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Since its discovery in 2005, the hydrodynamic pilot-wave system has provided a con-

crete macroscopic realization of wave-particle duality and concomitant classical analogs of a

growing number of quantum effects. The question naturally arises as to how closely particle-

particle correlations achieved with this classical system can mimic those arising on the quan-

tum scale. We here introduce a new platform for addressing this question, a numerical

model of cooperative tunneling in a bipartite pilot-wave hydrodynamic system. We execute

a static Bell test, in which the system geometry is fixed and the two subsystems are coupled

through the intervening wave field. This wave-mediated coupling is not congruent with the

assumptions made in deriving Bell’s inequality, and so allows one to rationalize the reported

violations. Nevertheless, these violations are elusive, and arise only in a limited corner of

parameter space.
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I. INTRODUCTION

In 2005, Yves Couder and Emmanuel Fort [1, 2] discovered that a millimetric droplet may

self-propel along the surface of a vibrating fluid bath through a resonant interaction with its own

wave field. The resulting ‘walker’ consists of a droplet dressed in a quasi-monochromatic wave

field, and represents a concrete, macroscopic example of wave-particle duality [3]. Remarkably,

this hydrodynamic pilot-wave system exhibits many features previously thought to be exclusive

to the microscopic, quantum realm [4, 5]. Notable examples include single-particle diffraction and

interference [2, 6, 7], quantized orbits [3, 8], unpredictable tunneling [9], Friedel oscillations [10],

surreal trajectories [11], spin lattices [12], and quantum-like statistics and statistical projection

effects in corrals [13, 14]. In all instances, the emergent quantum behavior may be rationalized

in terms of the droplet’s non-Markovian pilot-wave dynamics [5]. Specifically, the instantaneous

wave force imparted to the drop during impact depends on the droplet’s history. Thus, the drop

navigates a potential landscape of its own making [5], and the hydrodynamic pilot-wave system

is said to be endowed with ‘memory’ [15]. The walking-droplet system has provided a framework

for exploring the boundary between classical and quantum behavior. Moreover, it has inspired

investigations of other hydrodynamic pilot-wave systems in which oscillators interact with their

suspending fluids [16–19].

In several settings, long-range interactions in the walking-droplet system arise through the

influence of the pilot-wave field [5]. For example, long-range lift forces are generated when a

walking droplet interacts with a submerged pillar [20] or well [10], and could be misconstrued

as indicating action at a distance if the influence of the pilot-wave field were not adequately re-

solved [5]. Moreover, long-range correlations between distant walkers may be established through

the influence of the intervening wave field [21–23]. Recently, Papatryfonos et al. [24] and Frumkin

et al. [25] established hydrodynamic analogs of superradiance, an effect originally attributed to

quantum interference of two or more entangled atoms [26–28], but subsequently rationalized in

terms of classical electromagnetic wave interference [29]. The accumulation of these results natu-

rally raises the question as to whether this pilot-wave hydrodynamic system might exhibit bipartite

correlations that violate Bell’s inequality [30], and so provide a hydrodynamic analog of quantum

entanglement, the acid test of quantumness. This question seems all the more pertinent given

suggestions that Bell’s Theorem may have no bearing on systems in which particles interact with

a background field [30–32].
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Bell’s Theorem was derived by John Bell in 1964 [33] with a view to informing the Bohr-

Einstein debate concerning the completeness of quantum theory [34]. Hidden variables are those

variables that would be required for a complete description of quantum dynamics. For example,

for the type of dynamics engendered in pilot-wave hydrodynamics, these would be the discrete

variables defining the position and momentum of the particles, as well as the continuous variables

defining the background field with which the particles interact. Quite generally, a Bell test can be

performed on any physical system consisting of two subsystems (A and B) on which one measures

a dichotomic property X (with stochastic outcomes of +1 or −1) that depends on some ‘analyzer

setting’ (α or β). The measurement XA made in the left two-level subsystem depends on the

analyzer setting α which may take values a or a′; likewise, the measurement XB made in the right

two-level subsystem depends on β which may take values b or b′.

