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Flooding as a sub-critical instability in open channels
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2 LadHyX, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

In flood events caused by a gradual increase in the flow rate of a watercourse, the rise in water level
is often abrupt, while the fall in level is delayed. We show that such behavior can be demonstrated by
considering stationary flows at high Reynolds number in a prismatic open channel: several geometries
of the channel cross-section lead to a subcritical instability that results in a discontinuous rise in the
level when the flow rate exceeds a critical value Fi, and in a fall, also discontinuous, when the flow
rate returns below a value Fo lower than Fi. This hysteretic behavior originates from the interplay
between gravity which drives the flow downstream, and turbulent friction with the channel wall. The
potential existence of several solutions arising from this bifurcation requires careful consideration in
flood simulations.

I. INTRODUCTION

The issue of flooding is becoming increasingly problem-
atic due to extreme events in a changing climate [1, 2],
and it is still a challenge in fluid mechanics [3]. Despite
the considerable progress that has been made in reduc-
ing the devastating effects of flooding, both in terms of
prediction and preventive measures, a complete under-
standing of the physical phenomena involved in flooding
is still incomplete. Recent developments are based on nu-
merical models that can simulate watershed-scale flows
from spatially-related data such as rainfall, land use and
topography [4, 5], including situations involving several
phases, for example with sediments in suspension [6, 7].

Flooding by river overflow is characterized by the quick
invasion by water, typically overnight, followed by a much
slower outflow [8]. Several factors have been identified in
the literature to explain the contrast between flood and
ebb times: (i) the low gradient with which accumulated
water flows from extensive flooded areas towards the
main watercourses or drainage systems [9], (ii) the low
reabsorption of saturated soils or in areas where the soil
is highly compacted [10], (iii) sediment deposits trans-
ported during flooding and settled on riverbanks and
riverbeds as water levels fall, slowing down the drainage
process [10].
Here we introduce an additional mechanism based on
fluid mechanics to explain this behavior. We show that
for uniform and stationary flows at high Reynolds num-
bers in prismatic channels of defined slope and cross-
section, a sub-critical instability leads to an abrupt rise in
level as flow increases in a quasi static manner, while the
fall in level is delayed to lower flow rates. This scheme
corresponds to a sub-critical bifurcation of the flow char-
acterized by a hysteretic cycle so that within a range of
flow rate, the water level is higher in the rising water
phase than in the receding water phase. Hence, once the
flood has occurred, the flooding persists until the flow
rate falls back to a lower level than before the flood.
This article is organized as follows: Section II reviews
why the average velocity of a stationary flow with a high
Reynolds number and therefore turbulent in a prismatic

channel depends, to a first approximation, on the cross-
sectional area of the flow and the wetted perimeter via
the ratio of these two quantities. In Section III, an in-
stability condition relating to both the geometry of the
prismatic channel and the flow law is derived. The con-
sequences of this instability are analyzed for two generic
types of straight channel section geometry (Sections IV
and V), with evidence of hysteresis cycles. These cy-
cles result in a discontinuous rise in the water level for
a critical flow rate Fi when the latter is reached by in-
creasing values, and a discontinuous decrease in the level
for another critical flow rate Fo if the latter is reached
downwards. Finally, the article ends with a discussion of
the assumptions on which the theory is based, and the
limitations they may entail.

II. UNIFORM AND STEADY FLOW IN
PRISMATIC CHANNELS

For uniform, steady flow in prismatic open channels
(whose properties are invariant in the direction of flow,
see Section VI for a discussion of the limitations inher-
ent in this assumption), various laws can be applied to
express the mean flow velocity as a function of channel
slope and dissipation. Chézy formula is still widely used
in hydraulic engineering due to its simplicity and practi-
cal applicability in many real-life situations. Before the
French Revolution, Chézy was given the task of bringing
running water to Paris, a project going back to the be-
ginning of the 17th century (and that only completted
at the end of the 19th century). He derived his law by
balancing input and friction. The input is the momen-
tum given to water by gravity because water flows on an
incline in the gravity field. The inclination angle between
the surface of water and the horizontal plane will be de-
noted as i. For big rivers i is quite small, in the range
of 1× 10−2 rad or even less. The mass of water per unit
length along the river is ρA where A is the cross-sectional
area of the flow and ρ the mass density of water. The
horizontal component of the pull of gravity on this mass
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of water is (for i small)

Fg = giA (1)

