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Abstract

Computer simulations (a.k.a. white-box models) are more indispensable than ever to
model intricate engineering systems. However, computational models alone often fail to fully
capture the complexities of reality. When physical experiments are accessible though, it is of
interest to enhance the incomplete information offered by computational models. Gray-box
modeling is concerned with the problem of merging information from data-driven (a.k.a.
black-box) models and white-box (i.e., physics-based) models. In this paper, we propose to
perform this task by using multi-fidelity surrogate models (MFSMs). A MFSM integrates
information from models with varying computational fidelities into a new surrogate model.
The multi-fidelity surrogate modeling framework we propose handles noise-contaminated data
and is able to estimate the underlying noise-free high-fidelity function. Our methodology
emphasizes on delivering precise estimates of the uncertainty in its predictions in the form
of confidence and prediction intervals, by quantitatively incorporating the different types
of uncertainty that affect the problem, arising from measurement noise and from lack of
knowledge due to the limited experimental design budget on both the high- and low-fidelity
models. Applied to gray-box modeling, our MFSM framework treats noisy experimental data
as the high-fidelity and the white-box computational models as their low-fidelity counterparts.
The effectiveness of our methodology is showcased through synthetic examples and a wind
turbine application.

1 Introduction

Predicting the behavior of complex systems and quantifying the corresponding uncertainty is
a ubiquitous challenge in engineering and applied sciences. Two essential tools that engineers
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and scientists use to deal with this challenge are experiments and predictive models. Generally,
experiments can be classified into two broad categories: physical and computer experiments.
The latter, also known as computer simulations, are mathematical or computational models of a
system which use pre-existing knowledge on the underlying physics of the system to predict its
behaviour. Predictive models of this type can be referred to as white-box models (Rogers et al.,
2017).

Although white-box models are interpretable, they sometimes fail to capture the entirety of the
system they represent due to simplifying assumptions and approximations often needed to make
them computationally tractable. A second class of predictive models are the so-called black-box
models. These consist in data-driven models that act as global approximators of the response of
a system, based on an available set of input-output observations. While black-box models can
provide flexibility, they may not honor the underlying physics as their white-box counterparts do
(Rogers et al., 2017).

Often, the response of a system can be predicted by one or more white-box computational
models, while additional data can be obtained through physical experiments. In this context, it
is natural to look for an approach that combines the white- and black-box modeling paradigms
to benefit from the strengths of both. This combined approach is known as gray-box modeling
(Tulleken, 1993). Traditionally, physical experiments have been used to improve computational
models through model calibration, where parameters of a model are inferred by fitting the model
predictions to available experimental data (Kennedy and O'Hagan, 2001; Higdon et al., 2004).
Gray-box models take a more comprehensive approach by acknowledging that the computational
model may not fully capture the system’s complexity and thus, incorporating both knowledge-
driven and data-driven elements. As an example, hybrid simulation, which combines physical
and numerical substructures to create a hybrid model (Schellenberg et al., 2009; Abbiati et al.,
2021), follows a gray-box modeling paradigm. Recently, machine learning approaches using
physics-informed neural networks (Raissi et al., 2019) have been employed to perform gray-box
modeling, e.g. in the work of Yan et al. (2022). Finally, gray-box models have been historically
employed in the field of control theory and system identification, where experimental data are
used to estimate the parameters and structure of a mathematical model that represents the
underlying dynamical system (Ljung, 1998).

In many applications which require a large number of model evaluations, such as uncertainty
quantification and optimization, an obstacle frequently encountered is the high computational
cost associated with white-box simulations. For this reason, computational models are often
replaced by surrogate models (SMs), also known as metamodels, or emulators. A SM acts as an
inexpensive-to-evaluate approximator of an original model, and is constructed using a limited set
of model evaluations, called the experimental design (ED), also known as training set in machine
learning. Among the most widely used SMs for deterministic simulators are polynomial chaos
expansions (PCE) (Xiu and Karniadakis, 2002; Blatman and Sudret, 2011), Gaussian processes
(GPs) (Rasmussen and Williams, 2006), and support vector regression (Drucker et al., 1996).
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A specific class of surrogate models that is particularly useful in scenarios where data or computa-
tional models of varying fidelities are accessible is multi-fidelity surrogate models (MFSMs). With
model fidelity, we refer to the extent to which a model faithfully reflects the characteristics and
behavior of the target system it intends to simulate. Generally, high-fidelity (HF) models produce
accurate predictions, but are associated with high computational or financial costs. Low-fidelity
models (LF) are instead less accurate, but also less expensive to run. Models of different fidelities
can occur by, e.g., changing the mathematical or numerical model, or changing accuracy of the
numerical solver using different levels of discretization (Fernández-Godino, 2023). Multi-fidelity
(MF) surrogate modeling approaches combine multiple sources of different fidelity into a single
surrogate model, usually augmenting a limited and expensive-to-obtain HF dataset with more
extensive and less expensive lower-fidelity ones (Kennedy and O’Hagan, 2000; Le Gratiet and
Garnier, 2014).

The choice of surrogate model is an integral part of the design and construction of a MFSM.
Numerous MFSM techniques are based on Gaussian process modeling, following the autoregressive
fusing scheme proposed by Kennedy and O’Hagan (2000). Such works include Forrester et al.
(2007); Kuya et al. (2011), and Le Gratiet and Garnier (2014), among others, with the latter
reformulating the approach from Kennedy and O’Hagan (2000) to have a recursive form, allowing
for a reduced computational complexity. Polynomial chaos expansion is another SM that has
gained popularity in the past two decades for the purpose of MF surrogate modeling (Ng and
Eldred, 2012; Palar et al., 2016). The approaches mentioned so far use linear information fusion,
which entail assuming that a higher-fidelity response can be expressed as a linear combination of a
lower-fidelity model and a discrepancy function. Recently, multi-fidelity modeling approaches have
been proposed in the machine learning community, for example the deep GP-based framework of
Cutajar et al. (2018), the Bayesian neural network approaches from Meng et al. (2021); Kerleguer
et al. (2024), and the generative adversarial network-based methodology proposed by Zhang
et al. (2022). These approaches can capture the nonlinear relations between the different levels
of fidelity. According to a comparison among different linear and nonlinear GPs-based MF
techniques performed by Brevault et al. (2020), when the high- and low-fidelity models are weakly
correlated, nonlinear techniques can outperform linear and less complex techniques, with the
caveat of requiring a larger quantity of HF data.

In this paper, we propose to perform gray-box modeling using multi-fidelity surrogate models.
For this purpose, we assume that the white-box computational models can capture the general
behavior of the physics of the system, while the experiments can capture its entirety, but only
on a very limited set of conditions, due to their associated costs. In particular, we consider
the experimental data as noise-contaminated realizations of black-box HF models, whereas the
available white-box computational models are considered as their LF counterparts. Because
white-box computational models can in principle be expensive to evaluate, we also approximate
them with surrogate models, constructed on a dataset of low-fidelity model evaluations. White-
box models are approached within a nonintrusive context, eliminating the requirement for prior
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knowledge of the underlying equations.

Most of the existing literature on MF surrogate modeling focuses on deterministic and noise-free
high- and low-fidelity models. However, all real world measurement devices have a limited precision
and resolution, and therefore, data resulting from measurements are generally contaminated by
irriducible noise. This noise can be considered as a source of aleatory uncertainty, as it is inherent
in the measurement process. Moreover, the available training data for the construction of all the
elements of a MFSM is in principle relatively small due to computational budget constraints.
Thus, we consider all MFSM predictions as affected by epistemic uncertainty. Recent studies that
consider the presence of noise in a MF setting include the work of Raissi et al. (2017), who use GP
regression to infer the solutions of differential equations when noisy data of different fidelities are
available. Furthermore, Zhang et al. (2018) demonstrate that their linear regression-based MF
surrogate modeling technique is robust to noise in the HF data, and is also able to estimate the
noise level when enough HF data is available. Finally, Ficini et al. (2021) assess the robustness
of a GP regression MFSM on problems affected by noisy objective function evaluations.

