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A B S T R A C T   

A method for mapping elastic strains by TEM in plastically deformed materials is presented. A characteristic 
feature of plastically deformed materials, which cannot be handled by standard strain measurement method, is 
the presence of orientation gradients. To circumvent this issue, we couple orientation and strain maps obtained 
from scanning precession electron diffraction datasets. More specifically, orientation gradients are taken into 
account by 1) identifying the diffraction spot positions in a reference pattern, 2) measuring the disorientation 
between the diffraction patterns in the map and the reference pattern, 3) rotating the coordinate system 
following the measured disorientation at each position in the map, 4) calculating strains in the rotated coordinate 
system. At present, only azimuthal rotations of the crystal are handled. The method is illustrated on a Cr2AlC 
monocrystal micropilar deformed in near simple flexion during a nanomechanical test. After plastic deformation, 
the sample contains dislocations arranged in pile-ups and walls. The strain-field around each dislocation is 
consistent with theory, and a clear difference is observed between the strain fields around pile-ups and walls. It is 
further remarked that strain maps allow for the orientation of the Burgers vector to be identified. Since the 
loading undergone by the sample is known, this also allows for the position of the dislocation sources to be 
estimated. Perspectives for the study of deformed materials are finally discussed.   

1. Introduction 

Measurement of elastic strain fields by TEM has mostly been applied 
to semi-conductor materials, where the crystalline structure is almost 
free from defects [1–4]. In a recent work, however, Rottman and 
Hemker used scanning precession electron diffraction (SPED) to mea-
sure strains around a single dislocation in magnesium [5]. Since then, 
there have been several attempts to apply this technique to problems 
involving plastically deformed materials. Some notable examples 
include the measurements of strain fields around twins in magnesium 
and steels [6–8], near corrosion-assisted cracks in aluminium alloys [9], 
and during in-situ tensile testing of stainless steel [10]. 

With this technique, the acquisition consists in scanning the sample 
with a nanometric precessed electron beam, and collecting the diffrac-
tion patterns at each position [11]. Maps of elastic strains are then ob-
tained from the displacements of the Bragg diffraction spots between the 
diffraction patterns in the region of interest and a reference pattern 
taken from a strain-free region of the sample [12,13]. These 

displacements must remain small (i.e. not more than a few pixels) for the 
spot detection algorithm to work efficiently, and for the infinitesimal 
strain assumption to be valid. For the same reasons, the crystalline 
orientations in the region of interest must also remain close to that of the 
reference position. 

Plastically deformed materials are known to exhibit orientation 
gradients, with variations of several degrees over nanometres or 
micrometres. Orientation gradients are induced by geometrically 
necessary dislocations and are direct consequence of plastic strain gra-
dients [14,15]. At present, they are not handled by standard strain 
measurement methods. In the previous examples, this issue was avoided 
either because the orientation gradient was negligible [9,10] or by 
selecting a reference pattern for each orientation-wise homogeneous 
region of the sample [7,8]. Nevertheless, the lack of solutions to handle 
orientation gradients is a major obstacle to the mapping of elastic strains 
in plastically deformed materials. 

On the other hand, orientation mapping of deformed materials is 
routine work in the TEM, in particular by automated crystal orientation 
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mapping (ACOM) [16]. It is notable that the same scanning precession 
electron diffraction technique is used for orientation and strain map-
ping. However, there has not been so far attempts to correct strain 
measurements with the help of orientation maps. 

In this paper, we present a method to measure elastic strains in 
plastically deformed materials which is informed by orientation maps. 
The method is developed on a particular test case, a Cr2AlC micropilar 
deformed by a nanoindentation splitting test, and exhibiting a contin-
uous azimuthal rotation of its crystalline orientations. In the first part of 
the paper, the method and sample will be presented. A particular focus 
will be made on the treatment of orientation gradients. In the second 
part, results coming from two observations will be shown. Finally, 
perspectives of usage and development for the method will be discussed. 

