tribute changes in the AS’s peering behavior solely to the presence
of a vantage point. In reality, the unobserved political factor could

be influencing both the treatment (i.e., hosting a vantage point) and
the outcome (i.e., peering connectivity in the country), leading to
biased inferences (e.g., Iran [134] or Venezuela [32]). We leave as
future work the task of more rigorously defining the conditions
under which we can run metAScritic.

6 Use cases

We use the expanded topologies generated by metAScritic to revisit
Internet topology properties and models. These topologies can also
inform projects impacted by the incompleteness of the AS-level
topology. Appendix F.1 details many applications where our new
inferred links could help enhance the topology.
Internet topology: In Appendix G, we study the effects of mea-
sured and inferred links on the topology. Our analysis reveals a
drastic increase in the number of links for hypergiants and content
providers—quadrupling and almost doubling, respectively, com-
pared to public BGP data. In contrast, the increase in links for
Tier-1/2 and stub networks is comparatively smaller (less than
×1.3) as these entities mostly connect via customer-provider links
that are already better captured in the BGP public view.
Predicting the impact of route leaks and prefix hijacks: This
is challenging due to limited visibility of existing links and opaque
routing policies and filtering practices such as RPKI and Peer-Lock
[65, 105, 116, 127]. Although we cannot model these opaque poli-
cies, we show that metAScritic’s inferences support more accurate
predictions, helping operators to better evaluate these threats.

We predict the impact of BGP hijacks under three topologies. We
start with CAIDA’s AS-relationship database built using public BGP
information as a baseline [94], then add links discovered with active
measurements, and finally add link inferences from metAScritic. We
assume each AS follows Gao-Rexford routing policies [58], with
AS-relationships taken from CAIDA’s database and assuming all
metAScritic’s links are peer-to-peer [120]. We propagate all paths
that are tied for best according to the Gao-Rexford model so an
AS can choose multiple equally preferred nest routes, potentially
including one that is hijacked and one that is legitimate.

We compare predictions against ground truth obtained from
PEERING [138]. For every pair of metros where we have run
metAScritic, we emulate different hijacks by making competing
prefix announcements to nonoverlapping subsets of PEERING
providers at each metro [144]. We deploy a total of 90 BGP
announcements across all metro pairs and nonoverlapping subsets
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Figure 7: CDF of the accuracy of hijack prediction (fraction

of ASes correctly predicted to be hijacked or not hijacked)

across 90 BGP announcement configurations for 3 differ-

ent AS topologies. Incorporating metAScritic’s inferred links

leads to better predictions compared to using only BGP data

or BGP data with measured links.

of providers. We use Verfploeter [44] to identify which ASes
choose routes toward legitimate and hijacking announcements.
Finally, we compare the (ground truth) results against predictions
for the equivalent BGP announcement configurations.

Figure 7 shows the accuracy of predictions relative to ground
truth across all three topologies. We consider the prediction correct
if any of the best paths are hijacked/not hijacked in the same way
as the actual route. We find that metAScritic’s inferences provide an
average increase of 25% of the prediction accuracy compared to the
public BGP data. The shaded area represents the range of values
obtained by varying the threshold from 0.3 to 1 and demonstrates
that the link generation threshold 𝜆 has little impact on the predic-
tion accuracy, a positive sign that suggests that the improvement
for this application is agnostic to metAScritic’s configuration.
Internet flattening: We evaluate the impact on metAScritic’s mea-
surements and inferences on some flattening metrics, i.e., for each
AS with newly measured or inferred links; we compare the frac-
tion of best paths going through providers and the AS-path length
across three different topologies in each metro where we have
run metAScritic: one with only BGP data, one with metAScritic’s
measured links and one with metAScritic’s measured and inferred
links. We also consider a global extended topology with links dis-
covered across all 6 metros. We compute the best paths using the
Gao-Rexford routing model. Table 3 shows an overview of the aver-
age decrease in AS-path lengths and the fraction of paths through
providers for all metros in our evaluation. We report results for
all ASes as well as for ASes registered in the country of the metro
where we ran metAScritic. The results show that metAScritic has a
significant impact on flattening metrics, particularly at the country
granularity, with 20% of the path length reduced on average and a
decrease of 21% of the paths that cross a transit link.

7 Related Work

Missing links of the AS topology: Recovering the AS connectiv-
ity has traditionally depended on BGP collector data [35, 54, 119],
with limited visibility of peering paths due to valley-free routing
[40]. This issue is further exacerbated by the Internet flattening
[45, 64, 87]. To improve visibility, researchers have turned to al-
ternative sources like IRR records [77], IXP datasets [98], active
measurements [79, 146], and Bayesian statistics [131]. Research in
this area typically focuses on contrasting publicly available Internet

Fraction of shorter paths Fraction of provider paths
All ASes Country All ASes Country

Metro + M + Inf + M + Inf BGP + M + Inf BGP + M + Inf
Amsterdam .050 .082 .124 .246 .830 .804 .772 .780 .759 .666
NewYork .072 .144 .100 .187 .862 .789 .708 .896 .800 .697
Santiago .002 .006 .072 .233 .932 .931 .928 .887 .858 .757
Singapore .019 .045 .068 .243 .893 .885 .859 .849 .836 .727
Sydney .009 .015 .096 .174 .945 .940 .934 .866 .832 .768
Tokyo .007 .017 .105 .247 .873 .869 .854 .863 .823 .711
Global .076 .115 — — .893 .873 .835 — — —

Table 3: Fraction of shorter AS-paths and of provider paths

for different topologies. “+M” indicates addition of ac-

tive measurements and “+Inf” indicates the addition of

metAScritic inferences. Adding metAScritic’s inferred links

not only increases the fraction of shorter paths but also sig-

nificantly reduces reliance on provider paths.

topologies with the more comprehensive views held by large or-
ganizations [7, 118] or on mapping the Internet’s invisible links in
specific setup [15, 36, 77]. Our work aligns with the latter efforts but
extends them by deploying more complex measurement techniques
and applying inferential methods. Unlike recent studies that apply
machine learning to AS topology without constraining the set of
predicted links to plausible locations - potentially leading to the
inference of unrealistic connections– our approach focuses on the
metro-level connectivity, employs traceroutes for data collection,
and runs targeted measurement for higher accuracy [61, 164].
Low-rankedness and completion in the Internet: Prior research
has underscored the low-rank characteristics of various network
matrices, such as traffic [132], latency [160], and those in network
tomography [39, 51, 100]. These characteristics have been lever-
aged for matrix completion in several contexts [52, 75, 161]. Our
research is the first to showcase the effectively low-rank structure
of the connectivity matrix at the metro level and to incorporate
the concept of adding measurements to enhance the “learning” pro-
cess. This approach, while theoretically explored by Ruchansky
et al. [133], is extended by accounting for the stochastic nature of
measurements and determining the correct rank.
Pinning down interconnections to cities: Augustin et al.
designed a methodology to specifically uncover AS connectivity
within an IXP [17], while Motamedi et al. [109] and Giotsas et
al. [70] designed techniques to pinpoint interconnections to
facility/colocations. Our measurement strategies build from theirs,
but we update ours to pin down the interconnections in the metro.

8 Conclusion

We presented metAScritic, a system that is able to infer the connec-
tivity matrix between ASes within a metro, revealing significantly
more links than prior work. We have shown that metAScritic has
high precision and recall on various datasets, provided that it can
accurately estimate the effective rank of the connectivity matrix.
metAScritic can benefit any techniques and studies relying on an
AS topology.
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B Theoretical Formulation

We formalize the insights we have discussed in Section 2 and discuss
some of the properties that we can guarantee via metAScritic.