To the authors’ best knowledge, however, no work has yet introduced a comprehensive approach
to multi-fidelity surrogate modeling that considers the presence of both noise and/or epistemic
uncertainty in the high- and/or low-fidelity data. This approach should also provide a way to
quantify the accuracy of the MF model predictions with respect to a) the underlying noise-free
HF model, and b) the noisy HF observations. The uncertainty about the mean prediction of a
regression model is typically expressed via confidence intervals (CIs). On the other hand, the
uncertainty on the prediction of an unseen noise-contaminated observation is shown via prediction
intervals (PIs) (Kutner et al., 2005). Generally, PIs are wider than the corresponding CIs. Many
of the existing MF surrogate modeling methods do not provide uncertainty estimations about
the MF model predictions. In the cases when CIs are provided, their construction is linked to
the particular methodology employed in constructing the MFSM, e.g., GP-based CIs (Raissi
et al., 2017; Perdikaris et al., 2017). This can potentially make the frameworks less flexible when
different MFSM architectures or SMs need to be explored. Moreover, no work has considered
the distinction between confidence and prediction intervals in a MF setting; typically, the latter
are disregarded.

The goal of the present paper is to introduce a novel general framework for multi-fidelity surrogate
modeling that is able to deal with noisy data and epistemic uncertainty due to limited training
information. We assume that the noisy HF data originate from deterministic models contaminated
by unbiased stochastic noise. Therefore our MF framework aims at effectively emulating the
underlying deterministic models, or in other words at denoising the black-box component. An
essential and original feature of our methodology is its ability to provide estimates of the different
kinds of uncertainty in its predictions in the form of both confidence and prediction intervals.
Moreover, our framework can be applied in the field of gray-box modeling, where experimental
data and computational models can be fused into a gray-box multi-fidelity surrogate model.

This paper is organized as follows: In Section 2, after recalling the relevant theory for MFSMs,
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we present our framework for MF gray-box modeling, including the related confidence and
prediction intervals, as well as the implementation details for each component of the framework.
Subsequently, the proposed method is assessed in Section 3, where it is applied on two synthetic
examples of increasing complexity and on a real-world application. Finally, in Section 4 we
discuss concluding remarks and present prospects for future research.

2 Methods

In this section, we first formally state the multi-fidelity surrogate modeling problem, while
establishing the notation we are adopting throughout the paper. Then, we describe our proposed
methodology to construct a gray-box multi-fidelity surrogate model. Subsequently, we propose
to express the uncertainty related to the MFSM predictions using confidence and prediction
intervals, and we discuss the interpretation of these intervals in the MF setting. Lastly, we
outline our proposed implementation for constructing a MF gray-box, as well as for estimating
its confidence and prediction intervals.

2.1 Multi-fidelity surrogate modeling

We assume that we have s information sources which produce data of different fidelity levels.
Without loss of generality, we initially focus on the case when two levels of fidelity are present. Let
us consider a HF data set (X H,YH) of size NH, obtained, e.g., from an expensive experimental
campaign or computational model. The input space is X ∈ RM , while the output space is Y ∈ R.
We assume that observations from this HF information source are contaminated by additive
noise, which can correspond to measurement noise in the case of experimental data, to numerical
noise in the case of computer simulations, or in general, to unobserved sources of variability.
Then, any observation yH at an input point x can be expressed in the general form:

yH(x, εH) = ψH(x) + εH, (1)

where x is a realization of X, ψH(x) is an unknown deterministic function, and εH is considered
to be an additive noise term, independent of x and modeled as a random variable, following
some prescribed zero-mean distribution:

εH ∼ fεH(εH), E [εH] = 0. (2)

Thus, each noise-contaminated observation in the available HF data set (X H,YH) can be expressed
as:

yH(x(i)
H , ε

(i)
H ) = ψH(x(i)

H ) + ε
(i)
H , i = 1, ... , NH, (3)

where ε(i)
H is a realization of the noise εH . In the rest of this paper, for the sake of notation

conciseness we denote each observation yH(x(i)
H , ε

(i)
H ) in the HF data set simply as y(i)

H .
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Moreover, let us consider that for the same system there is another information source of lower
fidelity, which provides us with the data set (X L,YL), where

yL(x(i)
L , ε

(i)
L ) = ψL(x(i)

L ) + ε
(i)
L , i = 1, ... , NL, (4)

with εL ∼ fεL(εL) and E [εL] = 0. The size NL of this lower-fidelity data set is generally larger
than that of the corresponding HF data set.

A MFSM aims to directly estimate the underlying deterministic HF function ψH(x) with a
function ψ̂H(x) by combining all the available variable-fidelity information. To this end, the
LF response can be represented by a classical surrogate model ψ̂L(x) ≈ ψL(x), since the cost
of obtaining data from the associated source cannot in general be assumed negligible. Then,
assuming that the LF model captures the general trend of the underlying HF function ψH(x), we
can express the MFSM as a linear combination of the LF surrogate and a discrepancy function
δ(x):

ψ̂H(x) = ρ(x) · ψ̂L(x) + δ(x), (5)

where ρ(x) is a scaling function. We can simplify Equation (5) by assuming the scaling function
to be a constant ρ:

ψ̂H(x) = ρ · ψ̂L(x) + δ(x). (6)

The class of surrogates for the LF model and the discrepancy function can be chosen among a
wide range of possibilities, including, among others, PCE, GP regression, or neural networks.
However, the framework described in this section is independent of the particular choice of
surrogate modeling methods, and hence, we will refrain from specifying the choice of SM for now.

Zhang et al. (2018) and Ficini et al. (2021) demonstrated that a number of multi-fidelity regression
techniques are robust to noise, provided the number of available high-fidelity observations is
large enough. In other words,

lim
NH→∞

ψ̂H = ψH. (7)

When information from more than two levels of fidelity is available, Equation (6) can be generalized
in a recursive way (Kennedy and O’Hagan, 2000):

ψ̂s(x) = ρs · ψ̂s−1(x) + δs(x), (8)

where the predictor of a model at a particular fidelity can be used to construct the predictor for
the immediately higher-fidelity model.

2.2 Gray-box modeling

Gray-box modeling consists in combining elements of both data-driven methods (black boxes),
and physics-based computational models (white boxes) (Rogers et al., 2017). Gray-box models
leverage existing physical knowledge about a system through their white-box elements, but due to
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their black-box components, they are also able to capture complex relationships in experimental
data that might not be explicitly captured by white-box models. By combining data-driven
methods with physical insights, they can compensate for gaps in the understanding of a system’s
behavior. Hence, gray-box models can provide a more accurate and comprehensive representation
of a system than either black- or white-box models alone.

Let us consider a set of observations (X H,YH) obtained through an experimental campaign,
each observation of which can be expressed as in Equation (3). The unknown underlying model
ψH can be considered as an expensive-to-evaluate black box. Moreover, let us assume that the
system response can also be predicted by a white-box computational model, such as a system of
equations or a complex finite-elements simulator, denoted as ML(x).

Then, we can assume that experiments can accurately capture the behavior of the system under
investigation, but the information they provide is incomplete, due to their scarcity. On the other
hand, the available computational model can complement this information by providing a larger
amount of data, but at the cost of lower accuracy, due either to inherent model simplifications
(e.g. ignoring some physics), or to numerical limitations (e.g. discretization). Hence, it is possible
to create a gray-box model using multi-fidelity surrogate modeling, wherein the experimental data
is regarded as noise-affected realizations of a high-fidelity black-box model, and the white-box
computational model is treated as its low-fidelity equivalent. Following the rationale described
in the previous section, the computational model is replaced by a surrogate model M̂L(x),
constructed with a set of model evaluations (X L,ML(X L)).

Adopting the MF surrogate modeling information fusion scheme introduced previously, a multi-
fidelity gray-box model predictor aiming to emulate the underlying noise-free HF function output
ψH(x) can be expressed as:

ψ̂H(x) = ρ · M̂L(x) + δ(x). (9)

2.3 Confidence and prediction intervals

Confidence and prediction intervals are powerful means of conveying the uncertainty present in
the predictions of a model, thereby significantly elevating the informative value of single-point
estimates.

