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ABSTRACT: Reliability analysis provides a logical methodology for the estimation of the probability of
failure of a system and often requires many runs of an expensive-to-evaluate limit state function. Sur-
rogate models can be deployed to reduce the computational cost associated with such analysis, Kriging
being arguably the best-known surrogate model for reliability analysis. Although replacing full-scale
simulations with surrogate models is well-established for deterministic limit state functions, there is still
the need to extend it to non-deterministic cases. To bridge this gap, we propose using regression-based
surrogate models for reliability estimation of noisy limit state functions. The performance of this method
is demonstrated on well-known reliability benchmark problems artificially corrupted with noise. Our
results show that regression-based surrogate models can be used to effectively denoise these models and
estimate the associated probability of failure.

1. INTRODUCTION

Structural reliability aims at quantifying the prob-
ability that the uncertainty in the input parameters
of a system leads to performance failure. To com-
pute such a probability of failure Pf , we consider
a probabilistic framework where the input param-
eters are denoted by a random vector X. Their re-
spective uncertainties are entirely characterized by
their joint probability distribution function (PDF)
fX, defined on the domain DX ⊂ RM. Moreover,
the so-called limit state function g(x), often based
on an expensive-to-evaluate simulation model, takes
as input the parameters described by X and outputs
the state of the system, i.e. whether the physical

system fails or not. By convention, failure occurs
when g(x)⩽ 0. Consequently, the so-called failure
domain D f can be defined as {x : g(x)⩽ 0}. The
set of points x ∈DX such that g(x) = 0 forms to the
so-called limit state surface. Given this framework,
it is possible to compute the probability of failure as
follows (Melchers, 1989):

Pf = P(g(X)⩽ 0) =
∫

D f

fX (x)dx. (1)

Because the integration domain in Eq. (1) is multi-
dimensional and implicitly dependent on g(x), it
is rarely possible to evaluate Eq. (1) analytically.
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Monte Carlo simulation (MCS) is a robust and
straightforward method that can be used to estimate
Pf . However, it requires circa 10k+2 simulations to
estimate Pf ≈ 10−k. As Pf is small by design, the
cost of performing MCS is often prohibitive.

Surrogate models (also known as metamodels)
are cheap-to-evaluate mathematical approximations
that circumvent the cost of running full-scale simu-
lations. They are trained on a limited set of model
responses, called experimental design (ED), and can
be used as a proxy for expensive simulations. Be-
cause obtaining the ED is costly, as it depends on
running expensive simulations, it is crucial to define
a training set that balances its size and the accuracy
of the prediction. To this aim, metamodels used in
the context of reliability analysis often make use
of active learning (Teixeira et al., 2021; Moustapha
et al., 2022). This class of methods deploys so-called
learning functions to identify the best points to in-
troduce in the ED so as to accurately approximate
the limit state surface.

Surrogate models can be split into two broad
classes: interpolation- and regression- based. In-
terpolation methods assume that the training points
are not affected by random noise. Consequently,
they precisely interpolate through the points of the
ED. Regression methods, on the other hand, assume
that the training set is contaminated with a noise
term. For this reason, they do not strictly match the
training points. Instead, they aim at minimizing a
global cost function, usually the squared error.

Because computational models are usually as-
sumed to be deterministic, interpolation methods
have been successfully employed in reliability anal-
ysis. However, not all models are deterministic.
For instance, Forrester et al. (2006) commented on
the so-called "numerical noise" for computational
fluid dynamics (CFD) simulations. Paz et al. (2020);
Ahmadisoleymani and Missoum (2021) also report
a similar sort of noise, called "simulation noise",
in crashworthiness simulations. In the context of
reliability analysis, numerical noise has also been
observed in geotechnical models (van den Eijnden
et al., 2021). In these cases, features indirectly re-
lated to the simulation, such as numerical precision
or the meshing procedure, cause the simulation to

behave non-deterministically. For this particular
type of noise, a perturbation around the mean trend
of the output is observed. Employing interpolation
approaches in this context can lead to overfitting,
ultimately converging to an incorrect failure proba-
bility estimate (van den Eijnden et al., 2021).

