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Abstract The aim of this article is to introduce a new methodology for constructing morphings between shapes
that have identical topology. The morphings are obtained by deforming a reference shape, through the resolution of
a sequence of linear elasticity equations, onto every target shape. In particular, our approach does not assume any
knowledge of a boundary parametrization. Furthermore, we demonstrate how constraints can be imposed on specific
points, lines and surfaces in the reference domain to ensure alignment with their counterparts in the target domain
after morphing. Additionally, we show how the proposed methodology can be integrated in an offline and online
paradigm, which is useful in reduced-order modeling involving variable shapes. This framework facilitates the efficient
computation of the morphings in various geometric configurations, thus improving the versatility and applicability of
the approach. The methodology is illustrated on the regression problem of the drag and lift coefficients of airfoils of
non-parameterized variable shapes.

1 Introduction

1.1 Background
Solving parametric partial differential equations (PDEs) for various values of parameters in a given set is a common
task in industrial contexts. Examples of sets of parameters include initial and boundary values, coefficients in the PDE
of interest or geometrical parameters of the domain where the PDE is posed. When the evaluation of the PDE solution
is computationally expensive, model-order reduction techniques offer an efficient tool to speed up computations while
maintaining accuracy.
A common situation encountered in reduced-order modeling is the following: Given a set of parameter values P ⊂ Rp

for some p ∈ N∗, and a physical domain Ω0 ⊂ Rd for some d = 2, 3, one is interested in quickly computing an
approximation of the solution uµ : Ω0 → R for all µ ∈ P of a given parametric PDE of the form Aµ(uµ) = 0 on Ω0

withAµ some parameter-dependent differential operator, together with appropriate initial/boundary conditions. Then,
the reduced-basis method [1, 2] involves constructing a low-dimensional approximation space Zr = span{ξ1, . . . , ξr}
of the solution set U = {uµ : µ ∈ P}, and then compute an approximation of uµ belonging to Zr, for instance
as a Galerkin approximation of the parametric PDE, enabling faster solution computations. In practice, efficient
reduced-order modeling techniques employ a two-phase procedure. First one performs the offline phase, where the
PDE Aµ(uµ) = 0 is solved for uµ for some values of the parameter µ ∈ M using the computationally expensive
high-fidelity model (HFM); here,M is a selected training set. Subsequently, the reduced space Zr can be constructed
through approximation algorithms such as the Proper Orthogonal Decomposition (POD) [3, 4] or greedy approaches
[1]. The online phase, also known as the exploitation phase, consists in computing approximations of the solution of
the PDE belonging to Zr for new parameter values. This phase leverages the precomputed reduced-order basis to
efficiently compute these approximations. Depending on the complexity of the PDE and its parameter dependence,
more advanced strategies such as hyper-reduction [5] may be required.
The present work deals with the case where the physical domain also depends on the value of the parameter µ ∈ P.
More precisely, for all µ ∈ P, we now consider Ωµ ⊂ Rd to be some domain which may depend on µ, and assume
that the solution of the parametric PDE is now a function uµ : Ωµ → R. In such a situation, standard algorithms
such as POD are not directly applicable, since the solutions uµ are defined on different domains. The most common
solution in the literature on reduced-order modeling with geometric variabilities is to find an appropriate morphing
ϕµ from (or to) a reference geometry Ω0 to (or from) each parametric domain Ωµ. In this scenario, the problem can
be reformulated on the reference domain Ω0 and reduced-order modeling techniques are applied to the transformed
solution set {uµ ◦ ϕµ : µ ∈ P}. Such a task is often called a registration problem. Registration problems are also
of interest when the domain does not depend on the parameter to achieve efficiency of the reduced-order modeling
technique. We refer the reader to [6, 7] for some seminal works in this setting.
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1.2 Related works on morphing techniques
The difficulty now lies on the efficient construction of a morphing ϕ : Ω0 → Ω from a reference domain Ω0 ⊂ Rd to
a target domain Ω ⊂ Rd that captures the target geometry accurately. Early works on model-order reduction with
geometrical variability adopted the use of affine mappings [8]. However, this approach cannot be applied to general
domains with curved boundaries and edges. Other commonly used techniques in computational physics to deform a
geometry (or a mesh) onto another are free-form deformation (FFD) [9], radial basis function (RBF) interpolation [10],
linear elasticity/harmonic mesh morphings [11], nonlinear elasticity [12, 13], only to cite a few. Numerous contributions
adopted those strategies in reduced-order modeling contexts [14, 15, 16, 17]. However, all these strategies share the
assumption that the geometries are parameterized and that the deformation of the nodes on the boundary is known.
This way, the displacement of the nodes on ∂Ω0 can be imposed to map onto ∂Ω, and the extension of the deformation
to the whole domain can be determined by means of the chosen method.
In many scenarios, however, an explicit parametrization of the geometry is not available, especially in the online phase.
In this situation, constructing a suitable morphing ϕµ : Ω0 → Ωµ becomes more challenging. One possibility often
advocated in the literature is to find the deformation of the boundary ϕµ(∂Ω0), and then leverage the knowledge
of ϕµ(∂Ω0) to compute ϕµ(Ω0), by using either RBF interpolation [18, 19], mesh parametrization [18], geometry
registration [20, 21, 22], optimal transport [23, 24] or some other technique. These approaches require the computation
of the boundary morphing before calculating the volume morphing. Another class of methods, such as the LDDMM
(Large Deformation Diffeomorphic Metric Mapping) [25], proposes to find the morphing from Ω0 to Ωµ as a flow of
diffeomorphims solving optimal control problems. These methods are usually expensive to compute, and are often
used to calculate only ϕµ(∂Ω0) [26].

1.3 Contribution
The contributions of the paper are the following. First, we propose a method for finding a morphing from a reference
domain Ω0 to a target domain Ωµ without a priori knowledge on the boundary parametrization. Starting from Ω0,
the algorithm produces a sequence of morphisms (ϕ(m))m≥0 defined on Ω0 such that ϕ(0) = Id|Ω0 , where Id denotes
the identity mapping from Rd onto Rd. For all m ∈ N, denoting by Ω(m) = ϕ(m)(Ω0), the morphing is updated at
iteration m+ 1 as

ϕ(m+1) =
(
Id|Ω0

+ γ(m)u(m)
)
◦ ϕ(m), (1)

where u(m) : Ω(m) → Rd is the solution of a linear elasticity problem posed on Ω(m) and γ(m) > 0 is a user-dependent
parameter expected to be small. Notice that (1) may be seen as a time-discretization scheme associated with the
evolution equation

∂tϕ(t) = u(t) ◦ ϕ(t),

where u(t) : Rd → Rd is a time-dependent velocity field. In the linear elasticity problem at iteration m, external forces
are applied on the boundary of the current domain Ω(m) to ensure that the new domain Ω(m+1) is closer in a certain
sense to the target domain Ω. This approach shares similarities with [27] but differs in the type of linear elasticity
problems that are solved. One advantage of the present method is that one can impose certain geometrical features,
such as points, lines or surfaces in Ω0, to be mapped onto some a priori chosen counterparts in Ω.
The second main contribution is to embed the above morphing technique in a reduced-order modeling context. Given
a collection of domains {Ωi}1≤i≤n for some n ∈ N∗ which forms the training set, we compute morphisms ϕi : Ω0 → Ωi

in an offline phase using the algorithm proposed above. Then, we propose an efficient online reduced-order model to
quickly compute a morphing from the reference domain Ω0 onto a new target domain outside the training set. The
efficiency of the approach is strongly linked to the use of an appropriate initial guess used as a starting point in the
iterative online procedure. Finally, we provide numerical evidence that the method produces accurate results when
employed in regression-based model-order reduction techniques.

1.4 Motivating example
We present in this section an example which motivates the interest of the present methodology in the context of
reduced-order modeling.

Let d = 2, 3 and let {Ωi}1≤i≤n ⊂ Rd be a collection of domains in Rd, where a domain in Rd is understood as an
open bounded connected subset of Rd with piecewise smooth boundary. Assume that all the domains share the same
topology. Let Ω0 ⊂ Rd be a fixed reference domain that shares the same topology as well. The collection {Ωi}1≤i≤n

is referred to as the training set of target domains.
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Figure 1: Reference domain Ω0 with two samples Ωi and Ωj from the target dataset.

Assume now that one is actually interested in solving, for all i ∈ {1, . . . , n}, the following parametric (elliptic) PDE
with mixed boundary conditions:  Lµi(uµi) = 0 in Ωi,

uµi
= a on Li

1,
∇uµi

· ni = b on Li
2,

where ni is the unit normal outward vector to Ωi, µi ∈M belongs to the set of parameter values, uµi
: Ωi → R is the

solution to the PDE problem of interest, a, b ∈ R, and Li
1 and Li

2 are open subsets of ∂Ωi which form a partition of
∂Ωi. In other words, Dirichlet boundary conditions are enforced on Li

1, whereas Neumann boundary conditions are
enforced on Li

2. Moreover, one wishes to construct a reduced-order modeling technique to quickly obtain numerical
approximations of the problems above.
Since, for all 1 ≤ i ≤ n, each solution uµi is defined on a different domain, traditional dimensionality reduction
methods such as POD are not directly applicable. One possibility is to rely on so-called registration methods to find
a morphing ϕi : Ω0 → Ωi, and then apply POD on the family of functions {uµi

◦ ϕi}1≤i≤n. Moreover, we want to
ensure that ϕi(L

0
1) = Li

1 and ϕi(L
0
2) = Li

2, with ∂Ω0 = L0
1

⋃
L0
2. In this case, the boundary conditions uµi

◦ ϕi|L0
1
= a

and (∇uµi
· ni) ◦ ϕi|L0

2
= b are satisfied, and the dimensionality reduction problem is expected to be simpler.