If we denote the unobservable error in the MFSM at a given input x0 with respect to the
underlying HF model by em(x0), then this reads:

em(x0) = ψH(x0) − ψ̂H(x0). (10)

Confidence intervals (CIs) express the uncertainty about this model error or, in other words,
about where the underlying HF function lies. More precisely, the (1 − 2α) confidence interval for
the underlying HF function at x0 is an interval [ψlo,α(x0), ψup,α(x0)], such that:

P [ψlo,α(x0) < ψH(x0) < ψup,α(x0)] = 1 − 2α, (11)
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where α is typically set equal to 0.05 for a 90% CI.

This uncertainty is due to the incomplete information provided by the finite-size HF and
LF experimental designs, and can be reduced when more data is available. Therefore, it
can be interpreted as epistemic uncertainty. Assuming that our regression model is able to
accurately represent the underlying HF function in the presence of unlimited data, we have
limNH→∞(ψup,α(x0) − ψlo,α(x0)) = 0, meaning that as NH → ∞, the confidence interval for the
regression model predictor collapses to a single value at each point.

Moreover, according to Equation (1), a HF output yH at an input x0 is expressed as the sum of
the underlying HF function ψH(x0) and a realization of the noise random variable εH. Hence,
from Equations (1) and (10), the error in the MF model with respect to a noise-contaminated
HF observation can be expressed as follows:

yH(x0, εH) − ψ̂H(x0) = ψH(x0) + εH − ψ̂H(x0)

= (ψH(x0) − ψ̂H(x0)) + εH

= em(x0) + εH. (12)

Thus, we can notice that this error is the sum of two independent components: the reducible
model error em(x0) and the irreducible error εH due to the noise in the HF observations. This
uncertainty regarding the value of an unseen HF observation is quantified by prediction intervals
(PIs). Similarly to CIs, we can write that the (1 − 2α) prediction interval for a HF observation
at x0 is an interval [ylo,α(x0, εH), yup,α(x0, εH)], such that:

P [ylo,α(x0, εH) < yH(x0, εH) < yup,α(x0, εH)] = 1 − 2α. (13)

From Equations (10) and (12), it is evident that the PI encloses the corresponding CI, and
consequently, the former is wider than the latter. The difference in their width indicates how
much we can improve predictions by increasing the amount of training data.

Figure 1 illustrates the difference between the CIs and PIs in a single-fidelity linear regression
problem with noise-contaminated data. The area between the blue dashed lines is the 90% CI,
and shows the uncertainty about where the regression line (blue line) should lie; alternative
regression lines trained on different realizations of the same process that generated the current
data are represented with thin blue lines. Moreover, the area between the gray dashed lines is the
90% PI, and expresses the uncertainty about where an unseen noise- contaminated observation
is likely to fall.

2.4 Implementation

2.4.1 Construction of a multi-fidelity gray-box model

Starting from a set of high-fidelity experimental data (X H,YH) and a lower-fidelity computational
model ML(x), we provide here the methodology to combine the two to construct a gray box as
a MFSM.
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Figure 1: 90% confidence and prediction intervals for the linear regression trained on the
illustrated noise-contaminated observations. The thin blue lines represent regression lines for
alternative realizations of these observations.

Our approach to MF gray-box modeling uses polynomial chaos expansion as a surrogate model in
the hybrid correction scheme introduced in Equation (9), extending the works of Ng and Eldred
(2012); Palar et al. (2016); Berchier (2016). The main motivations behind our choice of PCE as
a surrogate in our MFSM methodology include its robustness to noise, its efficiency in terms of
training, and its applicability in uncertainty quantification problems.

PCE is a surrogate modeling technique which provides an approximation of a model with
finite variance through its spectral representation on a polynomial basis (Xiu and Karniadakis,
2002; Ghanem and Spanos, 2003; Lüthen et al., 2021). Let X ∈ RM be a random vector with
independent components and joint probability density function (PDF) fX(x) = ∏M

i=1 fXi(xi),
where fXi is the marginal PDF of the random variable Xi. In practice, the polynomial basis
needs to be finite, and the truncated PCE of a computational model M(x) is defined as

M̃ (x) =
∑

α∈A
cαΨα (x) , (14)

where cα ∈ R are the coefficients of the multivariate polynomials {Ψα, α ∈ A}. Each polynomial
Ψα is the product of univariate polynomials orthogonal with respect to the PDF fXi of the input
variable Xi, and characterized by the multi-index α. A ⊂ NM is the finite set of multi-indices of
the polynomials, and it can be obtained from different truncation schemes, such as total-degree,
low-rank or hyperbolic truncation (Marelli et al., 2022).

For the calculation of the PCE coefficients, we adopt a regression-based strategy, as exhaustively
reviewed in Lüthen et al. (2021, 2022), because of its applicability to data-driven problems and
robustness to noise (Torre et al., 2019). Specifically, we opt for a sparse regression solver, least
angle regression (LARS) (Blatman and Sudret, 2011). Moreover, for the choice of the PCE
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basis we use degree adaptivity, as well as a total-degree truncation scheme for low-dimensional
applications and hyperbolic truncation for higher-dimensional applications.

The first step in constructing our MF gray-box model as in Equation (9) entails creating a
surrogate of the low-fidelity model using PCE. For this purpose, we first sample NL realizations
X L = {x

(1)
L , ...,x

(NL)
L } of the input random variables (e.g. through Latin hypercube sampling;

McKay et al. (1979)) and obtain the corresponding model responses YL = {y(1)
L , ..., y

(NL)
L }. We

then construct a PCE model
M̂L(x) =

∑

α∈AL

cα,LΨα (x) (15)

as discussed above. By using M̂L(x) in place of the original LF model ML(x), we eliminate the
need for the HF training set to be a subset of the LF one, as from now on we are able to obtain
evaluations of M̂L at a negligible cost. Moreover, we are able to remove any noise that may be
present in the LF data in a general MFSM scenario.

Since our HF experimental dataset is given, we can now evaluate M̂L at the available correspond-
ing input samples X H = {x

(1)
H , ...,x

(NH)
H } to obtain {M̂L(x(1)

H ), ...,M̂L(x(NH)
H )}. An estimator ρ̂

of ρ in Equation (9) can be directly obtained as:

ρ̂ = Ex

[
yH(x, εH)
M̂L(x)

]
≈ 1
NH

NH∑

i=1

y
(i)
H

M̂L(x(i)
H )

. (16)

Moreover, the discrepancy term δ(x) in Equation (9) is given by

δ(x) = ψ̂H(x) − ρ · M̂L(x). (17)

Now, using as training data (X δ,Yδ) = (X H, {y(i)
H − ρ̂M̂L(x(i)

H ), i = 1, ..., NH}), we train a PCE
model δ̂(x) for the discrepancy δ(x),

δ̂(x) =
∑

α∈Aδ

cα,δΨα (x) . (18)

Lastly, the LF and the discrepancy expansions can be merged into a single expansion, which can
be expressed as follows:

ψ̂H(x) =
∑

α∈AL∩Aδ

(ρ̂cα,L + cα,δ)Ψα (x) +
∑

α∈AL\Aδ

ρ̂cα,LΨα (x) +
∑

α∈Aδ\AL

cα,δΨα (x) , (19)

where AL ∩ Aδ is the set of multi-indices present in both the LF and the discrepancy expansions,
AL\Aδ is the set of multi-indices present only in the LF expansion, and Aδ\AL the set of
multi-indices present only in the discrepancy expansion. This last step is optional, and it is only
possible when both M̂L(x) and δ̂(x) are PCEs. In general, different SMs could be used for either
of these two models, in which case the combined expression in Equation (19) is not available.
Thus, the corresponding step is omitted, and the MF gray-box predictor is instead expressed as:

ψ̂H(x) = ρ̂ · M̂L(x) + δ̂(x). (20)
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In summary, the construction of the multi-fidelity gray-box model from a HF experimental data
set (X H,YH) and a LF computational model ML(x) according to Equation (9) involves the
following main steps:

1. Use sampling to obtain an ED (X L,YL) = (X L,ML(X L)) for the LF model;

2. Train a PCE model M̂L(x) on (X L,YL);

3. Evaluate M̂L(x) at the available HF parameter sets X H to obtain
{M̂L(x(i)

H ), i = 1, ..., NH};

4. Estimate ρ̂ = E
[

yH(x,εH))
M̂L(x)

]
≈ 1

NH

NH∑
i=1

y
(i)
H

M̂L(x(i)
H )

;

5. Construct a PCE estimator δ̂(x) for the discrepancy function, using the ED
(X H, {y(i)

H − ρ̂M̂L(x(i)
H ), i = 1, ..., NH});

6. Use the computed M̂L(x), ρ̂, δ̂(x) for the MF gray-box predictor as in Equation (20).
Optionally, merge the LF and discrepancy expansions into one PCE.