In the derivation of the Bell’s inequality (Eq. (1), two assumptions are made. Assumption (i) is

that the two subsystems undergo only local interactions. Specifically, XA depends on α and not β;

likewise, XB depends on β and not α. Assumption (ii) is that the hidden variables that prescribe

both XA and XB are independent of α and β. Bell’s theorem [33] implies that for any classical

system for which assumptions (i) and (ii) hold, the quantity S(α = a, β = b, α = a′, β = b′) =

M(a, b) +M(a′, b) +M(a, b′)−M(a′, b′) must satisfy the inequality

|S
(
a, b, a′, b′

)
| ≤ 2 (1)

for any choice of measurement settings (a, a′, b, b′). Here, M(α, β) is the average product,

M(α, β) =
∑

XA,XB

XAXBP (XA, XB|α, β), (2)

where P (XA, XB|α, β) is the joint probability of measurements (XA, XB) when the left and right

analyzers are set, respectively, to (α, β). We note that Eq. (1) is cast in the form of the CHSH

inequality [35]. It has been well established that quantum systems can violate the inequality (1)

for a judicious choice of (a, a′, b, b′), and these Bell violations are widely taken to be proof that

the statistical behavior of quantum systems cannot be underlaid by a local, causal dynamics [36].

Quantum Bell tests were first performed with static analyzer settings [37], and so are referred to

as static tests. In subsequent dynamic tests [38–44], the detector settings α and β were altered

just prior to measurement, so that the two measurement events are space-like separated, so that

assumption (i) is expected to hold true. Bell violations have been achieved with classical electro-
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magnetic [45–48] and acoustic wave [49] systems. We here demonstrate the possibility of achieving

Bell violations in a static test with a theoretical model of the walking-droplet system.

FIG. 1. Hydrodynamic Bell test arrangement. (a) Schematic of our hydrodynamic Bell test. The

system consists of a pair of drops (red and green) walking on the surface of a vibrating liquid bath (blue)

that spans the solid substrate (grey). Each drop is confined to its subsystem, a pair of wells separated by

barriers across which they may tunnel unpredictably at a rate influenced by the barrier depths α and β,

as may assume values of a, a′ or b, b′, respectively. (Inset) β is the distance between the unperturbed free

surface and the top of the submerged pillar separating cavities (+) and (-) in subsystem B; α is analogously

defined in subsystem A. (b) The four possibilities for the droplet configuration space, (XA, XB).

II. MODEL AND METHODS

We consider a pair of walking droplets in the bipartite tunneling system introduced by Papatry-

fonos et al. [24] in their demonstration of a hydrodynamic analog of quantum superradiance (See

Fig. 1a). We describe this system in terms of two coupled, two-level systems, as shown schemati-

cally in Fig. 1b. The two subsystems, labelled A and B, contain a single, wave-generating particle

confined to a pair of identical cavities separated by a barrier across which the particles may tunnel.

The measurements XA and XB in our Bell experiment indicate whether the droplets are in the

inner well (Xj = −1, j = A, B) or the outer well (Xj = +1, j = A, B) at the time of mea-

surement. Each particle generates waves and moves in response to them according to equations

(3)-(5). In each subsystem, the preferred cavity corresponds to the ground state (−) and the other
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to the excited state (+). The ground state may be either the inner or outer cavity, depending on

the geometry of the outer cavities [24]. For the specific geometry considered here, the inner cavity

of each subsystem is the ground state (−); the outer cavity, the excited state (+) (see Fig. 1b).

The two subsystems are separated by a coupling cavity of fixed length Lc, and by barriers that are

sufficiently high as to preclude the particles from tunneling into the coupling cavity. Waves are

transmitted across the central cavity, and so provide the coupling between subsystems A and B.

The strength of this coupling is prescribed by the geometry of the central cavity: by increasing its

depth dc, the coupling may be increased, allowing the coupling cavity to serve as a nearly resonant

transmission line [21]. Transitions between ground and excited states in the subsystems corre-

spond to individual tunneling events, the rate of which depends on the depths of the submerged

barrier, denoted α for the subsystem A and β for the subsystem B. These barrier depths α and β

thus serve as the measurement settings in our Bell tests.

