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This paper studies the dynamics of information diffusion within networks, encompassing both 
general and targeted dissemination. We first characterize the theoretical foundations of diffusion 
centrality. Next, we introduce two extensions of diffusion centrality: targeting centrality and 
reachability, that we believe to better capture situations involving targeted requests. We derive 
general explicit formulas for the computation of these novel centrality measures.

1. Introduction

Diffusion in networks plays a critical role in our interconnected societies, underlying the propagation of not only germs and 
technologies, but also ideas, misinformation, and data. In an important study, Banerjee et al. (2013) introduce a new metric termed 
diffusion centrality. This metric aims to quantify the extent to which a given piece of information disseminates among agents within 
a network over time. Specifically, diffusion centrality captures the expected frequency with which all agents become exposed to the 
given information within a stylized model of diffusion. Diffusion centrality admits a simple expression involving discounted sums 
of powers of the network’s adjacency matrix, and nests eigenvector and Katz-Bonacich centralities. Banerjee et al. (2013) show that 
diffusion centrality performs well, empirically, in explaining take-up rates of a microfinance loan program in rural India. This notion 
has become a cornerstone in the research on diffusion.1

The first contribution of this paper is to characterize the precise theoretical foundations of diffusion centrality. Despite the success 
of this metric, the exact model of information diffusion that allows the interpretation of diffusion centrality as the expected frequency 
with which all agents become exposed to the specific information is only partially described in Banerjee et al. (2013). This can be a 
source of confusion (see the discussion in Appendix A). A network diffusion process must characterize how individuals transmit infor-

mation to their neighbors, contingent upon the historical record of received messages. Section 3 characterizes the unique anonymous 
diffusion process that underpins the concept of diffusion centrality. This is a diffusion process in which individuals transmit indepen-
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dently all the messages received in the previous period to each of their neighbors. Messages received before the previous period are 
ignored, and messages received multiple times in the previous period are transmitted the same number of times.

Note that this diffusion process assumes that all agents, including the initial sender and the target, play a similar role in the diffusion 
process. This assumption can appear incongruous within scenarios where the conveyed information explicitly reveals the identities 
of these parties. Consider the example of bullying. Would it be reasonable to assume that the target of bullying spreads hurtful 
rumors about themselves? Identifying the individuals who are the most powerful bullies or the most susceptible to victimization is 
a recurring concern in academic and policy debates (see among others Atay et al. 20222 and Kaufman et al. 2021). Who we expect 
to spread gossip will impact predictions regarding the central individuals. In another context, envision a specific individual seeking 
employment making a request. It is improbable that others would echo this individual’s job request back to them. Another scenario 
emerges when contemplating citizens appealing for favors from politicians, a concept explored in Cruz et al. (2017)’s model of political 
intermediation.3 In this framework, the shared information entails statements like “agent 𝑖 requires a favor from politician 𝑗”. In this 
context, presuming no retransmission to the sender and by the target might align more naturally with the dynamics at play.

Our second contribution is therefore to introduce and analyze centrality measures when the sender and/or the target do not 
retransmit information during diffusion. In Section 4, we define the targeting centrality of an agent as the expected number of times 
they receive others’ requests for favors under no retransmission by either sender or target. We derive analytical formulas for targeting 
centrality in infinite and finite time, and for centrality measures under no retransmission by the sender only, by the target only, 
or both. Our computations involve elementary matrix operations over powers of the adjacency matrix of the network and can be 
programmed easily.

Observe that removing the retransmission of information by either the sender or the target introduces an inherent asymmetry. In 
an undirected network, governed by the information diffusion process that underlies diffusion centrality, an individual’s centrality 
in receiving messages corresponds to their capacity to disseminate messages throughout the network. However, the removal of 
transmission by the target alone, as seen in the case of bullying, disrupts this symmetry. Those individuals with the highest centrality 
as potential targets of bullying will generally differ from those most central in terms of their capability to target others.

We then explore the relationship between diffusion and targeting centrality in infinite time. When the probability of information 
transmission is low, all that matters for ranking individuals in terms of centrality is their degree. In this case, removing retransmission 
by the sender and/or the target will make little difference in the ranking of individuals in terms of centrality. However, this dynamic 
shifts when the probability of information transmission is high. In Section 5.2, we show that rankings of nodes according to their 
targeting and diffusion centrality diverge when the target does not resend, yet converge when the sender does not transmit.

The impact of no retransmission by both the sender and the target amalgamates these two influences, and therefore depends on 
the particular network considered. Using numerical simulations on Erdős-Renyi random graphs, we find that the correlation and rank 
correlation between diffusion centrality and targeting centrality are typically low, and can even be negative when the probability of 
information transmission is high. This phenomenon holds for instance in the presence of bridges, since the absence of retransmission 
by bridge agents has a first-order impact on diffusion.

Lastly, we turn our attention to an alternative centrality metric: reachability. Diffusion and targeting centrality gauge the antici-

pated frequency with which information instigated by the sender reaches a target. However, when a sender requests a favor from the 
target, the favor’s fulfillment often occurs only once. This scenario arises, for example, when a voter seeks employment or a politician 
strives to persuade a voter’s decision. The question is then whether the likelihood of granting the favor depends on whether the 
information is received or on the number of times it is received. Our ultimate contribution, detailed in Section 6, encompasses a com-

prehensive formula for computing an agent’s reachability - the sum of the probabilities that targeted messages will reach her - based 
on the inclusion-exclusion principle. Furthermore, we establish a formal connection between reachability and targeting centrality. 
Unsurprisingly, however, the formula for reachability is combinatorially complex.

2. Literature

Our analysis contributes to the literature on diffusion in networks. The structure of interactions among agents has a first-order 
impact on diffusion in many contexts, such as information, requests, ideas, new technologies, and infectious diseases, see Lamberson 
(2016), Jackson et al. (2017). One branch of the literature analyzes how long-run diffusion outcomes depend on macro features 
of the network such as density and degree distribution, see e.g. Jackson and Rogers (2007), López-Pintado (2008). Our analysis 
belongs to a second branch, which aims at understanding the relative importance of different nodes in diffusion.4 This understanding 
is key to interventions aimed at expanding diffusion, such as optimal seeding, or reducing it, as with targeted immunization. In a 
benchmark model where one node initially receives some information, diffusion centrality captures the expected number of times 
all agents eventually hear about it. Banerjee et al. (2013) show that in the context of the adoption of a microfinance program in 
India, diffusion centrality is highly correlated with communication centrality, a different measure capturing the expected number of 
eventual adopters in a more complex model, and also performs well - empirically - in explaining actual take-up rates. Banerjee et al. 

2 Atay et al. (2022) models bullying as a crime activity with social conformity as in Ballester et al. (2006) and Ballester and Zenou (2012).
3 Their model predicts that candidates with higher diffusion centrality should receive more votes. They show empirically that the eigenvector centrality of a politician 

in the family network is indeed associated with a higher vote share in data from the Philippines.
4 Another branch studies how the impact of the network depends on properties of the diffusion process, such as whether contagion is “simple” or “complex”, see 
2

Beaman et al. (2021), Guilbeault and Centola (2021).
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(2013) justify diffusion centrality as an easy-to-compute approximation to communication centrality.5 Diffusion centrality may also 
matter on its own, however, for instance, if agents are more likely to adopt a new technology when they repeatedly hear about it. In 
any case, diffusion centrality has become a reference measure in diffusion contexts, including those with targeted requests.

Our contribution is threefold. First, we characterize the precise theoretical foundations behind diffusion centrality. Second, we 
introduce targeting centrality, a new measure extending diffusion centrality to contexts with no retransmission by the sender and/or 
by the recipient. We provide explicit formulas for targeting centrality. Third, we introduce reachability to capture the expected 
number of eventually informed agents, and also provide an explicit formula for it.

Our analysis also contributes to the literature on centrality measures, an important part of network science. The centrality of a 
node reflects the relative influence of the node in a given network context. In economics, Ballester et al. (2006) first uncovered a deep 
connection between Katz-Bonacich centrality, from Katz (1953) and Bonacich (1987), and equilibrium action in network games. In 
general, researchers strive to understand which centrality measure matters in which context. This has given rise to a large, growing, 
and varied set of measures. Researchers have tried to discipline the analysis of centrality in several ways, one of which is to propose 
unifying axiomatic approaches. Dequiedt and Zenou (2017) develop an axiomatic approach for measures where the centrality of an 
agent is recursively related to the centralities of their neighbors. Bloch et al. (2023) propose a taxonomy of prominent centrality 
measures built as weighted averages of nodal statistics. Sadler (2022) develops an ordinal axiomatic approach based on recursive 
monotonicity.