1.5 Outline of the paper
In Section 2, we present the (offline) methodology to construct a morphing from a reference domain Ω0 onto a target
domain Ω while respecting certain conditions on the morphing of the boundary. In Section 3, we show how, given a
training dataset of geometries {Ωi}1≤i≤n, we can reduce the complexity of the problem of finding a morphing for a
given domain outside the training dataset, so that the method can be efficient in the online phase. In both sections, we
provide numerical examples to illustrate the behavior of the proposed methods. In Section 4, we present an application
of the proposed morphing strategy to learn scalar outputs from simulations realized on different (non-parameterized)
geometries. As an example, we predict the drag coefficient of airfoils of non-parameterized variable shapes, while
underlining the advantages of the present method with respect to the MMGP method presented in [18]. In Section 5,
we provide a brief summary and some concluding remarks.

2 High-fidelity morphing construction
In this section, we present the new high-fidelity methodology to construct a morphism ϕ : Ω0 → Ω between a reference
domain Ω0 ⊂ Rd and a target domain Ω ⊂ Rd. In the context of model-order reduction with geometric variability, this
approach is applied in the offline phase (see section 3). In what follows, we denote by ∥ · ∥ the Euclidean norm of Rd.
Moreover, we use boldface notation for vector in Rd, fields taking values in Rd, and sets and linear spaces composed
of such fields.

2.1 Notation and preliminaries
Let Ω0 and Ω be domains of Rd. For the sake of simplicity, we mainly present the methodology in the case d = 2. We
refer the reader to Section 2.6 for remarks about the extension to the case d = 3.

Let Np, Nl ∈ N∗. Let
{
P1, . . . ,PNp

}
⊂ ∂Ω be a collection of Np distinct points of ∂Ω, and {L1, . . . ,LNl

} ⊂ ∂Ω be
a collection of disjoint, open, connected subdomains of ∂Ω with positive 1-dimensional Hausdorff measure such that⋃Nl

kl=1 Lkl
= ∂Ω, where Lkl

denotes the closure of Lkl
. Similarly, we consider a collection

{
P0

1, · · · ,P
0
Np

}
⊂ ∂Ω0 of

Np distinct points of ∂Ω0 and a collection
{
L0
1, · · · ,L0

Nl

}
⊂ ∂Ω0 of disjoint, open, connected subdomains of ∂Ω0 with
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positive 1-dimensional Hausdorff measure such that
⋃Nl

kl=1 L
0
kl

= ∂Ω0. Our goal is to build a morphing such that each
line L0

k (resp., point P0
k) in ∂Ω0 is mapped to the corresponding line Lk (resp., point Pk) in ∂Ω.

Let us introduce the set T Ω0 := {ϕ ∈W 1,∞(Ω0),ϕ
−1 ∈W 1,∞(ϕ(Ω0)) : ϕ is injective}. We wish to find a morphing

ϕ ∈ T Ω0
such that

ϕ(Ω0) = Ω, (2a)

ϕ(P0
kp
) = Pkp

, ∀1 ≤ kp ≤ Np, (2b)

ϕ(L0
kl
) = Lkl

, ∀1 ≤ kl ≤ Nl. (2c)

Our aim here is to propose a new iterative method to construct a morphing ϕ ∈ T Ω0 such that conditions (2a)-(2b)-
(2c) are satisfied at convergence. The rest of the section is organized as follows. First, in Section 2.2, we first propose
a new approach, inspired from [27], to construct a morphing satisfying only the requirement (2a). In Section 2.3, we
then show how to modify the approach to take into consideration (2b)-(2c) as well.

2.2 Shape matching without constraints
The aim of this section is to propose a new approach to compute a morphism ϕ ∈ T Ω0

satisfying (2a). Our starting
point is the approach introduced in [27] and we comment the differences between this approach and the present one. As
in [27], our approach consists in reformulating the problem as an optimization problem and formulating the algorithm
as a gradient descent. Let g ∈H1

loc(Rd) to be a level set function for Ω, i.e., a function such that, for all x ∈ Rd,
g(x) < 0 if x ∈ Ω,

g(x) > 0 if x ∈ Ω
c
,

0 if x ∈ ∂Ω.
(3)

Define the functional

Jg : T Ω0 ∋ ϕ 7−→ Jg(ϕ) :=

∫
ϕ(Ω0)

g(x)dx ∈ R. (4)

Since g is a level set function, the set T ∗ := {ϕ ∈ T Ω0 | ϕ(Ω0) = Ω} coincides with the set of global minimizers of Jg
over TΩ0 . Thus, in order to find a morphing from Ω0 to Ω, we can consider the following optimization problem:

Find ϕ∗ ∈ argmin
ϕ∈T Ω0

Jg(ϕ). (5)

One example of level set function g, which is commonly used in practice, is the signed distance function defined as

dΩ(x) =


−d(x, ∂Ω) if x ∈ Ω,

d(x, ∂Ω) if x ∈ Ω
c
,

0 if x ∈ ∂Ω,
(6)

where d(x, ∂Ω) is the Euclidean distance of x to ∂Ω.

Let us collect some auxiliary mathematical results, most of which are classical, to justify the relevance of the proposed
approach. For the sake of completeness, we recall some proofs. We start with a classical lemma (see [28, Lemma 6.13]).

Lemma 1. Let ϕ ∈ T Ω0 . Define the set T ′
ϕ,1 := {v ◦ ϕ| v ∈W 1,∞(ϕ(Ω0)) and ∥v∥W 1,∞(ϕ(Ω0)) < 1} ⊂W 1,∞(Ω0).

Then, for all ξ ∈ T ′
ϕ,1, we have ϕ+ ξ ∈ T Ω0 .

Proof. Let ϕ ∈ T Ω0 , ξ ∈ T ′
ϕ,1 such that ξ = v ◦ ϕ for some v ∈ W 1,∞(ϕ(Ω0)) with ∥v∥W 1,∞(Rd) < 1. Then,

ϕ + ξ = ϕ + v ◦ ϕ = (Id + v) ◦ ϕ. Since ∥v∥W 1,∞(Rd) < 1, (Id + v) is bijective from Rd to Rd. In particular, it
is injective on ϕ(Ω0), so that ϕ + ξ = (Id + v) ◦ ϕ is injective, as the composition of two injective maps. Hence,
ϕ+ ξ ∈ T Ω0

.

This lemma proves in particular that the set T ′
ϕ := {v ◦ϕ| v ∈W 1,∞(Rd)} is included in the tangential space of TΩ0

at point ϕ.

The following proposition is classical in topology optimization, see, e.g., [28, 29] for a proof.

Proposition 1. Let g ∈ H1
loc(Rd) , let ϕ ∈ T 0, ψ ∈ T ′

ϕ, and let nϕ be the outward unit normal vector to ϕ(∂Ω0).
Then the differential of Jg at ϕ evaluated in the direction ψ reads as

DJg(ϕ)(ψ) =

∫
ϕ(∂Ω0)

g(x)ψ ◦ ϕ−1(x) · nϕds. (7)
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We define, for all v ∈W 1,∞(ϕ(Ω0)),

D̃Jg(ϕ)(v) =

∫
ϕ(∂Ω0)

g(x)v(x) · nϕds,

so that
DJg(ϕ)(v ◦ ϕ) = D̃Jg(ϕ)(v).

The proof of the following lemma is immediate using the trace theorem and the fact that g ∈H1
loc(Rd).

Lemma 2. Let ϕ ∈ T Ω0
. The linear functional D̃Jg(ϕ) :W

1,∞(ϕ(Ω0))→ R can be uniquely extended to a continuous
linear form defined on the space H1(ϕ(Ω0)).

The following proposition is at the heart of the new method we propose in the present work.

Proposition 2. Assume that d = 2. Let α > 0 and let ϕ ∈ T Ω0 be such that

• ϕ(Ω0) is a domain of R2;

• the 1-dimensional Hausdorff measure of ∂ϕ(Ω0) is positive;

• for all p ∈ R2 and all r > 0, ϕ(Ω0) ̸= B(p, r), where B(p, r) denotes the open ball of R2 with center p and
radius r.

For all u ∈H1(ϕ(Ω0)), let ε(u) and σ(u) to be the linearized strain and stress tensors defined by

ε(u) :=
1

2
(∇u+∇uT ),

σ(u) :=
E

(1 + ν)
ε(u) +

Eν

(1 + ν)(1− ν)
Tr(ε(u))I,

with E > 0 and −1 < ν < 1
2 are, respectively, called the Young modulus and the Poisson ratio. Then the bilinear form

aϕ :H1(ϕ(Ω0))×H1(ϕ(Ω0)) ∋ (u,v) 7−→ aϕ(u,v) :=

∫
ϕ(Ω0)

σ(u) : ε(v)dx+ α

∫
ϕ(∂Ω0)

(u · nϕ)(v · nϕ)ds (8)

defines an inner product on H1(ϕ(Ω0)).