In a broader multi-fidelity setting, a low-fidelity dataset, or even a pre-trained surrogate of the
LF model (not necessarily a PCE model) can be available instead of a LF computational model.
In this situation, one can follow the same procedure to construct the MFSM, by simply omitting
Step 1, and in the second case also Step 2. Furthermore, when a high-fidelity computational
model is available instead of a HF dataset, an additional step precedes Step 1. This consists in
using sampling to obtain a HF experimental design (X H,YH). These adaptations accommodate
the general multi-fidelity case, which need not strictly adhere to the grey-box modeling paradigm.

Please note that, in the methodology described above, ρ and δ(x) are estimated successively in
two separate steps. However, in principle, estimating them jointly is also possible. One approach
is to first determine the basis functions for the PCE δ̂(x), defined by the truncation set Aδ, by
following Steps 1-5. Then, considering M̂L(x) as another basis function in the expression

ψ̂H(x) = ρ · M̂L(x) +
∑

α∈Aδ

cα,δ,newΨα (x) , (21)

one can jointly estimate ρ and the coefficients cα,δ,new using OLS.

Another approach is based on alternating least squares (Chevreuil et al., 2015), where the
estimates for ρ and δ(x) are iteratively refined. The starting value for ρ̂ in this joint optimization
can be obtained from the 4th step of the algorithm described above.

In the applications discussed in Section 3, we opt for the method outlined in Steps 1-6 due to its
simplicity. Notably, its performance closely paralleled that of the two variations discussed above.
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2.4.2 Construction of confidence and prediction intervals

Our methodology for constructing confidence and prediction intervals is based on bootstrapping.
The bootstrap estimator is used to determine measures of accuracy for statistical estimates, e.g.,
standard errors, biases, and confidence intervals, by creating multiple data sets from an original
one using random re-sampling with replacement (Efron and Tibshirani, 1994). It is based on
the notion that a bootstrap sample is drawn from the observed data in a way similar to how
the observed data set is drawn from an unknown population probability distribution. Therefore,
inference about a population from an observed data set can be performed by making inference
about the latter from the resampled bootstrap data sets.

One of the applications of the bootstrap estimator lies in constructing confidence intervals for
regression models (Freedman, 1981). Although the application of bootstrap to provide local error
estimates to PCE model predictions within a single-fidelity context has been previously studied
(see Marelli and Sudret (2018)), its usage in the context of MFSM has not yet been explored.

Our methodology for constructing CIs about the underlying HF function for a MFSM involves
two main steps. The first step for a CI at an arbitrary given input x0 aims at obtaining NB MF
bootstrap model evaluations ψ̂∗

H,j(x0), j = 1, ..., NB. For this purpose, we need to construct NB

MFSMs from NB MF bootstrap data sets, which we obtain by independently resampling pairs
from the HF and the LF experimental designs. The second step consists in constructing the CI
based on the available bootstrap model evaluations. To this end, we can apply one of several
bootstrap variations, thoroughly described in Efron and Tibshirani (1994); Davison and Hinkley
(1997); Carpenter and Bithell (2000). We choose the percentile method, due to its simplicity, its
range-preserving property (i.e. by construction, the produced intervals always remain within the
valid bounds of a system’s response, as opposed to other bootstrap methods, e.g., the standard
normal method), as well as the satisfactory performance it demonstrates in our setting.

The (1 − 2α)-quantile CI is obtained from the α- and (1 − α)-quantile of the empirical quantile
function of ψ̂∗

H(x0):

[ψlo,α(x0), ψup,α(x0)] =
[
ψ̂

∗[α]
H (x0), ψ̂∗[1−α]

H (x0)
]
. (22)

More formally, the procedure for constructing a CI at x0 entails the following steps:

1. Obtain NB MF bootstrap model evaluations ψ̂∗
H,j(x0), j = 1, ..., NB:

(a) From the HF ED (X H,YH), create NB HF bootstrap data sets (X ∗
H,j ,Y∗

H,j). Each
such data set contains NH pairs (x∗(b)

H,j , y
∗(b)
H,j ), b = 1, ..., NH, where

(x∗(b)
H,j , y

∗(b)
H,j ) is a random sample from (X H,YH), such that

P
[
(x∗(b)

H,j , y
∗(b)
H,j ) = (x(i)

H , y
(i)
H )

]
= 1
NH

, for i = 1, ..., NH ; (23)
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(b) Similarly, from the LF ED (X L,YL), create NB LF bootstrap data sets
(X ∗

L,j ,Y∗
L,j), each one containing NL elements. If (x∗(b)

L,j , y
∗(b)
L,j ) is an element of the

j-th LF bootstrap data set, then

P
[
(x∗(b)

L,j , y
∗(b)
L,j ) = (x(i)

L , y
(i)
L )

]
= 1
NL

, for i = 1, ..., NL ; (24)

(c) Match one-to-one the HF and LF bootstrap data sets to construct NB bootstrap
MFSMs ψ̂∗

H,j(x), j = 1, ..., NB ;

(d) Evaluate the bootstrap MFSMs ψ̂∗
H,j at x0 to obtain ψ̂∗

H,j(x0), j = 1, ..., NB ;

2. Construct the (1 − 2α)-percentile CI based on ψ̂∗
H(x0):

Estimate [ψlo,α(x0), ψup,α(x0)] as
[
ψ̂

∗[α]
H (x0), ψ̂∗[1−α]

H (x0)
]
, where ψ̂∗[α]

H (x0) and
ψ̂

∗[1−α]
H (x0) are the α- and (1 − α)-empirical quantile of ψ̂∗

H(x0).

Moving now to the construction of prediction intervals about an unseen noise-contaminated
observation, we can follow the same procedure used for the confidence intervals about the
underlying HF function, with the additional step of accounting for the noise inherent in the
observations, as follows from Equation (12). More precisely, accounting for the noise comprises
a two-step process. First, we need to infer the distribution of εH that characterizes the noise
present in the HF data (see Equation (1)). We do this by obtaining realizations of this noise and
then use classical inference to fit and select among a family of possible parametric univariate
distributions.

In practice, we can expect that our MF predictor will exhibit some bias, which we denote as β.
Then, we can obtain a realization of εH by computing the residual for each HF observation:

r(i) = y
(i)
H − ψ̂H(x(i)

H ) − β(i). (25)

Moreover, an estimate for the bias β(i) is obtained from bootstrap as follows (Efron and Tibshirani,
1994):

β̂(i) = E
[
ψ̂∗

H(x(i)
H )

]
− ψ̂H(x(i)

H ), (26)

where E
[
ψ̂∗

H(x(i)
H )

]
is the bootstrap expectation, which can be approximated by the sample

average

µ∗(x(i)
H ) = 1

NB

NB∑

b=1
ψ̂∗

H,b(x
(i)
H ). (27)

Please note that the bootstrap estimate of bias does not consider biases arising from potential
inaccuracies in our regression model, such as those introduced by the truncation of the PCE
basis. However, it is capable of detecting other biases resulting from, e.g., the estimation of
coefficients through sparse regression techniques.
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Substituting µ∗(x(i)
H ) for E

[
ψ̂∗

H(x(i)
H )

]
and β̂(i) for β(i) in Equation (25), the residual computed

at x
(i)
H can be written as:

r(i) = y
(i)
H − ψ̂H(x(i)

H ) − β̂(i)

= y
(i)
H − ψ̂H(x(i)

H ) − (µ∗(x(i)
H ) − ψ̂H(x(i)

H ))

= y
(i)
H − µ∗(x(i)

H ). (28)

This means that a realization of εH can be estimated as the difference between a HF observation
and the bootstrap mean. Having NH noise samples r(i), we use maximum likelihood estimation
(MLE) to infer the parameters of a zero-mean distribution. Within the scope of this work,
we consider zero-mean variants of the classical Gaussian, Laplace, and Uniform distributions,
but in the general case any distribution could be considered. Finally, we use the Bayesian
information criterion (BIC; Schwartz (1978)) to select the most appropriate distribution among
those considered.