Chézy assumed that friction occurs mainly at the bottom
and sides of the river. Then, he estimated friction by
extending Newton’s recent quadratic law of drag of a
blunt body at large velocities on friction to the banks
of the river, stating that friction per unit length along
the river is proportional to the wetted perimeter L of the
cross-section (see Fig. 1), the mass density of the fluid
and the square of the (average) velocity U ,

Ff = cLU2 (2)

with c the so-called ”friction coefficient”, or drag coeffi-
cient, depending on the Reynolds number and the rough-
ness of the surface. Therefore the balance of forces yields
[11]

U =

√
gi

c

A

L
, (3)

In the literature, the Chézy formula is usually written
as U = C

√
iA/L, where C =

√
g/c is called the Chézy

resistance coefficient. The Darcy-Weisbach law has the
same formulation as Eq. 3, with the coefficient c no longer
assumed to be constant. c in Eq. 3 is equal to one eighth
of the Weisbach resistance coefficient [12]. Chézy mea-
sured the water input of small rivers near Paris, such as
the Yvette and Bièvre running near Orsay and Bièvres
to validate his law (Eq. 3) and he noticed that the drag
coefficient (c) is higher in the summer when the weeds
have grown than in winter. The drag coefficient, deter-
mined empirically for different types of surface, typically
varies between 1× 10−2 and 1× 10−3 [13].
A friction force (per unit length) proportional to the

wetted perimeter and the square of the velocity is sup-
ported by Prandtl boundary layer theory [14]. For exam-
ple in pipes of circular cross-section the flow is assumed
to be a plug flow (the velocity of the fluid is assumed
to be constant except in the close vicinity of the bound-
ary). The friction force along the pipe can be obtained
by applying standard formulas for the pressure drop in
turbulent pipe flows. Since all friction is in this bound-
ary layer [15], this leads to a friction force per unit length
equal to the perimeter of the pipe cross-section multiplied
by ρU2 times a drag coefficient c, with U the mean flow
velocity [15]. The turbulent flow in a river or channel
can also be approached, at high Reynolds number, by
a plug flow in which the velocity gradients are localized
near the walls and bottom of the river and the veloc-
ity is almost constant elsewhere and equal to U (Fig. 1)
[14]. Therefore it is safe to assume that the friction at
high Reynolds number is proportional to the length L of
the wetted cross-section in water and the square of ve-
locity U . For channels or rivers with rough or patterned
bottom and walls, the wetted perimeter L to be consid-
ered must be obtained after spatial filtering of the actual

profile, thereby excluding all asperities with characteris-
tic dimensions lower than the boundary layer thickness.
This filtering is straighforward for channel or river with
straight cross-sections whose main dimensions are much
larger than those of the asperities. Their effects are then
taken into account through the coefficient of friction c.
In the frame of the mixing length model Prandtl de-

rived an implicit relation linking the coefficient c to the
Reynolds number Re named ”Prandtl’s universal law for
smooth pipes”. In the limit of a very large Reynolds
number, it gives [14]:

c ∝ 1

(log(Re))2
. (4)

In the case of a plane Poiseuille flow, this relation was re-
cently obtained with a different closure model based on
an integral representation of Reynolds turbulent stress
satisfying basic requirements of geometrical invariance,
independently of any arbitrary length [16]. Eq. 4 was
generalized for rough surfaces with empirical laws for
friction coefficients showing that the Reynolds number
dependence of c is even reduced by the surface rough-
ness at high Reynolds number [17–20]. These laws have
been successfully applied to free-surface flow in channels
[12, 21].

x

y

z

FIG. 1: Channel bed profile. The wetted perimeter of the
cross-section, L, corresponds to the length of the blue lines.
The x axis is horizontal and in the plane perpendicular to the
main slope of the flow. The z axis points upwards. The veloc-
ity profile (black arrows) presented in the figure corresponds
to a high Reynolds number flow.

In addition to the Chézy formula (Eq. 3), other em-
pirically based formulas are used to model stationary,
uniform, free-surface flows of water in channels. One of
these, also widely used, is the Manning-Strickler formula,

U = 1/p (A/L)
2/3

i1/2. (5)

p is the Manning coefficient, which is specific to the ma-
terial and condition of the channel surface [22, 23]. De-
pending on the texture of the surfaces, it usually ranges



3

from 1× 10−2 m−1/3 s to 1× 10−1 m−1/3 s. In what fol-
lows, we are dealing with flows with Reynolds numbers
large enough that c in Eq. 3 or p in Eq. 5 can be regarded
as a constant in a first approximation.