We employ the numerical simulation method developed by Nachbin [21, 50] for the one-

dimensional motion of walking droplets over a vibrating liquid bath with complex topography. We

adapt this model in order to consider the cooperative tunneling of two identical particles in the

geometry depicted in Fig. 1a. Two identical particles of mass m are confined to their respective

subsystem (A or B), and their positions, xj (j = A,B), evolve according to Newton’s Law:

mẍj + c F (t)ẋj = −F (t)
∂η

∂x
(xj(t), t). (3)

The particles move in response to gradients of the wave elevation η(x, t). The waves are generated in

a manner consistent with models of the vertical droplet dynamics [51, 52]. The droplet impacts the

free surface with the Faraday frequency ωF = ω/2 at a prescribed time relative to the vibrational

forcing, making first contact when ωt = 0.45π. Waves are generated during the contact time, of

duration Tc = TF /4, where TF = 2π/ωF is the Faraday period, a value consistent with laboratory

experiments [51] and used in prior studies [50, 52]. During impact, the droplet is accelerated by the

wave slope and decelerated by a drag force proportional to its horizontal speed, a drag coefficient

c = 0.01 s/cm and the normal force imparted to the droplet by the interface, F (t). The time depen-

dence of these propulsive and drag forces is prescribed by F (t) = (2π2mg)/(ωTc) sin (πt/Tc) 1Tc ,

as follows from the linear-spring-like response of the interface in the walker system [50, 52, 53].

Here, g is the gravitational acceleration, and the periodic indicator function 1Tc highlights the

intermittent nature of the forcing imparted by the interface to the bouncing droplets, which

acts only during impact. By generating waves during impact, the droplets establish their own

time-dependent wave potential, which serves as the memory of the system [15]. The wave forcing
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enters the droplet trajectory equation through the final term in Eq. (3), and is computed as follows.

The velocity potential of the liquid bath ϕ(x, z, t) is a harmonic function satisfying Laplace’s

equation. In the bulk of the fluid, the velocity field is given by (u, v) = ∇ϕ. The wave model is

formulated in the bath’s vibrating reference frame, where the effective gravity is g(t) = g+γ sin(ωt).

The wave field thus evolves according to [50, 52]:

∂η

∂t
=

∂ϕ

∂z
+ 2ν

∂2η

∂x2
, (4)

∂ϕ

∂t
= −g(t)η +

σ

ρ

∂2η

∂x2
+ 2ν

∂2ϕ

∂x2
−

∑
j=A,B

c̃F (t)

ρπR2
1Dj . (5)

The particles (j = A,B) generate waves on the free surface by imparting, during impact, a

pressure-like term over an area corresponding to the droplet’s diameter, Dj = 2R = 0.07 cm, as

denoted by the spatial indicator function 1Dj . c̃ = 0.95 is a dimensionless constant that prescribes

the strength of the impact-induced wave forcing. Consistent with our modeling of the droplet

dynamics, the wave forcing coefficient F (t) is activated only during the contact time Tc = TF /4.

The forcing terms of this wave-particle dynamical system are discontinuous in both time and space,

as highlighted by the indicator functions arising in Eqs. (3) and (5). Through the imposition of

periodic wave-particle coupling at the Faraday frequency, we insure resonance between the particle

and the most unstable Faraday mode of the bath [52], a key feature of pilot-wave hydrodynamics

[4, 5, 54].

In equations (3)-(5), spatial derivatives are computed using the Fast Fourier Transform (FFT)

in x. The shallow outer reaches of the fluid domain extend sufficiently far to ensure quiescent

conditions in the far field. The vertical speed at the free surface ϕz(x, 0, t) is defined through

a Dirichlet-to-Neumann (DtN) operator [50] and yields a Fourier integral operator computed in

a straightforward fashion through an FFT. The DtN operator mathematically reduces the two-

dimensional fluid problem to one spatial variable defined along the undisturbed free surface. To

compute the DtN operator, a numerical conformal mapping is performed that maps the (x, z)

fluid domain onto a (ξ, ζ) canonical flat strip. Details of the conformal mapping can be found

elsewhere [55, 56]. The mapping for a given geometry is computed only once and provides the

relation x = x(ξ) along the undisturbed free surface. We denote by F the FFT in the ξ-coordinate,

which runs along the undisturbed free surface in the canonical domain. We denote by ϕ(x, 0, t)) =
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φ(x, t) the Dirichlet data. We thus have that

ϕz(x, 0, t) = DtN [ϕ](x, t) =
F−1[G(k)F [φ(ξ)]]

M(ξ(x, 0))
, (S1)

where G(k) = k tanh k is the Fourier multiplier [50]. The metric coefficient is M(ξ) =
√

|J |, where

|J | is the Jacobian of the ((x, z) → (ξ, ζ)) change of variables, evaluated along the undisturbed free

surface [55, 56]. To summarize, the geometrical information of the cavities and barriers is encoded

in M and in ξ = ξ(x, 0), which is obtained with the inverse map. The time evolution is performed

with a second-order fractional-step Verlet method [50].

