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ABSTRACT

In recent decades, oil palm plantations have expanded sig-
nificantly in Indonesia. Palm oil production currently relies
on two plantation types with different economic, social and
environmental impacts: (1) industrial plantations and (2)
smallholder plantations. While efforts have been made to
characterize these plantation types, this objective remains
challenging for the remote sensing community. Conse-
quently, this study assesses the potential of Sentinel-1 textural
metrics in distinguishing between industrial and smallholder
plantations, offering potential solutions to this persistent chal-
lenge. We used machine learning algorithms (Random Forest
vs. eXtreme Gradient Boosting Tree) with textural features
calculated by the Grey Level Co-occurrence Matrix. The
results confirmed the potential of Sentinel-1 textural metrics
to discriminate OP plantation types. The XGBTree model
achieved a higher Kappa (0.71) than the Random Forest
model (0.63). Moreover, the contrast, dissimilarity, GLCM-
Mean, and GLCMVariance metrics were the most explana-
tory for discriminating industrial and smallholder plantations.
This study possesses limitations, especially concerning its
applicability on a broader scale. However, leveraging cloud
computing tools like Google Earth Engine could aid in scaling
up the methodology.

Index Terms— Oil Palm plantation, Sentinel-1, Time-
series, Textural parameters, Classification.

1. INTRODUCTION

In recent decades, oil palm (OP) plantations have expanded
significantly in Southeast Asia, especially in Indonesia, the
world’s leading producer. Due to high yields (three to four
times higher than other oil crops such as olives, sunflowers,
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or rapeseed), OP is the world’s leading oil crop, involving sig-
nificant economic, social, and environmental consequences.
Indeed, OP plantations are often installed in forest or peatland
areas, threatening numerous species in a region identified as a
biodiversity hot-spot [1]. Moreover, the land rights of native
peoples are regularly endangered by OP plantations, causing
social and cultural challenges [2]. However, expanding oil
palm plantations has also contributed to develop Indonesian
agriculture and economy [3]. Today, palm oil production re-
lies on several plantation types, which we have grouped into
two classes for this work:

• highly capitalized industrial plantations corresponding
to nucleus estates plantations and plasma smallholders
[3],

• smallholder plantations representing independent small-
holders [3].

Accurately characterizing these plantations is essential
but is a challenging topic for the remote sensing community
due to the high cloud cover in Indonesia and the similarities
between the plantation types [4]. Despite the high cloud
cover, optical data were widely used to discriminate OP
plantations [4, 5, 6]. Yet, other studies used radar images
[7, 8, 9] and highlighted their potential for characterizing OP
plantation types. Textural metrics derived from radar annual
composites have effectively detected OP plantations [10]. In
the continuity of these findings, the objective of this work
is to assess the potential of Sentinel-1 textural metrics for
discriminating oil palm plantation types, i.e. industrial and
smallholder plantations.

2. DATA

2.1. Study area

The study was conducted on an area of 170 km² (Figure.1)
located in the province of North Sumatra. This province is
located on Sumatra island (area 473,481 km²), which is the



island most affected by OP expansion (9 million ha in Suma-
tra in 2019 vs 6 million ha in Kalimantan [11]). The study
area was chosen to represent both industrial and smallholder
plantations.

2.2. Sentinel-1 data

This work relied on a five-year radar time series from the
Sentinel-1A satellite (February 25, 2017 to December 31,
2022). This time series of 176 dates (i.e., about 30 images
per year) was automatically downloaded from the European
Space Agency hub in Ground Range Detected (GRD) format.
The images were acquired at C-band every 12 days in the
Interferometric Wide mode on ascending orbit n°143 with
dual VV/VH polarization at 10-meter spatial resolution.

2.3. Reference data

The reference data is a map of industrial and smallholder
plantations provided by a two-step approach [11]. First, the
mapping of industrial plantations has been performed through
visual interpretation of Landsat annual median composites
between 2000 and 2019. Second, smallholder plantations
were mapped by the AURIGA non-governmental organiza-
tion based on the visual interpretation of SPOT-6 images
at a 1.5m spatial resolution for 2016. This 2016 map, ap-
proved by the Indonesian government, was then updated until
2019 through change detection techniques using Sentinel-1
composites, whereas the Tree Loss [12] product was used to
estimate the planting years up to 2000. The maps of industrial
plantations and smallholders were then merged and corrected
where conflicts arose.

Based on this reference map, we located all pixels of the
Sentinel-1 image corresponding to oil palm areas and then
selected 10% of these pixels (i.e., 68,929 pixels for industrial
plantations and 31,934 pixels for smallholder plantations) to
create a reference dataset, further divided into a training set
(70,607 pixels) and a validation set (30,256 pixels).