What is important here is that these laws lead, ac-
cording to the arguments developed above to explain the
physical origin of Chézy formula, to a velocity that is an
increasing function of the A/L ratio:

U = f (A/L) (6)

III. INSTABILITY CONDITION

In this section, we show that the relation between
the flow rate F and the cross-sectional area of the
flow A can be a non-monotonic function for specific
channel cross-section geometries and flow rates. Such a
decrease implies an instability, which is associated with
a saddle-node bifurcation. At the bifurcation point,
an infinitesimal increase in the flow rate leads to a
finite increase in the cross-sectional area of the flow, a
situation associated with flooding.

Assume that the banks are much flatter than the side
walls of the river. As the level rises, the wet perimeter
L increases and reaches more friction on a wider bot-
tom. Therefore friction tends to decrease the flow speed
so that, at a constant flow rate, it can be satisfied only
by increasing the depth and so by reaching a higher A.
This feedback describes the instability causing the flood.
This depends on the particular shape of the channel, i.e.
on the relation between L and A. To put this scheme
into perspective, Eq. 6 is to be supplemented by a re-
lation between the two parameters L and A as well as
by the flow rate F that will be the control parameter.
Fundamentally a flood is triggered by a slow change of F
that increases first and then decay to return to its initial
value. The control parameter F enters into the equation
by the condition F = UA. Let us consider as variable
quantity A. This maps the equation into a single one for
A:

F = A.f(A/L) (7)

This equation depends on the flow law f and the topogra-
phy of the banks of the river through the function L(A).
There is a bifurcation in the solution if the derivative dF

dA
change its sign, from positive to negative, i.e. once (from
Eq. 7):

f

(
A

L

)
<

A2

L2

(
dL

dA
− L

A

)
f ′

(
A

L

)
(8)

Since function f and its first derivative f ′ are positive,
Eq. 8 is fulfilled for any bed profile in which dL/dA can
be far larger than L/A. Roughly speaking it says that
if the length L changes fast enough as a function of the
area A, then dF

dA < 0: an increase in L drives down the

velocity U by friction and makes it impossible to keep the
imposed flux. This generates multiple solutions in terms
of A in Eq. 7.
In the particular case U ∝ (A/L)n, as for the Chézy

formula (n = 1/2) or Manning formula (n = 2/3) the
condition dF/dA < 0 simplifies to

dL

dA
>

(
1 + n

n

)
L

A
(9)

IV. RECTANGULAR DITCH SURMOUNTED
BY A SLOPING BANK

In Section III, we have established the condition defin-
ing a bifurcation point in the F − A parametric plane
(Eq. 8). It depends on the geometry of the cross-section
through L(A) and the flow laws in the channels f(A/L).
For convex cross-sections (e.g. a U- or V-shaped profile),
flow rate is always an increasing function of A: the steady
height of water in the channel increases progressively and
continuously as flow increases in a quasi-static way.

x

z

ℓ0

h0

α

FIG. 2: Cross-section of a prismatic channel, composed of a
rectangular ditch of height h0 and width 2ℓ0, surmounted by
banks inclined at an angle α to the horizontal.

In this section, we consider prismatic channels with
non-convex cross-sections consisting of a central rectan-
gular ditch of width 2ℓ0 and height h0, surmounted on
each side by an inclined plane with angle α to the hori-
zontal acting as a floodplain, as depicted in Fig. 2. Let
x be the horizontal axis in the direction perpendicular to
the flow direction, and z the vertical axis. The wetted
perimeter L and cross-sectional area A of the flow are:

L(z < h0) = 2 (ℓ0 + z)

L(z ≥ h0) = 2

(
ℓ0 + h0 +

z − h0

sin(α)

)
A(z < h0) = 2ℓ0z

A(z ≥ h0) = 2ℓ0z +
(z − h0)

2

tan(α)
(10)