An alternative has been to develop new measures extending classical indices. Banerjee et al. (2013) introduced diffusion centrality 
to capture the extent to which a piece of information given to an agent eventually diffuses in a network, and diffusion centrality nests 
eigenvector and Katz-Bonacich centralities. We build on this approach and propose two new measures extending diffusion centrality, 
targeting centrality and reachability. Targeting centrality generalizes diffusion centrality to contexts where the sender and/or the 
recipient do not retransmit the information during the diffusion process. Reachability captures the probability that the information 
reaches the recipient, rather than the number of times the recipient hears about it. We obtain explicit formulas to compute both 
measures and show that diffusion and targeting centrality may yield very different rankings over nodes.

3. Information diffusion in networks

As previously mentioned, diffusion centrality, as introduced by Banerjee et al. (2013), is a prominent centrality measure within 
the context of information diffusion. However, a certain level of ambiguity revolves around the underlying model of information 
diffusion, discussed in Appendix A. This section aims to characterize the exact theoretical foundations of diffusion centrality.

3.1. Setup

A finite number 𝑛 of agents are embedded in a fixed social network. 𝐺 denotes the adjacency matrix, where an element 𝑔𝑖𝑗 = 1 if 
𝑖 is linked with 𝑗 ≠ 𝑖 and 𝑔𝑖𝑗 = 0 otherwise. The network may be directed and, by convention, 𝑔𝑖𝑖 = 0.

At period 0, a designated agent, referred to as the sender, becomes the recipient of pertinent information. Subsequently, this 
information propagates across the network through discrete iterations. Within each iteration, individuals possessing the information can 
dispatch messages containing it to their immediate neighbors. The transmission of messages follows a stochastic process characterized 
by independent and identically distributed (iid) failures: each message sent is transmitted with probability 𝛼, with 0 < 𝛼 < 1.

Take a sender 𝑖 and a possible recipient for the information 𝑗. For 𝑡 ≥ 1, denote by 𝑥𝑖𝑗 (𝑡, 𝐺) and 𝑛𝑖𝑗 (𝑡, 𝐺) the expected number of 
times the recipient 𝑗 hears about the information at exactly time 𝑡 and by time 𝑡 respectively. That is,

𝑛𝑖𝑗 (𝑡,𝐺) =
𝑡∑

𝑠=1
𝑥𝑖𝑗 (𝑠,𝐺), (1)

and taking 𝑡 to the limit, 𝑛𝑖𝑗 (𝐺) = lim𝑡→∞ 𝑛𝑖𝑗 (𝑡, 𝐺). Naturally, what these expressions correspond to depends on the exact information 
diffusion process.

3.2. Diffusion processes in networks

Let 𝑇 𝑡
𝑗𝑘

be the number of messages sent to 𝑘 by 𝑗 at time 𝑡, and 𝑅𝑡
𝑗𝑘

be the number of messages actually received by 𝑘 from 𝑗 at 
time 𝑡. To represent the initial seeding of information, we set 𝑅0

𝑖𝑖
= 1 where 𝑖 is the sender and 𝑅0

𝑗𝑘
= 0 for all 𝑗𝑘 ≠ 𝑖𝑖. Since each 

message sent is received with probability 𝛼, we have that

𝔼(𝑅𝑡
𝑗𝑘
|{𝑇 𝑠

𝑗𝑘
}𝑠≤𝑡) = 𝛼𝑇 𝑡

𝑗𝑘
. (2)

To fully specify the process of information diffusion, we must make assumptions on who transmits the information and how often.

A network diffusion process characterizes the way in which individuals transmit information to their neighbors, contingent upon 
the historical record of received messages.
3

5 King (2024) proposes a new approximation for the probabilities of node-to-node network diffusion, based on the inclusion-exclusion principle.
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Definition. A network diffusion process is deemed anonymous when the same information is sent deterministically to all neighbors 
and the information sent is unaffected by the identities and positions of individuals within the network.

In anonymous diffusion processes, individuals disseminate identical information to all of their neighbors, and the way information 
propagates does not depend on the sources of the information. In expectation, all resulting differences in the information received 
by different agents from a given sender stem purely from the architecture of the network. Note that this form of anonymity applies 
to both the sender and recipient: they participate in the retransmission of information just like any other agent. We will relax this 
particular assumption in the subsequent sections.

Denote by 𝑅𝑡
𝑘
=
∑

𝑗 𝑅
𝑡
𝑗𝑘

the total number of messages received by 𝑘 at time 𝑡 and 𝑹𝑡 the associated vector. Let 𝑡 be the histories 
of the number of messages received by individuals in each period up to 𝑡:

𝑡 ∶= (𝑡−1,𝑹𝑡) and 𝑡
𝑘
∶= (𝑡−1

𝑘
,𝑅𝑡

𝑘
).

An anonymous diffusion process is a series of functions {𝑓𝑡(𝑡−1
𝑘

)}𝑡 such that the number of messages sent by 𝑘 to each agent 𝑙 at 
time 𝑡 is

𝑇 𝑡
𝑘𝑙
= 𝑔𝑘𝑙𝑓

𝑡(𝑡−1
𝑘

). (3)

The function 𝑓𝑡 captures two key dimensions of the transmission process: (1) the extent to which the historical record of received 
messages matters, and (2) the number of transmitted messages. While anonymity restricts the spectrum of considered diffusion pro-

cesses, it nevertheless permits a diverse array of potential scenarios. Information transmission can encompass intricate dependencies 
on the historical progression of the message influx across different periods.

A natural particular case is when history matters through an accumulated stock depreciating at a rate 𝛿. The number of messages 
sent at time 𝑡 by agent 𝑘 to each neighbor is then equal to 𝑓 (

∑𝑡−1
𝑠=1𝑅

𝑠
𝑘
𝛿𝑡−1−𝑠) for some function 𝑓 . The cases of 𝛿 = 1 and 𝛿 = 0 capture 

two benchmark assumptions regarding historical dependence. When 𝛿 = 1, there is no depreciation and 
∑𝑡−1

𝑠=1𝑅
𝑠
𝑘
𝛿𝑡−1−𝑠 =

∑𝑡−1
𝑠=1𝑅

𝑠
𝑘
. 

All messages received in the past carry the same weight independently of when they were received, a form of perfect recall. When 
𝛿 = 0, 

∑𝑡−1
𝑠=1𝑅

𝑠
𝑘
𝛿𝑡−1−𝑠 = 𝑅𝑡−1

𝑘
. Messages transmitted at 𝑡 only depend on messages received at 𝑡 − 1, equivalent to one-period recall. 

Intermediate cases where 0 < 𝛿 < 1 capture situations where messages received recently have more weight in current transmission 
than messages received in the distant past. Anonymous diffusion processes cover these three scenarios, as well as more complex ones 
such as transmitting information received in a specific time interval.

3.3. Diffusion centrality

Banerjee et al. (2013) define diffusion centrality as 𝐷𝐶𝑖(𝑡, 𝐺) ∶=
∑

𝑗 𝑑𝑐𝑖𝑗 (𝑡, 𝐺) where:

𝑑𝑐𝑖𝑗 (𝑡,𝐺) ∶=
𝑡∑

𝑠=1
𝛼𝑠[𝐺𝑠]𝑖𝑗 ∀𝑡 ≥ 1, (4)

and interpret 𝑑𝑐𝑖𝑗 (𝑡, 𝐺) as the expected number of times 𝑗 receives by time 𝑡 the information originating in sender 𝑖.
We would like to make three concise remarks regarding diffusion centrality.

First, in undirected graphs, diffusion centrality exhibits symmetry:∑
𝑗

𝑑𝑐𝑖𝑗 (𝑡,𝐺) =
∑
𝑗

𝑑𝑐𝑗𝑖(𝑡,𝐺).

This means that the number of messages reaching every node when node 𝑖 is the sender is equal to the number of messages reaching 
node 𝑖 when all nodes act as senders and node 𝑖 is the recipient.