3. METHOD

The method is divided in two stages: (1) calculation of textu-
ral metrics and (2) classification models.

3.1. Calculation of textural metrics

From the GRD images with linear Sigma0 values, we com-
puted ten textural metrics (i.e., Contrast, Dissimilarity, Ho-
mogeneity, Angular Second Moment (ASM), Energy, Max-
imum Probability, Entropy, GLCM Mean, GLCM Variance,
and GLCM Correlation) using the Grey Level Co-occurrence
Matrix (GLCM) for each polarisation (i.e., VV and VH).
These metrics were calculated with a 5 x 5 window to derive
2060 textural features considering :

• each of the 176 dates, i.e. 1760 bands corresponding to
176 VH images * 10 textural metrics,

• 10 mean seasonal composites (i.e., dry season from
May to October vs. wet season from November to
April), i.e. 200 images corresponding to (10 VH com-
posites + 10 VV composites) * 10 textural metrics,

• 5 mean annual composites, i.e. 100 images correspond-
ing to (5 VH composites + 5 VV composites) * 10 tex-
tural metrics.

For the 176 dates, we focused only on the VH polariza-
tion as they generally provide significant information for veg-
etation characterization [7]. For the mean composite images
(seasonal and annual), VH and VV are used as they provide
despeckle information useful for textural parameters extrac-
tion.

3.2. Classification models

Once the textural features were calculated, we used super-
vised classification models to discriminate the OP plantation
types. First, we selected the most explanatory textural fea-
tures by using the Gini index (in this work, Gini index > 23)
of Random Forest (RF). Thus, 195 features were identified
and further used to compare two classification models : a
Random Forest [13] and an eXtreme Gradient Boosting Tree
(XGBTree) [14, 15]. On the one hand, Random Forest, regu-
larly used with remote sensing data, is recognized for its ac-
curacy. Its operation, based on independent regression trees
(bagging model), is robust to the noise present in the data.
On the other hand, XGBTree is a recent model iterating on
mutually dependent decision trees (boosting model). XG-
BTree has several advantages, such as low data-processing
capacity, significantly increased algorithm speed by reducing
computational memory in large-scale data training, and high-
performance results, which have recently been very attractive.
[16, 17]. The models were computed with the same reference
training set (i.e., 70,607 pixels) and validation set (i.e., 30,256
pixels) divided according to the two classes (i.e., smallholder
vs. industrial). Finally, several tests were calculated using
the grid-search cross-validation approach to identify the best
hyper-parameters and optimize the results.

4. RESULTS

First, the Table.1 presents the most explanatory textural fea-
tures occurrences (i.e., 195 features). We note that GLCM
Variance, GLCM Mean, Contrast and Dissimilarity metrics
appear respectively 40, 39, 32 and 31 times (i.e., 20.5%,
20%, 16.4% and 15.9% of the 195 textural features). Accord-
ing to Haralick et al., [18], the GLCM Variance and GLCM
Mean metrics correspond to statistical parameters provid-
ing denoised information on pixel neighbourhood (in this



case, mean or variance of neighbouring pixels). For contrast
and dissimilarity, Haralick et al. identify them as contrast
variables that provide information (local or global) on the
variation of intensity in pixels. Differences in organization
between industrial (homogeneous organization) and small-
holder (heterogeneous organization) plantations significantly
impact the contrast features, with marked intensity variations
discriminating between OP plantation types.

Metrics Number of occurrences &
(Percentage)

Contrast 32 (i.e., 16.4%)
Dissimilarity 31 (i.e., 15.9%)
Homogeneity 15 (i.e., 7.7%)

ASM 9 (i.e., 4.6%)
Energy 8 (i.e., 4.1%)

Maximum probability 1 (i.e., 0.5%)
Entropy 10 (i.e., 5.1%)

GLCMMean 39 (i.e., 20%)
GLCMVariance 40 (i.e., 20.5%)

GLCMCorrelation 10 (i.e., 5.1%)

Table 1. Textural features occurrences from the Random For-
est (i.e., 195 features)

Then, the Table.2 present the most explanatory temporal
features occurrences. It is worth mentioning that the tem-
poral metrics emphasize annual and seasonal composite im-
ages (83 and 92 times respectively, i.e., 42.6% and 47.2% of
the 195 features). We also note that the importance of an-
nual and seasonal composites is similar. On the contrary, the
single-date images appear only 20 times (10.3%), testifying
that high temporal resolution (i.e., every 12 days for Sentinel-
1 data) is not necessary to discriminate industrial and small-
holder plantations since oil palms have a long phenological
cycle (around 25 years). Moreover, temporal composites de-
speckle the radar data, providing finer textural information.