The steady flow rate computed from Eq. 7 is plotted as
a function of the cross-sectional area A in Fig. 3(a) with
h0 = 2ℓ0 and α = 0.05, for both the Chézy and Man-
ning formulas. The flow rate increases as a function of
the cross-sectional area of the flow until it reaches a crit-
ical value, Fi (inflow). The flow rate then decreases as
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FIG. 3: Normalized flow rate F/F0 calculated from Eq. 7
using the Chézy formula (solid lines, n = 1/2) or Manning
formula (dotted lines, n = 2/3) for h0/ℓ0 = 2. Flow rate F0

is the flow rate calculated when the water head is exactly h0.
F/F0 is plotted as a function of the cross-sectional area of
the flow normalized by ditch area (a), as a function of water
mirror width normalized by ditch width (b), and as a function
of water head normalized by ditch depth (c). Red arrows
indicate the direction of the path when the flow rate increases
progressively, and green arrows indicate the direction of the
path when it decreases progressively.

a function of the cross-sectional area of the flow until it
reaches Fo (outflow). It then increases again. This non-
monotonic behavior is associated with the occurrence of
a saddle-node like bifurcation characterized by a hystere-
sis cycle in the cross-sectional area of the flow versus flow
rate relationship. The red arrows in Fig. 3(a) depict the
path in the A − F plane during a quasi-static increase
in flow, and the green arrows represent the path during
outflow. The cross-sectional area of the flow increases in
a non-continuous way when the flow crosses the Fi value.
An infinitesimal increase in flow rate therefore has a dra-
matic effect on the the cross-sectional area of the flow.
This situation is akin to flooding. The cross-sectional
area of the flow also decreases abruptly when the flow
crosses the Fo value downwards. Given that Fi > Fo,
the sudden jump in the cross-sectional area of the flow
during decay occurs at a lower flow rate than during the
abrupt jump during flooding. In other words, for the
same flow rate, the cross-sectional area of the flow is the

largest during receding water levels. The growth and de-
cay are not on the same branch of the hysteresis cycle.
Thus the first stage (at increasing F ) is much quicker be-
cause it happens with less friction on a narrower channel
bottom, although the decay is longer because it happens
on the upper branch where the flood is extended to larger
and shallower river with more friction on the bottom.
Figures 3(b and c) represent the same hysteresis cycle

as Fig. 3(a), in x − F and z − F parametric planes re-
spectively. In the following, we refer to ∆A, 2∆x, and
∆z as the jumps in the cross-sectional area of the flow,
in the water mirror width and the water height while the
flow exceeds Fi (see Figs. 3(a-c)). Figs. 4(a-c) plot the
variation of ∆A, ∆x and ∆z as a function of the angle α
of the upper bank, for different values of the ratio h0/ℓ0,
applying the Chézy and Manning formulas. In addition,
Fig. 4(d) plots the gap between critical flow during inflow
(Fi) and critical flow during outflow (Fo), normalized by
the flow rate calculated when the water head is equal
to the ditch depth. These gaps can take on significant
values. For example, when h0 = ℓ0, for α = 0.05 and us-
ing the Manning formula, the cross-sectional area of the
flow increases by more than 50% (Fig. 4(a)), the height
then jumps by almost 20% (Fig. 4(b)) and the water bed
width increases by more than 350% (Fig. 4(c)) as the
flow overcomes the threshold value Fi. Still in this situa-
tion, flow Fi is around 25% greater than Fo (Fig. 4(d)).
In addition, the curves in Fig. 4 show that the ampli-
tudes of the ∆A, ∆x and Fi − Fo gaps associated with
hysteresis are more pronounced with the use of the Man-
ning formula than with the Chézy formula, and are more
prominent the smaller the α angle. The existence of the
maximum of ∆z as a function of α is due to the fact
that ∆z is necessarily zero when α = 0. We can also see
from Figs. 4(a-d) that the hysteresis characteristics dis-
appear beyond a certain angle α, which depends on the

ratio h0/ℓ0. The ratio dL/dA
L/A is at its maximum when

A = 2ℓ0h0, just after the ditch is completely filled. The
condition Eq. 9 evaluated for A = 2ℓ0h0 therefore pro-
vides the requirement for the instability to arise in the
geometry considered here. This condition is α < αc with

sinαc =

(
n

n+ 1

)(
1

1 + ℓ0/h0

)
(11)

In the limit h0 ≫ ℓ0 we obtain αc = arcsin
(

n
n+1

)
, i.e.

αc ≃ 0.41 rad (23.5◦) using the Manning formula, and
αc ≃ 0.34 rad (19.5◦) using the Chézy formula. A steeper
slope will never produce instability with this channel
cross-section geometry, whatever the relative depth of the
ditch.