2. Method 

2.1. Sample 

A monocrystal of Cr2AlC was used as test case. This material belongs 
to so-called MAX phases (M for transition metal, A for aluminum or 
silicon, and X for carbon or nitrogen). It has a hexagonal structure, its 
space group is P63/mmc, and its lattice parameters are a=2.86 Å and 
c=12.80 Å [17]. As for other MAX phases, it has a high c/a ratio (4.47), 
leading to a plasticity mainly governed, at room temperature, by 
dislocation slip in the 〈1120〉{0001} system [17–19]. This family of 
materials is also known to be prone to delamination in the basal plane 
[20,21]. 

Single crystal platelets of Cr2AlC were synthesized by high temper-
ature solution growth at the Laboratoire des Matériaux et du Génie 
Physique (LMGP) in Grenoble, France, following a protocol established 
by Ouisse et al. [22]. These platelets have a thickness of about 500 µm 
and a surface of few cm2 oriented along the basal plane. These platelets 
were embedded egde-on in a bakelite resina so that the normal to the 
surface is the 〈1120〉 crystal direction (to be more precise, less than 3.5◦

from the exact 〈1120〉). The surface was first prepared by conventional 
mechanical polishing followed by chemo-mechanical polishing. A 
micropillar with a square section of 3.5µm×3.5 µm and a height of 
around 13 µm was milled by focused ion beam (FIB). The sample after 
milling is shown in the inset of Fig. 1. According to the initial surface 
orientation, the axis of the pillar is the 〈1120〉 direction (noted a) and 
one of the pillar sides is parallel to the basal plane {0001} (noted c) . 

The pillar was indented with a U-NHT nanoindenter from Anton 

Paar, using a diamond Berkovich tip in displacement-controlled mode. A 
vertical fracture appeared abruptly after 200 nm of penetration depth. 
Since the U-NHT is a “soft machine”, the feedback loop was not fast 
enough to control the displacement of the indenter, which displaced 
very fast until it was stopped by the edges of the FIB trench, as shown by 
the traces in Fig. 1. The acquisition rate of 400 Hz allowed for mea-
surement of the displacement rate, which was of 5 µm in 7.5 ms. During 
the downward motion of the Berkovich indenter, the crack propagated 
further into the basal plane and the left and right parts of the pillar were 
pushed on the sides. 

The splitting of micropillars during nanoindentation is a well-known 
outcome for brittle materials [23,24], and also for other MAX phases 
[25]. However, the remarkable feature in this sample is that, despite the 
initial fracture, the two parts of the split pillar maintained their integrity 
and deformed plastically. Slip lines, visible on the initial pillar top sur-
face and on the side surfaces, attest of the basal plane bending. These 
lines are consistent with dislocations of Burgers vector a gliding in the 
basal plane. 

2.2. Preliminary observations and acquisition 

A thin slice of the sample was cut by focused ion beam (FIB) through 
the (a,c) plane for observation in the transmission electron microscope. 
Observations were carried out with a FEI-TALOS and a JEOL 2100F both 
equipped with a field emission gun operating at 200 kV. A bright-field 
image of the sample is shown in Fig. 2a. The cut is made in the (a, c)
plane. The diffraction patterns in Fig. 2a and c show the a∗ direction 
(parallel to the 1120 spot) and c∗ direction (parallel to the 0002 spot) .1 

The crystal rotations are azimuthal (i.e. the rotation axis is normal to the 
observation plane) and follow the sample curvature. This is consistent 
with Fig. 1, which showed the bending of the basal planes. 

A large bright-field image taken in 1100 zone axis is shown in Fig. 3. 
Dislocations are arranged either in pile ups (parallel to the basal planes 
and spreading from the initial top surface to the sample base) or in walls 
(perpendicular to the basal plane). This is the expected dislocation 
structure in plastically deformed MAX phases [20,25]. Among the three 
possible a Burgers vector, the [1120] vector, i.e. that which is in the 
plane of observation, is the one that would experience the highest shear 
in bending. As a result, all these dislocations are edge or near-edge 
dislocations with [1120] Burgers vector and [1100] line. 