Second, when the number of periods extends to infinity, diffusion centrality is well-defined only for values of 𝛼 that are smaller 
than the inverse of the largest eigenvalue of the network’s adjacency matrix, denoted by 𝜆1(𝐺). When 𝛼 < 𝛼max ≡ 1∕𝜆1(𝐺), we have:

𝑑𝑐𝑖𝑗 (𝐺) =
∞∑
𝑠=1

𝛼𝑠[𝐺𝑠]𝑖𝑗 = [𝛼𝐺(𝐼 − 𝛼𝐺)−1]𝑖𝑗 . (5)

Third, the elements of 𝐺𝑠, denoted as [𝐺𝑠]𝑖𝑗 , represent the count of walks of length 𝑠 between nodes 𝑖 and 𝑗, as explained in 
Duncan (2004).6 Let 𝑊𝑖𝑗 (𝑠, 𝐺) be the set of walks of length 𝑠 connecting 𝑖 to 𝑗 in 𝐺, 𝑊𝑖𝑗 (𝐺) be the set of all walks connecting 𝑖 to 𝑗, 
and 𝑙(𝑤) be the length of a walk 𝑤. Consequently, we can express:

𝑑𝑐𝑖𝑗 (𝑡,𝐺) =
𝑡∑

𝑠=1

∑
𝑤∈𝑊𝑖𝑗 (𝑠,𝐺)

𝛼𝑙(𝑤) & 𝑑𝑐𝑖𝑗 (𝐺) =
∑

𝑤∈𝑊𝑖𝑗 (𝐺)
𝛼𝑙(𝑤). (6)
4

6 A walk of length 𝑡 in 𝐺 connecting 𝑖 to 𝑗 is a set of 𝑡 + 1 agents 𝑖1 = 𝑖, 𝑖2, ..., 𝑖𝑡+1 = 𝑗 such that ∀𝑠 ≤ 𝑡, 𝑔𝑖𝑠𝑖𝑠+1 = 1.
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In our main result, we describe a diffusion process that justifies the interpretation of 𝑑𝑐𝑖𝑗 (𝑡, 𝐺) as the expected number of times 
𝑗 receives by time 𝑡 the information originating in sender 𝑖, and we show that it is unique within the class of anonymous network 
diffusion processes. This result therefore provides an exact characterization of the diffusion process underlying diffusion centrality.

Theorem 1. 𝑑𝑐𝑖𝑗 (𝑡, 𝐺) from the diffusion centrality equals 𝑛𝑖𝑗 (𝑡, 𝐺), the expected number of times 𝑗 receives the information originating in 
sender 𝑖 by time 𝑡, for all networks and time 𝑡 under an anonymous network diffusion process if and only if the network diffusion process 
satisfies {𝑓𝑡(𝑡−1

𝑘
)}𝑡 = {𝑓𝑡, 𝐷𝐶 (𝑡−1

𝑘
)}𝑡 where

𝑓𝑡, 𝐷𝐶 (𝑡−1
𝑘

) ∶=𝑅𝑡−1
𝑘

. (7)

Individuals transmit to each of their neighbors as many messages as they received in the previous period.

STEP 1. Recall that 𝑥𝑖𝑗 (𝑡, 𝐺) is the expected number of times that 𝑗 receives the information originating from sender 𝑖 at exactly time 
𝑡, that is

𝑥𝑖𝑗 (𝑡,𝐺) = 𝔼

(∑
𝑘

𝑅𝑡
𝑘𝑗

)
.

Before proving sufficiency, it is useful to prove the following Lemma that provides an inductive characterization of 𝑥𝑖𝑗 (𝑡, 𝐺).

Lemma 1.

𝑥𝑖𝑗 (𝑡,𝐺) = 𝛼𝑡[𝐺𝑡]𝑖𝑗∀𝑡 ⟺ 𝑥𝑖𝑗 (𝑡,𝐺) =
⎧⎪⎨⎪⎩
1 if 𝑗 = 𝑖& 𝑡 = 0,
0 if 𝑗 ≠ 𝑖& 𝑡 = 0,∑

𝑘 𝛼𝑔𝑘𝑗𝑥𝑖𝑘(𝑡− 1,𝐺) if 𝑡 > 0.

Proof. Let us show sufficiency first. At 𝑡 = 0, 𝑥𝑖𝑗 (0, 𝐺) = [𝐼]𝑖𝑗 . If 𝑡 > 0, we can write:

[𝐺𝑡]𝑖𝑗 =
[
𝐺𝑡−1𝐺

]
𝑖𝑗
=
∑
𝑘

[
𝐺𝑡−1]

𝑖𝑘
𝑔𝑘𝑗

where the last equality relies on the definition of the product of matrices. Substituting this into 𝑥𝑖𝑗 (𝑡, 𝐺) = 𝛼𝑡[𝐺𝑡]𝑖𝑗 gives us

𝑥𝑖𝑗 (𝑡,𝐺) = 𝛼
∑
𝑘

𝛼𝑡−1 (𝐺𝑡−1)
𝑖𝑘
𝑔𝑘𝑗

= 𝛼
∑
𝑘

𝑥𝑖𝑘(𝑡− 1,𝐺) 𝑔𝑘𝑗 .

To show necessity, observe that the formula on the right-hand-side defines 𝑥𝑖𝑗 (𝑡, 𝐺) unambiguously. There is a unique 𝑥𝑖𝑗 (𝑡, 𝐺)
that satisfies it. By sufficiency, 𝑥𝑖𝑗 (𝑡, 𝐺) = 𝛼𝑡[𝐺𝑡]𝑖𝑗 . ■

Now we can proceed with our proof. Using (2), the expected number of times a recipient 𝑗 receives the information at time 𝑡 is

𝑥𝑖𝑗 (𝑡,𝐺) =
∑
𝑘

𝛼𝔼
(
𝑇 𝑡
𝑘𝑗

)
.

Under (7),

𝑥𝑖𝑗 (𝑡,𝐺) =
∑
𝑘

𝛼𝑔𝑘𝑗𝔼

(∑
𝑙

𝑅𝑡−1
𝑙𝑘

)
=
∑
𝑘

𝛼𝑔𝑘𝑗𝑥𝑖𝑘(𝑡− 1,𝐺)

= 𝛼𝑡[𝐺𝑡]𝑖𝑗
where the last equality holds by Lemma 1.

[STEP 2] Next, we prove the necessity. That is if 𝑛𝑖𝑗 (𝑡, 𝐺) = 𝑑𝑐𝑖𝑗 (𝑡, 𝐺) then the transmission process must be guided by (7).

We prove this by induction.

At time 1, 𝑛𝑖𝑗 (1, 𝐺) = 𝑥𝑖𝑗 (1, 𝐺) = 𝛼
∑

𝑘 𝑔𝑘𝑗𝑓
1(0

𝑘
). The history at time 0 is 1 for 𝑖 and 0 for the others: 0

𝑖
=𝑅0

𝑖
= 1 and 0

𝑘
=𝑅0

𝑘
= 0

for 𝑘 ≠ 𝑖. Hence, 𝑛𝑖𝑗 (1) = 𝑥𝑖𝑗 (1, 𝐺) = 𝛼𝑔𝑖𝑗𝑓
1(1) +𝛼

∑
𝑘≠𝑖 𝑔𝑘𝑗𝑓

1(0). Under the diffusion centrality formula, 𝑑𝑐𝑖𝑗 (1, 𝐺) = 𝛼𝑔𝑖𝑗 for all 𝐺. So 
in any network 𝐺 where 𝑖𝑗 are not connected 𝑛𝑖𝑗 (1, 𝐺) = 0. Hence, 𝛼

∑
𝑘 𝑔𝑘𝑗𝑓

1(0) = 0 tells us that 𝑓 1(0) = 0. Now add a link between 
𝑖 and 𝑗, under the diffusion centrality formula 𝑛𝑖𝑗 (1, 𝐺) = 𝛼 so that 𝑓 1(1) = 1.

At time 2, 𝑛𝑖𝑗 (2, 𝐺) = 𝑥𝑖𝑗 (1, 𝐺) + 𝑥𝑖𝑗 (2, 𝐺) and 𝑥𝑖𝑗 (2, 𝐺) = 𝛼𝔼
1

𝑘

∑
𝑘 𝑔𝑘𝑗𝑓

2(1
𝑘
). The history at time 1 is (1, 0) for 𝑖, it is (0, 1) with 
5

probability 𝛼 and (0, 0) otherwise for any 𝑘 such that 𝑔𝑖𝑘 = 1 and is (0, 0) for all others. Hence,
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𝑥𝑖𝑗 (2,𝐺) = 𝛼

(
𝑔𝑖𝑗𝑓

2(1,0) +
∑
𝑘≠𝑖

𝑔𝑘𝑗

[
𝑝
1,𝐺
𝑘

(1
𝑘
= 1)𝑓 2(0,1) + 𝑝

1,𝐺
𝑘

(1
𝑘
= 0)𝑓 2(0,0)

])
where 𝑝1,𝐺

𝑙
(1

𝑙
= 1) is the probability of a given history of messages received for agent 𝑙 at time 1 given the network and process.

Under the diffusion centrality formula, 𝑥𝑖𝑗 (2, 𝐺) = 𝛼2
∑

𝑘 𝑔𝑖𝑘𝑔𝑘𝑗 for all 𝐺. Since in any network when 𝑖 is isolated 𝑥𝑖𝑗 (2) = 0, we 
know that 𝑓 2(0, 0) = 0. When 𝐺 is formed of the unique pair 𝑖𝑗, 𝑥𝑖𝑗 (2, 𝐺) = 0 leading to 𝑓 2(1, 0) = 0. Now consider a network 𝐺
formed of the pairs 𝑖𝑘 and 𝑘𝑗 and no other link. Then, 𝑥𝑖𝑗 (2) = 𝛼2. Given 𝑓 1(.), 𝑘’s history is (0, 1) with a probability 𝛼 and it is (0, 0)
with a probability (1 − 𝛼). This yields:

𝑥𝑖𝑗 (2,𝐺) = 𝛼
[
𝛼𝑓 2(0,1) + (1 − 𝛼)𝑓 2(0,0)

]
= 𝛼2.