We propose to extend reliability analysis to non-
deterministic simulations, by using regression-based
surrogate models to obtain the underlying noise-free
probability of failure. In this contribution, we apply
this approach to two well-known benchmark prob-
lems, relying either on polynomial chaos expansions
(PCE) or Gaussian process regression (GPR) and
different active learning strategies.

2. ACTIVE LEARNING METHODS FOR ESTIMAT-
ING THE PROBABILITY OF FAILURE

Moustapha et al. (2022) show that active learning
methods for reliability analysis comprise four main
components, that work as depicted in Algorithm 1.
The surrogate model is the first and most important
component of active learning reliability, affecting
the properties and convergence of the estimation.

Algorithm 1 Pseudo-code of active learning meth-
ods
Require: E (0) (Initial ED)

i← 0
repeat

Build surrogate model ĝ(i)
(

x;E (i)
)

Compute P(i)
f using ĝ(i)

(
x;E (i)

)
using a relia-

bility estimation method
Use a learning function to select X next

Enrich ED E (i+1)← E (i)∪{X next , g̃(X next)}
i← i+1

until stopping criterion is fulfilled

The second component of the framework is the
reliability estimation method, which defines how the
probability of failure is estimated at each iteration.
Possible methods for this purpose are MCS (Rubin-
stein and Kroese, 2016) or other advanced methods,
such as importance sampling (Melchers, 1989) or
subset simulation (Au and Beck, 2001).

The third component of the methodology is the
learning function that sequentially identifies the best
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points to introduce in the experimental design. This
component synergises strongly with the surrogate
model and the reliability estimation method, often
requiring measures of uncertainty of the surrogate
model predictions.

The last component of the method is the stopping
criterion. It affects the termination of the algorithm,
and is therefore related to its efficiency and robust-
ness. Loose stopping criteria can lead to premature
termination, whereas too strict ones can lead to an
unnecessary costly ED.

2.1. Surrogate Models
2.1.1. PCE basics

Under the assumption that g(X) has finite vari-
ance, it can be approximated as follows:

g(X) = ∑
ααα∈A

cαΨΨΨααα (X)+ εP, (2)

where cα are real coefficients and ΨΨΨα (X) are multi-
variate polynomials orthonormal w.r.t. fX. A cor-
responds to the truncation set of the ααα multi-index,
which identifies the degree of the multivariate poly-
nomial along each input variable. εP is the error
introduced as a consequence of the truncation.

Given a noise-corrupted ED, defined as

E =
{(

X (i), Ỹ (i)
)

: Ỹ (i) = g̃
(
X (i)

)
∈ R,

X (i) ∈DX ⊂ RM, i = 1, . . . ,n
}
,

(3)

it is possible to compute the PCE coefficients via
least-squares minimization:

ĉ = arg min
a∈RP

1
n

n

∑
i=1

(
aT ΨΨΨ

(
x(i)

)
− g̃

(
x(i)

))2
, (4)

where ΨΨΨ
(

x(i)
)

is a vector of length P= cardA con-
taining the values of the multivariate polynomials at
point x(i).

Advanced techniques for the solution of Eq. (4)
that are robust to noise come from the compressive
sensing literature. For an in-depth review of both
truncation and regression techniques for PCE, the
reader is referred to Lüthen et al. (2021, 2022).

2.1.2. Gaussian process regression basics

When employing GPR as a metamodel, the un-
derlying assumption is that the output of the model,
M (x), can be well approximated by a Gaussian pro-
cess indexed by x ∈ DX. Under this premise, the
surrogate is given as follows:

gGP (x) = βββ T f(x)+σ2Z(x,ω). (5)

The term βββ T f(x) corresponds to the mean (or trend)
of the Gaussian process. The vector f(x) contains
P pre-defined functions, and the vector βββ consists
of the P coefficients associated with the functions.
Z(x,ω) is a zero-mean, unit-variance and stationary
Gaussian process, and the parameter σ2 represents
the variance of gGP (x). The parameter ω represents
the underlying process variability. Also, because
Z(x,ω) is a Gaussian process, it can be completely
defined by its autocorrelation function, R(x,x′;θθθ),
that depends on (x−x′) and hyperparameters θθθ .