Proof. We only need to show the positive definiteness of aϕ. Let u ∈ H1(ϕ(Ω0)) be such that aϕ(u,u) = 0. Let us
prove that u = 0. From the definition (8) of aϕ, we infer that ε(u) = 0 in ϕ(Ω0) and u · nϕ = 0 on ϕ(∂Ω0). Thus,
since ϕ(Ω0) is connected, there exists M ∈ R2×2 with MT = −M and b ∈ R2 such that u(x) = Mx + b, for all
x ∈ ϕ(Ω0).
Let us now prove that necessarily M = 0 and b = 0. Reasoning by contradiction, let us first assume that M ̸= 0.
Then, there exists m ∈ R \ {0} and y = (y1, y2) ∈ R2 such that for all x = (x1, x2) ∈ ϕ(Ω0),

u(x) = m

(
x2 − y2
−(x1 − y1)

)
.

Since u ·nϕ = 0 at ϕ(∂Ω0), we inform that nϕ(x) = ± (x−y)
∥x−y∥ for all x ∈ ϕ(∂Ω0) such that x ̸= y. Since the boundary

of ϕ(Ω0) is piecewise C1, the following holds:

• Either nϕ(x) =
x−y

∥x−y∥ for all x ∈ ϕ(∂Ω0) and hence ϕ(Ω0) has to be equal to B(y, r) for some r > 0, which is
not possible by assumption;

• Or nϕ(x) =
−(x−y)
∥x−y∥ for all x ∈ ϕ(∂Ω0) has to be equal to B(y, r)

c
for some r > 0, which cannot be since ϕ(Ω0)

is a bounded set.

Hence, M = 0 and u(x) = b for all x ∈ ϕ(Ω0). Thus, we obtain b · nϕ= 0 on ϕ(∂Ω0) which is not possible if b ̸= 0
since ϕ(∂Ω0) would then be a hyperplane orthogonal to b. Hence, b = 0, and this completes the proof.

The high-fidelity algorithm we propose to compute a morphism ϕ ∈ T Ω0 satisfying (2a) is a particular gradient descent
algorithm to minimize the functional Jg for some level set function g ∈ H1

loc(Rd) over T Ω0
, all the iterations being

guaranteed to be well-defined when d = 2. More precisely, the algorithm is an iterative algorithm which computes a
sequence of morphisms (ϕ(m))m≥0 as follows. The starting point is ϕ(0) = Id. At iteration m ∈ N, knowing ϕ(m), the
next iterate ϕ(m+1) is computed as

ϕ(m+1) = (Id+ γ(m)u(m)) ◦ ϕ(m), (9)

5



where γ(m) is some positive (small) constant and u(m) is computed as follows: Given some finite-dimensional subspace
V (m) ⊂W 1,∞

(
Ω

(m)
0

)
where Ω(m) := ϕ(m)(Ω0), u(m) ∈ V (m) is defined as the unique solution to

∀v(m) ∈ V (m), aϕ(m)(u(m),v(m)) = −D̃Jg(ϕ
(m))(v(m)). (10)

In other words, u(m) ∈ V (m) is the unique solution to the following linear elasticity problem:

∀v(m) ∈ V (m),

∫
Ω(m)

σ(u(m)) : ε(v(m))dx+α

∫
Ω(m)

(u(m) ·n(m))(v(m) ·n(m))ds = −
∫
Ω(m)

g(x)v(m)(x)·n(m)ds, (11)

where n(m) denotes the outward unit normal vector to Ω(m). In particular, when the level set function g is chosen to
be the distance function dΩ, problem (11) reads as

∀v(m) ∈ V (m),

∫
Ω(m)

σ(u(m)) : ε(v(m))dx+ α

∫
Ω(m)

(u(m) · n(m))(v(m) · n(m))ds = −
∫
Ω(m)

dΩ(x)v
(m)(x) · n(m)ds.

(12)
In what follows, we refer to this procedure as the signed distance algorithm. An illustration is shown in Figure 2.

Figure 2: Example of reference domain Ω0, target domain Ω, and intermediate domain ϕ(m)(Ω0).

Remark 1 (Comparison with [27]). Let us comment on the differences between the approach we propose and the one
in [27]. In [27], the authors consider a similar iterative algorithm with the difference that the gradient direction u(m)

is obtained as the solution of a problem of the form

∀v(m) ∈ Ṽ
(m)

,

∫
Ω(m)

σ(u(m)) : ε(v(m))dx = −
∫
Ω(m)

dΩ(x)v
(m)(x) · n(m)ds, (13)

where Ṽ
(m)

is a finite-dimensional subspace of H1
0,ω(m)(Ω(m)) :=

{
u ∈H1(Ω(m)) : u = 0 on ω(m)

}
and ω(m) ⊂ Ω(m)

is an open subdomain of Ω(m) with positive measure. Our motivation for considering problems of the form (12) instead
of problems of the form (13) is twofold:

• On the one hand, in the present approach, there is no need for the choice of a subdomain ω(m) of Ω(m), which
in particular avoids to have null displacements into some arbitrarily chosen region of the domain Ω(m);

• on the other hand, the second term on the left-hand side of (12) may be seen as a Tikohonov regularization term
to select a solution u(m) such that its normal component is as small as possible on the boundary of Ω(m). This
allows, in particular close to convergence, to allow tangential displacements along the boundary of the domain.
This feature turns out to be particularly useful in our numerical tests.

Remark 2 (Parameter γ(m)). For simplicity, in our numerical tests, the sequence of parameters (γ(m))m≥0 is cho-
sen to be equal to some constant value γ. Let us highlight, however, that, if for all m ∈ N, we choose γ(m) ≤

min

(
γ0,

1

2∥u(m)∥W 1,∞(Rd)

)
for some γ0 > 0, then it is guaranteed by Lemma 1 that ϕ(m) ∈ T Ω0

for all m ∈ N.

Remark 3 (Gradient descent). The present procedure is a gradient descent algorithm for the resolution of the opti-
mization problem (5). Indeed, ψ(m) := u(m) ◦ ϕ(m) is the unique solution of

∀ξ(m) ∈ V
(m)
0 , cϕ(m)(ψ(m), ξ(m)) = DJg(ϕ

(m))(ξ(m)),

6



where for all ϕ ∈ TΩ0
,

cϕ :H1(Ω0)×H1(Ω0) ∋ (ψ, ξ) 7−→ cϕ(ψ, ξ) := aϕ(ψ ◦ ϕ−1, ξ ◦ ϕ−1)

and
V

(m)
0 :=

{
v ◦ ϕ(m) : v ∈ V (m)

}
⊂H1 (Ω0) .

The function ψ(m) ∈ T ′
ϕ(m) is a gradient descent direction, computed with respect to the inner product cϕ(m) on V

(m)
0 ,

and (9) amounts to update ϕ(m+1) as ϕ(m+1) = ϕ(m) + γ(m)ψ(m).

2.3 Shape matching with constraints
The goal of this section is to propose a variant of the iterative procedure presented in the previous section so as
to enforce matching conditions concerning points and lines as in (2b)-(2c). The variant proposed here consists in
computing at each iteration m ∈ N a displacement field u(m) ∈ V (m) solution to

∀v(m) ∈ V (m), aϕ(m)(u(m),v(m)) = bϕ(m)(v(m)), (14)

for some continuous linear functional bϕ(m) : H1(ϕ(m)(Ω0)) → R encoding the constraints (2b)-(2c). The updated
morphing ϕ(m+1) is again defined by (9).

Let us focus more specifically on the case where d = 2 for the sake of clarity. Then, for all ϕ ∈ TΩ0
and all

v ∈H1(ϕ(m)(Ω0)), the quantity bϕ(v) is defined as the sum of two terms:

bϕ(v) = bpϕ(v) + blϕ(v),

where bpϕ ( resp., blϕ) is a point-matching (resp., line-matching) linear form.

On the one-hand, the point-matching linear form is defined as follows. For all 1 ≤ kp ≤ Np, we consider a neighborhood
N0

kp
of P0

kp
in ∂Ω0 (which is taken to be small), and define the following linear form on H1(ϕ(Ω0)):

bpϕ(v) := β1

Np∑
kp=1

∫
ϕ(N0

kp
)

(Pkp
− ϕ(P0

kp
)) · vds, (15)

with the user-dependent parameter β1 > 0. The aim of this term is to force each point P0
kp

to match with its
corresponding point Pkp at convergence of the scheme. Notice that ϕ(P0

kp
) is well defined since ϕ ∈W 1,∞(Ω0).

On the other hand, the line-matching linear form is defined as follows. For any bounded closed subset A ⊂ R2, we
denote by 1A its characteristic function and ΠA(x) denotes one minimizer of the following minimization problem:

ΠA(x) ∈ argmin
y∈A

∥x− y∥ . (16)

Such an element is not uniquely defined in general, in which case one has to make a choice among all minimizers of
(16). Then we define the vector distance function D∂Ω

ϕ : ϕ(∂Ω0)→ R2 as follows:

D∂Ω
ϕ : ϕ(∂Ω0) ∋ x 7−→ D∂Ω

ϕ (x) :=

Nl∑
kl=1

(ΠLkl
(x)− x)1ϕ(L0

kl
)(x) ∈ R2. (17)

An illustration of D∂Ω
ϕ is shown in Figure 3. The linear form blϕ :H1(ϕ(Ω0))→ R is then defined as follows:

∀v ∈H1(ϕ(Ω0)), blϕ(v) := β2

∫
ϕ(∂Ω0)

(
D∂Ω

ϕ · nϕ

)(
v · nϕ

)
ds = β2

Nl∑
i=1

∫
ϕ(L0

i )

(
(ΠLkl

− Id) · nϕ

)(
v · nϕ

)
ds, (18)

for some user-dependent parameter β2 > 0.
In what follows, we refer to this procedure as the vector distance algorithm.