This gives us 𝑓 2(0, 1) = 1.

For our induction, assume that we have proved the claim for all networks at any time 𝑠 ≤ 𝑡 − 1. That is, assume that we have 
shown that if for all time 𝑠 ≤ 𝑡 − 1

𝑥𝑖𝑗 (𝑠,𝐺) = 𝛼𝑠[𝐺𝑠]𝑖𝑗
for all 𝑖𝑗 and all networks G then

𝑓𝑠(𝑠−1
𝑘

) ∶=𝑅𝑠−1
𝑘

∀𝑘 & 𝑠−1.

Our claim is that if 𝑥𝑖𝑗 (𝑠, 𝐺) = 𝛼𝑠[𝐺𝑠]𝑖𝑗 for all 𝑠 ≤ 𝑡, all 𝑖𝑗 and all networks G then 𝑓𝑠(𝑠−1
𝑘

) ∶=𝑅𝑠−1
𝑘

for all 𝑠 ≤ 𝑡, 𝑘 and 𝑠−1.

To prove this claim, we will use a second induction and iterate over the total number of messages received up to time t.
Let 𝑡[𝑟] be the set of feasible history profile (𝑅0, 𝑅1, ..., 𝑅𝑡−1) such that 𝑅0 + 𝑅1 + ... + 𝑅𝑡−1 ≤ 𝑟. We want to show that 

𝑓𝑡(𝑅0, 𝑅1, ..., 𝑅𝑡−1) =𝑅𝑡−1.

Consider 𝐻𝑡[0]. The only feasible history such that 𝑅0 + 𝑅1 + ... + 𝑅𝑡−1 ≤ 0 is 𝑅0 = 𝑅1 = ... = 𝑅𝑡−1 = 0. Consider the following 
network: 𝑖 isolated, and then a line of length 𝑡 − 2 arriving at 𝑘, and then 𝑘 connected to 𝑗. Under the diffusion centrality formula 
𝑥𝑖𝑗 (𝑡, 𝐺) = 0, and therefore

𝑥𝑖𝑗 (𝑡,𝐺) = 0 = 𝛼 𝑓 (0,0, ...0)

tells us that 𝑓 (0, 0, ...0) = 0.

Now assume that we have shown that 𝑓𝑡(𝑅0, 𝑅1, ..., 𝑅𝑡−1) =𝑅𝑡−1 for all (𝑅0, 𝑅1, ..., 𝑅𝑡−1) ∈𝐻[𝑟] for 𝑟 ≥ 0. We want to prove that 
𝑓𝑡(𝑅0, 𝑅1, ..., 𝑅𝑡−1) =𝑅𝑡−1 for all (𝑅0, 𝑅1, ..., 𝑅𝑡−1) ∈𝐻[𝑟 + 1].

Pick a feasible history profile (𝑅0, 𝑅1, ..., 𝑅𝑡−1) such that 𝑅0 + 𝑅1 + ... + 𝑅𝑡−1 = 𝑟 + 1. (If this is lower than 𝑟 + 1, the equality 
holds by 𝐻[𝑟]). Consider the network in which 𝑗 has only one neighbor 𝑘, 𝑔𝑘𝑗 = 1, and the network is formed of the union of 𝑅𝑡−1

disjoint directed lines of length 𝑡 − 1 from 𝑖 to 𝑘 not including 𝑗, 𝑅𝑡−2 disjoint directed lines of length 𝑡 − 2 from 𝑖 to 𝑘 not including 
𝑗,..., and a direct directed link from 𝑖 to 𝑘 if 𝑅1 = 1.

Considering all possible history (𝑟0, 𝑟1, ..., 𝑟𝑡−1) for 𝑘 and the ex-ante probability that this history happens under the DC diffusion 
process 𝑝(𝑟0, 𝑟1, ..., 𝑟𝑡−1), we get:

𝑥𝐷𝐶
𝑖𝑗

(𝑡,𝐺) =
∑

(𝑟0 ,𝑟1 ,...,𝑟𝑡−1)

𝑝(𝑟0, 𝑟1, ..., 𝑟𝑡−1)𝛼 𝑟𝑡−1.

In the possible histories, there is only one where 𝑟0 + 𝑟1 + ... + 𝑟𝑡−1 = 𝑟 + 1, and this is (𝑅0, 𝑅1, ..., 𝑅𝑡−1). This history is feasible: it 
happens when the signal goes through ALL the disjoint lines between 𝑖 and 𝑘. Any other possible history is such that 𝑟0 +𝑟1 + ... +𝑟𝑡−1 ≤
𝑟 and by the induction hypothesis we know that 𝑓𝑡(𝑟0, 𝑟1, ..., 𝑟𝑡−1) = 𝑟𝑡−1. We therefore have:

𝑥𝑖𝑗 (𝑡,𝐺) =
∑

(𝑟0 ,𝑟1 ,...,𝑟𝑡−1)

𝑝(𝑟0, 𝑟1, ..., 𝑟𝑡−1)𝛼 𝑓 𝑡(𝑟0, 𝑟1, ..., 𝑟𝑡−1)

=
∑

(𝑟0 ,𝑟1 ,...,𝑟𝑡−1)≠(𝑅0 ,𝑅1 ,...,𝑅𝑡−1)

𝑝(𝑟0, 𝑟1, ..., 𝑟𝑡−1)𝛼 𝑟𝑡−1 + 𝑝(𝑅0,𝑅1, ...,𝑅𝑡−1)𝛼𝑓 𝑡(𝑅0,𝑅1, ...,𝑅𝑡−1)

and since 𝑝(𝑅0, 𝑅1, ..., 𝑅𝑡−1) > 0,

𝑓 (𝑅0,𝑅1, ...,𝑅𝑡−1) =𝑅𝑡−1

and hence the claim is true for 𝐻[𝑟 + 1].
This proves both inductions. ■

Theorem 1 shows that 𝑑𝑐𝑖𝑗 (𝑡, 𝐺) corresponds to the expected transmission of messages from 𝑖 to 𝑗 in an anonymous network 
diffusion process if, and only if, individuals at period 𝑡 transmit as many messages as they received at period 𝑡 − 1 to each of their 
neighbors. This means, in particular, that messages received before the previous period do not matter - as if agents had one-period 
6

recall - and that agents who receive several messages also transmit several messages. Under these conditions, diffusion centrality, 
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Fig. 1. Examples of networks.

which sums 𝑑𝑐𝑖𝑗 (𝑡, 𝐺) over all recipients, can indeed be interpreted as the expected number of times anyone receives a message from 
the sender.

The following examples illustrate this concept by considering alternative diffusion processes and explaining why they cannot serve 
as the foundation for diffusion centrality.

Example 1: Consider the following diffusion process:

𝑓𝑡, 𝐶𝐶 (𝑡−1
𝑘

) ∶=

{
1, if

∑𝑡−1
𝑠=1𝑅

𝑠
𝑘
> 0;

0, otherwise.

This diffusion process corresponds to the communication mechanism underlying the communication centrality described in the 
first part of Banerjee et al. (2013). Within this process, agents have perfect recall, and any agent who has been informed at any point 
transmits the information during every period. Furthermore, there is a singular retransmission of multiple signals: an agent who has 
received the information multiple times retransmits it only once to each of his neighbors in each period.

Consider the line in Fig. 1A with 𝑇 = 2. It is easy to see that the expected number of messages received by an agent is different 
under this diffusion process than under the diffusion process in (7). Under (7), we have 𝑛11(2, 𝐺) = 𝛼2, 𝑛12(2, 𝐺) = 𝛼 and 𝑛13(2, 𝐺) = 𝛼2, 
leading to a diffusion centrality of 𝑛1(2, 𝐺) = 𝛼 + 2𝛼2 for agent 1. By contrast, under 𝑓𝑡, 𝐶𝐶 , agent 1 may retransmit to agent 2 at 
period 2. This now yields 𝑛12(2, 𝐺) = 2𝛼 and 𝑛1(2, 𝐺) = 2𝛼 + 2𝛼2.

Example 2: Take yet another diffusion processes

𝑓𝑡, 𝑈𝑀 (𝑡−1
𝑘

) ∶=

{
1, if 𝑅𝑡−1

𝑘
> 0;

0, otherwise.