System parameters are chosen to correspond to a fluid bath of density ρ = 0.95 g/cm3, viscosity

ν = 16 cS and surface tension σ = 20.9 dynes/cm vibrating vertically in a sinusoidal fashion with

peak acceleration γ = A0ω
2, peak amplitude A0 and frequency ω/2π = 80 Hz. The resonant

bouncing of the particle at the Faraday frequency triggers a quasi-monochromatic damped wave

pattern with a corresponding Faraday wavelength of λF = 4.75 mm. Each of the four cavities has

a fixed length of 1.0 cm, corresponding to approximately 2.1λF and a fixed depth of 0.5 cm. The

central cavity, coupling the right and left subsystems, has a fixed length of 0.4 cm and a fixed

depth of 2 cm. Each of the barriers has a fixed width of 0.4 cm. The two barriers connecting

the central cavity to the right and left sub-system, have a fixed depth of 0.045 cm. For this

geometry, the critical vibrational acceleration above which waves are generated in the absence of

the droplets, the Faraday threshold, was γF = 4.69g. We report results attained with a fixed

vibrational acceleration γ = A0ω
2 = 4.23g = 0.92γF .

We proceed by demonstrating that for a judicious choice of pairs of static measurement settings

(α, β), the inequality (1) may be violated in our bipartite hydrodynamic system owing to the wave-

mediated coupling between the two subsystems. In our numerical simulations, each run begins by

placing the two particles at random positions within their own subsystem. Their trajectories are

then calculated for 48000 Faraday periods. During that time, we observe in which cavities the

droplets reside. XA takes the value −1 if the drop A is observed in the ground state of the left

subsystem, and +1 otherwise. Similarly, XB takes the value −1 if the drop B is observed in the

ground state of the right subsystem, and +1 otherwise. The robustness of the emergent statistics

was ensured by following the protocol detailed in Appendix A.
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FIG. 2. Violation of Bell’s inequality. Bell parameter S(a, a, a′, a′) as a function of the barrier depth,

a′, for the symmetric case of a = b, a′ = b′. For the calculation of the corresponding correlation functions,

M(a, a), M(a, a′) and M(a′, a′), the barrier depth a = a∗ = 0.099 cm remains fixed. For each combination

of measurement settings, runs continue until statistics converge. The maximum Bell violation appears at

a′∗ = 0.1033cm, where S = 2.49± 0.04.

III. RESULTS

Our main result is shown in Fig. 2, which indicates a narrow parameter range in which the

CHSH inequality is violated. While the inequality can be violated in our system with four different

values of the measurement settings (a, a′, b, b′), our exploration of the (a, a′, b, b′) parameter-space

indicates that a local maximum of S arises when b = a and b′ = a′, the symmetric case in which one

may write S(a, b, a′, b′) = S(a, a, a′, a′) = M(a, a)−M(a′, a′)+2M(a, a′). We deduced a maximum

violation of Smax = 2.49 ±0.04 when a = b = a∗ = 0.099 cm and a′ = b′ = a′∗ = 0.1033 cm. In

Fig. 2, we plot S as a function of a′ for fixed a = a∗, with the dashed line showing the limit S = 2

above which the CHSH inequality, Eq. ( 1), is violated.

While the inequality was found to be violated only for a narrow range of parameters settings, in

this parameter regime, the violation is clear, and the statistical confidence of the violation is above

20 standard deviations (see Fig.6). We note that this behavior is reminiscent of the quantum case,
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where, without guidance from the theory, it is relatively difficult to find analyzer settings that allow

for violation of the CHSH inequality, but for judiciously chosen settings, the inequality is violated

substantially. As in our previous study of superradiance [24], the wave-mediated coupling creates

a collective behavior of the droplet pairs. In particular, when one of the droplets transitions to its

excited state, the probability of the second droplet doing likewise increases substantially. Thus,

through its wave-mediated interaction with its partner, each droplet is indirectly affected by the

barrier depth of the distant station.