Remark 4 (Alternative definition). An alternative definition for blϕ is

∀v ∈H1(ϕ(Ω0)), blϕ(v) := β2

∫
ϕ(∂Ω0)

D∂Ω
ϕ · vds. (19)
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Numerical tests were also performed with this alternative definition. Altogether, the quality of the resulting transported
mesh was observed to be better when using (18) rather than (19).

Figure 3: Visual representation of (17). D∂Ω
ϕ (x) is the vector that points from x ∈ ϕ(L0

i ) to its projection on Li.

2.4 Implementation details
The aim of this section is to give some details about the practical implementation of the procedures described in the
two previous sections.

In the initialization step, assuming that Ω0 is a polygonal domain, a conforming meshM0 of the domain Ω0 is chosen,
typically employing simplicial mesh cells. At each iteration m ∈ N, the meshM0 is transformed into a meshM(m) of
Ω(m) = ϕ(m)(Ω0) via the diffeomorphism ϕ(m). The finite-dimensional space V (m) is then chosen at each iteration as
the classical P1 finite-element space associated with the mesh M(m). In principle, the transported mesh M(m) could
contain ill-shaped elements. In such a situation, one could potentially introduce a new mesh Mm of Ω(m). This was
not needed in the numerical tests presented below.

Note that a full mesh of the target domain Ω is actually not required. However, we still need to use a boundary mesh
of ∂Ω, which is denoted by ∂M, for the computation of the signed distance function dΩ (see (6)) or the vector distance
function D∂Ω

ϕ(m) (see (17)).

For each vertex x in the boundary mesh ϕ(m)(∂M0), we compute dΩ(x) by determining the projection of x onto ∂M.
This is achieved by determining the closest node on ∂M to x (using a KD-tree structure for example), identifying
boundary elements sharing this node (forming candidate elements), and projecting x onto these elements. On the other
hand, to compute D∂Ω

ϕ(m)(x), we determine the index 1 ≤ kl ≤ Nl such that x ∈ ϕ(m)(L0
kl
) ⊂ ϕ(m)(∂M0) ⊂ R2, and

compute the projection of x onto Lkl
. Notice that computing D∂Ω

ϕ(m)(x) tends to be less costly from a computational
point of view than computing the signed distance dΩ(x), since we do not have to determine the position of x relative
to ∂Ω to determine the sign of dΩ(x). Once the matching term is evaluated, we can compute u(m)

Ω by solving the
variational problem (10) or (14).

The value of the parameter γ(m) can be adjusted throughout the iterations, however it must remain sufficiently small
to ensure that ϕ(m+1) belongs to TΩ0 (see Lemma 1). In the numerical tests presented below, the value γ(m) is chosen
to be equal to some constant value γ > 0 which is specified below.

Let us introduce here two quantities that will be used to measure the geometric error and thus to assess the quality of
a given morphing ϕ ∈ TΩ0

, and to define the stopping criterion of the two iterative algorithms we have presented in
the previous sections. The first one is based on the use of the signed distance function (and is thus suitable to define
a convergence criterion for the signed distance algorithm):

∆1(ϕ,Ω0,Ω) := sup{d(x, ∂Ω) : x ∈ ∂ϕ(Ω0)} = sup{|dΩ(x)| : x ∈ ∂ϕ(Ω0)} = ∥dΩ∥L∞(∂ϕ(Ω0))
. (20)

The second one relies on the vector distance function (and is thus used for the definition of a convergence criterion for
the vector distance algorithm):

∆2(ϕ,Ω0,Ω) := sup{∥D∂Ω
ϕ (x)∥ : x ∈ ∂ϕ(Ω0)} =

∥∥D∂Ω
ϕ

∥∥
L∞(∂ϕ(Ω0))

. (21)
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More precisely, given a stopping threshold ϵ > 0, the iterative algorithms presented above are run until the first
iteration M ≥ 0 such that ∆i(ϕ

(M)) < ϵ for i = 1, 2.

After convergence, we perform one final correction step, by computing a finite element approximation of the unique
solution u∗ ∈H1(ϕ(M)(Ω0)) of

{
−div (σ(u∗)) = 0, in ϕ(M)(Ω0),

u∗ = D∂Ω
ϕ(M) , on ∂ϕ(M)(Ω0).

(22)

The final morphism is set to be ϕ∗ := (Id + u∗) ◦ ϕ(M). This guarantees that ϕ∗(∂Ω0) coincides with ∂Ω. An
illustration of the output of this final correction step is presented in Figure 4.

(a) Mesh of ϕ(M)(Ω0) . (b) Final morphed mesh aligned with ∂Ω.

Figure 4: Illustration of the final correction step.

2.5 Numerical results
In this section, we present numerical results obtained with the procedures described in the previous sections on two
two-dimensional test cases. All the results were obtained using the Muscat library [30].

2.5.1 Tensile2D dataset

The first example is taken from the dataset in [31]. For all R > 0, the set B(R) is defined as B(R) := {(x, y) ∈
R2/(x− 1)2 + y2 ≤ R2}

⋃
{(x, y) ∈ R2/(x+ 1)2 + y2 ≤ R2}. We consider the reference domain Ω0 := [−1, 1]2\B(0.5)

and the target domain Ω := [−1, 1]2\B(0.2), both shown in Figure 5a and 5b, respectively. We consider Np = 4 control
points in ∂Ω0 having coordinates (−1, 0.5), (−1,−0.5), (1, 0.5), (−1,−0.5). We consider Nl = 4 control lines on ∂Ω0

which consist of the two half-circles (highlighted in red on the reference domain in Figure 5) and the top and bottom
parts of the boundary (highlighted in green). In Figure 5c, we show a mesh of the reference domain Ω0 superimposed
with the boundary of the target domain Ω. The mesh has approximately 9000 elements.

The aim of the following tests is to highlight the advantages of the vector distance algorithm with respect to the distance
function algorithm. The vector distance algorithm is run with the parameters E := 1, ν := 0.3, α := 200, γ := 8, β1 := 1
and β2 := 0. The convergence is obtained after 145 iterations with a tolerance ϵ = 10−3 and a stopping criterion
based on ∆2. The evolution of the deformed mesh is shown in Figure 6. For comparison, we show in Figure 7 the
evolution of the mesh using the signed distance algorithm, with the parameters E := 1, ν := 0.3, α := 200, γ := 8.
The convergence is attained after 180 iterations with a stopping criterion based on ∆1 and the same value of ϵ as
above. When using the signed distance function, the half-circles in ∂Ω0 are not mapped onto the half-circles in ∂Ω.
Moreover, we observe that the mesh used for the reference domain needs to be sufficiently refined near the boundary
for the algorithm to converge correctly, as already noted in [27]. In our implementation, the vector distance algorithm
typically takes around 37 seconds to converge, whereas the signed distance algorithm takes around 71 seconds. As
mentioned in Section 2.4, this is due to the fact that calculating the signed distance function is more expensive than
calculating the vector distance function.
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(a) Reference domain Ω0. (b) Target domain Ω.
(c) Mesh M0 of the reference domain
Ω0.

Figure 5: Reference and target domains, with the partition used on the boundary of the reference domain.

(a) Deformed mesh after 15 iterations. (b) Deformed mesh after 35 iterations. (c) Deformed mesh at convergence.

Figure 6: Evolution of the mesh using the vector distance algorithm.

(a) Deformed mesh after 15 iterations. (b) Deformed mesh after 35 iterations. (c) Deformed mesh at convergence.

Figure 7: Evolution of the mesh using the signed distance algorithm.

Figure 8 illustrates the behaviour of the geometric error ∆1 (a) and ∆2 (b) as a function of the number of iterations
of the chosen algorithm (signed distance function (sdf) or vector distance function (vdf)). We observe that both
quantities ∆sdf

1 and ∆vdf
1 converge to 0 as the number of iterations increases. However, ∆vdf

2 also converges to 0 with
respect to the number of iterations, whereas ∆sdf

2 does not.
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(a) Evolution of ∆1 using both the signed distance algorithm
and the vector distance algorithm.

(b) Evolution of ∆2 using the signed distance algorithm and
the vector distance algorithm.

Figure 8: Evolution of ∆1 and ∆2 for the two algorithms for one of the samples. Using the vector distance algorithm
(so that ∆2 converges 0), we also have that ∆1 converges to 0. This is not necessary the case when using the signed
distance algorithm. We can have that ∆1 converges to 0 without having ∆2 converging to 0.

Figure 9 shows the average, minimum and maximum values of ∆1 (a) and ∆2 (b) as a function of the number of
iterations of the algorithm. We observe that both quantities ∆vdf

1 and ∆vdf
2 converges exponentially to 0 with respect

to the number of iterations, which is not the case of ∆sdf
1 . This highlights another advantage of the vector distance

algorithm in comparison to the signed distance algorithm.

(a) Average, maximum and minimum error ∆1 on a subset
of 10 samples calculated using the two formulations.