This diffusion process is similar to the diffusion process 𝑓𝑡, 𝐷𝐶 in (7) except that it assumes unique retransmission of multiple signals: 
an agent who received the information multiple times in the previous period transmits it only once to each of her neighbors in each 
period. In contrast, under (7) agents transmit as many messages as they receive in the previous period.

Take the network depicted in Fig. 1B and 𝑇 = 3. When agent 1 initially sends the information, at time 2 agent 4 may receive 
messages from both agent 2 and agent 3. Under (7) we get 𝑛15(3, 𝐺) = 𝛼3[𝐺3]15 = 2𝛼3, since agent 4 retransmits both messages in 
period 3. By contrast, 𝑛15(3, 𝐺) would have been 𝛼3 under 𝑓 3, 𝑈𝑀 .

Theorem 1 characterizes the unique anonymous network diffusion process that underlies the concept of diffusion centrality. This 
theorem allows us to correct an imprecision in the descriptions of the model in Banerjee et al. (2013, 2019) (see Appendix A). Another 
important underlying assumption of diffusion centrality is the assumption that all agents play a similar role in retransmission. This 
is the assumption we will now relax.

4. Targeting centrality

4.1. Motivation

The premise of anonymous information transmission, previously mentioned, seems entirely plausible in the context of factual 
“external” news, such as announcing “a new microcredit organization in town.” However, this presumption becomes questionable in 
situations where transmitted information explicitly references the sender’s or recipient’s identities, or both.

Consider the example of cyberbullying.7 Anonymity would require the victim to transmit derogatory messages about themselves. 
This assumption defies logic, and it would be more reasonable to assume that victims would not retransmit the gossip that concerns 
them.

Another scenario involves favor requests of the form: “Agent 𝑖 requires assistance.” In this context, it becomes important to question 
why anyone would feel motivated to relay this information back to agent 𝑖. A more realistic assumption might be that this information 
does not undergo retransmission to, and consequently by, the sender 𝑖.

Finally, consider targeted requests, exemplified by the statement: “Agent 𝑖 requires a favor from agent 𝑗.” A real-world illustra-

tion can be found in the realm of political intermediation as described in Cruz et al. (2017) wherein agent 𝑗 represents a politician 
who accedes to requests upon reception (for a comprehensive discussion, see Appendix A). In the framework of diffusion centrality, 

7 A Pew Research Center survey finds that 59% of U.S. teens have personally experienced abusive online behavior, with a third (32%) of teens saying that someone 
7

has spread false rumors about them on the internet (Vogels 2022).
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the inherent information diffusion process assumes that the request is propagated both to the original sender, 𝑖, and by the politi-

cian, 𝑗, during the information’s dissemination. However, a more logical assumption suggests that the request would not undergo 
retransmission by either its target or its sender throughout the diffusion process.

This paper introduces a class of centrality measures that we call targeting centralities in which a sender 𝑖’s request is not retransmitted 
by either target 𝑗, sender 𝑖, or both during information diffusion.8 The other assumptions underlying diffusion centrality remain 
unchanged: 𝑖’s request for 𝑗 ≠ 𝑖 diffuses in the network under 𝑓𝑡,𝐷𝐶 , and the focus remains on the expected frequency with which the 
target receives the sender’s request.

When we sum this metric over all potential senders for a given target, we obtain the agent’s targeting centrality. This metric gauges 
an agent’s susceptibility to being targeted. Conversely, if we sum over all conceivable targets for a given sender, we derive the sender’s 
centralities to target, their power to target others within the network.9

4.2. Definitions and notation

We denote by 𝑥 𝑖𝑗 (𝑠, 𝐺) the expected number of times agent 𝑗 receives the message originally sent by 𝑖 at exactly time 𝑠 when target 𝑗
does not retransmit the request. Similarly, 𝑥 𝑖𝑗 (𝑠, 𝐺) denotes the expected number of times agent 𝑗 receives 𝑖’s message at exactly time 
𝑠 when sender 𝑖 does not retransmit the request. Finally, 𝑥 𝑖𝑗 (𝑠, 𝐺) is the same object when neither sender 𝑖 nor target 𝑗 retransmits 
the request. (Appendix B provides the LaTeX code to create this notation.)

For each of the no-retransmission assumptions, the corresponding expected number of times agent 𝑗 hears 𝑖’s request between period 
1 and 𝑡 ≥ 1 is then given by:

𝑛 𝑖𝑗 (𝑡,𝐺) =
𝑡∑

𝑠=1
𝑥 𝑖𝑗 (𝑠,𝐺), 𝑛 𝑖𝑗 (𝑡,𝐺) =

𝑡∑
𝑠=1

𝑥 𝑖𝑗 (𝑠,𝐺) & 𝑛 𝑖𝑗 (𝑡,𝐺) =
𝑡∑

𝑠=1
𝑥 𝑖𝑗 (𝑠,𝐺). (8)

We define the measures of targeting centrality of 𝑗 for a finite time 𝑡 corresponding to the different no-retransmission assumptions 
as

𝑛 ⋅𝑗 (𝑡,𝐺) =
∑
𝑖≠𝑗

𝑛 𝑖𝑗 (𝑡,𝐺), 𝑛 ⋅𝑗 (𝑡,𝐺) =
∑
𝑖≠𝑗

𝑛 𝑖𝑗 (𝑡,𝐺) & 𝑛 ⋅𝑗 (𝑡,𝐺) =
∑
𝑖≠𝑗

𝑛 𝑖𝑗 (𝑡,𝐺). (9)

The targeting centrality of 𝑗 corresponds to the expected number of times 𝑗 hears about any other individual’s request by time 𝑡 under 
each no-retransmission assumption.10

Alternatively, the centrality of 𝑖 to target other agents is obtained by summing over possible recipients for a given sender:

𝑛 𝑖⋅(𝑡,𝐺) =
∑
𝑗≠𝑖

𝑛 𝑖𝑗 (𝑡,𝐺), 𝑛 𝑖⋅(𝑡,𝐺) =
∑
𝑗≠𝑖

𝑛 𝑖𝑗 (𝑡,𝐺) & 𝑛 𝑖⋅(𝑡,𝐺) =
∑
𝑗≠𝑖

𝑛 𝑖𝑗 (𝑡,𝐺). (10)

Letting the number of periods tend to infinity, 𝑡 →∞, the expected number of times agent 𝑗 hears 𝑖’s request is given by:

𝑛 𝑖𝑗 (𝐺) =
∞∑
𝑠=1

𝑥 𝑖𝑗 (𝑠,𝐺), 𝑛 𝑖𝑗 (𝐺) =
∞∑
𝑠=1

𝑥 𝑖𝑗 (𝑠,𝐺) & 𝑛 𝑖𝑗 (𝐺) =
∞∑
𝑠=1

𝑥 𝑖𝑗 (𝑠,𝐺). (11)

The corresponding targeting centralities are as follows:

𝑛 ⋅𝑗 (𝐺) =
∑
𝑖≠𝑗

𝑛 𝑖𝑗 (𝐺), 𝑛 ⋅𝑗 (𝐺) =
∑
𝑖≠𝑗

𝑛 𝑖𝑗 (𝐺) & 𝑛 ⋅𝑗 (𝐺) =
∑
𝑖≠𝑗

𝑛 𝑖𝑗 (𝐺). (12)

The targeting centrality of 𝑗 corresponds to the expected number of times 𝑗 receives the information originating from any other 
individual under each no-retransmission assumption. It captures their centrality as a target. The centrality of 𝑖 to target others is

𝑛 𝑖⋅(𝐺) =
∑
𝑗≠𝑖

𝑛 𝑖𝑗 (𝐺), 𝑛 𝑖⋅(𝐺) =
∑
𝑗≠𝑖

𝑛 𝑖𝑗 (𝐺) & 𝑛 𝑖⋅(𝐺) =
∑
𝑗≠𝑖

𝑛 𝑖𝑗 (𝐺). (13)

Note that targeting centrality under no retransmission by the sender and the target, like diffusion centrality, is symmetric when 
𝐺 is undirected: 𝑛 ⋅𝑘(𝑡, 𝐺) = 𝑛 𝑘⋅(𝑡, 𝐺) and 𝑛 ⋅𝑘(𝐺) = 𝑛 𝑘⋅(𝐺).

In contrast, equivalent measures of centrality under the assumption that only the target does not retransmit, or only the original 
sender does not retransmit, are generally not symmetric ( 𝑛 ⋅𝑘(𝑡, 𝐺) ≠ 𝑛 𝑘⋅(𝑡, 𝐺) and 𝑛 ⋅𝑘(𝑡, 𝐺) ≠ 𝑛 𝑘⋅(𝑡, 𝐺) and 𝑛 ⋅𝑘(𝐺) ≠ 𝑛 𝑘⋅(𝐺) and 

8 The assumptions of no-retransmission by the sender or to the sender are almost equivalent. In either case, diffusion of information from 𝑖 to 𝑗 ≠ 𝑖 occurs along the 
walks connecting 𝑖 and 𝑗 and where 𝑖 only appears at the beginning. Both assumptions yield the same values of targeting centrality and centrality to target others. 
The only difference is whether the sender keeps hearing about the information during the process.