Scanning precession electron diffraction was carried out in the JEOL 
2100F microscope, using the DigiSTAR precession device distributed by 
NanoMegas (Belgium). The convergence angle was 2.2mrad. A first area of 
interest was mapped at mid-height in the left part of the sample, near the 
(b) spot in Fig. 2a. The step size was 2.5 nm. The precession was set to an 
angle of 1◦ and with a frequency of 300 Hz. The diffraction patterns were 
acquired with an in-line direct electron detector Medipix implemented in 
the Cheetah camera from Amsterdam Scientific. The rate of acquisition 
was set to 100 frames per second. The patterns were stored in 16bits format 
with a 512×512 pixel resolution. A second area of interest was mapped 
near the sample base, at the same location as the (c) spot in Fig. 2a. 

Fig. 4a shows a virtual bright-field image of the first area. This image 
is constructed by numerically integrating the intensity of the transmitted 
beam for each acquired diffraction pattern, see methodology in ref. [26]. 
Each dark dot corresponds to a dislocation whose line is normal to the 
foil. The two dislocations structures can be distinguished. On the first 
hand, pile-ups are constituted of dislocations in the exact same basal 
plane and aligned in the a direction. On the other hand, dislocation walls 
are formed by dislocations stacking on each other in the c direction. 

Fig. 4b shows the φ1 Euler angle measured by ACOM on the same 
map. This angle suffices to fully describe the variations of crystalline 

Fig. 1. Scanning electron microscope images of the micropillar after indenta-
tion splitting. The initial pillar is shown in the inset. 

1 By convention, in this paper, a and c refer to directions in the real space, 
while a∗ and c∗ refer to directions in the reciprocal space. 
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orientations, since the rotations are azimuthal (the two other Euler an-
gles were remarkably constant, with Φ = 89.9∘ ± 0.1∘ and φ2 =

60∘ ± 0.1∘). Dislocation walls are associated with a sharp change of 
orientation. For example, in the wall indicated by a double arrow in 
Fig. 4a, the misorientation angle is 0.78◦ (average taken over three 
profiles along the height of the wall). In the same wall, the average 
dislocation spacing is 21.5 nm. If we assume that the wall is constituted 
of perfect edge dislocations, with a Burgers vector of 2.86Å, the pre-
dicted misorientation angle is 0.76◦ This gives confidence in the accu-
racy of the measurement. By contrast, dislocation pile-ups do not induce 

sharp crystalline rotations, except very locally. 
Dislocations in walls are geometrically necessary dislocations since 

they accommodate orientation gradients. Pile-ups are also geometrically 
necessary dislocations, but as they do not induce a sharp orientation 
gradient, it may be difficult to agree with this statement at first sight. 
However, they fully satisfy the definition given by Ashby [14], namely 
that regardless of the lengthscale at which their Burgers circuit is drawn, 
their net Burgers vector is the sum of all dislocations Burgers vector in 
the pile-up. This point will be further discussed later. 

2.3. Strain calculation 

The orientation gradients measured in this sample are a typical 
example of features that cannot be handled by standard strain measure-
ment methods. As a result, a more advanced method was developed. In the 
first step, the Bragg spots positions are detected with sub-pixel precision on 
all diffraction patterns. This is achieved using image registration libraries 
in Python, as previously described in ref. [27]. Fig. 5a and b illustrate the 
Bragg spot detection on the reference pattern and on another random 
diffraction pattern. The positions are measured relative to the transmitted 
beam position, and in the camera coordinate system (x∗,y∗). 

In the second step, the positions are stored as 2 by n matrices, noted 
Gref and G, with n the number of diffraction spots taken into account. 
These matrices are then rotated by angles φref

1 (for the reference pattern) 
and φ1 (for all other patterns) in order to calculate the Bragg spots po-
sitions in the crystal coordinate system (a∗, c∗). The corresponding 
rotation matrices are noted Rref and R, respectively. 

In the third step, strains are calculated. The deformation gradient 
tensor D that transforms the Bragg spot positions measured in the 
reference pattern into those measured in the other diffraction patterns is 
then given by: 

RG = DRref Gref 

Fig. 2. (a) bright-field image of the FIB sample taken in 1100 zone axis. (b) 
Selected area diffraction pattern taken in the middle of the sample height. (c) 
Selected area diffraction pattern taken near the sample base. The real and 
reciprocal coordinate systems are aligned. The basal plane is normal to the 
0002 diffraction vector. 