B.1 Matrix Representation

Given a set of ASes, we represent the geo-annotated AS-level topol-
ogy as a bipartite graph B = (M,AS), where M are the metros
considered in the dataset, and AS are the ASes in the topology.
For every metro 𝑚 ∈ M, we build an edge to an 𝐴𝑆𝑖 in B if 𝐴𝑆𝑖
is present in any facility in𝑚. Each𝑚 ∈ M admits a connectivity
matrix M𝑚 that represents the ASes that agree to exchange traffic
in the given metro.

Effective low-rankedness of the true connectivity matrix:

Our work draws upon the insight that connectivity matrices often
exhibit a low effective rank, an idea first introduced in Internet
datasets by Chua et al. [38]. Low-rankedness of a matrix implies
that only a small number of row vectors can approximate a matrix
within a small error margin. In the context of connectivity matrices,
a low effective rank suggests that knowing few AS interconnec-
tions is sufficient to capture the latent relationships that drive the
connections between all ASes. We believe that the low-rankedness
of the connectivity matrix in a metro holds for two main reasons:

The role of IXPs: The establishment of IXPs fosters multilateral
peering relationships. These facilitate the emergence of peering
connections via a centralized route server. This architecture typi-
cally results in the formation of a dense mesh network among all
ASes utilizing the route server for traffic exchange. Nonetheless,
deviations from this full mesh are observed when ASes choose not
to connect to the IXP route server or deliberately avoid to exchange
traffic with certain members of the traffic using BGP communities
or IXP services that forward the BGP announcements on behalf of
their members. A recent work published in 2022 has shown that Do
not announce and Announce only to actions communities were
rarely seen in the fabric [104].

The convergence of business models among ASes: ISPs, CDNs,
Cloud Providers, Enterprise, Campus networks often align in their
business strategies. This leads to the formation of peering connec-
tions with a similar set of entities, suggesting that the set of existing
links for a given type of AS is likely smaller than the entire set of
ASes.

Completionwith Oracle: The problem of filling in missing entries
in a partially observed matrix has a long history in inferential
literature and is called matrix completion (see the survey [112] and
references therein for a detailed description). Given the support set

Ω𝑚 := {(𝑖, 𝑗) | AS 𝑖 has a peering link (or not) with AS 𝑗 in 𝑣}

whose cardinality is 𝜇, we can define the projection operator PΩ

by

PΩ [𝑋 ] (𝑖, 𝑗 ) =
{
𝑚𝑖 𝑗 if (𝑖, 𝑗) ∈ Ω

0 if (𝑖, 𝑗) ∉ Ω.

Then matrix completion problem asks if it is possible to use the
𝜇-sparse observed ratings 𝑌 ∈ R𝑖× 𝑗 to recover 𝑋 given

𝑌 ≈ PΩ [𝑋 ] .
However, the problem we describe in Section 2 deviates from stan-
dard matrix completion for two reasons: (i) the pattern of missing
entries is not random, and (ii) the likelihood of discovering new en-
tries through additional measurements is not uniform, so classical
approaches to uncover new entries are unsuitable for full matrix
recovery. These observations align with challenges described in
recent works applying causal techniques for predicting network
properties [6, 10].

We draw a parallel between the ability to add newmeasurements
to recover entries and the existence of an oracle that answers our
queries. For each query sent to the oracle, there is a probability that
they will answer it. This probability expresses various underlying
and unknown factors that influence the result of our query. These
factors include, for example, the location fromwhich measurements
are taken, the chosen destination, the targeted ISP’s responsiveness
to ICMP probes, or the network’s load at the time of measurement.
Our objective is to achieve a high-accuracy reconstruction of the
underlyingmatrix while keeping the number of queries to the oracle
as low as possible. More specifically, for a given metro 𝑐 , we devise
an algorithm to reconstruct the symmetric matrix T𝑚 = (𝑡𝑖, 𝑗 ). In
this matrix, each element has a specific probability, Π = (𝑝𝑖, 𝑗 ), of
being disclosed by the oracle.

We first assume that the true rank 𝑟 of the matrix is known.
The spectral theorem for symmetric matrices states that T𝑚 can be
expressed as the product of a diagonal matrix Δ of dimension 𝑛 × 𝑛
and of a matrix 𝑋 (of dimension 𝑟 × 𝑛) and its transpose 𝑋𝑇 , such
that T𝑚 = 𝑋Δ𝑋𝑇 [153]. Each element of the matrix, 𝑡𝑖,𝑘 , can be
computed by the formula

∑𝑛
𝑗=1 𝑥𝑖, 𝑗 ·𝑥𝑘,𝑗 . Consequently, the number

of independent variables, or the degree of freedom, in T𝑚 is equal
to 𝑟 (𝑛 − 𝑟 )/2. As an example, let us assume that T𝑚 is a rank 1
matrix, such that each entry is represented as 𝑡𝑖, 𝑗 = 𝑥𝑖 · 𝑥 𝑗 . If all the
entries for 𝑖 = 𝑗 are observed, then for every 𝑖 , 𝑥𝑖 = ±√𝑡𝑖, 𝑗 , we can
then easily complete the rest of the matrix. The practical limitations
in the number of measurements that can be issued imply that we
need to adopt a strategy that involves the minimum number of
measurements to ensure at least 𝑟 filled entries in every row and
column. This strategy, when framed as an optimization problem,
seeks to minimize the expected number of measurements, guided
by Π(𝑣), while constraining that every row and column possesses
at least one filled entry.

Approximating the connectivity matrix using MLE: Our
matrix is not exactly low-rank in practice. Instead, each entry in
the matrix T𝑚 is the product of a row of 𝑋 and a column of 𝑌 , plus
some unknown noise. This noise, assumed to be independently
decomposable for each AS, reflects biases like measurement acces-
sibility, network position, and business role. Therefore, each entry
can be represented as 𝑡𝑖,𝑘 =

∑𝑛
𝑗=1 𝑥𝑖, 𝑗 · 𝑦 𝑗,𝑘 + 𝜖𝑖 + 𝜖𝑘 . Our final

goal is to recover a low-rank approximation matrix C𝑚 such that
|C𝑚 − T𝑚 | ≈ 0.

Extracting the underlying factors in this noisy scenario is more
challenging. We compute the maximum likelihood estimator (MLE)
to reduce noise for each estimated 𝑡𝑖, 𝑗 to address this. In this model,
the value of each entry diminishes as more entries in the same row
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and column are revealed. This means that rows and columns with
fewer known elements are more prone to noise, affecting the accu-
racy of our predictions. Our method balances this by uncovering
new elements that simulate a perfectly random sample, aligning the
matrix structure with the conditions needed for traditional matrix
completion methods [19, 29, 85].

The algorithm we developed targets the least observed parts of
the matrix, querying information efficiently while minimizing costs.
It also avoids assuming a known rank by iteratively approximating
the effective rank. While proving convergence to the true rank of
T𝑚 or its optimality remains an area for further research, empirical
evaluations show promising results with real-world data and con-
firm its ability to identify the true rank in controlled simulations.
These findings are detailed in Section 4.2 and Appendix E.5.