V. CHANNELS WITH GRADUALLY FLARING
BANKS

In section IV, channels with a central ditch were con-
sidered. The ”reservoir” of the cross-sectional area of the
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FIG. 4: Jump in cross-sectional area of the flow normalized
by ditch cross-sectional area (a), jump in water head nor-
malized by ditch height (b) and jump in water mirror width
normalized by ditch width (c) as flow increases. Gap between
critical flow during inflow (Fi) and critical flow during outflow
(Fo), normalized by the flow calculated when the water head
is equal to the ditch depth (d). The curves are calculated
from Eq. 7 using the Chézy formula (solid lines, n = 1/2) or
the Manning formula (dotted lines, n = 2/3). The ratios of
h0 to ℓ0 are specified in the graphical legend in (d).

flow formed by the poured ditch (A = 2ℓ0h0), combined
with the low inclination of the newly covered banks, re-
sulted in a wetted perimeter growth rate dL/L greater
than the cross-sectional area growth rate of the flow,
dA/A, multiplied by (1 + n)/n (and thus the instabil-
ity condition Eq. 9 was fulfilled). The slope (α) of the

banks being constant, the ratio dL/dA
L/A was unbounded

and the instability condition Eq. 9 could only be verified
on a limited portion of the section.

Let us now consider the example of a channel whose
straight cross-section becomes more and more flared as
we move away from its centerline. As an illustration, let
us take straight cross-sections defined as:

z(x) = h0
(x/ℓ0)

a

1 + (x/ℓ0)a
(12)

where h0, ℓ0 and the exponent a are constants. The vari-
able x is the horizontal axis in the direction perpendic-
ular to the flow direction, and z is the vertical axis (see
Fig. 5). This choice of z(x) does not claim to reproduce
the precise geometry of channels. It does, however, high-
light generic characteristic of cross-sections for which the
instability described in Section III can occur.

The perimeter L and the area A as a function of the
half-width of the bed x are computed as:

L(x) = 2

∫ x

0

√
1 + (dz/dx)

2
dx (13)

A(x) = 2

(
xz(x)−

∫ x

0

zdx

)
(14)
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FIG. 5: Examples of channel cross-sections defined by z(x) =

h0
(x/ℓ0)

a

1+(x/ℓ0)a
with a = 1, 2, 4 and 6.

Fig. 6 displays the flow rate calculated with Eqs. 7,13
and 14, for h0 = ℓ0 and a = 2, plotted as a function
of the half-width of the water mirror x. The flow rate,
whether calculated using the Chézy or Manning formula,
reaches a maximum (Fi) for a certain value of the width
of the water mirror, and then declines as a function of
x. In this case, the decrease in flow rate as a function
of x continues as x tends towards infinity. Consequently,

0
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0.4

0 2 4 6 8 10

F
/F

0

x/ℓ0

FIG. 6: Flow rate as a function of the half-width of the wa-
ter mirror for a cross-section defined by z(x) = h0

(x/ℓ0)
2

1+(x/ℓ0)2

with h0 = ℓ0, calculated from Eq. 7 using the Chézy formula
(solid lines) or Manning formula (dotted lines). Red arrows
indicate the direction of the path when the flow rate increases
progressively, and green arrows indicate the direction of the
path when it decreases progressively.

with an infinitesimal increase in flow at F = Fi, the flow
switches from a stationary regime with a finite bed width
to another stationary regime where the bed extension
is infinite: the water has invaded the entire flood area.
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Subsequently, a gradual reduction in flow rate will not
succeed in resorbing this flooding, unless the flow rate
returns to rigorously zero (see Fig. 6). The critical flow
rate for outflow is, in these cases, Fo = 0.

In a real-world environment, a cross-section will not be
represented correctly by Eq. 12 for values of x tending
towards infinity, even with an added average roughness
that takes account of asperities. However, it is enough for
the topology to be roughly approximated up to the area
of the riverbed capable of withstanding the flow rate Fo

for a jump in width (or, equivalently, a jump in height) to
occur. The values of the jump in height h0− zi when the

0
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FIG. 7: Gap between channel height (h0) and water head just
before the jump (zi → h0), normalized by channel height, as a
function of parameter a, for h0/ℓ0 = 2, 1 and 1/2, calculated
from Eq. 7 using the Chézy formula (solid lines) or Manning
formula (dotted lines).

flow rate Fi is reached are plotted in Fig. 7 as a function
of the exponent a for different values of the ratio h0/ℓ0.
In the case of a cross-section as defined by Eq. 12 with
h0 = ℓ0 and a = 2, the flow rate Fi is reached when the
water height zi calculated using the Manning formula
is equal to 90% of the maximum depth h0. We have
not determined the minimum value of exponent a for the
instability to occur, but it appears that instability occurs
even for values of a less than 1, for which the area of the
cross-section of the channel is not bounded.