Since the inequality involves four different correlation functions (three for the symmetric case

considered here), finding the combinations of measurement settings that maximized S was not

entirely straightforward. The strategy we followed in seeking violations is summarised in Fig. 3.

We first investigated the evolution of a single correlation function M(α = a, β = a) as a function

of a. This gave us a good sense of parameters that maximize the difference δM(a, a′) = M(a, a)−

M(a′, a′) (see Fig. 3a). δM(a, a′) involves two of the correlation functions of Eq. 1, in the symmetric

case of interest where a=b and a′=b′. Figure 3b shows a 2D plot of the optimisation of δM as

a function of a and a′. The black dashed lines highlight the domain in which (maxa,a′(δM) −

δM)/maxa,a′(δM) > 0.9. The other term in the inequality, specifically 2M(α = a, β = a′),

represents a combination of measurements from unequal barrier depths at the two measurement

stations. Figure 3c represents the dependence of 2M(α = a∗, β = a′) on depth a′ for fixed a = a∗,

the S-maximizing value considered in Fig. 2. a′∗ marks the end of the plateau of high correlation,

beyond which the term M(a∗, a′) decreases. Finally, Fig. 3d shows the evolution of the correlation

functions (M(a, a′);M(a′, a′)) with increasing a′ and fixed a = a∗.

The maximum S value occurs for moderate barrier depths, for which the droplets may become

most strongly correlated through the background wave field. In Fig. 4a, we show typical trajecto-

ries for the three combinations of measurement settings (α, β) ∈ {(a∗, a∗), (a∗, a′∗), (a′∗, a′∗)} that

maximize S. For (a, a′) = (a∗, a′∗), S is maximized because M(a∗, a∗) and M(a∗, a′∗) are large (see

Fig. 4a top and middle panels), while M(a′∗, a′∗) is relatively small (Fig. 4a lower panel). Figure 4b

corresponds to a shallow barrier, a′ = 0.0937 cm (the leftmost value in Fig. 2) and Fig. 4c to a

relatively deep barrier, a′ = 0.11 cm (the right-most value in Fig. 2). Figures 4b and c correspond

to minima of S occurring when the a′ barrier is either too shallow (Fig. 4b) or too deep (Fig. 4c).

The degree of synchronization in the droplet tunneling depends on the extent to which the

droplets are affected by the barrier depth in the distant station. When the barrier depth in one

station is too small, the local particle is prevented from tunneling, regardless of the barrier depth
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FIG. 3. Strategy to optimize S(a, a, a′, a′) = M(α = a,β = a)−M(α = a′, β = a′) + 2M(α =

a,β = a′) . S is optimized by searching a parameter regime (a, a′) near the maximum of δM(a, a′) =

M(α = a, β = a)−M(α = a′, β = a′) and a range of a′ that maximizes M(a, a′) with a fixed. (a) Evolution

of M(α = a, β = a) as a function of a. The indicated values a∗ = 0.099 cm and a′∗ = 0.1033 cm are the

S-maximizing values used in Figs 2. We note δa = a′ − a and δa∗ = a′∗ − a∗. The difference between the

corresponding correlation functions δM(a, a + δa) = δM(a, a′) = M(α = a, β = a) − M(α = a′, β = a′)

is marked in orange. (b) Optimization of δM(α = a, β = a + δa) as a function of barrier depth a and

δa. The domain for which (maxa,a′(δM) − δM)/maxa,a′(δM) > 0.9 is bound by the black dashed curve.

(c) 2M(α = a∗, β = a′) as a function of depth a′ for fixed a = a∗. (d) Evolution of S(a, a, a′, a′) in the

correlation representation space (M(a, a′);M(a′, a′)) with a = a∗. The direction of increasing a′ is indicated

by the blue arrow. The dots are colored with respect to their S values. The grey dashed line indicates the

limiting case of S = 2.