(b) Average, maximum and minimum error ∆2 on a subset
of 10 samples calculated using the vector distance formu-
lation.

Figure 9: Average, minimum and maximum geometric errors ∆1 and ∆2 on a subset of 10 samples.

2.5.2 AirfRANS dataset

In this second test, we consider 2D airfoils taken from the dataset in [32]. In this case, we observe that the signed
distance algorithm does not always converge: this is the reason why we only present numerical results obtained with
the vector function algorithm on this dataset.
We choose two samples, one as the reference and the other as the target domain. The morphing should map the
lower wing surface (resp., the upper wing surface) of the airfoil Ω0 to the lower wing surface (resp., the upper wing
surface) of the airfoil Ω. We consider Np = 2 target points, the two points being located at the leading edge (0, 0)
and the trailing edge (1, 0) of the wing. At the start of the algorithm, these points coincide in the reference and the
target geometries, but do not remain coincident through all the iterations. The external boundary representing the
far field is fixed. The mesh of Ω0 that is used to compute the morphing is different than the mesh provided in the
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dataset. To alleviate the computational burden, we use a coarse shape-regular mesh of Ω0 with approximately 8000
elements. Morphings that are computed on the coarse mesh can then be interpolated on the original finer meshes of
the dataset (see Figure 11). Note, however, that this step may be delicate since the interpolation of the morphing may
not preserve bijectivity in general, although we never encountered this issue in our numerical results. The parameters
used for the simulations are E := 0.1, ν := 0.3, α := 500, γ = 5, β1 := 10 and β2 := 1. These parameters are chosen
once and for all in order to calculate the morphings for all the geometries from the dataset. The value of the stopping
criterion is chosen to be equal to ϵ = 5× 10−4. Convergence is obtained after 492 iterations, in about 92 seconds. The
evolution of the deformation of the reference airfoil is shown in Figure 10 after 10, 25 and 492 iterations.

(a) Deformed airfoil after 50 iterations.
(b) Deformed airfoil after 100 itera-
tions.

(c) Deformed airfoil at conver-
gence.align images

Figure 10: Evolution of the airfoil using the vector distance algorithm.

(a) Mesh used to calculate the morph-
ing.

(b) Deformation of the mesh at con-
vergence. (c) Morphed mesh in the dataset ob-

tained by interpolation.

Figure 11: Morphing of the two meshes.

In Figure 12 we plot the average, minimum and maximum value of ∆vdf
2 as a function of the number of iterations over

a set of 10 samples. As in the previous test case, we numerically observe that the vector distance algorithm converges
exponentially with respect to the number of iterations.

Figure 12: Average, maximum and minimum geometric errors ∆2 in logarithmic scale on a subset of 10 samples,
using the vector distance algorithm.
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2.6 Extension to dimension 3

We gather here some remarks about the extension of the proposed approach in the case d = 3, which will be the object
of a future research work. We consider a collection

{
P1, . . . ,PNp

}
⊂ ∂Ω of Np distinct points of ∂Ω, a collection

{L1, . . . ,LNl
} ⊂ ∂Ω of disjoint, open, connected subdomains of ∂Ω with positive 1-dimensional Hausdorff measure and

a collection {S1, . . . ,SNs} ⊂ ∂Ω of disjoint, open, connected subdomains of ∂Ω with positive 2-dimensional Hausdorff
measure such that

⋃Ns

ks=1 Sks = ∂Ω. We also consider a collection
{
P0

1, . . . ,P
0
Np

}
⊂ ∂Ω0 of Np distinct points of

∂Ω0, a collection
{
L0
1, . . . ,L

0
Nl

}
⊂ ∂Ω0 of disjoint, open, connected subdomains of ∂Ω0 with positive 1-dimensional

Hausdorff measure and a collection
{
S01, . . . ,S

0
Ns

}
⊂ ∂Ω of disjoint, open, connected subdomains of ∂Ω0 with positive

2-dimensional Hausdorff measure such that
⋃Ns

ks=1 S
0
ks

= ∂Ω0.
The extension of our approach then consists in finding a morphing ϕ ∈ T Ω0

:= {ϕ ∈W 1,∞(Ω0),ϕ
−1 ∈W 1,∞(ϕ(Ω0)) :

ϕ is injective} such that

ϕ(Ω0) = Ω, (23a)

ϕ(P0
kp
) = Pkp

, ∀1 ≤ kp ≤ Np, (23b)

ϕ(L0
kl
) = Lkl

, ∀1 ≤ kl ≤ Nl, (23c)

ϕ(S0ks
) = Ss, ∀1 ≤ ks ≤ Ns. (23d)

Our first observation is that the extension of Proposition 2 to the case d = 3 is not straightforward. We leave this
theoretical question for future work. Assuming that the bilinear form

aϕ :H1(ϕ(Ω0))×H1(ϕ(Ω0)) ∋ (u,v) 7−→ aϕ(u,v) :=

∫
ϕ(Ω0)

σ(u) : ε(v)dx+ α

∫
ϕ(∂Ω0)

(u · nϕ)(v · nϕ)ds (24)

defines an inner product on H1(ϕ(Ω0)), up to some assumptions on the geometry of the domain ϕ(Ω0), the procedure
described in Section 2.2 can be straightforwardly extended to design an iterative algorithm to compute a diffeomorphism
ϕ ∈ TΩ0

such that ϕ(Ω0) = Ω.

To extend the constrained approach proposed in Section 2.3, one would need to solve at each iteration linear elasticity
problems of the form (14) where the linear form bϕ would be defined as the sum of three continuous real-valued
linear forms bpϕ, blϕ and bsϕ defined on H1(ϕ(Ω0)), the aim of which is to force the matching of points, lines and
surfaces respectively. Appropriate definitions of these linear forms and tests of the resulting procedure on actual
three-dimensional industrial test cases will be the object of future work.

3 Reduced-order modeling with geometric variability
The proposed high-fidelity morphing technique requires the resolution of a linear elasticity problem at each iteration,
a process which can be time-consuming. In the context of model-order reduction with geometric variability, fast
computation of this morphing is crucial for deriving efficient reduced-order models. Therefore, we introduce here a
reduction technique aiming at speeding up these calculations to improve overall efficiency.

3.1 Offline phase
Given n target domains {Ωi}1≤i≤n which compose our training set, we start by calculating the n morphings {ϕi}1≤i≤n ⊂
TΩ0 from a fixed reference domain Ω0 to each target domain Ωi so that ϕi(Ω0) = Ωi for all 1 ≤ i ≤ n. This can be
done using either the signed distance algorithm or the vector distance algorithm presented in the previous section.
We then apply snapshot-POD (Proper Orthogonal Decomposition) on the family of displacement fields ψi := ϕi− Id
(1 ≤ i ≤ n) with respect to the L2(Ω0)-inner product. We denote by λ1 ≤ . . . ≤ λn the n eigenvalues of the correlation
matrix C := (⟨ψi,ψj⟩L2(Ω0))1≤i,j≤n ∈ Rn×n and by {ζi}1≤i≤n ⊂ W 1,∞(Ω0) the corresponding POD modes. For a
given number of selected POD modes r ∈ N∗, we introduce the mapping

φr : Rr ∋ α := (αj)1≤j≤r 7−→ φr(α) := Id+

r∑
j=1

αjζj ∈W
1,∞(Ω0). (25)

For all 1 ≤ i ≤ n, we define the vector αi = (αi
j)1≤j≤r ∈ Rr such that

∀1 ≤ j ≤ r, αi
j := ⟨ϕi − Id, ζj⟩L2(Ω0) = ⟨ψi, ζj⟩L2(Ω0),

so that
∑r

j=1 α
i
jζj is the L2(Ω0)-orthogonal projection of ψi := ϕi − Id onto Span{ζ1, . . . , ζr}. Each morphing ϕi
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can then be approximated by

ϕi ≈ φr(α
i) := Id+

r∑
j=1

αi
jζj = Id+

r∑
j=1

⟨ϕi − Id, ζj⟩L2(Ω0)ζj , (26)

and each geometry Ωi = ϕi(Ω0) can be identified with the vector αi ∈ Rr.

In general, we choose the value 1 ≤ r ≤ n in one of the following two ways:

(i) For a prescribed tolerance criterion δPOD > 0, we choose r as the smallest positive integer such that

1−

r∑
j=1

λj

n∑
j=1

λj

≤ δPOD.

This approach aims at controlling the accuracy of the reconstruction of the morphings using the first r POD
modes in L2(Ω0)-norm.

(ii) When dealing with variable geometries, however, we may want to control the maximum geometrical error between
φr(α

i)(Ω0) and Ωi. To this end, given a tolerance δgeo > 0, we choose r as the smallest integer such that

max
1≤i≤n

∆2(φr(α
i),Ω0,Ωi) < δgeo, (27)

where the quantity ∆2 is defined in (21).

Note that, in addition to one of the two selection criteria highlighted above, we also ensure that r is large enough so
that, for all 1 ≤ i ≤ n, the POD approximation φr(α

i) is a diffeomorphism from Ω0 onto φr(α
i)(Ω0).

Remark 5 (Geometry vs. vector α). The correspondence between a geometry Ωi and a vector αi ∈ Rr is not
necessarily unique: for a geometry Ωi such that ∆2(φr(α

i),Ω0,Ωi) < δgeo, we may find another vector ᾱ such that
∆2(φr(ᾱ),Ω0,Ωi) < δgeo as well, without having ϕi = φr(ᾱ

i) up to the error on the POD. In other terms, we can
find multiple morphings mapping Ω0 on Ωi in the affine space Id+ Span{ζ1, . . . , ζr}.