Fig. 3. bright-field image (in 1100 zone axis) showing the dislocation pile ups 
and walls in the FIB sample. 
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This equation is overdetermined since D is a 2 by 2 matrix, while G 
and Gref are 2 by n matrices. As a result, D is solved by linear regression. 
Finally, in the hypothesis of infinitesimal strains and rotations, D con-
tains the information about the in-plane strain components, which can 
be extracted following [8,12,27]2: 
⎡

⎢
⎢
⎣

εaa
1
2
(εac − ω)

1
2
(εac + ω) εcc

⎤

⎥
⎥
⎦ = − (D − I)

Where εaa and εcc are the longitudinal strains in the a and c directions, εac 
is the in-plane shear strain, I the identity matrix, and ω is the infinites-
imal rotation attributed to the elastic shearing of the crystal. The right 
term of the equation contains a negative sign to account for the fact that 
strains in the real space are calculated from positions in the reciprocal 
space. 

With this workflow, strains are calculated in the (a, c) coordinate 
system. This choice is made because, in the present case, the dislocations 
Burgers vector follow the rotation of the coordinate system, and there-
fore, so too do the strain fields induced by dislocations. However, for 
more usual cases, one may be interested to calculate strains in a classic 
(x, y) system. This would require to apply different rotations to the 
matrices of spot position. The workflow to calculate strains in the (x, y)
system in the presence of an orientation gradient is described in Ap-
pendix A. 

Fig. 4. (a) Virtual bright-field of the scanned area. (b) Map of the φ1 angle. In (a) the projection of the basal plane is extended out of the map. The indentation 
direction is close to the vertical axis. 

Fig. 5. (a) The reference diffraction pattern. The red dots indicate the centre of the Bragg spots used for strain calculation. The φref
1 angle corresponds to the rotation 

between the camera coordinate system (x∗, y∗) and the crystal coordinate system (a∗, c∗). (b) A random diffraction pattern of the dataset, with the centres of the 
same Bragg spots shown in blue. The orientation of the crystal coordinate system of the reference is left in red, while that of this diffraction pattern is shown in blue. 
Only the most intense spots have been considered. The first spots on the c∗ row have also been discarded because of their proximity with the transmitted beam. 

2 To be consistent with mathematical conventions, transformation and rota-
tion matrices are placed on the left of position matrices. This was not the case in 
previous publications [8,27]. 
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It must also be reminded that the reference pattern is supposed to be 
taken from a strain-free region of the sample. However, in this sample, 
identifying this region is difficult. For simplicity, the reference pattern 
has here been selected manually, as much as possible away from dislo-
cations, and so as to result in an approximately even distribution of 
tensile and compressive strains after calculation. As a result, the values 
of strains given in the following examples should not be taken as abso-
lute values. 

3. Results 

Fig. 6 shows the bright-field image and, on the same area, the 
measured strain fields εaa, εac, εcc. It is reminded that the area was taken 
at mid-height in left part of the sample, near the (b) symbol in Fig. 2. It 
can be first be remarked that the strain fields are indicative of edge 
dislocations of +a Burgers vector (in the RH/FS convention with a 
clockwise rotation of the Burgers circuit). This is the most obvious in the 
εaa map (Fig. 6b), where dislocations exhibit compressive strains ‘above’ 
(where the extra half plane of the edge dislocation is located), and 
tensile strains below. Interestingly, a different signature for dislocation 
pile-ups and walls is observed. Dislocations pile-ups exhibit strong and 
continuous tensile strains below and compressive strains above. These 
strains can be qualified as long-range since they extend a few tens of 
nanometres away from the pile-ups. By contrast, dislocation walls 
exhibit only short range strains. The tension-compression dipole extends 

only over a few nanometres in distance around each individual dislo-
cation in the walls. The intensity of the εaa strains is overall much lower 
near dislocations in walls than in near dislocations in pile-ups (in fact, 
strain around dislocation pile-ups are too intense for the selected strain 
scale, as visible at the bottom of the image). 