Due to the Gaussian nature of the method, the
predictor gGP (x) results in a normally distributed
random variable. Its mean value µĝ (x) and variance
σĝ (x) are computed by conditioning gGP (x) to the
observations in the ED, leading to the following
expressions (Rasmussen and Williams, 2006):

µĝ(x) = f(x)T β̂ββ + r̃(x)T R̃−1(Ỹ −Fβ̂ββ ), (6)

σ2
ĝ (x) = σ2

total

(
1− r̃T (x)R̃−1r̃(x)+uT (x)

(
FT R̃−1F

)−1
u(x)

)
,

(7)

where F is the design matrix, whose components are
Fi j = f j

(
xi) for i = {1, . . . ,n} and j = {1, . . . ,P}.

β̂ββ =
(

FT R̃−1F
)−1

FT R̃−1Ỹ is the generalized
least-squares estimate of the coefficients β , and
u(x) = FT R̃−1r̃(x)− f(x) is introduced for readabil-
ity.

Additionally, to obtain a closed-form solution
for Eq. (6) and Eq. (7), the noise component is
cast as normally distributed and homoskedastic, i.e.
ε(x)∼N

(
0,σ2

OI
)
. Then,

σ2
total = σ2 +σ2

O, τ =
σ2

O

σ2
total

(8)

and

r̃ = (1− τ)r, R̃ = (1− τ)R+ τI, (9)
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where the parameter σ2
O corresponds to the variance

of the noise. Finally, R is the correlation matrix,
whose components are Ri, j = R

(
x(i),x( j);θθθ

)
, i, j =

{1, . . . ,n}, and r corresponds to the vector of cross-
correlations with ri = R

(
x,x(i);θθθ

)
, i = {1, . . . ,n}.

r̃(x) is the vector of cross-correlation between the
points of the ED and the predicted point.

2.2. Reliability estimation method
As the surrogate models provide an inexpensive-

to-evaluate approximation of the limit state function,
it is possible to estimate Pf using MCS. Given a
sample set of size N of the input random vector X,
XMC =

{
x(1), . . . ,x(N)

}
, the MCS estimator reads:

Pf ,MC =
1
N

N

∑
k=1

1D f

(
x(k)

)
(10)

where 1D f (x) is an indicator function that takes 1
for g(x) ⩽ 0, and 0 otherwise. Additionally, it is
possible to define a discrete random variable I =
1D f (X) with Bernoulli distribution and probability
mass function P(I = 1)=Pf and P(I = 0)= 1−
Pf . As corollary, the coefficient of variation of the
estimator reads:

CVPf ,MC =

√
1−Pf ,MC

N ·Pf ,MC
(11)

The CVPf ,MC indicates the accuracy of the Monte
Carlo estimator and it can be used to assess whether
N is large enough.

2.3. Learning functions
2.3.1. Failed bootstrap replicates

This learning function is compatible with PCE
and its rationale is to introduce into the ED the point
that is most likely misclassified by the surrogate
model. To this aim, Marelli and Sudret (2018) pro-
pose using the bootstrap resampling technique. The
ED is resampled with substitution B times leading
to B different EDs, i.e.

{
E (1), . . . ,E (B)

}
such that

E (1) ⊂ E , . . . ,E (B) ⊂ E . Each replication contains
the same number of samples as the original ED and
is used to build B different PCEs based on their
respective resampled ED. Consequently, for each
point x, B PCE predictions are available. Assuming
that B is large enough, it is possible to estimate the

misclassification probability as follows:

UFBR (x) =
|BS (x)−BF (x)|

B
, (12)

where BS (x) (resp. BF (x)) corresponds to the num-
ber of bootstrap responses that belongs to the safe
(resp. failure) domain, and BS (x)+BF (x) = B.