3.2 Online phase

Given a new geometry Ω̃ ⊂ Rd that is a domain of Rd, we search for a morphing ϕ̃ ∈ TΩ0 in the affine space
Id+Span{ζi}1≤i≤r, so that ϕ̃(Ω0) is close to Ω̃ with respect to the criterion ∆1 or ∆2. More precisely, the morphing
ϕ̃ will be computed as ϕ̃ = φr(α̃) for some α̃ ∈ Rr.

To present the online procedure in some detail, we first introduce some notation. On the one hand, for all α ∈ Rr, we
define Jg(α) := Jg(φr(α)) with Jg defined in (4). We have ∇Jg(α) = DJg(φr(α))(∇φr(α)), so that, using (7), we
obtain, for all α = (αj)1≤j≤r ∈ Rr and all 1 ≤ j ≤ r,

∇Jg(α)j =
∂Jg(α)
∂αj

=

∫
φr(α)(∂Ω0)

g(x)
(
ζj ◦φ−1

r (α) · nφr(α)

)
(x) ds. (28)

On the other hand, we introduce the functional

I : Rr ∋ α 7−→ I(α) := (Ij(α))1≤j≤r ∈ Rr, (29)

such that, for all 1 ≤ j ≤ r and all α ∈ Rr,

Ij(α) : =bpφr(α)
(ζj ◦φ−1

r (α)) + blφr(α)
(ζj ◦φ−1

r (α))

=β1

Np∑
kp=1

∫
N(φr(α)(P

0
kp

))

(Pkp
−φr(α)(P

0
kp
)) · ζj ◦φ−1

r (α)(x) ds

+ β2

∫
φr(α)(∂Ω0)

(
D∂Ω̃

φr(α)
· nφr(α)

) (
ζj ◦φ−1

r (α) · nφr(α)

)
(x) ds, (30)

where bpφr(α)
and blφr(α)

are defined in (15) and (18), respectively.

The online procedure we propose to compute α̃ is an iterative procedure which we now describe.
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3.2.1 Initialization using the vector distance function

In line with the high-fidelity construction of the morphing, we could initialize the online iterative procedure so that
ϕ(0) = φr(α̃

(0)) = Id. This corresponds to α̃(0) = 0Rr . However, this approach was observed to yield results which
were not satisfactory, neither from an accuracy nor from an efficiency point of view. The initialization procedure we
propose here remedies these shortcomings. It builds on the observation that if the new geometry Ω̃ is close to one of
the geometries belonging to the training set, one should be able to use this information to initialize the algorithm with
a solution near an optimal solution. The idea is to rely on the construction of an appropriate regression model. More
precisely, suppose that we have (or we can determine) a quantity that defines each geometry in the dataset. We can
then build a regression metamodel that, for a given geometry Ω̃, takes as input that quantity and produces as output
the morphing coordinates α̃ ∈ Rr.
We propose to use the vector distance function defined in (17) by proceeding as follows:

1. In the offline phase:

(a) For each geometry Ωi, calculate the function D∂Ωi

Id such that

D∂Ωi

Id : ∂Ω0 ∋ x 7−→ D∂Ωi

Id (x) :=

Nl∑
kl=1

(ΠLi
kl

(x)− x)1L0
kl

(x) ∈ R2, (31)

where {Li
kl
}1≤kl≤Nl

is the set of curves partitioning the boundary of Ωi.

(b) Compute the POD of the family of functions {D∂Ωi

Id }1≤i≤n in L2(∂Ω0) and denote by (θj)1≤j≤n the cor-
responding set of POD modes. Fix some q ∈ N∗ and for all 1 ≤ i ≤ n, compute di =

(
dij
)
1≤j≤q

∈ Rd

as
∀1 ≤ j ≤ q, dij =

〈
D∂Ωi

Id ,θj

〉
L2(∂Ω0)

.

(c) Train a regression model that takes as input the vector di ∈ Rq and as output the generalized coordinates
αi ∈ Rr of the morphing ϕi. Denote by R : Rq → Rr the corresponding regression model.

2. In the online phase:

(a) For a new geometry Ω̃, calculate the vector distance D∂Ω̃
Id , then project on the low-dimensional representation

to obtain the corresponding vector d̃ =
(
d̃j

)
1≤j≤q

∈ Rq such that

∀1 ≤ j ≤ q, d̃j =
〈
D∂Ω̃

Id ,θj

〉
L2(∂Ω0)

(b) Define α̃(0) = R
(
d̃
)
.

The regression model used in this work is the Gaussian process regression (GPR) [33].

We make the following observations:

1. For a geometry Ω̃, taking D∂Ω̃
Id as input does not mean that the output of the metamodel will map each point

x ∈ ∂Ω0 to its projection onto ∂Ω̃. Here, the vector distance is used only to measure in some way the deviation
of each Ωi from ∂Ω0. Another possibility could have been to consider the gradient of the signed function dΩ̃.

2. Another choice to initialize the optimization algorithm could consider the full geometry, which is not the case
with the vector distance function. The problem is that defining a quantity that is representative and unique for
each geometry, and its boundary, is not straightforward, especially as we suppose that the geometries are non-
parameterized. Another issue is that evaluating such a quantity for every new geometry should be sufficiently
fast for an efficient evaluation of the ROM.

We emphasize that the above approach is not devised as a means of directly predicting the morphing coefficients
without using the iterative algorithm (to be presented in the next section). Indeed, this would lead to two main
drawbacks. Firstly, the output of the metamodel does not generally precisely satisfy φr(α̃)(Ω0) = Ω̃. Secondly,
it is possible for two different geometries to yield identical inputs d̃, resulting in the same coefficients α̃ from the
regression model. In conclusion, the above approach merely serves as a means of predicting an initialization α̃(0) for
the online optimization algorithm, that is (hopefully) sufficiently close to the optimal solution. Thus, even if two
distinct geometries share the same initialization during the online phase, they will not produce identical morphings
after solving the optimization problem.
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3.2.2 Online iterative algorithm

To find the final reduced coordinates α̃ ∈ Rr for the new geometry Ω̃, we use an iterative algorithm which consists in
updating at each iteration m the vector α̃(m) ∈ Rr as

α̃(m+1) = α̃(m) − γ(m)I(α̃(m)), (32)

for some γ(m) > 0 starting from the initial value α̃(0) ∈ Rr obtained from the initialization procedure described in
the previous section. In practice, the value γ(m) is always chosen to be equal to some constant value γ > 0 for all
iterations m ∈ N. In cases where one only wishes to match domains (and not necessarily points and/or lines), it is
also possible to design an iterative algorithm with the updating formula

α̃(m+1) = α̃(m) − γ(m)∇Jg(α̃(m)). (33)

Remark 6 (Elasticty-based update). Another possibility could have been to use an inner product associated with the
elasticity bilinear aφr(α)

defined in (8). We have aφr(α)
(φr(u),φr(v)) = ⟨M(α)u,v⟩L2(Rr) with the stiffness matrix

M(α) :=
(
aφr(α)

(ζi, ζj)
)
1≤i,j≤r

∈ Rr×r. The iterative algorithm then becomes

α(m+1) = α(m) − γ(m)M−1(α(m))I(α(m)). (34)

While this inner product actually introduces physical information to deform the mesh, it requires determining, at each
iteration, the stiffness matrix M(α(m)), which boils down to calculating r(r+1)

2 volume integrals. This can be quite
costly. The advantage of the approach relying on (32) (or (33)) is that we only need to compute surface integrals,
instead of computing volume integrals and solving a linear elasticity system at each iteration. Thus, the computational
efficiency is much higher than with the approach relying on (34).

3.2.3 Stopping criterion and out-of-distribution geometry

Fix an error tolerance δgeo > 0. Then, for every new geometry Ω̃ considered in the online phase, the iterative procedure
described in Section 3.2.2 is carried out until the following stopping criterion is met:

∆2(φr(α̃
(m)),Ω0, Ω̃) < δgeo.

We also choose a value Mmax ∈ N∗ corresponding to a maximum number of iterations and an a priori error threshold
δ∇ > 0. If the above stopping criterion is not reached after Mmax iterations, we evaluate η := ∥I(α̃(Mmax))∥ if (32) is
used (or η := ∥∇Jg(α̃(Mmax))∥ if (33) is used) and proceed as follows:

1. If η ≥ δ∇, the iterative algorithm did not reach convergence. Depending on the required precision and the cost
per iteration, we may allow here to increase the number of iterations Mmax.

2. On the other hand, if η < δ∇, this means that the target domain Ω̃ cannot be well-approximated in the form
ϕ(Ω0) for some morphism ϕ computed as an element of Id+Span{ζi, 1 ≤ i ≤ r}. One practical way to choose

the value of δ∇ is to define it as δ∇ :=
1

n

n∑
i=1

∥I(αi)∥ (or δ∇ :=
1

n

n∑
i=1

∥∇Jg(αi)∥). The geometry Ω̃ is then

classified as being out-of-distribution (ood) and the following two steps are performed:

(a) Increase the number of modes r; this allows for more flexibility in finding a reduced morphing ϕ̃ such that
ϕ̃(Ω0) is close to Ω̃.