9 We do not need to think of all targeted messages being initiated at the same time for these centralities to be relevant. Indeed, normalizing centralities by dividing 
them by n-1 yields averages that may be more intuitive if each targeted request or gossip has the same probability of being initiated.
10 We sum over all senders that are not 𝑗, 𝑖 ≠ 𝑗. Note that in the case of diffusion and Katz-Bonacich centrality summing is usually over all individuals including 𝑗
8

themselves. Doing so would simply add 𝑛 𝑗𝑗 (𝑡, 𝐺) = 𝑛 𝑗𝑗 (𝑡, 𝐺) = 𝑛 𝑗𝑗 (𝑡, 𝐺) = 1 to the measure.
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𝑛 ⋅𝑘(𝐺) ≠ 𝑛 𝑘⋅(𝐺)). However, when 𝐺 is undirected, a symmetry does exist across the sender-only and target-only measures: 𝑛 ⋅𝑘(𝑡, 𝐺) =
𝑛 𝑘⋅(𝑡, 𝐺), 𝑛 ⋅𝑘(𝐺) = 𝑛 𝑘⋅(𝐺), 𝑛 𝑘⋅(𝑡, 𝐺) = 𝑛 ⋅𝑘(𝑡, 𝐺) and 𝑛 𝑘⋅(𝐺) = 𝑛 ⋅𝑘(𝐺).

We will use a similar notation for the sets of walks. Recall that 𝑊𝑖𝑗 (𝑙, 𝐺) denotes the set of walks of length 𝑙 connecting 𝑖 to 𝑗. We 
now define 𝑊 𝑖𝑗 (𝑙, 𝐺) as the set of walks of length 𝑙 connecting 𝑖 to 𝑗 and such that 𝑗 only appears at the end of the walk. Likewise, 
𝑊 𝑖𝑗 (𝑙, 𝐺) denotes the set of walks of length 𝑙 connecting 𝑖 to 𝑗 and such that 𝑖 only appears at the beginning of the walk. Finally, 
𝑊 𝑖𝑗 (𝑙, 𝐺) denotes the set of walks of length 𝑙 connecting 𝑖 to 𝑗 and such that 𝑖 only appears at the beginning of the walk and 𝑗 only 
appears at the end of the walk. 𝑊𝑖𝑗 (𝐺), 𝑊 𝑖𝑗 (𝐺), 𝑊 𝑖𝑗 (𝐺) and 𝑊 𝑖𝑗 (𝐺) refer to the set of walks of all lengths.

Finally, we denote by 𝐺[−𝑖] the network over 𝑛 − 1 nodes obtained by removing 𝑖 and her links.

4.3. Infinite time

This section shows that when the number of periods is infinite, targeting centralities can be obtained by applying a simple 
correction to diffusion centrality.

Proposition 1. Suppose that 𝑖’s request for a favor from 𝑗 ≠ 𝑖 diffuses in the network under 𝑓𝑡,𝐷𝐶 . The expected number of times 𝑖’s request 
reaches 𝑗 is equal to

𝑛 𝑖𝑗 (𝐺) =
𝑛𝑖𝑗 (𝐺)

1 + 𝑛𝑗𝑗 (𝐺)
, 𝑛 𝑖𝑗 (𝐺) =

𝑛𝑖𝑗 (𝐺)
1 + 𝑛𝑖𝑖(𝐺)

& 𝑛 𝑖𝑗 (𝐺) =
𝑛 𝑖𝑗 (𝐺)

1 + 𝑛𝑗𝑗 (𝐺[−𝑖])
=

𝑛 𝑖𝑗 (𝐺)
1 + 𝑛𝑖𝑖(𝐺[−𝑗])

if 𝑖’s request to 𝑗 is not retransmitted by target 𝑗 or by sender 𝑖 or by both during information diffusion.

Proof. Recall from (6) and Theorem 1 that under diffusion process {𝑓𝑡,𝐷𝐶}𝑡

𝑛𝑖𝑗 (𝐺) =
∑

𝑤∈𝑊𝑖𝑗 (𝐺)
𝛼𝑙(𝑤).

Let 𝐶𝑖(𝐺) denote the union of the set of all cycles originating at 𝑖 in network 𝐺 (a cycle originating at 𝑖 is a walk from 𝑖 to 𝑖) and 
of the empty cycle, and similarly for 𝐶𝑗 (𝐺).

We can uniquely decompose each walk from 𝑖 to 𝑗 into: a cycle from 𝑖 to 𝑖 (possibly empty) and a walk from 𝑖 to 𝑗 where 𝑖 only 
appears at the beginning. This decomposition implies that:

𝑛𝑖𝑗 (𝐺) =
∑

𝑤∈𝑊𝑖𝑗 (𝐺)
𝛼𝑙(𝑤) =

∑
𝑐∈𝐶𝑖(𝐺),𝑤′∈𝑊 𝑖𝑗 (𝐺)

𝛼𝑙(𝑐)+𝑙(𝑤′) =

( ∑
𝑐∈𝐶𝑖(𝐺)

𝛼𝑙(𝑐)

)⎛⎜⎜⎜⎝
∑

𝑤′∈𝑊 𝑖𝑗 (𝐺)

𝛼𝑙(𝑤′)

⎞⎟⎟⎟⎠ .
Given the intimate connection between walks and information diffusion, it should be clear that if the sender does not retransmit 

messages:

𝑛 𝑖𝑗 (𝐺) =
∑

𝑤∈𝑊 𝑖𝑗 (𝐺)

𝛼𝑙(𝑤).

Moreover, since 𝐶𝑖(𝐺) =𝑊𝑖𝑖(𝐺) ∪ {∅}, 
∑

𝑐∈𝐶𝑖(𝐺) 𝛼
𝑙(𝑐) = 1 +

∑
𝑤∈𝑊𝑖𝑖(𝐺) 𝛼

𝑙(𝑤) = 1 + 𝑛𝑖𝑖. It follows that

𝑛𝑖𝑗 (𝐺) = (1 + 𝑛𝑖𝑖(𝐺))𝑛 𝑖𝑗 (𝐺) ⇒ 𝑛 𝑖𝑗 (𝐺) =
𝑛𝑖𝑗 (𝐺)

1 + 𝑛𝑖𝑖(𝐺)
.

A symmetric argument can be made to show that if only the target does not retransmit:

𝑛 𝑖𝑗 (𝐺) =
𝑛𝑖𝑗 (𝐺)

1 + 𝑛𝑗𝑗 (𝐺)
.

Finally, consider the case where both sender and target do not retransmit. Each walk from 𝑖 to 𝑗 can be uniquely decomposed 
into: a cycle from 𝑖 to 𝑖 (possibly empty), a walk where 𝑖 only appears at the beginning and 𝑗 only appears at the end, and a cycle 
from 𝑗 to 𝑗 which does not go through 𝑖 (possibly empty). This decomposition implies that:

𝑛𝑖𝑗 (𝐺) =
∑

𝑤∈𝑊𝑖𝑗 (𝐺)
𝛼𝑙(𝑤) =

∑
𝑐∈𝐶𝑖(𝐺),𝑤′∈𝑊 𝑖𝑗 (𝐺), 𝑐′∈𝐶𝑗 (𝐺[−𝑖])

𝛼𝑙(𝑐)+𝑙(𝑤′)+𝑙(𝑐′)

=

( ∑
𝛼𝑙(𝑐)

)⎛⎜⎜ ∑
𝛼𝑙(𝑤′)

⎞⎟⎟ ⎛⎜⎜ ∑
𝛼𝑙(𝑐′)

⎞⎟⎟ .

9

𝑐∈𝐶𝑖(𝐺) ⎜⎝ 𝑤′∈𝑊 𝑖𝑗 (𝐺)
⎟⎠ ⎝ 𝑐′∈𝐶𝑗 (𝐺[−𝑖]) ⎠
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Since 𝑛 𝑖𝑗 (𝐺) =
∑

𝑤∈ 𝑊 𝑖𝑗 (𝐺)
𝛼𝑙(𝑤) and 

∑
𝑐′∈𝐶𝑗 (𝐺[−𝑖]) 𝛼

𝑙(𝑐′) = 1 + 𝑛𝑗𝑗 (𝐺[−𝑖]), we get that

𝑛 𝑖𝑗 (𝐺) =
𝑛𝑖𝑗 (𝐺)

(1 + 𝑛𝑖𝑖(𝐺))(1 + 𝑛𝑗𝑗 (𝐺[−𝑖]))
=

𝑛 𝑖𝑗 (𝐺)
1 + 𝑛𝑗𝑗 (𝐺[−𝑖])

.