C Datasets

Our system takes support from many datasets. We describe them
in detail in this section:

BGP Data:We use CAIDA’s AS relationship dataset to estimate the
customer-cone of an AS [94]. The AS relationship is obtained by ag-
gregating BGP announcements from BGP speakers at cooperating
ASes and inferring the most likely relationship using the heuristics
described in [94]. In addition, we collect BGP announcements from
route servers at IXPs located in all the metros that we considered.
Finally, we gather BGP routes and their associated BGP commu-
nities from all RIPE RIS [4] and University of Oregon Routeviews
collectors [117] over a week of data.

Geographic Data: We leverage iGDB to bridge logical and geo-
graphical datasets [11]. iGDB extracts AS interconnection informa-
tion indicating the geographic presence of participating networks
for more than 25𝐾 networks that share information regarding their
physical footprints and peering policies in Hurricane Electric, Peer-
ingDB [122] and PCH [78]. To geolocate IP addresses, we also
update the IP Table in iGDB using RIPE IP Map [48], HOIHO [95]
and RTT constraints to geolocate IP addresses [43].

IXP Prefixes:We gather the prefixes corresponding to IXPs and
the metro-level location of the IXPs by extracting information from
PeeringDB, PCH [78], Hurricane Electric, and EuroIX. EuroIX col-
lects data directly from IXPs through a recurring automated process,
providing a comprehensive public source of IXP-related data and is
known to be the most reliable source of information from operators.
When extracting this information, we leverage data originating
from sources that use a variety of data formats and naming conven-
tions. To address this challenge we use heuristics from prior work
[11] which looked at the overlap between the EuroIX, PeeringDB,
Hurricane Electric, and PCH. For example, we pair up different
naming conventions for infrastructures by looking at overlapping
prefixes present in distinct datasets. When sources disagree, we
prioritize Euro-IX then PeeringDB, PCH, and finally Hurricane Elec-
tric, since Euro-IX updates its database on a daily basis by directly
and automatically gathering data from IXPs. In contrast, PCH and
PeeringDB’s data are compiled manually by the ASes and the IXPs
themselves, which is more error-prone and at the risk of being out-
dated. The exact strategy for data collection of Hurricane Electric
is unknown and therefore harder to assess.

Number of Eyeballs:We regularly crawl APNIC’s eyeball estimate
[13] and adjoin that information for every AS. The specific details
of the technique are unknown; a brief description is provided in
[88] suggesting that the technique is based on the utilization of
Google’s advertisement delivery placement system to provide a
rough estimate of the number of customers hosted in a network.
This dataset has been demonstrated to be highly close to CDN
traffic volume in all the countries considered in our study [136].

Looking Glasses: We have devised a methodology that utilizes
Looking Glasses to validate a subset of our inferences. We replicate
the pipeline outlined in [163] to run measurements from Looking
Glasses. This technique leverages Looking Glasses that can be found
from sources such as PeeringDB, Traceroute.org, BGP4.as, and
BGPLookingglass.com. We also use Periscope, a publicly accessible
tool that unifies LGs that automate the use of LG capabilities [71].

Peering DB AS Outbound/Inbound and AS Type Profile:We
also crawl information about outbound properties of the different
ASes [122]. For every specific IXP, we also fetch the data regarding
the policy of member ASes when available..

RIPE Historical Measurements and Arkipelago: We build a
system to gather, process and transform publicly available measure-
ments from RIPE Atlas [130] and Arkipelago probes [24]. The data
used in this paper come from the first week of February 2023.

D Methodology Details

D.1 Mapping IP to Org:

We use the state-of-the-art technique bdrmapit [101] to map the
traceroute paths to their AS paths and keep only the traceroutes
that cross at least two ASes in 𝐴, either consecutively or with inter-
mediate ASes separating them. As a convention, we translate all the
sibling ASes [26] to the lowest ASN managed by the organization.

D.2 Geolocating interconnections in 𝑣

To recover the matrix of interconnections M(𝑣), we need to ge-
olocate, for each interconnection between two ASes of 𝐴, the in-
terfaces of the two border routers. First, we examine if the IP ad-
dress assigned to any border routers belongs to an IXP prefix in 𝑣
[78, 82, 122]. If so, we consider the interconnection to be located in
𝑣 . Next, we examine the Round-Trip Time (RTT) obtained from the
source of the traceroute. If the source is located in 𝑣 and the RTT
to both border routers is less than 3 milliseconds (as established in
previous research [114]), we consider the interconnection to be in
𝑣 . If the source is not in 𝑣 , we perform ping measurements from
10 probes in 𝑣 . If the minimum RTT for the two border routers
from any of the probes is less than 3 milliseconds, we consider the
interconnection to be located in 𝑣 , in accordance with prior studies
[114]. Another scenario that arises is when the two border routers
are not located in the same metro, either because one is remotely
peering with the other or due to inflated latency or unresponsive
interfaces. In these cases, we adopt as a convention that the inter-
connection happens simultaneously in both metros, as it is difficult
to determine which border router is remotely connected.
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D.3 Classifying ASes

We classify ASes into the following classes, in order: Tier-1/2
ASes are taken from Wikipedia (as currently used by CAIDA’s
AS-relationship inference algorithm [68, 94] and other recent
work [15, 147]); Hypergiants are taken from Gigis’ 2021 dataset
[63]; Large ISPs are inferred as the ASes with the most users
in each country covering 80% of the population using APNIC’s
AS-population estimates [13]; we consider ASes as Content and
Enterprise if they self-report as such on PeeringDB [122]; Stub
networks are defined as those without any customer in CAIDA’s
AS-relationship database [94]; and all the remaining ASes are
classified as Transit. In the matrix completion part of metAScritic,
we include all categories derived by ASdb as one-hot encoded
variables [165].

D.4 Recommender system architecture

Matrix completion problems have been extensively studied in the
context of recommender systems and generally fall into three pri-
mary categories: (i) Collaborative Filtering, which depends solely
on matrix entries, (ii) Content-Based Filtering, where the emphasis
lies on the side features of each entry, (iii) Hybrid models, which
integrate both approaches. AS properties influence their roles as
peering agents, as various organizations select peers according to
their business incentives and their role in the network, making
hybrid models the most suitable for our problem. By integrating
features from different ASes into the prediction process, and we can
refine our estimates about matrix entries. We split our features into
numerical and category features.For categorical features, we utilize
one-hot encoding and assume that there are 𝑛1 numerical features
and 𝑛2 one-hot encoded features. To incorporate these features into
our model, we augment the matrix by appending the feature associ-
ated with each AS to every row and column, expanding the matrix
dimension from |𝐴| × |𝐴| to ( |𝐴| + |𝑛1 | + |𝑛2 |) × (|𝐴| + |𝑛1 | + |𝑛2 |).
Most recommender systems use a regularizer to avoid overfitting.
We select the regularizer by performing a hyperparameter tuning
following the strategy described in [56].

Alternating Least Square: The technique we use in this paper
is called Alternating Least Squares (ALS). ALS aims to factorize a
given matrix𝑀 into two matrices 𝑃 and 𝑄 of rank 𝑟 by optimizing
argmin|𝑀 − 𝑃𝑇𝑄 |2 + 𝜆( |𝑃 |2 + |𝑄 |2). Here, 𝑃 ∈ R𝑟×𝑛 and𝑄 ∈ R𝑛×𝑟 .
The ALS algorithm works by alternating between fixing one of the
matrices, 𝑃 or 𝑄 , and solving for the other. By fixing one of the
matrices, the optimization problem becomes equivalent to solving
multiple regression problems, and the optimal value for the fixed
matrix can be computed explicitly. This process is repeated back
and forth until convergence, providing an efficient way to solve the
matrix completion problem.