(b) Or, use the high-fidelity routine to compute a high-fidelity map ϕ̃ : Ω0 → Ω̃, possibly initialized with

ϕ̃
(0)

= φr(α̃
(Mmax)), update r := r + 1 and define ζr+1 := ϕ̃.
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3.3 Overall workflow
The following tables summarize our offline and online workflows:

Data: Training set of domains {Ωi}1≤i≤n

Input: Reference domain Ω0, tolerance δgeo > 0, step size γ > 0
for i← 1 to n do

Calculate D∂Ωi

Id ;
Initialize ϕ(0)

i = Id;
m← 0;
repeat

Solve for u(m)
Ωi

;
Update ϕ(m+1)

i ← ϕ
(m)
i + γu

(m)
Ωi
◦ ϕ(m)

i ;
Calculate D∂Ωi

ϕ
(m+1)
i

;

m← m+ 1;

until ∆2

(
ϕ

(m)
i ,Ω0,Ωi

)
< ϵ;

ϕi ← ϕ
(m)
i ;

end
POD: {ϕi}1≤i≤n → {ζj}1≤j≤r, {αi}1≤i≤n with tolerance δgeo;
SVD: {D∂Ωi

Id }1≤i≤n → {di}1≤i≤n;
Train GPR : {di}1≤i≤n, {αi}1≤i≤n → R;
Determine : δ∇;

Algorithm 1: Offline workflow

Data: Reduced-order basis {ζj}1≤i≤r, bounds: δgeo, δ∇

Input: Reference domain Ω0, target domain Ω̃, maximum number of iterations Mmax, step size γ > 0
Output: Generalized coordinates α̃

Calculate D∂Ω̃
Id ;

Project D∂Ω̃
Id to obtain d̃;

Use GPR to obtain α̃(0);
m← 0;
while m ≤Mmax do

α̃(m+1) ← α̃(m) − γI(α̃(m+1));
Calculate D∂Ω̃

φr(α̃
(m+1))

;

if ∆2(φr(α̃
(m)),Ω0, Ω̃) < δgeo is true then

Terminate the loop;
end
m← m+ 1;
if m = Mmax and ∆2(φr(α̃

(Mmax)),Ω0, Ω̃) > δgeo then
if ∥I(α̃(Mmax))∥2 ≥ δ∇ then

Increase Mmax ;
end
else

Increase r or perform offline routine for Ω̃;
end

end
end

Algorithm 2: Online Workflow

3.4 Complexity
The cost of one iteration in the offline phase comprises the assembly of the stiffness matrix associated with the bilinear
form aϕ defined in (8), the computation of the matching term (the signed distance function (6) or the vector distance
function (17)), the assembly of the right-hand-side vector corresponding to the linear form (D̃Jg(ϕ) in (7) or b̃pϕ and
b̃lϕ in (15) and (18)), and finally the resolution of the resulting sparse linear system to obtain the coordinates of the
displacement field in the finite element basis.
The cost of one iteration in the online phase comprises computing the matching term (the signed distance function
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(6) or the vector distance function (17)), and the evaluation of ∇Jg(α) or I(α) for α ∈ Rr, which corresponds to
computing r integrals as in (28) or (30).
We denote by N the number of nodes of M0, the mesh of Ω0 that is used in the computation. The number of nodes
on ∂Ω0 depends on the dimension of the problem, and for 2D elements, is of the order of O(

√
N ). We also denote by

p the number of nodes used to discretize the boundary of the target domain.

Offline Online
Matrix assembly O(N ) -

Matching term computation O(log(p)
√
N ) O(log(p)

√
N )

Computation of the gradient O(
√
N ) O(r

√
N )

Linear system resolution (dense matrix) O(N 3) -

Table 1: Cost of one iteration in the offline and online phases.

In Table 1, we report the complexity per iteration for the offline and online phases. The complexity of the computation
of the matching term is shown for the vector distance function using KD-tree to determine the closet point. The
complexity is actually larger for the signed distance as we need to calculate also the sign for each node.
For the general case of dense matrices, the complexity of solving a linear system by a direct method is of order O(N 3).
For sparse matrices such as the ones encountered here, the complexity depends on the algorithm used and the sparsity
of the matrix. In our implementation, we used the LU decomposition for sparse matrices to solve the linear systems.
Usually, this step is the most expensive one in the offline phase.
The efficiency of the online phase results from the fact that we do not need to solve any linear system. Another
important aspect which speeds up the computations in the online phase is the initialization step described in Section
3.2.1. Because we initialize the iterative procedure close to the solution, the number of iterations needed to achieve
convergence is significantly smaller than the number of iterations needed in the offline phase. Additional speed-up can
be gained also from using parallel implementation to calculate the r integrals in (28) or (30).

3.5 Numerical results
In this section, we present numerical results to illustrate the performance of the above offline/online algorithm.

3.5.1 Tensile2D dataset

Offline phase: we adopt the same notation as in Section 2.5.1. The size of the training set is n = 500. For all
1 ≤ i ≤ n, we define Ωi = [−1, 1]2 \B(Ri), with Ri = 0.2 + 0.6 × i

n . We define the reference domain Ω0 := Ω250.
This is the same reference domain as the one used in Section 2.5.1. We start by calculating the morphings {ϕi}1≤i≤n

using the vector distance algorithm. We emphasize that the parameterization is not used in the construction of the
morphings.
Next, we choose δgeo := 5×10−4, which is smaller than the size of an element. Employing POD with the criterion (27)
leads to r = 5 modes. Finally, we train a Gaussian process regression (GPR) that takes as input the SVD coordinates
of the vector distance function with q = 5, and gives as output the generalized morphing coordinates to initialize the
online optimization problem.

Online phase: The testing set is composed of ntest := 200 geometries {Ω̃j}1≤j≤ntest which have the same form as the
training set, that is, Ω̃j = [−1, 1]2 \B(R̃j) for some (supposedly unknown) radius R̃j . All the radii R̃j are different
from those of the training set. For each Ω̃j , we use the vector distance function in the regression model to predict the
initial iteration to the online optimization problem. In Table 2, we report the quantities

δgeoavg(r,N) :=
1

N

N∑
i=1

∆2(φr(α
i)(Ω0), Ω̃i),

δgeomax(r,N) := max
1≤i≤N

{∆2(φr(α
i)(Ω0), Ω̃i)},

δgeomin(r,N) := min
1≤i≤N

{∆2(φr(α
i)(Ω0), Ω̃i)},

for r = 5, N = ntest and δgeo = 5× 10−4. As we observe in Table 2, for all the samples in the test set, the initialized
solution here is an optimal one that satisfies the stopping criterion, so the online iterative procedure is not used. Thus,
the cost of each morphing calculation is only one evaluation of the vector distance function and one evaluation of the
GPR which drastically cuts down the cost of morphing computation. In Table 3, we report the ratio of the average
(resp., maximum) time needed to compute the high-fidelity morphing (offline) over the average (resp., maximum) time
needed to compute the reduced-order morphing (online) using our implementations. We observe that the reduced-
order model we propose is about 270 times faster than the high-fidelity one. The steps required to construct the online
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phase model are morphing computation, morphing POD, vector distance function POD and GPR training. The time
required to construct the online phase model is dominated by the morphing computation.

δgeoavg(r, ntest) δgeomax(r, ntest) δgeomin(r, ntest)

1.5× 10−4 3.6× 10−4 5.2× 10−7

Table 2: Average, maximum, and minimum values of the criterion ∆2 for all the samples from the dataset in the online
phase after the initialization.

Ratio of average time (offline/online) 267.1
Ratio of maximum time (offline/online) 269.6

Table 3: Ratio of average and maximum time to compute the morphing in the offline and online phases for the
Tensile2D dataset.

3.5.2 AirfRANS

Offline phase. For this test, we use all the 1000 airfoils in the AirfRANS dataset. The number of samples in the
training set is n := 800. We use the same reference geometry, mesh and physical parameters as in Section 2.5.2.
After calculating each morphing, we apply the POD on the displacement fields to obtain the principal modes of the
displacements. Finally, we train the GPR to use it to predict an initial iteration for the samples in the testing set.
Online phase. The testing set is composed of the remaining ntest := 200 samples. Here, the initialization of the
morphing is not sufficient enough to satisfy our criterion on the error, so we also use the online optimization strategy.

Figure 13: Evolution of the geometrical errors δgeoavg(r, n) and δgeomax(r, n) (in logarithmic scale) for the training set as a
function of the number of modes r. The errors are not equal to zero due to the POD truncation error.

In Figure 13, we report both the average and maximum geometrical errors in the training set as a function of the
number of modes. As expected, both errors tend to zero as we add more modes for morphing reconstruction. Note,
however, that the convergence process is not monotone. This is due to the fact that additional modes actually can
have the effect of better approaching the morphing field ϕi, and not necessarily minimizing the geometrical error.
Obviously, taking all the modes yields of zero error between ϕi and φr(α

i), and, as a result, zero geometrical error.
We test the morphing strategy for r ∈ {12, 16, 20, 24, 28, 32, 48}. For each value, we re-initialize α̃(0) in Rr for each
sample in the testing set and perform the optimization in Rr. For all the tests on the values of r, we fix the same
geometric tolerance δgeo = 1.5×10−4. In Figure 14, we show the number of samples for which convergence is achieved,
i.e. satisfying ∆2(φr(α̃

(m))(Ω0), Ω̃) < δgeo, as a function of the number of iterations. Here, zero iteration means that
the initialized solution is sufficiently close so that further optimization is not needed.
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Figure 14: Number of samples that converged in Example 3.5.2 as a function of the number of iterations for different
values of r.