Based on the utility function described by
Eq. (12), it is possible to cast the learning function
as follows:

xnext = argmin
x∈XMC

UFBR (x) (13)

Because Eq. (12) is cheap to evaluate, the opti-
mization problem described by Eq. (13) is cast in
a discrete manner. That is, UFBR is computed for
the so-called candidate points, a set of points from
which xnext is selected. Herein the candidate points
coincide with the Monte Carlo sample set XMC. The
benefits of this strategy are twofold: first, it ensures
that the selected points will have significant density.
Second, it dismisses the need for an optimization
algorithm.

2.3.2. The learning function U
Echard et al. (2011) capitalized on the Kriging

variance σ2
ĝ (x), a by-product of the method that

can be seen a local error estimator, and proposed
the learning function U. This function allows us to
identify the point that is most likely misclassified
by the surrogate model and relies on the so-called
deviation number, defined as follows:

U (x) =
∣∣µĝ(x)

∣∣
σĝ(x)

. (14)

Thanks to the Gaussian nature of Kriging, it is
possible to define the probability of misclassification
Pm (x) as a function of U , as follows:

Pm (x) = Φ(−U (x)) , (15)

where Φ is the standard Gaussian cumulative
distribution function (CDF).

Finally, the learning function can be cast as fol-
lows:

xnext = argmin
x∈XMC

U (x) = argmax
x∈XMC

Pm (x) .

(16)

Similarly to the previous learning function, the op-
timisation is performed pointwise through a set of
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candidate points that correspond to the Monte Carlo
samples used for the reliability estimation.

2.4. Stopping criteria
Many stopping criteria for PCE and GPR have

been proposed for noise-free cases and they can be
split into two groups: one that depends on the stabil-
ity of the reliability index/probability of failure, such
as the one proposed by Marelli and Sudret (2018),
whereas the other one relies on the parameters of
the learning functions, e.g. the one suggested by
Echard et al. (2011). However, due to noise, the
convergence curve also becomes noisy. In this case,
using stability as stopping criteria would lead to a
non-stop algorithm. Similarly, the deviance number
cannot be used as a stopping criterion, as because
of noise, there will always be a baseline misclas-
sification probability depending on the unknown
noise of the model. In this case, pre-defining a fixed
threshold for U is impossible. Although a paramet-
ric threshold depending on the estimated noise level
is, in principle, possible, we opted to define a max-
imum budget as a stopping criterion, as the main
target of this study is to obtain the underlying noise-
free probability of failure. Thus, a budget of 3,000
and 600 points was considered for PCE and GPR,
respectively.

3. ENRICHMENT STRATEGY
The behaviour of the learning functions can be

classified as either explorative or exploitative. The
former refers to the ability of the learning function
to discover different failure regions throughout the
domain. The latter is related to the capacity of sam-
pling points that will lead to an accurate surrogate
of the already known limit state surfaces. Conse-
quently, learning functions with a too explorative
behaviour tend to sample points in regions where the
input PDF is irrelevant and fail to describe the limit
state surface accurately. On the other hand, learn-
ing functions with a too exploitative behaviour tend
to sample points very close to one another, accu-
rately describing a particular region of the limit state
surface but often failing to find all failure regions.

Although optimal learning functions should bal-
ance both behaviours, observing the ideal trade-off
between the behaviours is not always possible. In-
deed, these cases occur when the employed learning
function is not optimal for the problem (Chevalier
et al., 2014). If the optimal learning function is
unknown, a possible workaround is to boost the
disfavoured behaviour of the learning function arti-
ficially. For instance, employing the Monte Carlo
sample set as candidate points is a strategy for prun-
ing a too-explorative behaviour.

Conversely, a possible solution to increase the
explorative behaviour of learning functions is to

enrich the metamodel with multiple points at ev-
ery iteration. The K-means clustering technique
(Zaki and Meira, 2014) is one of the methods
that enables doing this. In this method, the can-
didate set is partitioned into K different groups,
found by minimising the squared Euclidean dis-
tance between points within the clusters. As solv-
ing such an optimisation problem can be computa-
tionally expensive, only a subset of the candidate
points is considered. For the FBR learning func-
tion, only points with UFBR (x)⩽ 0.5 are considered.
For the learning function U only the subset S ={

x ∈S :−1.96 ·σĝ(x)⩽ µĝ(x)⩽ 1.96 ·σĝ(x)
}

is
considered. Finally, the optimisation process de-
scribed by Eq. (13) and Eq. (16) is performed for
each cluster, enabling the enrichment of K different
points.