Metrics Number of occurrences &
(Percentage)

Annual composite images 83 (i.e., 42.6%)
Seasonal composite images 92 (i.e., 47.2%)

Single-date images 20 (i.e., 10.3%)

Table 2. Temporal features occurrences from the Random
Forest (i.e., 195 features)

The classification (Figure.1) shows a salt-and-pepper ef-
fect (e.g., in the large area of smallholder plantations to the
East of our study area). Errors are also frequently observed on
the edges of plantations, showing that it is still challenging to
discriminate plantation types or between plantations and other
land uses (e.g. forests, roads and rivers). Statistical validation
of the classifications presented in Table 3 highlights that the
highest Kappa is achieved by the boosting model (XGBTree

Kappa =0.71), testifying the under-performance of the bag-
ging model (RF Kappa = 0.63) to discriminate industrial and
smallholder plantations. These results can be explained as
follows:

• Discrimination of OP plantation types is a difficult task
that can be better achieved with sequentially trained
trees with adjustments made from the error of the pre-
vious tree,

• Random forest models are prone to overfitting, whereas
XGBTree models can counter this by creating shal-
lower trees,

• XGBTree works well on a wide variety of large datasets.

Furthermore, the User and Producer Accuracy show that
smallholder plantations are poorer detected than industrial,
with more errors of commission than errors of omission, i.e.,
Producer Accuracy (0.75) < User Accuracy (0.85) (Table.3).
This finding is explained by the heterogeneous organization
of smallholders planted in small areas, directly impacting im-
age texture with high contrast and dissimilarity values. Fi-
nally, we note that the RF model has more errors of omis-
sion than the XGBTree, particularly for industrial plantations
(Table.3). In other words, the Random Forest classifies more
industrial plantations as smallholders than the XGBTree.

Classification
models Kappa User

Accuracy
Producer
Accuracy

Ind SH Ind SH
Random Forest

(bagging) 0.63 0.85 0.84 0.94 0.65

xgbTree
(boosting) 0.71 0.89 0.85 0.94 0.75

Table 3. Statistical validation of classifications

5. DISCUSSION/CONCLUSION

The aim of this article, to distinguish smallholders from in-
dustrial plantations, remains a challenge for the remote sens-
ing community. Indeed, the similarities between plantation
types make them challenging to distinguish, and grouping
them into just two classes (i.e. smallholders vs. industrial
plantations) is questionable as it accentuates similarities.
However, our reference data and various studies [19, 20, 11]
are based on these two types of plantation. Hence, to iden-
tify OP plantation types, we computed machine learning
algorithms (RF vs. XGBTree) with textural features. Four
textural metrics (Contrast, dissimilarity, GLCM mean, and
GLCM variance) of composite images are the most explana-
tory in discriminating smallholders from industrial planta-
tions. Even if the best Kappa (0.71) was achieved by the
XGBTree model, the Producer and User Accuracies show



Fig. 1. Characterization of Oil palm plantations by (a) Radar color composite of 2022 mean composite, (b) Reference data, (c)
Random Forest classification, and (d) XGBTree classification

that smallholders have more commission errors than omis-
sion errors due to their heterogeneous organization impacting
the textural information.

These limits could be reduced by using additional optical
data. Even if such data are limited in Indonesia due to very
high cloud cover rates, they offer vegetation information, es-
pecially in the Red and Near-Infrared bands [20], and the syn-
ergy between optical and radar data has already been recog-
nized to identify the types of oil palm plantations [21]. Con-
cerning the radar, we could investigate more complex radar
features such as polarimetric parameters (e.g., degree of po-
larization [22]). Taking the temporal dimension into account
could also improve results or at least demonstrate the rele-
vance of using a specific type of temporal data (e.g. compos-
ite images).

In parallel with these developments on the data, we could
also use different classification models, in particular, deep

learning models according to two approaches: a spatial ap-
proach [19] and a temporal approach [23]. In addition, post-
processing steps such as a filtering operation (e.g. a median
filter) or ancillary decision criteria such as roads, oil mills
or hydrological networks could reduce ”salt and pepper” and
plantation edges effects (figure 1). From an application stand-
point, the results remain consistent within our 170 km² study
area. However, scaling up to a larger extent could provide
spatial information to address environmental, social, and eco-
nomic questions. To achieve this, using cloud computing plat-
forms such as Google Earth Engine [24] would be essential
to circumvent the time-consuming steps of data downloading
and processing.
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