in the other. The synchronization of states is thus reduced substantially. Conversely, when the

barrier depth is too large, the particle generally tunnels across it, unaffected by the distant parti-

cle. Thus, the synchronization again remains relatively low. For intermediate barrier depths, each

particle tunnels with a moderate probability that is strongly affected by the behavior of its distant

partner.
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FIG. 4. Trajectory analysis. (a)-(c) Droplet trajectories for the symmetric case (α,β) ∈ (a, a′) with

a = a∗ = 0.099 cm. Time evolves in the vertical direction. In (a), a′ = a′∗=0.1033 cm (the maximizing value

for S); in (b), a′ = 0.0937 cm; in (c), a′ = 0.11 cm. (a) Trajectories corresponding to the three correlation

functions M(a∗, a∗) = 0.94 (upper panel), M(a∗, a′∗) = 0.84 (middle panel), and M(a′∗, a′∗) = 0.13 (lower

panel). The tunneling events are highly correlated only in the upper and lower panels. (b) Trajectories

corresponding to M(a∗, a′) with a′ = 0.0937 cm. When the barrier depth a′ is sufficiently small, the wave-

mediated communication between droplets is diminished, and droplets tend to get trapped in one cavity,

leading to minima of S and M(a∗, a′) ≈ 0 when we average over the droplet’s initial conditions. (c) Another

minimum of M(a∗, a′) and S occurs when one of the barrier depths is too large, in which case one of the

droplets tunnels continuously, unimpeded by the barrier, as if it were in a single cavity. Averaging over

all initial conditions leads to a relatively low value of M(a∗, a′) ≈ 0. Note that the correlation function is

deduced by averaging over all initial conditions in both subsystems.
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Finally, to ensure that the dynamics were a result of the two-droplet state rather than just the

topography, we ran several complementary single-drop simulations with the same topographies. A

typical example is presented in Figure 5, where we compare the two extreme cases, one in which

the distant barrier depth is relatively low (b=0.099 cm) and another in which it is relatively high

(b′=0.1033 cm). In these simulations we set a=0.099 cm, so the overall topography was identical

to that reported in Figure 4a for a pair of drops. We observe that the single-drop trajectories in

the two cases are identical for these values of b and b′, but substantially different from those arising

in the two-particle case. Thus, when only one drop is present, the variation of the measurement

setting in the distant subsystem does not influence its behavior. This indicates that, in the two-

droplet case, the droplets learn about the distant cavity geometry (or ‘measurement setting’) only

through their wave-mediated interactions with their partner drop. This result is consistent with

previous findings on superradiance [24], where for certain topographies the single-droplet tunneling

rate was very low, unless a second drop was introduced into the distant cavity, in which case the

tunneling probabilities could increase dramatically.

FIG. 5. Single drop trajectory analysis. (a) Single droplet trajectory for a relatively shallow distant

barrier: a=0.099 cm; b=0.099 cm. Inset: a close-up of the dynamics illustrates the oscillatory motion of the

drop inside the cavity (-). (b) Single droplet trajectory for a relatively deep distant barrier: a=0.099 cm;

b′=0.1033 cm. The two trajectories are statistically indistinguishable, indicating that, in the absence of a

partner drop, the droplet motion is not influenced by the distant barrier depth.

IV. CONCLUSION AND DISCUSSION

We have devised a platform for performing static Bell tests on a classical bipartite pilot-wave

system. The maximum violation was found to be 2.49 ± 0.04, and arose when the system ge-
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ometries were chosen such that the droplet motion was marked by varying degrees of correlation

between droplets with different measurement settings. A key step in the process was recognizing

that the system geometry may serve as a proxy for analyzer settings in the quantum Bell tests.

The non-Markovian nature of the droplet dynamics is engendered in the system memory [15], the

critical feature in all hydrodynamic quantum analogs [5]. The wave field serves as the memory of

the system, and the correlations reported here may be understood as being rooted in this wave-

mediated memory. We have focused here on the intermediate memory regime (γ/γF = 0.92, where

the wave-mediated interactions allow for Bell violations. We note that these violations vanish at

much lower memory, when there is insufficient wave-coupling between the two subsystems, and at

higher memory, when the droplet dynamics becomes highly disordered.

We proceed by rationalizing the Bell violation achieved in our static test. Specifically, we

identify which of the assumptions made in the derivation of Bell’s inequality are not applicable

in our system. In order to do so, we find it valuable to adopt two distinct perspectives in the

form of two fictional observers. Observer 1 can observe the droplets but not the waves, while

Observer 2 can observe both droplets and waves. Observer 1 would infer that the measurements

at each subsystem are influenced by the distant measurement setting, and thus that assumption

(i) is invalid. Through consideration of the wave field, Observer 2 could rationalize the violation

of assumption (i) in terms of the wave-mediated coupling between the two subsystems. It would

also be apparent to Observer 2 that the wave field constituting the continuous variable hidden

from Observer 1 is affected by both analyzer settings. Observer 2 would thus conclude that both

assumptions (i) and (ii) are invalid.