4. EFFECTS OF NOISE ON THE ESTIMATION OF
THE PROBABILITY OF FAILURE

4.1. Monte Carlo simulation
We employ the so-called R-S problem, one of

the few cases when analytical computation of the
Pf is possible, to showcase the effects of noise in
MCS. The random vector of independent inputs
for this problem is given by X = {R,S}, where
R∼N

(
µR,σ2

R
)

represents the resistance, and S∼
N

(
µS,σ2

S
)

denotes the demand on an engineering
system. The associated noise-free and noisy limit
state functions can be cast as follows:

g(x) = r− s and g̃(x) = r− s+ ε, (17)

where ε is introduced to account for the simula-
tion noise. In this contribution, as standard prac-
tice, we corrupt the noise-free model by casting
ε ∼N

(
0,σ2

ε
)
. Then, the analytical probability of

failure to the noise-free and noisy R-S problems
read:

Pf = Φ


− µR−µS√

σ2
R +σ2

S


 and P̃f = Φ


− µR−µS√

σ2
R +σ2

S +σ2
ε


 .

(18)

Figure 1 depicts boxplots of Pf ,MC for several
noise levels, i.e. different values of σε . The boxplots
were obtained using 15 repetitions of the analysis to
account for the statistical variability of Pf ,MC. Con-
vergence is considered achieved when CVPf ,MC ⩽ 1%.

The results presented in Figure 1 demonstrate that
MCS fails to converge to the noise-free probability
of failure. Instead, they converge to a different value
which coincides with the noisy probability of failure
P̃f shown in Eq. (18).
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Figure 1: MC estimation of the probability of failure for
the R-S problem

These results indicate an undesirable characteris-
tic of MCS when dealing with noisy models. Since
this method lacks denoising features, its outcome
is affected by the artificial variability introduced
by noise, leading to larger failure probabilities and
potentially influencing decision-making. For these
reasons, we consider MCS inappropriate for cop-
ing with noisy models. Instead, aiming at retrieving
the associated noise-free probability of failure, we
propose using regression-based surrogate models as
a denoising tool. The rationale is that these meta-
models converge to the noise-free limit state surface
when the noise is unbiased. Finally, the limit state
surface estimated by the surrogate model can be
used for performing the reliability analysis through
MCS.

5. DENOISING WITH REGRESSION-BASED
SURROGATE MODELS

5.1. Benchmark functions
5.1.1. Four-branch function

The so-called four-branch function is a common
benchmark for reliability analysis. It consists of an
analytical model of a series system with four distinct
failure regions. Multiple failure regions make the
convergence to the correct probability of failure a
non-trivial task for many classical algorithms. The
noise-free limit state function reads:

g(x) = min





3+0.1(x1 + x2)
2− x1+x2√

2
3+0.1(x1 + x2)

2 + x1+x2√
2

(x1− x2)+
6√
2

(x2− x1)+
6√
2




. (19)

The two input random variables are mod-
elled as independent standard normal distributions,

i.e. X1,X2 ∼ N (0,1). The reference noise-
free probability of failure for this function is
4.516 ·10−3 (CVPf ,MC ⩽ 1%

)
.

5.1.2. Hat function
The Hat function is another commonly used

benchmark problem for reliability analysis. It con-
sists of a polynomial function that reads:

g(x) = 12− (x1− x2)
2−8(x1 + x2−4)3 . (20)

The input random vector consists of two
independent normally distributed random
variables, X1,X2 ∼ N (0.25,1). The ref-
erence noise-free probability of failure is
9.761 ·10−4 (CVPf ,MC ⩽ 1%

)
.