VI. CONCLUDING REMARKS

We have proposed a mathematical model based on the
modeling of turbulent friction, leading to a sudden rise
and a delayed recession of a river’s course as a conse-
quence of a sub-critical instability. The underlying physi-
cal mechanism has been highlighted on the basis of model
situations, which consist of steady and uniform flow at a
high Reynolds number, in channels with particular cross-
sections. Modeling transient regimes would make it pos-

sible to estimate the times associated with the rise or fall
of the water, which is an important issue that remains
pending.

We have considered a prismatic channel, which rules
out the existence of a hydraulic jump. A hydraulic
jump is characterized by an abrupt transition from fast
to slow flow (for example, in the vicinity of a channel
slope change), often visible as a sudden rise in the wa-
ter surface. The water then passes from a supercritical
regime (fast and shallow) to a subcritical regime (slow
and deeper) [24]. A sudden rise in river level following
a slight increase in flow can then be observed. This sit-
uation is quite different from the one studied here, and
should not be confused.

The instability we have considered here arises for cer-
tain shapes of channel cross-sections, whose profiles are
non-convex. For these cross-sections, the relationship be-
tween the cross-sectional area of the flow and the perma-
nent flow rate presents two discontinuities: (i) the first
occurs when the flow reaches a critical flow rate Fi in
increasing values, with an abrupt increase in the cross-
sectional area of the flow, and (ii) a second discontinuity
which occurs when a critical flow rate Fo is reached in
decreasing values, with an abrupt decrease in the cross-
sectional area of the flow. Since Fi is greater than Fo,
the abrupt decrease occurs at a lower flow rate. The
head-flow curve therefore exhibits hysteresis: backwater
only occurs once the flow has declined substantially in
comparison with the flow at which the rise in water level
occurred.

The physical origin of this instability is well estab-
lished: the increase in friction imposed by the geometry
of certain cross-sections of channels when the water level
rises leads to a reduction in the velocity of the flow. This
reduction can be such that the flow rate is also reduced.
With an imposed flow rate, a jump in the water level
associated with hysteresis occurs. The particular shape
of the governing flow law f(A/L) (e.g. the Manning or
Chézy formula) is not crucial: the main characteristics
of the instability turn out to be robust with respect to
this governing law. This fact gives us confidence that,
even if the flow laws considered are only approximate
laws of the real world, the conclusions drawn are robust
enough to be transposed to situations closer to those
encountered in the everyday environment. For example,
in the case of a river with higher friction as the distance
from the centerline increases (e.g. due to plant growth in
areas usually closer to the water’s surface), the reduction
in velocity as the water level rises will be higher, making
the effects of the instability all the more pronounced.

The occurrence of a sub-critical bifurcation leads to
several possible solutions for the same set of conditions.
This creates an issue for numerical simulations: it is
necessary to ensure that these numerical models, which
take into account complex elements such as details
of topography, the presence of obstacles, suspended
particles or temporal variations, can also lead to the
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correct branch of solutions.

This instability occurs for turbulent flows at high
Reynolds numbers, for which the velocity gradient
in the cross-sections is negligible, except of course
within the boundary layers [14]. In this case, because
friction mainly occurs in the boundary layers, friction
is approximately proportional to the wetted perimeter.
This assumption is a limitation for the conditions of
applicability of the theory. In addition to the Reynolds
number being significantly greater than 1, we need to
ensure that the boundary layer thickness, and therefore
the wall and bottom roughness, is negligible compared
to other characteristic lengths of the system (e.g. h0 and
ℓ0). In this context, a turbulent flow modeling based on

a local description would provide a quantitative deter-
mination of the limits of the plug flow hypothesis. In
addition, numerical simulations should make it possible
to establish the speed ranges for which the assumption
of a high Reynolds number can be safely applied.

The possible implications are substantial, given the
ever-increasing frequency and serious consequences of
flooding. This work opens the way to strategies for
mitigating flood amplitudes, for example by determin-
ing whether low-cost modifications to the bed profile or
the characteristics of river walls could prevent the sudden
rise in water levels that would follow the mechanism of
this instability.
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