The second step for the PI construction at x0 consists in adding a new noise realization ε̂H,j from
the estimated noise to each of the bootstrap model evaluations ψ̂∗

H,j(x0) obtained in Step 1.d of
the CI construction process to obtain a new noisy HF realization:

ŷ∗
H,j(x0, ε̂H) = ψ̂∗

H,j(x0) + ε̂H,j , for j = 1, ..., NB. (29)

Finally, similarly to the CI, the (1 − 2α)-quantile PI is obtained from the α- and (1 −α)-quantile
of the empirical quantile function of ŷ∗

H(x0, ε̂H):

[ylo,α(x0, εH), yup,α(x0, εH)] =
[
ŷ

∗[α]
H (x0, ε̂H), ŷ∗[1−α]

H (x0, ε̂H)
]
. (30)

The process for the construction of a PI at x0 is summarized as follows:

1. Obtain NB MF bootstrap model evaluations ψ̂∗
H,j(x0), j = 1, ..., NB:

Steps a - d are the same as for the CI construction;

2. Estimate the irreducible noise εH present on the HF data:

(a) Obtain NH noise realizations from the residuals: r(i) = y
(i)
H − µ∗(x(i)

H ),
i = 1, ..., NH, where µ∗(x(i)

H ) is the bootstrap mean at x
(i)
H ;

(b) Infer the noise distribution:

i. Use MLE to fit a zero-mean Gaussian, Laplace, and Uniform distribution to the
samples r(i);

ii. Use BIC to choose the most suitable distribution ε̂H;

3. Add a new realization of ε̂H to each of the bootstrap model evaluations ψ̂∗
H,j(x0) to obtain

new noisy HF realizations:
ŷ∗

H,j(x0, ε̂H) = ψ̂∗
H,j(x0) + ε̂H,j , j = 1, ..., NB ;
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4. Construct the (1 − 2α)-percentile PI based on ŷ∗
H(x0, ε̂H):

Estimate [ylo,α(x0, εH), yup,α(x0, εH)] as
[
ŷ

∗[α]
H (x0, ε̂H), ŷ∗[1−α]

H (x0, ε̂H)
]
, where

ŷ
∗[α]
H (x0, ε̂H) and ŷ

∗[1−α]
H (x0, ε̂H) are the α- and (1 − α)-quantile of ŷ∗

H(x0, ε̂H).

3 Validation and results

In this section, the performance of the proposed framework for multi-fidelity gray-box modeling
is illustrated on three examples of increasing complexity: an analytical example with one-
dimensional input (Section 3.3), a case study with a ten-dimensional finite-element model of a
truss and its simply supported beam approximation (Section 3.4), and a real-world application
involving wind turbine simulations (Section 3.5). In each application, the HF data contain noise,
which is either naturally present (Example 3.5) or artificially introduced by us to replicate the
gray-box scenario (Examples 3.3, 3.4). The validation of the proposed framework comprises two
parts: assessing the performance of the MFSM constructed as described in Section 2.4.1, and
appraising the confidence and prediction intervals constructed as outlined in Section 2.4.2.

For the implementation of the PCE models involved in the validation process, we use UQLab
(Marelli and Sudret, 2014), a general-purpose uncertainty quantification software implemented in
Matlab.

3.1 MFSM performance and convergence evaluation

We assess the predictive performance and convergence behaviour of our MFSM using the
normalized validation error, computed on a test set consisting of Ntest data points that were not
used for training, as follows:

ϵval =
∑Ntest

i=1 (y(i)
t − ψ̂H(x(i)

t ))2
∑Ntest

i=1 (y(i)
t − µy)2

, (31)

where y(i)
t equals the noise-free HF model response ψH(x(i)

t ) at the test point x
(i)
t , when this

response is available (Examples 3.3, 3.4), or the noisy HF response yH(x(i)
t ) when the noise-free

response is not known (Example 3.5), and µy is the mean value of the HF response.

The convergence of our MFSM with respect to the HF experimental design size can be investigated
by performing simulations with increasing HF ED size, while keeping the LF ED fixed. Due to
the statistical uncertainty associated with each HF random design, 50 replications are carried
out, considering each time a different independent realization of this experimental design. Box
plots are used to provide an aggregated view of the results obtained in all scenarios.

In the subsequent applications, our objective is to assess the added value of the MFSM in
comparison to single-fidelity models, and specifically, we aim to determine whether the MFSM
exhibits a faster convergence rate. For this purpose, for each HF experimental design and each
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replication, alongside the MFSM, we construct a PCE surrogate model trained solely the HF
data. The same test data is used to compute ϵval, for both the MFSM and the HF PCE model.

3.2 Performance measures for confidence and prediction intervals

Regarding the evaluation of confidence and prediction intervals, two well-established key indicators
are given by the confidence interval coverage probability (CICP) and prediction interval coverage
probability (PICP) respectively, as well as the average coverage error (ACE) (Wan et al., 2014).

If the nominal coverage of a CI is 1 − 2α and the corresponding CI is [ψlo,α(x), ψup,α(x)], one
can estimate the CICP associated with this nominal coverage using Ĉα, defined as

Ĉα = 1
Nt

Nt∑

i=1
1(ψ(i)

H,t ∈ [ψlo,α(x(i)
H, t), ψup,α(x(i)

H,t)]), (32)

where (X H,t,ΨH,t) is a test set of size Nt of HF inputs and the corresponding noise-free responses,
and 1(·) is the indicator function, which returns 1 if the condition between parentheses is true,
and 0 otherwise.

To account for the statistical uncertainty associated with the HF and LF random designs, as
well as the bootstrap sampling, we perform Nrep = 10 replications with varying random seed,
and compute the mean CICP (MCICP) over these replications:

C̄α = 1
Nrep

Nrep∑

j=1
Ĉ(j)

α , (33)

When the computed confidence intervals are reliable, the MCICP should be close to its nominal
value, i.e., C̄α ≈ 1 − 2α.

The CICP and MCICP can only be estimated when the underlying noise-free HF function is
known, thus their computation is generally unfeasible in real-world applications when data
contain noise.

Similarly, for a prediction interval with nominal coverage 1 − 2α, the mean prediction interval
coverage probability (MPICP) can be estimated as follows:

P̄α = 1
Nrep

Nrep∑

j=1
P̂ (j)

α , (34)

where

P̂α = 1
Nt

Nt∑

i=1
1(y(i)

H,t ∈ [ylo,α(x(i)
H,t), yup,α(x(i)

H,t)]) (35)

is the estimated PICP for each replication. Here (X H,t,YH,t) is a test set of size Nt of HF inputs
and the corresponding noise-contaminated responses. Reliable PIs have P̄α ≈ 1 − 2α.
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The ACE metric aims instead to quantify the difference between the actual coverage of an interval
and its designated nominal coverage. The ACE for a CI evaluation is defined as

ACECI,α = CICP − (1 − 2α). (36)

Here, we use the MCICP instead of the CICP, and thus, for a CI of nominal coverage 1 − 2α the
ACE can be estimated by

ÊCI,α = C̄α − (1 − 2α). (37)

Likewise, the ACE for a PI can be estimated by

ÊPI,α = P̄α − (1 − 2α). (38)

An ACE value that is close to zero indicates reliable intervals. Moreover, a positive ACE denotes
over-coverage, i.e., the interval actual coverage exceeds its nominal value, whereas a negative
ACE indicates under-coverage, i.e., the interval actual coverage is lower than its nominal value.

3.3 Analytical 1-D example

Our first application is an analytical one-dimensional problem which serves well the purpose of
visualisation of both the denoising performance and the confidence/prediction interval estimation.
In this application, originally introduced in Brevault et al. (2020), the noise-free high- and
low-fidelity models are given by:

fH =
(
x

4 −
√

2
)

sin(2πx+ π) (39)

fL = sin(2πx), (40)

where x ∼ U [0, 2]. The HF and LF functions are depicted in Figure 2.

To replicate the MF gray-box setting, we artificially contaminate the HF data with additive noise
that follows a Gaussian distribution εH ∼ N (0, σεH).