This benchmark problem was chosen because its
topology features flat gradients around the limit state
surface and steep gradients in other regions. Such a
feature complicates the denoising of the problem, as
it favours the misclassification of points around the
limit state surface.

5.2. Results – PCE
Consistently with Marelli and Sudret (2018), the

initial experimental design was obtained by a space-
filling LHS sample of Nini = 10 points. The num-
ber of bootstrap replications was B = 100. The de-
gree of the sparse adaptively selected polynomial ba-
sis ranged in p = 1, . . . ,10, with q-norm ∈ {0.5,1}.
The optimal base was identified through the least
angle regression method (Blatman and Sudret, 2011;
Lüthen et al., 2023). Finally, all analyses were per-
formed using the UQLAB software (Marelli and
Sudret, 2014).

Figure 2 depicts the results obtained employing
the discussed methodology for different noise levels.
The ratio between the noise level, σε and the stan-
dard deviation of the noise-free associated model
σg(X) is shown for reference. In Figures 2a and
2b, different boxplots represent distinct enrichment
strategies, i.e. K = 1,3 or 10. Each experiment was
repeated 15 times to account for the statistical vari-
ability. The stopping criterion was consistent among
the experiments, independently of the enrichment
strategy.

The results show that, in contrast to MCS (Fig-
ure 1), the methodology converges to the noise-free
reference probability of failure. Indeed, for the four-
branch limit state function, the method reveals ro-
bust, converging to the reference probability of fail-
ure even for extremely noisy models. Despite this,
Figure 2a reveals several outliers, suggesting that
the learning function did not always find all fail-
ure regions. Aiming at improving the explorative
behaviour of the learning function, tests with multi-
ple enrichment points were carried out, leading to a
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Figure 2: Boxplots depicting results of the denosing performed with PCE.

significant improvement in the performance of the
algorithm.

5.3. Results – GPR
We initialized the GPR surrogate model with the

same initial ED used for the previous analysis. More-
over, the metamodel was modelled with a constant
trend (ordinary Kriging) and an anisotropic ellip-
soidal Matérn (ν = 5/2) correlation function.

Figure 3 shows the results obtained using the GPR
surrogate. Similar to previous results, Figure 3a
depicts inaccurate convergence for the four-branch
function when not all failure regions have been en-
countered, in this case, for K = 1 or 3. However,
for K = 10, the explorative behaviour of the learn-
ing function is boosted, and accurate convergence is
observed. For this reason, we assess that the method-
ology can denoise the problem, but the introduction
of noise significantly increases the tendency for the
learning function to get stuck in specific areas of the
domain, leading to inaccurate convergence.

In contrast, Figure 3b shows that accurate results
are obtained even when K = 1. For this example, no
improvement in the estimation is observed when the
enrichment is carried out with more than one point
simultaneously, which is the expected behaviour,
as discussed in Sec. 3. We attribute the difference
between the results of the two experiments to the dif-
ferent topologies of the limit state functions. As the
four-branch function comprises four failure regions,
it demands more explorative behaviour. On the
other hand, the hat function contains a unique failure
region, accurately discovered through exploitative
loops.

6. CONCLUSIONS
We have introduced a new class of problems in

the field of reliability analysis, represented by non-
deterministic limit state functions corrupted with

simulation noise. Such a feature, hinders the as-
sessment of the associated noise-free probability of
failure through usual simulation techniques, such as
MCS. In addition, we have shown that the latter con-
verges to a different probability of failure, in some
cases considerably larger depending on the noise
level.

Moreover, we show that well-established surro-
gate modelling techniques allow retrieving the actual
probability of failure. However, the tested learning
functions depict a suboptimal behaviour, as they
tend to get stuck in exploitative loops, ultimately
failing to explore some regions of the input space.
Thus, to efficiently deal with noise-corrupted mod-
els, the development of dedicated learning functions
is needed. Besides, suitable convergence criteria
must be investigated, as the noise significantly af-
fects the convergence curve. Despite that, from
the current results, an academic validation of the
methodology was observed. Applying the developed
methodology to real problems considering credible
noise levels and high-dimensional inputs remains to
be done.
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