Quantum entanglement requires that the violations of Bell’s inequality persist even when the

two subsytems are space-like separated. While such entanglement is generally thought to be

peculiar to quantum systems, Bell-violating states have been demonstrated in both classical elec-

tromagnetic [45–47] and acoustic wave systems [49]. They have also been reported in single-particle

systems, through consideration of the internal degrees of freedom of a single neutron [57]. However,

neither the classical wave states nor the internal degrees of freedom in the single-particle system

can be spatially separated [48, 58]. We have here demonstrated the possibility of achieving static

Bell violations for spatially separated bipartite states in the pilot-wave hydrodynamic system. We

stress that these violations may be simply rationalized: the wave-mediated coupling between the

two subsystems ensures that both the assumptions (i) and (ii) made in the derivation of Bell’s



14

inequality are invalid. Nevertheless, the violations exist only in a limited region of parameter

space, and so are relatively difficult to achieve.

Finally, we note that our theoretical framework introduces the possibility of performing more

sophisticated Bell tests. The feasibility of incorporating time-dependent topography into our model

has recently been demonstrated by Nachbin [22], who demonstrated the persistence of correlations

between droplet pairs in single wells even after their topographic isolation. Incorporating dynamic

topography will allow for future Bell tests in which communication between the two subsystems

is eliminated by closing the coupling cavity during the course of a simulation. The dynamic-Bell-

test protocol would then involve changing the analyzer settings after topographic isolation of the

two subsystems. However unlikely, attaining Bell violations in such dynamic tests does not seem

entirely impossible given that the wave field serves as the memory of the system; thus, the mutual

memory of the initial wave-mediated droplet interaction might survive the topographic isolation of

the two subsystems.
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APPENDIX A: STATISTICAL CONVERGENCE

To confirm the statistical significance of our results, we performed 6 runs with durations of

48000 Faraday periods for each geometrical configuration. We used random initial conditions for

the particle positions, and discarded the first 10% of the runs in order to eliminate any trace of

a transient. To initialize the runs, the wave and velocity fields of the bath are set to zero, and

the particle positions are assigned random, uniformly distributed values. Then, the model runs for

2000 Faraday periods, a measurement is made, and all fields are reset back to zero to initialize the

subsequent run. This cycle is repeated for each set of parameter settings until the relative error

in the running average of M(α = a, β = b) is reduced to an acceptably small value. We set this
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tolerance to be 3% for parameters that violate the inequality and 7% for those that do not. While

extremely accurate, this ‘discrete’ technique is computationally intensive; thus we have used it only

for the most critical points of the parameter space, in which the maximal Bell violations occurred.

To explore the parameter space more efficiently, we adopt an alternative, relatively expedient,

‘continuous’ approach, in which the final conditions of one run serve as the initial conditions of the

next. We demonstrated the statistical equivalence of the two approaches as follows. For specific

selected data points, we performed approximately 30 different runs using the two techniques,

and found the results of the ‘discrete’ and ‘continuous’ runs to be in agreement to within 3%.

We then executed continuous runs for 48,000 Faraday periods, during which measurements are

performed frequently at uniformly distributed random times. After a sufficiently long run, the

full range of initial conditions will have been effectively explored. The consistency of the results

deduced with the discrete and continuous approaches demonstrates that the long-time emergent

statistics are independent of the initial conditions. Figures 6a and 6b show a typical example of

the convergence of the ‘running average’ with the number of runs which determines the relative

error of our statistics. This approach indicates when our statistics have converged for each M(α, β)

calculation, specifically when the relative error has fallen below the prescribed tolerance.

FIG. 6. Statistical convergence of the Bell parameter. (a) Typical curve showing the convergence

of Smax, the Bell parameter taken at the maximum point of violation (a = b = a∗ = 0.099 cm; a′ = b′ =

a′∗ = 0.1033 cm). The error bars indicate ±3 standard deviations. (b) Relative error δSmax/Smax of the

estimation of the Bell parameter S with the number of runs, evaluated for the maximum point of violation

(a = b = a∗; a′ = b′ = a′∗). Inset: log-log scale; the dashed line indicates a −1/2 slope as expected from the

convergence of an ensemble average.
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