D.5 Consistent Routing

For a given granularity, an AS exhibits consistent routing behavior
if its connections with other ASes are consistently either peering
links or discarded links. To catch ASes with inconsistent routing, we
introduce a consistency binary matrix Γ, where rows and columns
correspond to the ASes at location𝑚 (so same dimension as E𝑚).
A value of 1 signifies that we have observed at least one traceroute

featuring a direct link between the two ASes and at least one tracer-
oute with an intermediate link utilizing a provider at the considered
granularity. In contrast, a value of 0 indicates that we consistently
observed direct links or intermediate links with a provider for the
given ASes. For example, if we observed two traceroutes connect-
ing AS 1 and AS 2 directly in New York and Seattle and another
traceroute passing through AS3, a provider of AS 1, in Toronto, then
Γ𝐴𝑆1,𝐴𝑆2 = 0 at both country and metro granularities. However, the
value would be 1 at the continent granularity since measurements
have resulted in contradictory inferences for two metros within
the same continent. In practice, our goal is to utilize inferences that
span interconnections in other metros when an AS demonstrates
consistent routing behavior at a particular granularity. Upon ex-
amining the consistency binary matrix, we discover that a small
number of rows account for all inconsistent routing behaviors, with
CDNs, Cloud Providers and a few large Transit Providers being
the common factors. This finding implies that inconsistency can
be attributed to a few organizations. By iteratively eliminating the
rows and columns associated with the ASes exhibiting the highest
number of inconsistent rows until convergence, we derive a subma-
trix Γ∗𝑖, 𝑗 containing only consistent ASes. For this subset of ASes,
we can rely on measurements from other metros to infer properties
about the connectivity matrix in the metro.

D.6 Refining the probabilities via hierarchical

modelling

To quickly predict the probability of the measurement strategies
in an unseen metro, we build a hierarchical Bayesian estimator
that captures the relationships between the strategies in different
metros [60]. Prior works have shown that hierarchical models give
more accurate predictions than no-pooling (i.e., considering every
metro to be completely independent) and complete-pooling (i.e.,
collapsing all the metros together) estimation, especially when pre-
dicting group averages [59]. Hierarchical models recognize general
patterns across metros while still allowing for uniquemetro-specific
factors to exist. For example, we observed that in South America
and South-Eastern Asia, probes hosted in the customer cone and the
same metro were twice as likely to run informative measurements
as in Europe because of the smaller pool of available upstreams.
To fit our model, we began by taking 1K measurements for each
strategy across 5 metros. We limited ourselves to 5 metros since
the initiation step involves a large number of measurements which
is practically challenging to conduct. Our model is structured in
three tiers: the source-destination level, the metro level, and the
AS level. For new metros, we use a maximum likelihood estimator
for each (source, destination) category, building upon the model
derived from previous metros. This approach allows us to recover
Π(𝑣) with far fewer measurements (on average 6 × fewer measure-
ments) than if we had to rerun extensive measurements to recover
the converging probabilities for every strategy in each metro un-
der consideration. This step will allow us to scale measurement
campaigns to more and more metros in the future.
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E Additional Evaluation

E.1 Detailed table with the performance of

metAScritic

Table 4 shows the detailed results on the validation dataset and
different splits for the 6 metros.

E.2 ROC curves and comparison with other

classifiers

metAS critic
metAS critic
metAS critic

metAS critic
metAS critic

Figure 8: Comparison of ROC Curves for metAScritic, Ran-

dom Forest, and Neural Collaborative Filtering (NCF). This

graph demonstrates metAScritic’s efficiency in achieving a

high True Positive Rate (TPR) while maintaining a low False

Positive Rate (FPR). Notably, metAScritic’s performance par-

allels the more complex NCF architecture.

When it comes to evaluating classification models, ROC and
Precision-Recall curves are often used conjointly. The ROC Curves
display the trade-off between the true positive and false positive
rate of the classifier and are favored in scenarios where the dataset
exhibits a balanced class distribution – that is, when the number of
true positives and negatives are comparable. Since different metros
result in different degrees of class imbalance, the ROC curves
provide a complementary picture of metAScritic’s performance
than the one shown in Figure 3. In Figure 8, we plot ROC curves
for each metro of our dataset using the stratified split. We note
that for every metro considered, our AUC is even higher than
our AUPC (between 0.96 and 0.99). Additionally, we extend this
analysis by comparing our classifier’s performance with two
alternative classifiers: (1) a random forest and (2) a recommender
system trained with neural collaborative filtering [126]. The
random forest serves as a baseline classifier and only builds on
available public features to predict the existence of a peering link.
Neural collaborative filtering moves away from decomposing the
user-item interaction into two lower-dimensional matrices. Instead,
it employs a neural network to create non-linear mappings of users
and items. This approach enables the discovery of more complex
patterns beyond linear relationships, albeit at the expense of
opacity and complexity in training. For our comparison, we opted
for a simple design and used a multi-layer perceptron. We note that
the Area-Under-Curve (AUC) is very similar for both metAScritic
and the NCF. Furthermore, a decision tree that is agnostic to the
global patterns in the connectivity matrix underperforms matrix
completion approaches. These two observations further reinforce
the appeal of our technique.

E.3 Efficiency in number of traceroutes

We compare metAScritic with two sets of extensive measurements
collected for Tokyo and Sydney. In these datasets, we issue five
traceroutes targeting each entry of the connectivity matrix (rank-
ing source and targets using metAScritic’s approach in §3.3.2). This
approach will not scale in many metros and requires launching
millions of traceroutes, which would take months to complete at
normal probing rates allowed by RIPE Atlas.11 We run metAScritic
on the E𝑚 matrix obtained using its standard rank estimation algo-
rithm, and evaluate the precision and recall relative to the entries
of the connectivity matrix of the extensive measurements. Finally,
we also compute precision and recall for a technique that performs
matrix completion directly on the publicly available traceroutes

We observe that metAScritic performs almost as well as the exten-
sive approach, evidenced by a marginal reduction of 0.06 in recall
and 0.07 in precision compared to the extensive measurement. No-
tably, metAScritic achieves this with approximately 50 times fewer
measurements than with the other approach. Finally, the bottom
two rows of Table 4 show that the approach with only the public
measurements yields considerably worse results, with an average
dip of 0.25 in recall and 0.34 in precision compared to the extensive
campaign.

The theoretical literature on matrix completion suggests that,
given the ability to recover any entries in an unknown matrix, the
number of measurements needed is𝑂 (𝑛𝑟 log(𝑛)), where𝑛 is the ma-
trix dimension and 𝑟 is the effective rank [30]. This corresponds to
a scenario where one can determine the existence or non-existence
of any link in the matrix with one traceroute, which is unrealistic
in our scenario due to budget restrictions, vantage point place-
ment, and unknown routing policies. Even under these challenges,
comparing the number of measurements issued by metAScritic and
the limit above (Tbl. 4) shows that metAScritic approaches this
theoretical result while achieving high precision and recall.

E.4 How often can we transfer a peering link

observed in one metro to another one?

Our method, as outlined in Section 3.4, relies on extrapolating the
information about the existence and non-existence of a peering link
from one metro to another. For example, in Dhaka, this inference
accounts for up to 44% of our data entries, significantly enriching
the initial matrix before its completion.