Figure 2: Analytical 1-D example – Noise-free high- and low-fidelity functions.
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3.3.1 MFSM performance and convergence

We first assess the performance of the MFSM under varying levels of noise in the HF data. To this
end, we compute the validation error ϵval for the cases where σεH is set to 1%, 5%, 10%, and 20%
of the standard deviation σ̂H of the noise-free HF model, obtained from a PCE trained on 1, 000
noise-free HF data points, as described in, e.g., Blatman and Sudret (2011). As σ̂H = 0.828, the
numerical values for σεH read: (a) σεH = 0.008, (b) σεH = 0.041, (c) σεH = 0.083, (d) σεH = 0.166,
respectively.

Here, for each noise level, the HF ED varies from 5 to 25 data points, while the LF ED is fixed
in all experiments to 100 data points. For the computation of the validation errors shown in
Figure 3, we use Ntest = 105 noise-free HF data points generated using LHS in the input space.

(a) σεH = 0.01 σ̂H (b) σεH = 0.05 σ̂H

(c) σεH = 0.1 σ̂H (d) σεH = 0.2 σ̂H

Figure 3: Analytical 1-D example – Convergence of the validation error ϵval for increasing amount
of HF training data under varying levels of noise in the HF data, εH ∼ N (0, σεH). Comparison
of our MFSM (blue boxes) with a PCE model trained on HF data only (red). The dashed lines
are the corresponding errors of a PCE model trained on LF data only.

The box plots in Figure 3 show the comparison between our MFSM and the PCE surrogate
model trained solely on the corresponding HF data available in each case. In addition, the error
of the PCE model trained solely on the available LF data is represented by dashed lines and
serves as a baseline for comparison. Both single-fidelity PCE models have the same specifications
as the PCE employed for the MFSM.

We observe that from as few as 5 HF training data points, our MFSM approach outperforms
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surrogate models trained solely on either HF or LF data. This distinction becomes particularly
evident for lower noise levels within the HF data. Hence, when HF data is scarce and data of
different fidelities is present, the value of employing MFSMs as opposed to single-fidelity SMs
becomes apparent. We notice that when sufficient HF data is available, e.g., here, approximately
20 data points for εH ∼ N (0, 0.01σ̂H), the MFSM and HF surrogate model performance is similar.
In addition, as the level of noise in the HF data increases, the difference in performance of
the MFSM and the HF SM diminishes. Indeed, Figure 3(d) shows a comparable performance
between the two models, regardless of the size of the experimental design.

Moreover, we notice that for all noise levels, the multi-fidelity surrogate model error continuously
decreases for increasing NH, which indicates the convergence of the MFSM to the underlying
noise-free HF model. However, the convergence rate is strongly influenced by the level of noise
present in the HF data. As expected, the slowest convergence is observed for the strongest noise
(Figure 3(d)).

Finally, the scattering of ϵval of the MFSM, indicated by the box length, is generally smaller
for larger HF experimental design sizes. This suggests more stable MFSM models that are less
sensitive to the specific choice of the HF experimental design.

3.3.2 Confidence and prediction intervals

We now investigate the behaviour and performance of the confidence and prediction intervals for
different HF experimental design sizes and different levels of noise in the HF observations. In
the following, we use NB = 1, 000 bootstrap replications to construct the CIs and PIs (Dubreuil
et al., 2014).

Figure 4 shows the 90% CIs (blue area) and 90% PIs (yellow area) for the MFSM prediction (blue
line) in four different cases occurring from all combinations among a realization of higher/lower
noise in the HF observations and a realization of a larger/smaller HF ED. Here, again the LF
ED is fixed to 100 samples. The HF and LF training data in each case is visualised by the
black error bars and the gray circles, respectively. The error bars depict the 0.9-quantile of the
estimated HF observation noise distribution. The plots appearing in the same row show that,
for increasing noise and same EDs, both the CIs and the PIs become wider. This indicates
that both the uncertainty about the underlying HF model and an unseen noise-contaminated
HF observation increase. Moreover, the plots in the same columns reveal that, when the noise
remains the same but the HF training data increases, the width of the CIs decreases. This means
that our MFSM becomes more confident about where the regression model for the noise-free HF
model lies. Also, the uncertainty about an unseen noise-contaminated HF observation, as shown
by the PIs, decreases marginally. In this case, the PIs and CIs become more distinct, meaning
that the uncertainty about a noise-contaminated HF observation is not anymore dominated by
the regression model uncertainty.

Let us now proceed to the evaluation of the confidence and prediction intervals that our framework
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(a) σεH = 0.1 σ̂H, NH = 25 (b) σεH = 0.2 σ̂H, NH = 25

(c) σεH = 0.1 σ̂H, NH = 50 (d) σεH = 0.2 σ̂H, NH = 50

Figure 4: Analytical 1-D example – 90% confidence and prediction intervals for the MFSMs
trained on the illustrated HF and LF data sets. Plots in the same column exhibit the same noise
level on the HF data, while the HF ED size increases. Plots in the same row use the same HF
ED size and increasing level of noise on the HF data.

produces. Table 1 shows the detailed evaluation results including the MCICP and ACECI for the
CI evaluation, as well as the MPICP and ACEPI, used for the PI evaluation. The MCICP and
the ACECI are estimated as in Equation (33) and Equation (37) respectively, where Nrep = 10
replications with different seeds are performed. In each replication, the Ĉ(j)

α is computed as in
Equation (32), using a test set consisting of Nt = 10, 000 data points ψ(i)

H,t from the noise-free HF
function, given by Equation (39). Similarly, to estimate the MPICP and the ACEPI, in each of
the Nrep replications, P̂ (j)

α is computed as in Equation (35), using a test set with Nt = 10, 000
data points y(i)

H,t, where
y

(i)
H,t = ψ

(i)
H,t + ε

(i)
H . (41)

Here ε(i)
H is a realization of the prescribed noise distribution, εH ∼ N (0, σεH) with σεH displayed

in the second column of the table.

We can notice that, for all nominal coverage levels and every combination of σεH and NH, the
coverage of the PIs that our method provides is in excellent agreement with the corresponding
nominal coverage. Specifically, the absolute value of the PI coverage error ACEPI rarely exceeds
1%. Moreover,the coverage of the constructed CIs is satisfactory, with the absolute value of
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Table 1: Analytical 1-D example – Confidence and prediction intervals evaluation

1 − 2α σεH NH MCICP ACECI MPICP ACEPI

0.1

0.1 σ̂H 25 0.118 0.018 0.099 −0.001
0.1 σ̂H 50 0.096 −0.004 0.110 0.010
0.2 σ̂H 25 0.125 0.025 0.104 0.004
0.2 σ̂H 50 0.132 0.032 0.104 0.004

0.5

0.1 σ̂H 25 0.548 0.048 0.494 −0.006
0.1 σ̂H 50 0.544 0.044 0.530 0.030
0.2 σ̂H 25 0.569 0.069 0.509 0.009
0.2 σ̂H 50 0.561 0.061 0.526 0.026

0.9

0.1 σ̂H 25 0.929 0.029 0.888 −0.012
0.1 σ̂H 50 0.992 0.092 0.905 0.005
0.2 σ̂H 25 0.960 0.060 0.906 0.006
0.2 σ̂H 50 0.991 0.091 0.919 0.019

0.95

0.1 σ̂H 25 0.988 0.038 0.941 −0.009
0.1 σ̂H 50 1 0.050 0.950 0
0.2 σ̂H 25 1 0.050 0.952 0.002
0.2 σ̂H 50 1 0.050 0.962 0.012

ACECI being most of the times below 6%. The observed error in the CI coverage is almost
exclusively due to over-coverage, indicated by a positive ACECI. We can attribute this to the
presence of noise in the HF data. Indeed, we can notice that when the noise level is high
(σεH = 0.2 σ̂H), the CI coverage error increases consistently compared to instances where the
noise is lower. Overall, the PIs achieve coverage much closer to the nominal level rather than the
corresponding CIs.

Finally, we investigate the behaviour of the CIs and PIs asymptotically with respect to the HF
experimental design size. Figure 5 shows the 90% CIs and PIs for four realizations of HF EDs of
increasing size, from 20 up to 2500 data points. The level of noise is fixed, with σεH = 0.2 σ̂H,
and also fixed is the LF ED to 100 data points. Let us note that despite the LF ED typically
being larger than the HF ED in practical applications, the last three out of the four cases do not
align with this common scenario. In this study, we intentionally maintain this particular fixed
LF ED across all cases to facilitate a focused investigation into the convergence behavior of the
CIs and PIs of the MFSM with respect to the HF ED.