The difference in εaa strains around dislocation pile-ups and walls is 
consistent with the classic continuum mechanics theory [28,29]. On the 
one hand, long-range strain fields of dislocations in pile-ups accumulate, 
which gives rise to these intense tensile and compressive regions. On the 
other hand, the long-range strain fields in walls cancel-out, and, as a 
result, only short-range strain fields remain. While strain fields around 
individual dislocations have been measured in previous works [5,30], or 
near grain boundary dislocations [30,31], to our best knowledge these 
observations provide the first experimental evidence of differences in 
strain field as a function of the dislocation arrangement. 

On the εac strain map (Fig. 6c), a positive-negative shear dipole is 
visible around each dislocation. The intensities are overall weaker than 
for the εaa component because there is no development of long-range εac 
strain fields for walls and within pile-ups. Therefore the εac maps is the 
closest to showing the contribution of individual dislocations taken 
separately from each other. On the εcc strain map (Fig. 6d) dislocation 
pile-ups exhibit long-range tensile strains above them, and compressive 
strains below them. According to the theory, individual edge disloca-
tions have a short-range εcc strain field with 6 lobes of alternating pos-
itive and negative strains. However, when embedded in pile-ups, the 

Fig. 6. (a) Virtual bright-field image of the area taken at mid-height of the sample. (b-d) Strain maps measured in the same area. The area corresponds to the ‘b’ mark 
in Fig. 2. The location of the reference pattern is marked by a black dot. The strain scale is the same for all maps. 
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long-range strain field is indeed tension above and compression below. 
It is not a well acknowledged fact in the literature, but it can easily be 
reproduced using analytical formulas provided in textbooks [28,29]. 

Again on the εcc strain map (Fig. 6d), a large region without clear 
bounds is measured to be in tension. This area coincides approximately 
with the blurry dark contrast seen the bright-field image (Fig. 6a). It 
seems to be the signature of ‘mottling’, a defect traditionally observed in 
other layered materials, such as micas [32,33]. This defect is known to 
be associated with a ‘mottled’ contrast on bright-field images, and strong 
variations of the c axis [32]. It is not clear from the literature if this 
defect already exists in the bulk state or if it results from the interaction 
between the sample and the electron beam. In any case, it is a real 
feature of the material, and not an error of measurement (as a matter of 
fact, the variations of c axis between regions in and out of the mottled 
region are visible by eye on the diffraction patterns). 

Fig. 7 shows similar observations for the second area investigated. It 
is reminded that it was taken at the sample base, near the (c) symbol in 
Fig. 2. In this region the crystalline orientations are almost constant, and 
the (a, c) frame can be considered as the classic (x, y) frame given in 
textbooks. The field of view is shown at a higher magnification than 
Fig. 6 to better highlight the strain fields around individual dislocations. 
Due to the orientation of the crystal in this area, the slip plane is now 
vertical. The bright-field image shows that only dislocation pile-ups are 
present (Fig. 7a). As for the previous case, the strain fields are charac-
teristic of edge dislocation with a +a Burgers vector (Fig. 7b-d). Inter-
estingly, the dislocation spacing in the pile-ups tends to increase towards 
the base of the sample (i.e. towards the bottom of the image). This 
evolution coincides with a decrease of the long-range strain-fields εaa 
and εcc from the top to the bottom of the image. Consequently, the short- 
range strain fields around individual dislocations are more easily 
distinguished at the bottom of the image. 

In Fig. 7, around the most isolated dislocations (mostly in the bottom 
of the image), it can be noticed that the intensity of the strain εac and εcc 
components is quite close to the background level. This is because the 
intensity of strains around individual dislocations is not that high for 
those components at this resolution. If one seeks to image strain fields at 
a higher resolution nearer the dislocation core, it is likely that other 

techniques should be preferred, such as the geometric phase analysis 
(GPA) using high-resolution TEM. 