To validate this approach, we conducted the following study.
Starting with ASes in Amsterdam with consistent routing defined
in Section 3.4, we geolocated all the metros where these ASes in-
terconnected in our measurements. We infer their geolocation by
running our own implementation of HLOC, a technique that com-
bines ping measurements with geographic hints observed in rDNS
[137]. If by the end of our measurement campaign, the lowest ob-
served latency from all of the utilized probes is smaller than 3 ms,
we assume that the IP address is colocated in the same metrocity as
the probe. Using the iGDB database [11], we determined for each AS
pair with a known peering link, the set of metros where both ASes
were colocated. For metros without measured interconnections be-
tween the two AS, we checked for available probes to discover the
11Our RIPE Atlas account has a higher probing rate limit, but even then we limit
ourselves to two metros.
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Does metAScritic identify AS interconnections efficiently and with high accuracy and coverage?

Metro Amsterdam New York Sao Paulo Singapore Sydney Tokyo
Country NL US BR SG AU JP

Number of ASes 1470 748 1574 660 666 367
Estimated Rank by metAScritic 59 51 32 44 35 26

Train/Test Split and Validation with External Datasets

Recall 0.88 0.82 0.94 0.93 0.89 0.90
Stratified Precision 0.85 0.84 0.96 0.90 0.96 0.86

Recall 0.85 0.81 0.91 0.91 0.86 0.82
Random Precision 0.84 0.78 0.89 0.91 0.87 0.81

Recall 0.79 0.81 0.87 0.78 0.81 0.85
Completely Out Precision 0.75 0.74 0.79 0.67 0.82 0.82
BGP Community Recall 0.96 0.95 1.0 0.90 1.0 1.0

iGDB Geographic Hint Recall 0.79 1.0 0.94 1.0 0.510 0.61
Looking Glass Recall 0.87 0.86 0.99 0.91 0.96 0.95
Bilateral IXP Recall 0.97 1.0 1.0 1.0

Multilateral IXP Recall 0.53 0.67 0.81 0.71
IP Aliasing Recall 0.94 1.0 0.82 0.93 1.0 1.0

Recall 0.94 0.85 0.88 0.97 0.84 0.92
Ground Truth (Vultur and Google) Precision 0.82 0.89 0.78 0.93 0.95 0.84

How many measurements does metAScritic need to recover the connectivity matrix?

Expected # of Measurements to Complete via Measurements 100M 43M 210M 34M 7M 6M
# of Measurements Run by metAScritic 330K 150K 275K 180K 150K 100K

metAScritic Eval. Recall 0.96 0.92
on Extensive Measurements Precision 0.93 0.93

No Targeted Measurements Eval. Recall 0.65 0.73
on Extensive Measurements Precision 0.56 0.63

Table 4: Performance of metAScritic across six different metros under varying configurations. On the upper part, we describe

metrics related to precision and recall on diverse validation datasets and on the bottom part, we focus on the efficiency of

metAScritic in terms of measurement reduction. The Estimated Rank by metAScritic corresponds to the rank estimated by

the end of the process described in Section 3.2. This presentation of data allows for a holistic understanding of metAScritic’s

performance across diverse scenarios and validates its robustness in inferring themissing interconnections, drastically reducing

measurements while maintaining high precision and recall.

interconnection. In an effort to avoid unnecessary measurements,
we only considered probes hosted in the metro and the AS or a
direct customer or in the country and the AS (if no other intercon-
nections in the country exist) as those were the instances, where
the probability of identifying the existence or non-existence, were
maximized in P𝑚 . If such probes were present, we consider that
this link should be “measurable” and we conduct measurements
from the best available probe-destination pair to uncover links in
the metro. These measurements can lead to several possible out-
comes: (1) The traceroute confirmed an interconnection between
the two ASes in the targeted metro. (2) The traceroute identified an
interconnection between the two ASes, but in a different metro. (3)
A new, previously unobserved interconnection between the two
ASes was discovered, though not in the intended metro. (4) The
measurement provided no useful data (e.g., failure to cross either of
the two ASes, unresponsive traceroute, etc.). (5) The packet routing
occurred via a transit, indicating inconsistent routing in one of the
ASes.

Outcome (1) confirms our hypothesis of transferability, whereas
(2-3) suggests it might be incorrect (although the specific link could
be a backup in face of failures or heavy load but we adopt a con-
servative stance). (4-5) do not impact transferability as they imply
either the link was initially unmeasurable or one of the peers had
inconsistent routing (not relevant for transferability analysis).

As we were running our analysis, we noticed some instances
of interconnections that we could not associate to any facilities
from iGDB. This discrepancy could stem from their absence from
the various databases collecting physical presence of ASes or from
incorrect geolocation. For simplicity purposes, we decided to drop

those instances and leave it as future work to complete and study
in detail the missing facilities from iGDB.
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Figure 9: On the x-axis, we plot the ratio of metros where

two ASes are interconnecting over the metros where they are

both present according to the data from iGDB. In particular,

we notice that 90% of the AS peering connect in at least 50%

of all the metros where they have an overlapping presence.

In Figure 9, we evaluated the accuracy of our transferability
hypothesis by computing two metrics. The first metric, depicted
in red, adopts a conservative approach by calculating the score
as the ratio of observed interdomain links to the total links for
each AS pair. The second metric, shown in blue, takes a balanced
approach, where the score is the ratio of observed interdomain links
to the number of links that can be measured for each AS pair. In
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the conservative scenario, we presumed every unmeasurable link
did not exist, while in the balanced scenario, these links were not
taken into account. Our findings indicate that between 42-65% of
interconnections are present across all locations, and a significant
70-90% are found in at least half of the locations. These results
reinforce our belief that our measurements are in line with our
expectations and confirm the metro-transferability for ASes with
consistent routing.

E.5 Can metAScritic find the effective rank in a

controlled environment?

The goal is to retrieve the (hopefully low) effective rank of a matrix
with our algorithm that orchestrates the selection of traceroutes to
issue, round by round (§3.2). To achieve this goal, we need three
things: a matrix of low effective rank, a probability matrix to select
the traceroutes to issue, and an initial set of visible entries preceding
the algorithm execution, which correspond to the entries obtained
from the public traceroutes. To make our environment resemble
real data, we use the connectivity matrix and the probability matrix
inferred in Amsterdam from the run of metAScritic in Section 4.1.
The probability matrix will be used as is, and we extract the set
of indexes (𝑖, 𝑗) of entries that were unknown before running any
targeted measurements, that we call the mask of the connectivity
matrix. This mask will serve to select the initial missing entries
of the generated matrix. Finally, we extract the effective rank 𝑟
of the connectivity matrix of Amsterdam, to generate a matrix of
similar effective rank. To obtain this matrix, we start by generating
a symmetric matrix of rank 𝑟 with random values, where we add
a Gaussian noise of standard deviation 𝛿 to every entry of our
generated matrix. This technique generates an effective rank of 𝑟 ,
as it provably results in at most 𝑟 eigenvalues larger than 𝛿 [50].
Now that we have our generated matrix of low effective rank 𝑟 , we
use the mask to hide entries and to mimic the visible entries from
the matrix before executing the algorithm. In our setup, we use a
matrix of dimension 𝑛 = 1470, an effective rank of 𝑟 = 59 and we
start at 𝑟0 = 1, copying the data in Amsterdam from Table 4.