We observe that, as the HF ED increases, the CIs tend to converge to the regression model. This
behavior aligns with our expectations, and reflects the fact that as more data becomes available,
the epistemic uncertainty due to the lack of knowledge decreases and therefore, our MFSM
exhibits increased confidence in its predictions. As regards the PIs, we notice that they tend
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(a) NH = 20 (b) NH = 100

(c) NH = 500 (d) NH = 2500

Figure 5: Analytical 1-D example – Convergence of the confidence and prediction intervals for
increasing HF ED size. In each plot, the blue area corresponds to the 90% CI, the yellow area
to the 90% PI, while the red and blue lines depict the true noise-free HF response and the MF
prediction respectively. To reduce the visual density of the plot, we did not include the HF and
LF training data.

to converge to a non-zero width, indicative of the amount noise in the HF observations. This
behavior is also expected, as the noise in the HF observations arises from aleatory uncertainty,
and is thus irreducible regardless of the amount of the available training data. Consequently,
predictions for unseen observations will inherently carry this uncertainty.

3.4 Truss model

In our second application, we aim to investigate the scalability of our method when applied to
higher-dimensional problems. For this purpose, we consider a problem of engineering interest,
and precisely, an ideal truss model with 23 bars and 6 upper cord nodes, as shown in Figure 6(a)
(see Blatman and Sudret (2008)). This ten-dimensional model serves as the high fidelity.

The HF truss structure has height H and length L, here considered constant, with H = 2m and
L = 24m. The truss consists of two types of bars: horizontal bars with cross-sectional area A1

and Young’s modulus E1, and oblique bars with cross-sectional area A2 and Young’s modulus E2.
The truss is loaded with six vertical loads Pi applied on the upper cord nodes. The quantity of
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interest is the mid-span displacement of the truss, denoted as wt. Here, wt is calculated using an
in-house finite element model programmed in Matlab. The geometrical and material properties of
the truss members, as well as the loads, are modeled as random variables, with the distributions
provided in Table 2.

Table 2: Truss model – Input variables and their distributions

Variable Distribution Mean Standard deviation

E1, E2 [Pa] Lognormal 2.1 · 1011 2.1 · 1010

A1 [m2] Lognormal 2 · 10−3 2 · 10−4

A2 [m2] Lognormal 1 · 10−3 1 · 10−4

P1-P6 [N] Gumbel 5 · 104 7.5 · 103

In real engineering applications, the truss displacement wt is commonly measured by laser
measuring tools, and typically, such devices report a margin of error of 0.0015 m (1.5 mm).
Therefore, in this example, we add artificial noise εH ∼ N (0, 0.0015) on the displacement wt. To
give a perspective on the level of the noise εH with respect to wt, the standard deviation of wt,
as computed from a reference PCE trained on 1, 000 data points (see, e.g., Blatman and Sudret
(2011)), is σ̂wt ≈ 0.0128 m. This means that σεH ≈ 0.12 σ̂wt .
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(a) HF model: Ideal truss structure.
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(b) LF model: Simply supported beam.

Figure 6: A truss structure with 23 bars and 6 upper cord nodes, used as the high fidelity (a),
and its simply supported beam low-fidelity equivalent (b).

We now consider as the LF counterpart of the described HF truss model a homogeneous simply
supported beam with length L and height h subjected to a uniform loading q, as shown in
Figure 6(b). The mid-span deflection of the beam wb can be computed as the sum of deflections
due to bending and shear. For slender beams with h ≪ L, we can neglect the shear contribution
and approximate wb as the deflection solely due to bending. Then,

wb = 5 q L4

384E I . (42)

Here, we consider q =
∑6

i=1 Pi

ℓ . Moreover, the bending stiffness EI of the beam is determined by
the Young’s modulus E (material property) and the moment of inertia I (geometrical property).
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We consider E = E1, and assuming that only the cords contribute to I, we can approximate it
as I = 2A1(H

2 )2. Thus, the mid-span deflection of the LF beam model can be computed as:

wb = 5L3 ∑6
i=1 Pi

384E1 2A1
(

H
2

)2 , (43)

where H is the height of the corresponding HF truss.

3.4.1 MFSM performance and convergence

Similarly to the previous analytical example, we now investigate the performance of our MFSM
and its convergence with respect to the noise-free underlying HF truss model by computing
the validation error ϵval for increasing HF experimental design size. More precisely, the HF
ED size varies from 5 to 160 data points contaminated with the noise following the prescribed
distribution, while the LF ED is fixed in all experiments to 300 data points. The larger amount
of LF training data used compared to the previous application is due to the higher dimensionality
and complexity of this application. Again, for the computation of ϵval, we use Ntest = 105

noise-free HF data points generated using Latin Hypercube Sampling in the input space.

Figure 7: Truss model – Convergence of the validation error ϵval for increasing number of HF
training data. Comparison of our MF gray-box with a PCE model trained on HF data only. The
dashed lines are the corresponding errors of a PCE model trained on LF data only.

From Figure 7, we observe that our MFSM outperforms both the PCE model trained on HF
data only, and the PCE model trained solely on LF data, across all the considered HF ED sizes.
The performance difference between the MFSM and the HF PCE model is more pronounced
when the available HF data comprises fewer than 20 data points.

3.4.2 Confidence and prediction intervals

We now proceed to the construction and evaluation of CIs and PIs for our MF truss model. We set
the HF ED size equal to 80 samples, as the previous study demonstrated satisfactory performance
at this sample size (ϵval ≈ 1%), with only marginal improvement observed when doubling the
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sample amount. The HF data is contaminated with noise εH ∼ N (0, 0.0015). Furthermore, the
LF ED consists of 300 samples. Similarly to the previous application, NB = 1, 000 bootstrap
replications are performed for the construction of the CIs and PIs. Also, for the computation of
the evaluation metrics reported in Table 3, Nrep = 10 replications are performed, and the test
sets for the CI and PI evaluation consist of Nt = 10, 000 data points each, obtained as described
in Section 3.3.2.

Table 3: Truss model – Confidence and prediction intervals evaluation, where εH ∼ N (0, 0.0015),
NH = 80, and NL = 300

1 − 2α MCICP ACECI MPICP ACEPI

0.1 0.124 0.024 0.109 0.009
0.5 0.593 0.093 0.542 0.042
0.9 0.959 0.059 0.935 0.035
0.95 0.986 0.036 0.973 0.023

From Table 3, we observe that for all the nominal coverage levels examined, our method provides
reliable CIs and PIs. More precisely, the PI average coverage error ranges from less than 1% to
approximately 4%, while the corresponding error for the CIs varies from 2% to 9%. The observed
error is always due to over-coverage, and though not ideal, is preferable to under-coverage and
considered acceptable. Moreover, the PIs exhibit again closer coverage to the nominal levels
compared to the CIs.

To illustrate the constructed CIs and PIs in this application, we select the random variables E1

and A1 as the most important ones, according to a sensitivity analysis on the HF truss model
performed by Blatman and Sudret (2011). Figure 8 illustrates the 90% CIs (blue area) and PIs
(yellow area) along slices in the two selected dimensions (with all the other parameters kept
at their mean values), as well as the true HF model response and our MFSM response (red
and blue line respectively) for the selected HF and LF experimental designs. Figure 8(a) shows
these quantities as a function of E1 for two different values of A1 that correspond to its 0.25-
and 0.75-quantiles, while the rest input random variables are fixed at their mean. Similarly,
Figure 8(b) shows the same quantities as a function of A1 for two different values of E1.