Similarly, each walk from 𝑖 to 𝑗 in 𝐺 can be uniquely decomposed into: a cycle from 𝑖 to 𝑖 which does not go through 𝑗 (possibly 
empty), a walk where 𝑖 only appears at the beginning and 𝑗 only appears at the end, and a cycle from 𝑗 to 𝑗 (possibly empty), leading 
to the last equality. ■

Proposition 1 shows that the expected number of times 𝑖’s request reaches the target 𝑗 when the request is not retransmitted by 𝑗
or to 𝑖 is simply related to this number in the absence of constraints on retransmission. The discounted number of walks connecting 
𝑖 to 𝑗 when 𝑖 appears only at the beginning and 𝑗 appears only at the end is equal to the discounted number of unconstrained walks 
connecting 𝑖 to 𝑗 divided by the discounted number of cycles starting at 𝑖 and by the discounted number of cycles starting at 𝑗 in 
𝐺[−𝑖]. Thus, if 𝑗 ≠ 𝑖 and 𝛼 < 1∕𝜆1(𝐺),11

𝑛 𝑖𝑗 (𝐺) =
[𝛼𝐺(𝐼 − 𝛼𝐺)−1]𝑖𝑗

[𝐼 − 𝛼𝐺]−1
𝑖𝑖
[𝐼 − 𝛼𝐺[−𝑖]]−1

𝑗𝑗

. (14)

Following (12), the targeting centrality of j is then given by 𝑛 ⋅𝑗 (𝐺) =
∑

𝑖≠𝑗 𝑛 𝑖𝑗 (𝐺). We see clearly that targeting centrality differs 
conceptually from diffusion centrality 𝑛𝑖⋅(𝐺) =

∑
𝑗 𝑛𝑖𝑗 (𝐺). In Section 5.3, we will show that targeting centrality and diffusion centrality 

also differ in practice.

A natural question is whether targeting centrality is computationally more demanding than diffusion centrality. The computation 
of targeting centrality relies on elements of inverse matrices of the kind (𝐼 −𝛼𝐺)−1. Under no retransmission by the sender only or by 
the target only, the computation involves the inverse of one matrix of size 𝑛 by 𝑛, as with diffusion centrality. Under no retransmission 
by both sender and target, it involves the inverses of one matrix of size 𝑛 by 𝑛 and 𝑛 matrices of size 𝑛 − 1 by 𝑛 − 1. Thus, targeting 
centrality has a similar computational complexity to diffusion centrality.

4.4. Finite time

It is also possible to derive exact formulas for targeting centrality in finite time. This section does just that, after introducing a 
few more pieces of notation.

Notation. For convenience of notation, we set 𝑥𝑖𝑗 (0, 𝐺) =

{
1 if 𝑗 = 𝑖

0 otherwise
.12

Now, for each pair of distinct sender 𝑖 and recipient 𝑗, let

𝑋𝑖𝑗 (𝑡,𝐺) =
⎡⎢⎢⎣
𝑥𝑖𝑗 (1,𝐺)

...

𝑥𝑖𝑗 (𝑡,𝐺)

⎤⎥⎥⎦ ,𝑋𝑖𝑗 (𝑡,𝐺) =
⎡⎢⎢⎣
𝑥 𝑖𝑗 (1,𝐺)

...

𝑥 𝑖𝑗 (𝑡,𝐺)

⎤⎥⎥⎦ ,𝑋𝑖𝑗 (𝑡,𝐺) =
⎡⎢⎢⎣
𝑥 𝑖𝑗 (1,𝐺)

...

𝑥 𝑖𝑗 (𝑡,𝐺)

⎤⎥⎥⎦ ,𝑋𝑖𝑗 (𝑡,𝐺) =
⎡⎢⎢⎣
𝑥 𝑖𝑗 (1,𝐺)

...

𝑥 𝑖𝑗 (𝑡,𝐺)

⎤⎥⎥⎦ .
Moreover, for each agent 𝑗, we denote by 𝑀𝑗 (𝑡, 𝐺) the following lower triangular matrix:

𝑀𝑗 (𝑡,𝐺) =

⎡⎢⎢⎢⎢⎢⎣

𝑥𝑗𝑗 (0,𝐺) 0 0 ... 0
𝑥𝑗𝑗 (1,𝐺) 𝑥𝑗𝑗 (0,𝐺) 0 ... 0
𝑥𝑗𝑗 (2,𝐺) 𝑥𝑗𝑗 (1,𝐺) 𝑥𝑗𝑗 (0,𝐺) ... 0

...

𝑥𝑗𝑗 (𝑡,𝐺) 𝑥𝑗𝑗 (𝑡− 1,𝐺) 𝑥𝑗𝑗 (𝑡− 2,𝐺) ... 𝑥𝑗𝑗 (0,𝐺)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

1 0 0 ... 0
0 1 0 ... 0

𝛼2𝐺2
𝑗𝑗

0 1 ... 0
...

𝛼𝑡𝐺𝑡
𝑗𝑗

𝛼𝑡−1𝐺𝑡−1
𝑗𝑗

𝛼𝑡−2𝐺𝑡−2
𝑗𝑗

... 1

⎤⎥⎥⎥⎥⎥⎦
.

Note that this triangular matrix is invertible, as it has a diagonal of ones.

11 A direct implication of Proposition 1 is that for any 𝑖 ≠ 𝑗,

[𝐼 − 𝛼𝐺]−1
𝑖𝑖
[𝐼 − 𝛼𝐺[−𝑖]]−1

𝑗𝑗
= [𝐼 − 𝛼𝐺]−1

𝑗𝑗
[𝐼 − 𝛼𝐺[−𝑗]]−1

𝑖𝑖
.

To our knowledge, this provides a novel result in matrix analysis.
10

12 We can make this assumption because diffusion centrality and targeting centrality will only take into account messages received at time 1 or higher.
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Target does not resend.

We start with the case where the target does not resend the message. To derive formulas in finite time, we can use decomposition 
arguments similar to those used for infinite time in Section 4.3. However, we must now keep track of the exact length of the walks.

Each walk 𝑤 from 𝑖 to 𝑗 of length 𝑡 (𝑤 ∈𝑊𝑖𝑗 (𝑡)) can be uniquely decomposed into: a walk of length 𝑙 in 𝑊 𝑖𝑗 (𝑙) and a cycle of 
length 𝑡 − 𝑙 from 𝑗 to 𝑗 (or the empty cycle). Let 𝐶𝑗 (𝑙′, 𝐺) denote the set of cycles of length 𝑙′ originating at 𝑗 in network 𝐺 if 𝑙′ ≥ 1
and the empty cycle if 𝑙′ = 0.

This decomposition implies that:

𝑥𝑖𝑗 (𝑡,𝐺) =
∑

𝑤∈𝑊𝑖𝑗 (𝑡,𝐺)
𝛼𝑡 =

𝑡∑
𝑙=1

∑
𝑤′∈𝑊 𝑖𝑗 (𝑙,𝐺),𝑐∈𝐶𝑗 (𝑡−𝑙,𝐺)

𝛼𝑡,

=
𝑡∑

𝑙=1

⎛⎜⎜⎜⎝
∑

𝑤′∈𝑊 𝑖𝑗 (𝑙,𝐺)

𝛼𝑙

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

∑
𝑐∈𝐶𝑗 (𝑡−𝑙,𝐺)

𝛼𝑡−𝑙
⎞⎟⎟⎠ ,

so that

𝑥𝑖𝑗 (𝑡,𝐺) =
𝑡∑

𝑙=0
𝑥 𝑖𝑗 (𝑙,𝐺)𝑥𝑗𝑗 (𝑡− 𝑙,𝐺) ∀𝑖 ≠ 𝑗. (15)

It follows that

𝑋𝑖𝑗 (𝑡,𝐺) =𝑀𝑗 (𝑡− 1,𝐺)𝑋𝑖𝑗 (𝑡,𝐺) ⇒ 𝑋𝑖𝑗 (𝑡,𝐺) =𝑀𝑗 (𝑡− 1)−1𝑋𝑖𝑗 (𝑡,𝐺).

This tells us that a simple correction can be applied to 𝑋𝑖𝑗 (𝑡, 𝐺) to obtain 𝑋𝑖𝑗 (𝑡, 𝐺).
Sender does not resend.

It is straightforward to check that if the sender does not resend the message, then:

𝑋𝑖𝑗 (𝑡,𝐺) =𝑀𝑖(𝑡− 1,𝐺)−1𝑋𝑖𝑗 (𝑡,𝐺) for 𝑖 ≠ 𝑗.

The details are available in Appendix C.