When using more modes, the cost per iteration is higher but the convergence is achieved in fewer iterations, so that
the overall cost to convergence is actually significantly lower. In Figure 15, we report the time needed to compute
all the morphings in the test set for the different values of r. As we can see, for the more modes allows for faster
convergence.

(a) Time to converge with Mmax = 25 iterations. (b) Time to converge with Mmax = 200 iterations.

Figure 15: Overall time needed to compute all the morphings for different values of r and for the maximum number
of iterations Mmax.

4 Learning scalar outputs from simulations
In this section, we show numerical results to illustrate how the above morphing strategy can be exploited to build
regression models to predict scalar outputs from physical simulations under non-parameterized geometrical variability.
This approach is physics-agnostic, that is, the physical equations do not play a role in the process.

4.1 Methodology
Let {Ωi}1≤i≤n to be a collection of different geometries. Each geometry is equipped with a (non-geometrical) parameter
µi ∈ P where P ⊂ Rp is a set of parameter values that is used to perform the physical simulations. The parameters
can be boundary conditions, material properties and so on; however, we emphasize here that the parametrization of
the geometries is not known. In this context, the objective is to determine the outputs of interest of the physical
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problem, which consist of:

1. The physical fields Ui := (ui,j)1≤j≤nfields
with ui,j : Ωi → R for all 1 ≤ i ≤ n and 1 ≤ j ≤ nfields with

nfields ∈ N∗. These fields are usually solutions to a set of partial differential equations. For example, depending
on the problem, these can be stress, deformation, velocity, pressure, etc...

2. The scalar outputs Wi := (wi,j)1≤j≤nscalars
for all 1 ≤ i ≤ n and 1 ≤ j ≤ nscalars with nscalars ∈ N∗. Examples of

scalar quantities of interest are the drag and lift coefficients.

Here, we restrict ourselves to the prediction of scalars outputs. Ongoing work aims at proposing a more sophisticated
and efficient approach, built on the concepts introduced here, to realize the prediction of physical fields.

Given the set of input pairs (Ωi, µi)1≤i≤n, and outputs (Wi)1≤i≤n, calculated using a high-fidelity model, our goal is
to learn a mapping W which maps a pair (Ω, µ), where Ω is a subdomain of Rd and µ ∈ P is a parameter value, to
the corresponding output W ∈ Rnscalars so that W =W(Ω, µ).
Because the geometries are not parameterized, the only available information that represents each geometry is its
mesh Mi. However, the learning task on meshes can be quite challenging owing to the high number of degrees of
freedom that should be taken as input. To deal with large meshes, solutions using deep neural network architectures
were the most popular of machine learning techniques [34, 35]. Furthermore, recent advances rely on graph neural
networks [36] as they can overcome the limitation of having graph input with different numbers of nodes [37]. In [38],
the authors propose a method that does not rely on neural network architecture, and uses Gaussian process regression
model based on the sliced Wasserstein-Weisfeiler-Lehman kernel between graphs to deal with variable geometry to
predict scalar outputs. Instead, we propose here to consider the offline/online morphing technique described above.
We proceed as follows:

1. In the offline phase, given the input pairs (Ωi, µi)1≤i≤n and the outputs (Wi)1≤i≤n:

(a) Choose a reference domain Ω0 and calculate the morphings ϕi : Ω0 → Ωi (Section 2).

(b) Apply the snapshot-POD on (ϕi)1≤i≤n, and calculate the generalized coordinates αi ∈ Rr for each geometry
(Section 3).

(c) Train the regression model W:

Rr × P ∋ (α, µ) 7→ W(α, µ) ∈ Rnscalars . (35)

Notice that, each geometry is parameterized by the coordinates of the POD modes of the displacement field
ϕi − Id.

2. In the online phase, given a new pair (Ω̃, µ̃):

(a) Calculate the vector α̃ ∈ Rr that corresponds to the morphing φr(α̃) ∈ TΩ0
corresponding to the target

domain Ω̃ (Section 3).

(b) Use the regression model to obtain the scalar outputs W̃ =W(α̃, µ̃).

We use a Gaussian process regression for the learning task. For the training phase, we employ anisotropic Matern-5/2
kernels and zero mean-functions for the priors, and the training is done using the GPy package [39].
The proposed strategy becomes very similar to the MMGP method from [18]. The two main differences are: 1) the
morphing algorithm used here is more versatile and is not tailored to specific cases; 2) the increased efficiency of
the procedure consisting of the offline-online separation of the morphing algorithm. Moreover, the present method
computes morphings (and thus displacement fields) from the reference domain, eliminating the need for some finite
element interpolation of the displacement fields to a common support in order to apply the snapshot-POD as in MMGP
(where morphings are computed towards the reference domain).

4.2 AirfRANS: drag coefficient prediction
We apply the above methodology to the AirfRANS dataset. In addition to a mesh of the NACA profile, each sample
in the AirfRANS dataset has two scalars as input: the inlet velocity v0 and the angle of attack θ0. The outputs of
the physical simulation are the velocity, pressure and dynamic viscosity fields, as well as the drag and lift coefficients.
The outputs are obtained using a 2D incompressible RANS model.
We focus our attention here on learning the drag coefficient Cd from the inputs µ = (v0, θ0) and the geometry Ω.
The Gaussian process regression model W takes as input the morphing generalized coordinates αi and the physical
parameters µi = (vi0, θ

i
0), and gives as output the drag Ci

d. To see the effect of the number of modes and the stopping
criterion on the precision of the prediction, we perform the following tests:
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1. Test 1: we compute the morphings online using r modes for r ∈ {12, 16, 20, 24, 28, 32, 36, 40, 44, 48} (including
the initial solution prediction). We use the calculated coordinates to predict Cd. We use the same stopping
geometrical criterion δgeo := 1.5× 10−4 for the different values of r. We stop the optimization after Mmax = 200
iterations if the algorithm does not converge.

2. Test 2: we compute the morphings using r′ = 48 modes, but we take only the first r coordinates to perform the
prediction, with r ∈ {12, 16, 20, 24, 28, 32, 36, 40, 44, 48}. In this case, each morphing φr′(α

i) is calculated once,
but the number of used components of αi changes. We use the same tolerance δgeo and maximum number of
iterations Mmax as test 1.

3. Test 3: similar to Test 2, but with r′ = 64 modes.

4. Test 4: as in Test 2, we take r′ = 48 modes. But we change the stopping criterion: we perform a fixed number
of iterations for all the samples regardless of the geometrical error. We choose here to perform 25 iterations for
all samples.

Figure 16: Q2 scores (see (36)) for different values of r.

We notice that for different values of r, the regression model Wr changes (we use the subscript r to indicate this).
However, the model does not change for a given value of r over the different tests. All the models Wr are trained once
in the offline phase and used for the different tests.
To evaluate the performance of the method to predict the drag coefficient Cd, we evaluate, for each test and for each
value of r, the Q2-score defined as:

Q2 := 1−

ntest∑
i=1

(yi − fi)
2

ntest∑
i=1

(yi − ȳ)2
(36)

with yi the true values of the drag Cd, fi the predicted values using the model W, and ȳ :=
1

ntest

ntest∑
i=1

yi the mean. In

the best-case scenario, the score is Q2 = 1, which means that the model predicted correctly all the true values.
In Figure 16, we present the various Q2 scores. The main observation is that using more modes (r′ modes) to calculate
the morphing can be beneficial when using models that take r (r < r′) mode coefficients as inputs. For instance,
calculating the morphing with 48 modes but utilizing only the first 16 components of α to predict the values of Cd

withW16 yields a superior Q2 score compared to calculating the morphing using only 16 modes and using the obtained
coordinates W16 to predict Cd. Thus, employing more modes to calculate the morphings enhances the quality of the
coefficients for the prediction.
From the conducted tests, our best Q2 score is obtained for Test 4 when using 16 modes for the prediction, with
Q2 = 0.9853. A similar result is obtained for Test 2 using also 16 modes for the prediction, with Q2 = 0.9852. In
comparison with the results shown in [18], both results surpassed the scores obtained using, for the same dataset,
MMGP (Q2 = 0.9831), a graph convolutional neural network GCNN [36] (Q2 = 0.9596), and MeshGraphNets (MGN)
[37] (Q2 = 0.9743).
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5 Conclusion
We presented a new method to construct morphings between geometries that share the same topology. The technique
is suitable to model-order reduction with non-parameterized geometries, as it does not suppose any knowledge of a
parameterization of the geometries. In the offline phase, morphings are constructed using elastic deformations from a
reference domain to a target domain. In the online phase, morphings are obtained as the solution to a low-dimensional
fixed-point iteration problem, which can be solved more efficiently in a reduced-order model framework. For both the
offline and online phases, we provided numerical examples in 2D to show the performance of the proposed method.
Moreover, we illustrated how the computed morphings can be used to predict scalar quantities in physical problems
using Gaussian process regression models. The geometry is taken into consideration in the prediction by the coordinates
of the POD modes of the displacement field, an approach similar to MMGP. However, the present approach proves to
be generic as the morphing strategy is not case-dependent, and is more efficient owing to the offline/online separation
of the morphing algorithm.
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