With this controlled environment, we then execute our algo-
rithm, estimating the rank and running the targeted measurements
in batches. To simulate the outcome of a traceroute, we draw a
value from a uniform distribution and assume that a traceroute is
informative if the value is smaller than the associated entry in the
probability matrix. If it is the case, we consider that it unveils the
actual value in the generated matrix for the computation of the
MSE that serves to know when to stop running more traceroutes
(§3.2). To be clear, the value does not matter here. What matters is
the capacity of the algorithm to hit the true rank of the generated
matrix and stop when it has hit it.

Figure 10 shows the mean square error of the different
approaches over batches of 3,500 measurements, the setup that
mirror the one uses in our end to end evaluation. We draw a
black line at the iteration number where our estimated rank
converges. metAScritic is the only approach with a decreasing
RMSE, corresponding at some point to the true underlying rank.
After the true underlying rank has been found, the RMSE starts
to increase. In this simulation we let more than three rounds
where the RMSE increases, but in practice metAScritic would have

stopped and found the true effective rank. The other approaches
exhibit a stable RMSE. These approaches fall short in providing a
reliable mechanism to infer the matrix’s effective rank.

Estimated Rank is equal to 
Underlying Rank
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Figure 10: RMSE evolution across batches of targeted mea-

surements on a matrix with a known effective rank in a con-

trolled environment for different approaches. The black line

indicates the effective rank at which convergence happens.

metAScritic RMSE rapidly converges to the true underlying

effective rank compared to other approaches.

E.6 Does metAScritic pick good measurements?

In the previous experiment, we demonstrated the efficacy of our
algorithm when operating under ideal conditions (i.e., where the
probability distribution is accurately inferred, and noise adheres to
well-behaved theoretical properties). We now shift our focus to the
performance of our algorithm when faced with real-world data. In
this context, we both lack access to the true underlying rank and
cannot compute the true RMSE. As a substitute, we evaluate the
algorithm based on the total number of adjacencies discovered and
the number of ASes exceeding the expected rank, as determined by
a metAScritic run (Fig. 11).

We begin by examining the performance of the metAScritic se-
lection scheme alongside three baseline strategies: random, greedy,
and explorative. Additionally, we include the fully exploitative ap-
proach, in which our algorithm forgoes the explorative step (i.e.,
setting 𝜖 to 0), and the metAScritic variant with a fixed exploratory
step value of 0.1.We also compare our results with IXP-mapped [17],
a technique closely related to our work, designed to uncover inter-
connections between members hosted within an IXP. IXP-mapped
is predicated on selecting probes situated either in the source AS
or in customer ASes within a maximum distance of two AS hops
from the source AS. This technique prioritizes vantage points that
(1) have previously been observed traversing the IXP fabric and (2)
are geographically closer to the IXP. Target selection prioritizes
responsive IP addresses in the destination AS. metAScritic with an
𝜀 exploratory step covers less of the visible entries compared to the
fully greedy, fully exploitative and IXP-mapped but results in 12%
more entries above the threshold compared to other approaches.
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In particular, we notice that the fully exploitative approach results
in significantly fewer ASes above the threshold, underscoring the
importance of random exploration to accommodate unexpectedly
valuable measurements. Our greedy approach discovers more links
than IXP-mapped, demonstrating the added value of our finer grain
separation of probes and destination. Interestingly, metAScritic dis-
covers entries nearly as efficiently as the Greedy version, although
those entries are significantly more informative.

metAS critic metAS critic

Figure 11: Fraction of the AS edges that were recovered or

discovered per batch of 3500 measurements (left). Number of

edgeswherewe recoveredmore than𝑘 adjacencies, indicating

that we could recover them if the underlying rank of the

system is smaller than 𝑟 = 35 (right).

E.7 Can metAScritic exploit traceroutes to rule

out the existence of links?

We study the accuracy of our methodology for determining the
non-existence of a link. We only assign negative values in the con-
nectivitymatrix under certain conditions on the routing consistency
of an AS and the position of the sources (§3.4). We evaluate our
model versus simpler approaches (ordered from the most to the
least conservative): (1) a 0-negative approach, where we never intro-
duce a negative value in the connectivity matrix (i.e., non-existence
is never inferred from measurements); (2) a routing-inconsistency
oblivious approach where we put a negative value in E𝑖𝑗𝑚 when the
probe is well positioned (i.e., non-existence is only inferred from
specific probes that have previously observed a traceroute going
through AS 𝑖 in the metro). This approach will add more negative
values in E𝑚 than metAScritic as it ignores inconsistent routing
(§3.4); (3) a full negative approach where we also remove the criteria
of the probe being well positioned, resulting in even more negative
values in E𝑚 . We then compute the precision and the recall of these
different approaches on the Vultr and Google validation datasets on
all overlapping metros, as those are the only datasets that provide
a way of evaluating the accuracy of our non-existence inferences.
We cannot evaluate the precision and recall on a train/test split as
those metrics depend on the input data and could result in very
high accuracy despite the starting matrix being incorrect.

Before the completion, the 0-negative approach fills 64.3% less
entries in E𝑚 than metAScritic, as it excludes any measurements

that indicate the non-existence of a link. Conversely, the full nega-
tive and inconsistency oblivious approaches wrongly label 27% and
19% of the links that exist as non-existent, respectively. Analyzing
these links in more detail, we find that these misclassifications are
due to negative inferences made from traceroutes that would have
been considered as inconsistent routing by metAScritic. We find
that metAScritic has the best precision and recall in all metros. This
empirical evidence underscores the importance of integrating the
concept of routing consistency and advocates for a more nuanced
model than that suggested by Gao-Rexford for deducing link non-
existence—a finding aligned with other recent works discussing
interdomain routing policies [12, 66, 110].

E.8 What is the relationship between the

number of visible entries and the

probability of incorrectly inferring peers?

In Figure 12, we discern a pivotal relationship between the number
of visible entries and the prediction accuracy. Specifically, rows
with a count of measurements below the estimated rank exhibit
an average error increase of 134% compared to those with more
entries than the estimated rank. This finding highlights the signifi-
cance of maintaining a balanced matrix to enhance the reliability
of predictions.

Estimated rank

Figure 12: Relationship between the number of measured

entries and the accuracy. We notice that as the number of

entries increases, the accuracy increases. In particular, as the

number of entries goes beyond the threshold, the accuracy

gets close to 1.
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F More on Usability

F.1 Building a taxonomy of applications

We delineate several pathways for how both the research and oper-
ational communities might use the outputs from our system. Here,
we separate applications into three groups based on the nature of
the datasets utilized: conservative, loose, and balanced. In practice,
all these use-cases could be studied through the prism of the frame-
works we described in Section 5 but they all possess a more natural
setup to be considered. This list does not intend to be exhaustive but
rather describe a few applications that can be potentially improved
by our dataset.

F.1.1 Conservative topology. Designed to exclusively incorporate
high-confidence links or only the measured links, the conservative
topology could be utilized when assessing resiliency of the network.
In particular, an improved understanding of the AS-level topology
enables various stakeholders to predict how the network might
react to local failures (e.g., disruptions at interconnection facilities
or BGP sessions going down). By identifying weak points, they can
strategically guide improvements in the infrastructure and miti-
gate the risks associated with such failures globally. Similarly, a
comprehensive AS-level map is instrumental in delineating the In-
ternet’s potential “attack surface” from the perspective of a provider.
This would facilitate the prediction, detection and mitigration of
large-scale security threats, such as BGP hijacking and fail-over.