4. Discussion 

4.1. Position of the dislocations sources 

One consequence of knowing the Burgers vector orientation is that, if 
the mechanical path of the sample is known, the position of the dislo-
cation sources can be retrieved. As described above, the sample was first 
fractured in two parts, which were then pushed in opposite directions by 
the indenter tip. The loading applied to each part of the sample can be 
considered as approaching a simple flexion test, with longitudinal 
stresses σaa and shear stresses τac developing in reaction to imposed 
horizontal displacements. Because of the particular orientation of the 
crystal relative to the loading direction, the longitudinal stresses σaa 

induce no resolved shear stress on the 〈1120〉{0001} slip system. 
Therefore, dislocations slip operates only due to the shear stresses τac. 
These stresses have a parabolic profile along the c axis, are null at the 
free surfaces and maximal at the central fiber according to the Tim-
ochenko elasticity theory [34]. 

In the left part of the sample, all dislocations are edge or near edge 
dislocations with a +a Burgers vector. As a result, to accommodate the 
shear stresses τac and induce the steps visible on the upper surface 
(Fig. 1), these dislocations must come from the upper surface and slip 
towards the sample base. Dislocation sources operating at free surfaces 
generate half Frank-Read loops [29,35,36], with dislocation segments 
having, in this configuration, only +a Burgers vectors. As the dislocation 
slips towards the sample base, the radius of the loop increases, and the 
dislocation segments progressively acquire a more edge character. The 
process is illustrated in Fig. 8. In the unlikely event that a few dislocation 
sources had operated within the sample, full dislocation loops with 
segments having − a and +a Burgers vector would have been generated, 
with the − − a segments slipping towards the sample upper surface. 
However, due to the excess of +a dislocation coming from the upper 
surface, the − a dislocations would have been quickly annihilated. We 
find this scenario fully consistent with the observations. 

Fig. 7. (a) Virtual bright-field image of the area taken near the sample base. (b-d) Strain maps measured in the same area. The area corresponds to the ‘c’ mark in 
Fig. 2. The location of the reference pattern is marked by a black dot. The strain scale is the same for all maps. 
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4.2. On geometrically necessary dislocations 

It has been pointed out above that considering the dislocations in 
pile-ups as geometrically necessary dislocations is not obvious. This 
likely comes from the idea that we are often tempted to believe that 
geometrically necessary dislocations should induce crystalline rotations, 
while dislocations in pile-ups do not. However, dislocations in pile-ups 
are indeed geometrically necessary because they satisfy the theoretical 
definitions [37,38]. For a given Burgers circuit drawn around a group of 
dislocations, the geometrically necessary dislocations are those that 
induce the net Burgers vector measured in this circuit. In mathematical 
terms, the net Burgers vector B can be decomposed into nb with n the 
number of geometrically necessary dislocations, and b their Burgers 
vector. If a Burgers circuit is drawn around dislocations in a pile-up, as 
all dislocations have the same Burgers vector (with the same sign), the 
net Burgers vector is exactly the number of dislocations within the 
pile-up times the Burgers vector of a single dislocation. Therefore, dis-
locations in pile-ups are indeed geometrically necessary dislocations, 
regardless of the lengthscale of the Burgers circuit. 

A complementary description of geometrically necessary disloca-
tions is the Nye tensor. Geometrically necessary dislocations are those 
that induce a non-null Nye tensor. For edge dislocations in the config-
uration studied here, the only non-null Nye tensor component is α13, and 
the density of geometrically necessary dislocations measured per pixel is 

ρ = α13/b =

(
∂εaa
∂c − ∂εac

∂a +
∂φ1
∂a

)

/b [39,40]. The first two terms in paren-

thesis describe the elastic curvature, and the third term3 is the gradient 
of orientation (i.e. the crystalline rotation). By comparing the orienta-
tion and strain maps, it becomes possible to realize that term ‘geomet-
rically necessary dislocation’ may include in fact very different types of 
dislocation structures : dislocations in pile-ups are geometrically 
necessary mostly because they induce elastic strain gradient (in partic-
ular gradients in εaa), while dislocations in walls are geometrically 
necessary because they induce orientation gradients. 