3.5 Real-world application: aero-servo-elastic simulation of a wind turbine

In our last application, we aim to explore the applicability and performance of our framework in
a real-world application involving real wind turbine simulations, performed by Abdallah et al.
(2019). For this study, an onshore wind turbine standing on a 90 m tower is considered, with
a rotor diameter of 110 m and a rated power of 2 MW. The goal is to investigate the impact
of the wind speed, turbulence intensity, and shear profile on the variation of the extreme loads,
and specifically the maximum flapwise bending moment at the wind turbine blade root. The
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(a) Selected dimension: Young’s modulus E1 (b) Selected dimension: cross-sectional area A1

Figure 8: Truss model – 90% confidence and prediction intervals along slices in the two selected
dimensions for the MFSM trained on 80 HF and 300 LF data points. In each subplot, the blue
area corresponds to the 90% CI, the yellow area to the 90% PI, while the red and blue lines
depict the true noise-free HF response and the MFSM prediction respectively.

wind speed, turbulence intensity, and shear exponent are modeled as random variables, whose
distributions are described in Table 4.

Table 4: Wind turbine simulations – Input variables and their distributions

Variable Distribution Parameters

Wind speed (U) [m/s] Uniform [4, 25]
Turbulence intensity (σU) [m/s] Uniform [0.1, 6]
Wind shear exponent (α) [-] Uniform [−1, 1.5]

Abdallah et al. (2019) used two different numerical aeroservo-elastic simulators, namely Bladed
and FAST. Simulation data from Bladed are considered as the high-fidelity data, while the
FAST simulation data are considered to be the low-fidelity data. Details on the technical
characteristics of the Bladed and FAST simulators can be found in Abdallah et al. (2019);
Bossanyi (2003); Jonkman and Buhl (2005). A 10-minute time series simulation in FAST takes
about 5 minutes to run in real time, whereas the same simulation in Bladed takes approximately
30 minutes. Consequently, there are fewer Bladed simulations compared to FAST simulations.
The experimental designs for the Bladed and FAST simulations can be found in Table 5.

Table 5: Experimental design for Bladed and FAST simulations

Simulator Wind speed (U) Turbulence intensity (σU) Wind shear exponent (α)

Bladed 4, 8, 10, 12, 15, 20, 25 0.1, 1, 2, 3, 4, 5, 6 ±1,±0.6,±0.2,±0.1, 0, 1.5
FAST 4, 5, 6, ..., 25 0.1, 1, 2, 3, 4, 5, 6 ±1,±0.6,±0.2,±0.1, 0, 1.5

Each combination of wind speed, turbulence intensity, and shear exponent is used to generate
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wind time series realizations with 12 different stochastic seeds for Bladed and 24 different seeds
for FAST. Excluding certain combinations of input parameters that are not realistic results in
4, 344 and 33, 480 simulations for Bladed and FAST respectively. Our HF data set is the mean
system response over the 12 time series from Bladed, thus 362 data points. Moreover, our LF
data set is the mean system response over the 24 time series from FAST, resulting in a total of
1, 395 data points.

In this case study, both the HF and the LF data are considered noisy, due to the stochasticity in
the wind turbine simulations. Our MF framework remains applicable as is.

3.5.1 MFSM performance and convergence

In this application, we explore the performance of our MFSM for increasing HF experimental
design size, equal to 10%, 20%, ..., 70% of the total HF data available, while keeping the LF ED
fixed to all the available LF data. We compute the validation error ϵval of the MFSM on a test
set consisting of the 30% of the HF data which was not used for training any of the MFSMs at
each given replication: Ntest = 0.3 × 362 = 109 data points.

As shown in Figure 9, our MFSM outperforms the PCE model trained on HF data only, the
difference being more evident especially for small HF EDs. We can notice that we achieve
satisfactory performance (ϵval < 1%) already for NH = 144, which corresponds to 40% of the
available HF data.

Figure 9: Wind turbine application – Convergence of the validation error ϵval for increasing
number of HF training data. Comparison of our MF gray-box with a PCE model trained on HF
data only. The dashed lines are the corresponding errors of a PCE model trained on LF data
only.

Let us note that in this application, ϵval is not expected to approach zero as the HF ED size
increases, because ϵval is now computed with respect to noisy HF data. Instead, ϵval is expected
to converge to a value representative of the noise present in the HF data.
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3.5.2 Confidence and prediction intervals

In this section, we provide the CIs and PIs for our MFSM prediction. In this real-world application,
the true noise-free HF function is unknown, limiting our ability to assess the reliability of the
constructed CIs. Thus, we are able to only appraise the constructed PIs on a test set from
the HF data. We use 70% of the available HF data for training and the rest 30% for the
PI evaluation, and we perform Nrep = 10 replications using different seeds to account for the
statistical uncertainty in the HF random design and the bootstrap sampling.

From Table 6, we observe that the coverage of our PIs is close to the nominal, albeit generally
overestimated. Once again in this application, the errors are due to over-coverage, which is more
evident for nominal coverage 50% and 90%.

Table 6: Wind turbine application – Prediction intervals evaluation

1 − 2α MPICP ACEPI

0.1 0.119 0.019
0.5 0.583 0.083
0.9 0.950 0.050
0.95 0.981 0.031

The predicted extreme flapwise bending moment as well as the 90% CIs and PIs in the wind speed
and turbulence intensity dimensions are illustrated in Figure 10. More precisely, Figure 10(a)
shows the MFSM prediction and the corresponding intervals as a function of the wind speed U for
two different values of the turbulence intensity σU that correspond to its 0.25- and 0.75-quantiles,
while the wind shear exponent α is fixed at its mean. Similarly, Figure 10(b) depicts the MFSM
prediction and the corresponding intervals as a function of σU for two different values of U .

4 Conclusions

In this paper, we presented a novel and comprehensive framework for multi-fidelity surrogate
modeling that effectively handles noisy data and incorporates epistemic uncertainty arising
from limited training information. Our regression-based approach aims to emulate the assumed
underlying noise-free HF model, and provides accurate predictions and denoising capabilities.
It also offers uncertainty estimations with respect to not only the underlying HF model, but
also to unseen noise-contaminated HF observations in the form of confidence and prediction
intervals respectively, constructed using the bootstrap methodology. The proposed framework
is applied in the field of gray-box modeling, where noisy measurements, considered as the high
fidelity, are combined with white-box computer simulations, treated as the low fidelity. However,
our framework is not limited solely to the grey-box scenario of combining experimental data
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(a) Selected dimension: wind speed U (b) Selected dimension: turbulence intensity σU

Figure 10: Wind turbine application – 90% confidence and prediction intervals along slices in
the two selected dimensions for the MFSM trained on 253 HF and 1, 395 LF data points. In
each subplot, the blue area corresponds to the 90% CI, the yellow area to the 90% PI, while the
blue line depicts the MFSM prediction respectively.

and computer simulations. Its versatility extends to situations where both the HF and the LF
components are experiments or simulations.

Our framework proves its efficacy in various scenarios, including a one-dimensional analytical
example and a ten-dimensional application that incorporates a high-fidelity finite element model
alongside a low-fidelity analytical approximation. In both scenarios, noise was artificially added
to the HF data. In these synthetic examples, our multi-fidelity surrogate modeling method clearly
outperforms both surrogate models trained on the available high- and low-fidelity data separately,
and it shows convergence to the noise-free HF model with increasing number of HF training
data. Moreover, the constructed confidence and prediction intervals exhibit remarkably high
reliability, achieving coverage close to the nominal levels. Finally, our framework demonstrates
its versatility and potential by being applied on a real-world example involving wind turbine
simulations of different fidelity levels. In this application, our method provides again accurate
predictions and reliable prediction intervals.

It should be noted that the reliability of the confidence and prediction intervals comes at the cost
of computational time for their construction. For low-dimensional problems, this time can be
considered negligible, but in higher dimensions (≥ 10) this is not the case anymore. Nonetheless,
this time overhead is incurred only during the training phase and can subsequently be mitigated
as the bootstrap results can be stored. Thus, any subsequent inference including predictions
at unobserved points along with their associated confidence and prediction intervals, can be
instantaneously accessed.

In our future work, we plan to extend our methodology in various directions. Firstly, different
types of surrogate models and data fusing methodologies can be explored for our multi-fidelity
surrogate model construction. Additionally, to improve the performance of confidence and
prediction intervals, different techniques can be investigated, such as more advanced bootstrap
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methods (Efron and Tibshirani, 1994). Finally, the provided uncertainty estimations for the
multi-fidelity model predictions can be employed for different purposes, one being the adaptive
design of sampling strategies to obtain new samples from the high- and the low-fidelity models.
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