F.1.2 Loose topology. The loose topology incorporates all inferred
links regardless of their confidence level and can be used for appli-
cations that revolve around coverage and compliance. In particular,
in recent years, there has been interest in improving vantage points
deployment across the Internet [73, 145]. Our methodology could
help guiding the placement of new vantage points to fill gaps in
our topological understanding, allowing to both verify that those
fractions of missing topology that we inferred are correct and pro-
vide more visibility onto the Internet. In parallel, governments have
shown their interests in more actively monitor and track compli-
ance across the Internet [20, 42, 53, 134]. The government of the
Netherlands have for example required all of its services to be
hosted on RPKI compliant ASes [154]. Our dataset can be used for
targeted auditing of network fraction to ensure legal compliance.

F.1.3 Balanced topology. Lastly, the Balanced topology, created
by selecting the threshold that maximize the 𝐹 -score, lies between
the conservative and loose models and supports applications that
require guarantees over a spectrum of settings. This view would
enable the generation of “what-if” scenarios, allowing for the pre-
diction of user impacts based on new BGP announcements and the
estimation of catchment areas. This dataset could serve as a reliable
ground for designing and evaluating new routing protocols, ensur-
ing expected behaviors align with the different topology versions
at hand. For network planning, ISPs and businesses can harness
insights from this balanced approach to strategically orchestrate
their networks and peering relationships, thereby enhancing both
performance and service reliability. The balanced topology could
be utilized to reverse-engineer network routing policies can po-
tentially lead to insights into operators’ traffic routing practices,

thus stimulating a reevaluation of the Gao-Rexford model’s valid-
ity. Ultimately, it can pave the way for recognizing more faithfully
quasi-routers and improve our understanding of the Internet [110].

F.2 Using Shapley to Understand the Inferences.

F.2.1 How to use Shapley to interpret what metAScritic learns. Fig-
ure 13 illustrates how the Shapley beeswarm plot can be used to
interpret the contributions of different features to individual rat-
ings. The beeswarm plot visually represents the impact of each fea-
ture across all predictions. A positive or negative Shapley (SHAP)
value means that the feature is pushing for the existence or the
non-existence of a link, while the color of each dot represents the
feature’s actual value in the data. . For instance, if red dots are
consistently positioned further to the right, like for the "# of Exist-
ing Links" feature, it means higher values of that feature push for
the existence of the link. By examining the Shapley values of all
features, we can determine whether the most influential features in
the model’s predictions are contextually relevant, which helps as-
sess whether the recommender system of metAScritic is effectively
capturing meaningful network properties. We discuss the findings
below:

(1) Most important features: The most influential features,
as indicated by their position on the 𝑥-axis and their im-
pact on model output, are the number of existing links (# of
Existing Links) and the number of non-existing links (# of
Non-Existing Links). These features have the most signifi-
cant positive or negative SHAP values, indicating that they
strongly drive the model’s predictions.

(2) Geographic features: Features related to geography and
topology, such as Overlapping City, Overlapping Country,
and Overlapping Facility, also play a crucial role in the
model’s decision-making. The positive or negative SHAP
values suggest that the presence or absence of overlap in the
different granularity impacts the model’s confidence in the
inferred links.

(3) AS specific characteristics: Characteristics like Eyeballs,
ASN, # in Customer Cone, Peering Policy and Traffic Profile
also contribute to the model’s inferences, although their
influence is less pronounced compared to the link-based
features. These characteristics indicate how the model learns
specific patterns associated with different ASes and their
impact on the final predictions.

(4) IXP Overlap:While overlapping IXP has minimal impact
on the model’s output, this does not imply that IXP overlap
carries no information. Instead, it suggests that our model
relies on other features to make its inferences, potentially be-
cause an overlap in an IXP might be too coarse to accurately
capture the nuances of peering connectivity.

F.2.2 How to use Shapley to understand an inference . We present
an example of how to relate metAScritic’s predicted rating to the
networking behavior of the two ASes involved. Figure 14 shows the
most important features that were used to infer the link between
AS 42 (PCH) and AS 138466 (Datamossa) in Sydney. Looking at
the feature with the highest contribution, we see that the number
of non-existing links for AS 42 and the number of existing links
for AS 138466, before completion, which is 0 and 199 are the most
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Tier Hypergiant LargeISP Content Enterprise Stub Transit ASes Links/AS % Increase
Tier 665 + 123 475 + 295 5379 + 1557 5841 + 1713 2340 + 550 31704 + 1623 22876 + 4717 51 209.8 15.3
Hypergiant 475 + 295 5 + 131 838 + 1797 397 + 1886 171 + 626 1176 + 2265 2949 + 5491 21 601.0 209.8
LargeISP 5379 + 1557 838 + 1797 11135 + 5536 8371 + 8060 2885 + 2098 42025 + 9927 47448 + 26870 2446 25.1 47.5
Content 5841 + 1713 397 + 1886 8371 + 8060 4096 + 5199 2993 + 3144 13441 + 9682 41559 + 28357 2041 31.0 78.3
Enterprise 2340 + 550 171 + 626 2885 + 2098 2993 + 3144 528 + 537 4742 + 3102 15220 + 8242 1426 13.2 64.1
Stub 31704 + 1623 1176 + 2265 42025 + 9927 13441 + 9682 4742 + 3102 6162 + 6794 122770 + 29680 61249 1.1 30.6
Transit 22876 + 4717 2949 + 5491 47448 + 26870 41559 + 28357 15220 + 8242 122770 + 29680 98712 + 40658 9573 19.3 41.0
Links Added 10578 12491 55845 58041 18299 63073 144015

Table 5: Number of additional measured and inferred links by metAScritic compared to the public BGP view for different AS

class pairs.
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Figure 13: Shapley Summary Plot depicting the individual

contributions of each feature to the ratings predicted by

metAScritic in Sydney. Each point represents the impact of a

specific feature on a particular rating, with the color denot-

ing the magnitude of the feature.

informative features. They both contribute positively in favor of
the existence of the link. Given PCH’s well-documented open peer-
ing policy [3], and the important number of links for AS 138466
suggesting a similar policy, the reliability of metAScritic’s output is
reinforced. In that case, there is no reason to not trust metAScritic’s
output This kind of reasoning can help a user to decide whether
they want to trust the result returned by metAScritic.

F.3 Precision-Recall trade-off

Increasing 𝜆 to increase confidence: In Figure 15, we compute
the recall and precision of links inferred in the six metros where we
ran metAScritic. For each threshold, we use the recall and precision
results across metros to estimate the 95th percentile confidence
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Figure 14: Shapley Force Plot showing the effect of the dif-

ferent features in the metAScritic’s decision for the existence

of the link between AS 42 (PCH) and AS 138466 (Datamossa).
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Figure 15: Scatter plot highlighting the relationship between

the recall and precision and the threshold in each of the

metros considered. The cross around the point corresponds

to the 95% percentile confidence interval around the points.

interval of the recall and precision at that threshold [21].We observe
a consistent and monotonic trend: increasing the threshold raises
the precision at the expense of the recall, with a threshold of 0.3
maximizing the F-score. Edges inferred at a 0.9 threshold have a 97-
99% likelihood of being correct. These inferred edges, only within
6 metros, represent over 226K unseen peering links in the topology,
or 0.7× the peering links currently found in the whole CAIDA AS
relationship dataset [94].
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F.4 Implementation

We implement our system in Python in around 800K lines. Our
system first relies on EasymapIT12 to fetch all of the inferred links
from RIPE Atlas and CAIDA Ark within a week of interest. We
have built several scripts to automate the collection of all the data
described in Appendix C. We augment this pipeline to only consider
traceroute crossing at least two ASes in the metro of interest. We
also map every IP addresses observed in our dataset to their associ-
ated rDNS. At the end of this process, we get a set of traceroutes
that cros at least 2 ASes of interest. We then implement a script to
geolocate all the interconnections that do not possess informative
rDNS entries.