4.3. Perspectives of application to deformed materials 

Dislocation pile-ups and walls are two fundamental features of 

plastically deformed materials, with different effects on strain hard-
ening. Dislocations in walls contribute to isotropic hardening by a rather 
simple forest dislocation mechanism, while pile-ups mostly affect strain 
hardening in a kinematic way, by inducing back-stresses when meeting 
grain boundaries and free surfaces [28,29]. Models describing hard-
ening during plastic deformation are far from having acquired a stable 
form. For example, some consider that back-stresses have a transient 
effect on hardening [41] while other consider that a permanent effect 
remain even after large deformation [42]. With the method presented 
here, one could potentially investigate the phenomena contributing to 
isotropic and kinematic hardening, at the microstructure level, and at 
different stages of deformation. 

As mentioned in the introduction, orientation gradients are prevalent 
in plastically deformed materials. It is mostly their presence which limits 
the use of standard TEM strain measurement methods (the elastic cur-
vature is less problematic in that regard). The method proposed in this 
work can be seen as a first step to correct the effect orientation gradients 
on strain mapping in the TEM. In this example case, only azimuthal 
rotations were taken into account. However, in a randomly oriented 
crystal and in polycrystals, rotations can be in any direction. Zenithal (i. 
e. out-of-plane) rotations would modify the number and position of spots 
appearing on the diffraction patterns. It would certainly be more chal-
lenging because, at present, strain measurement methods rely on 
detecting features which should be present in all diffraction patterns. In 
order to map elastic strains in any plastically deformed material, future 
implementations should therefore focus on handling this kind of 
rotation. 

5. Conclusion 

A method was developed to map elastic strains by TEM in materials 
exhibiting orientation gradients. It uses scanning precession electron 
diffraction data, and couples crystallographic orientation mapping with 
calculation of strains from measurements of displacements of the 
diffraction spots. Knowledge of the orientation allows for the reference 
coordinate systems to be rotated for each position on the map. This 
procedure is required to calculate strains according to the infinitesimal 
strain assumption. For now, only azimuthal rotations are accounted for, 
but future developments should include out-of-plane rotations in order 
for the elastic strain fields to be mapped in any randomly oriented 
crystal. 

The method is particularly adapted to plastically deformed materials, 
which are well known for exhibiting orientation gradients. In the Cr2AlC 
sample presented here, the strain maps revealed differences in strain 
fields induced by dislocation pile-ups and walls. It was also remarked 
that strain maps allow for the orientation of the Burgers vector to be 
inferred. If the mechanical path of the sample is known, it then becomes 
possible to retrieve the position of the dislocation sources. The capability 
to measure strain fields induced by dislocation structures opens inter-
esting perspectives for the study of strain hardening in plastically 
deformed materials. 
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Fig. 8. Schematic 3D view of the slip of a dislocation on a bent basal plane. The 
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axis have a screw character. As a reminder, the (a, c) plane is the observation 
plane in the TEM. 

3 Note that the sign in front of ∂φ1
∂a may change as a function of the chosen 

coordinate system and sense of rotation (see on this topic ref. [40]). This for-
mula is shown here only for discussion purposes. 
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Appendix A. Strain calculation in the (x,y) coordinate system 

To calculate strains in the(x, y) system, and to satisfy the infinitesimal strain hypothesis, the following formula is applied: 

G = DR̃Gref 

Where R̃ accounts for the rotation of the reference pattern by an angle Δφ1 = φ ref
1 − φ1, and G and Gref are still expressed in the (x, y) system. The 

operation R̃Gref is equivalent to creating a ‘ghost’ reference pattern having the same crystallographic orientation as the diffraction pattern of interest. 
The strain components are then extracted following: 
⎡

⎢
⎢
⎣

εxx
1
2
(
εxy − δω

)

1
2
(
εxy + δω

)
εyy

⎤

⎥
⎥
⎦ = − (D − I)

In Fig. A.1a and b, the εaa map and the εxx map calculated with the rotation matrix R̃ are compared. Because of the particular orientation of the 
sample, these two maps are quite similar. Without applying the rotation, the strain map becomes flawed, as shown in Figure A. 1c.

Fig. A.1. (a) εaa map. (b) εxx map calculated with the rotation of the reference pattern, i.e. using G = DR̃Gref . (c) εxx map calculated without rotation of the 
reference pattern, i.e. using G = DGref . 
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