We leverage Apache Airflow [8] to architect the different func-
tionalities of the system. For the measurement, we build a script,
on top of RIPE API, that implements the algorithm that identify the
right set of traceroutes to run. At the end of this process, we pass
an Airflow query that starts the process of fetching all the mea-
surements and geolocating the eventual unknown interconnections.
Airflow then monitors when this process ends and either launches
the completion if all the viable candidates have been probed. Oth-
erwise, Airflow goes back to the measurement phase. By the end
of this process, Airflow activates a function that decides whether
the final recommendation is ready to be launched. Otherwise, the
system gets back to the measurement phase. The system run-time is
conditioned by the number of measurements that can be performed
simultaneously in a batch. We implemented the whole system in
an AWS m6a.4xlarge EC2 VM.

G Impact on Internet topology

We characterize the links measured and inferred by metAScritic,
which could benefit any system or tool that uses topology infor-
mation. Table 5 shows the number of links in the BGP public view
and the number of additional links inferred by metAScritic com-
bining our measurements across all six metros. We classify ASes
by type (see Appendix D.3 for details). On the rightmost column,
we see that metAScritic infers a significant number of additional
links, particularly for hypergiants and content providers, which
peer aggressively and are underrepresented in the BGP public view.
Conversely, metAScritic infers relatively fewer links for Tier-1/2
and stub networks, as these have mostly customer-provider links
better captured in the BGP public view [118].

Figure 16 shows the number of links measured and inferred
for each metro in our evaluation. We find that metAScritic needs
a small number of measurements (patterned areas) compared to
the total number of inferred links, which is aligned with our goals
of overcoming practical limitations imposed by limited probing
budgets and lack of vantage points to observe all links. We order
metros on the 𝑥 axis by their number of links. For each metro, we
classify links as existing if they have been measured or inferred in
one of the previous metros (to the left). The small number of existing
links indicates that collecting measurements from diverse locations
significantly contributes to complete our view of the topology and
motivates metAScritic’s localized approach. For the remaining new
links, we also identify the ones where both ASes are present at a
previousmetro, and have thus already been probed bymetAScritic in
12https://github.com/cunha/easymapit

previous iterations. Finally, links found between previously-probed
ASes could occur either because ASes have different connectivity
at different locations or failure to measure or infer a link in one
of the locations. In either case, probing at different locations has
benefits and improves our view of connectivity. These findings
may be explained by route diversity due to varying routing policies
across different continents as well as vantage point availability and
placement.
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H Validation datasets

Drawing from previous work, we assemble an extensive validation
dataset. In this section, we rank the observed links based on our
confidence in their accuracy.

Confirmation from operators: The most reliable method for
validating our inferences involves obtaining direct confirmation
from the organizations involved. However, operators often lack
incentives to disclose this information, and those who are willing
to validate our inferences are usually operators already engaged
with the research community. These operators are also more likely
to host RIPE Atlas probes, which already provide them with high
visibility through measurements alone.

BGP communities: We use prior techniques based on BGP
communities to identify where announcements have been learned.
Using CAIDA’s manually labeled dataset of communities [27, 86],
we can identify the interconnections geolocated in a specific loca-
tion from publicly available BGP feeds. For each observed path from
a feed, we match the communities with ASes present in the path. If
we find a community associated with geographic information, we
infer that the AS stamped the path with the community when it
received the path from the previous AS in the path. For instance,
if we observe [AS1, AS2, AS3] and notice a community stamped
from AS2 in location 𝑣 , we infer that AS2 and AS3 are connected
in location 𝑣 . This technique is reliable but limited in coverage, as
most ASes remove communities as they cross their network, and
communities lack standardized meaning, requiring considerable
manual labor to decipher their meaning.

Openly accessible looking glasses: Another validation source
previously employed is LGs. Although they can provide unique
visibility into an operator’s view of the Internet, we found that
only a small subset of LGs actually provide a complete view of



IMC ’24, November 4–6, 2024, Madrid, Spain Loqman Salamatian, Kevin Vermeulen, Italo Cunha, Vasilis Giotsas, & Ethan Katz-Bassett

their routing table. Most LGs only allow querying the routing table
for a given prefix instead. We devise a strategy that queries all of
the prefixes in 𝑣 announced by the AS that we have inferred to be
peers of the AS hosting the LGs to confirm our inference. Unfor-
tunately, our experience confirms that LGs are not intended for
large-scale measurement, making the process of extensive probing
very complicated in practice. Even under optimal conditions, where
we can query them as much as we want, they can still miss many
less-preferred paths from other border routers. As a result, it is
challenging to know precisely when an inferred link is incorrect
unless the LG is hosted in the exact metro of interest. For all of
those reasons, LGs are useful tools for assessing true positive rate
(i.e., correctly inferred links), but weaker when considering false
negative (i.e., incorrectly discarded links).

Extensive measurements:While the other datasets allow to
study metAScritic in its capacity to recover links that are completely
invisible from any vantage points, one of the key assumption on
which relies metAScritic is that conducting exhaustive measure-
ments from all vantage points generates redundancy, and that the
same information could be obtained using significantly fewer mea-
surements with our completion mechanism. To validate this hy-
pothesis, we carried out an extensive measurement campaign for
two metros, running over a few million traceroutes between the
majority of probes and available destinations. Due to the impracti-
cality of executing such a large volume of measurements, we limited
our scope to two metros. Next, we compared the links inferred by
metAScritic to those measured through the comprehensive measure-
ment campaign. Our hope is that metAScritic reduces drastically
the number of measurements without sacrificing the accuracy of
the inferences.

iGDB: Another source of validation relies on the geographic
footprint inferred from iGDB. In particular, we query the database
to find all the ASes whose geographic footprint only overlaps in 𝑣 .
For this set, we deduce that the interconnections occur in 𝑣 . This
technique assumes the database is complete, which is difficult to
verify.We observe that, in general, ASes that do provide information
are likely to provide correct information, and the sources on which
iGDB builds are likely to be audited and updated regularly (e.g., IXP
presences are likely to up to date on IXP’s websites, certain Cloud
Providers requesting for up-to-date PeeringDB information. . . ). This
set of geolocated interconnections is limited by the completeness
of iGDB.

Train/Test split: We explore several data split strategies to
assess the performance of our completion across diverse scenarios.
Our focus lies on three distinct partitioning methodologies that
exemplify different facets of our algorithm’s performance The first
split we consider is a stratified split where we discard 20% of all
the entries from each row. This partitioning serves as the standard
splitting considered in our work as for real-world measurements,
most rows will possess a few visible entries, due to the symmetry
of interconnections resulting in sources with probes hosted in the
(AS, metro) to successfully run informative measurements from
their end. Another crucial scenario to consider is the completely-
out split, where random rows are fully discarded until 20% of the
visible entries of M(𝑣) have been discarded. This scenario aligns
with extreme instances where we fail to obtain any informative
measurement due to the lack of good sources or targets. When
investigating such cases, the only source of usable information
for predicting the interconnection is side information pertaining
to the ASes. We finally consider a random split which serves as
the baseline methodology considered in other works in standard
recommender system literature.
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