Both target and sender do not resend.

Now assume that both sender 𝑖 and target 𝑗 ≠ 𝑖 do not retransmit the request. To calculate 𝑥 (𝑡, 𝐺), notice that we can decompose 
each walk from 𝑖 to a (distinct) 𝑗 of length 𝑡 where 𝑗 does not retransmit (𝑤 ∈𝑊 𝑖𝑗 (𝑡, 𝐺)) uniquely into: a cycle of size 𝑙 from 𝑖 to 𝑖
in the network where we exclude the target 𝐺[−𝑗] and a walk of length 𝑡 − 𝑙 in 𝑊 𝑖𝑗 (𝑡 − 𝑙, 𝐺). Similarly, walks in 𝑊 𝑖𝑗 (𝑡, 𝐺) can be 
decomposed into walks in 𝑊 𝑖𝑗,𝐺 and cycles in 𝐶𝑗 (𝐺[−𝑖]). This means that for 𝑖 ≠ 𝑗:

𝑥 𝑖𝑗 (𝑡,𝐺) =
𝑡−1∑
𝑙=0

𝑥𝑖𝑖(𝑙,𝐺[−𝑗])𝑥 𝑖𝑗 (𝑡− 𝑙,𝐺); (16)

𝑥 𝑖𝑗 (𝑡,𝐺) =
𝑡∑

𝑙=1
𝑥 𝑖𝑗 (𝑙,𝐺)𝑥𝑗𝑗 (𝑡− 𝑙,𝐺[−𝑖]). (17)

Equations (16) and (17) then imply that, for 𝑖 ≠ 𝑗

𝑋𝑖𝑗 (𝑡,𝐺) =𝑀𝑖(𝑡− 1,𝐺[−𝑗])𝑋𝑖𝑗 (𝑡,𝐺)

𝑋𝑖𝑗 (𝑡,𝐺) =𝑀𝑗 (𝑡− 1,𝐺[−𝑖])𝑋𝑖𝑗 (𝑡,𝐺),

so that

𝑋𝑖𝑗 (𝑡,𝐺) =𝑀𝑖(𝑡− 1,𝐺[−𝑗])−1𝑋𝑖𝑗 (𝑡,𝐺) =𝑀𝑖(𝑡− 1,𝐺[−𝑗])−1𝑀𝑗 (𝑡− 1)−1𝑋𝑖𝑗 (𝑡,𝐺)

=𝑀𝑗 (𝑡− 1,𝐺[−𝑖])−1𝑋𝑖𝑗 (𝑡,𝐺) =𝑀𝑗 (𝑡− 1,𝐺[−𝑖])−1𝑀𝑖(𝑡,𝐺)−1𝑋𝑖𝑗 (𝑡,𝐺).

The targeting centrality of individual 𝑗 from (9) is then given by

𝑛 ⋅𝑗 (𝑡,𝐺) =
∑
𝑖≠𝑗

𝑛 𝑖𝑗 (𝑡,𝐺) =
∑
𝑖≠𝑗

𝑡∑
𝑠=1

𝑥 𝑖𝑗 (𝑠,𝐺)

From finite to infinite time.

The previous section presents exact formulas for targeting centralities in finite time. These formulas exclusively rely on matrix 
inversions, like diffusion centrality, and are easy to program. Yet, their computational intensity surpasses that of the uncomplicated 
11

adjustment for infinite time delineated in Proposition 1. In cases where either the sender or the target does not retransmit, these 
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Fig. 2. Targeting vs diffusion centrality of bridges.

formulas hinge on the computation of the inverse of a matrix sized 𝑡 + 1 by 𝑡 + 1, a matrix constructed from successive powers of 𝐺
up to 𝐺𝑡. In scenarios where both the sender and the target do not retransmit, the formulas necessitate the inversion of two matrices, 
both of dimensions 𝑡 + 1 by 𝑡 + 1. Consequently, the computational burden of calculating targeting centrality within a finite span 
increases in 𝑡.

Fortunately, the expressions for infinite time offer inherent approximations. Take, for instance, the situation where the target 
refrains from retransmission. A natural question is how well simply dividing 𝑛𝑖𝑗 (𝑡, 𝐺) by the number of cycles 𝑗𝑗 of length less than or 
equal to 𝑡 (including the empty cycle), 1 + 𝑛𝑗𝑗 (𝑡, 𝐺) would approximate 𝑛 𝑖𝑗 (𝑡, 𝐺). Detailed in Appendix E, Proposition 4 shows that, 
with increasing 𝑡, the two expressions promptly converge.

Further extensions.

In this section, we proposed to modify the benchmark diffusion process underlying diffusion centrality by assuming no retrans-

mission of the sender and/or the target. Other variations of this benchmark process may be relevant in some contexts. Consider, 
for instance, targeted requests for favors appearing in political intermediation, and suppose that the request is not retransmitted 
to the sender and by the target. Our maintained assumption, so far, is that the person requesting a favor from the politician sends 
the information only once, initially. Alternatively, the sender could try and reinforce their demand by repeatedly sending it. If 
the sender resends their request for favors in every period, the expected number of times target 𝑗 hears about it is now equal to 
𝑛 𝑖𝑗 (𝑡, 𝐺) + 𝑛 𝑖𝑗 (𝑡 − 1, 𝐺) + ... + 𝑛 𝑖𝑗 (2, 𝐺) + 𝑛 𝑖𝑗 (1, 𝐺). Proposition 1 can then be used to compute this number and corresponding 
extensions of targeting centrality.

5. Comparison between targeting and diffusion centrality

By this juncture, the reader may wonder whether it makes a difference whether we measure diffusion centrality or targeting 
centrality. While there will be clear differences in levels – with the number of expected messages being higher under diffusion 
centrality – a key question is whether the choice between these centralities leads to varying results when comparing nodes. To 
elucidate this, this section assumes an infinite time frame and starts with a practical example, followed by formal results.

5.1. An example

We start with an example showcasing the contrast between targeting and diffusion centralities. Imagine a scenario in which 
the target does not retransmit messages, such as in the case of bullying. Intuitively, whether the target transmits or not should be 
particularly important if the target is a bridging agent linking separate groups of individuals. Consider the graph in Fig. 2. Link 𝑖𝑗 is 
a bridge and the source of asymmetry between these two agents and the others.

Recall that 𝛼 represents the probability of information transmission along a link. When 𝛼 is small, information flow primarily 
relies on direct links, and as a result, the distinctions between targeting centrality and diffusion centrality are minimal. In the graph 
depicted in Fig. 2 for instance, the correlation and rank correlation between diffusion and targeting centrality across the nodes of the 
graph in Fig. 2 is 1 for small values of 𝛼, with 𝑖 and 𝑗 being more central than the others.

In contrast, let’s consider high values of 𝛼. Since diffusion centrality is only well-defined for 𝛼 < 𝛼max = 1∕𝜆1(𝐺), we choose 
𝛼 = 0.999 𝛼max ≈ 0.302.

As expected, the diffusion centrality of nodes 𝑖 and 𝑗 remains the highest. However, for high values of 𝛼, their targeting centrality 
becomes the lowest among the nodes in the network. Consequently, the correlation and rank correlation between targeting and 
diffusion centrality both become −1. This indicates that individuals 𝑖 and 𝑗 possess a greater ability to control the spread of information 
within the network, effectively limiting the flow of gossip. Thanks to their bridging position, 𝑖 and 𝑗 would be relatively powerful 
bullies while being less vulnerable to being bullied themselves.

5.2. Formal comparison

We will now demonstrate that this is far from an isolated example. In fact, our analysis reveals that rankings of nodes according 
to their targeting and diffusion centrality tend to diverge for high values of 𝛼 when the target does not resend, and to converge when 
the sender does not retransmit.

Target does not transmit.

We start with scenarios in which the target does not transmit. We rely on the notion of primitive matrices, familiar from the 
Perron-Frobenius Theorem. A non-negative matrix 𝐺 is primitive if there exists 𝑠 > 0 such that ∀𝑖, 𝑗, [𝐺𝑠]𝑖𝑗 > 0. The adjacency matrix 
of the network is primitive only when the network is strongly connected, i.e., if any two nodes are connected by a walk.13
12

13 Theorems 2 and B.1 in Banerjee et al. (2019) also require the matrices to be primitive.
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Fig. 3. Correlation between targeting and diffusion centrality. We take 1000 Erdös-Renyi random graphs with 𝑛 = 50 agents and probability of link 
formation 𝑝 = 0.2. The figure plots the 5𝑡ℎ percentile, median, and 95𝑡ℎ percentile of the correlation coefficients between targeting and diffusion centrality across 
agents within the graphs for the value of 𝛼∕𝛼max on the horizontal axis.

Proposition 2. Suppose that 𝐺 is a primitive matrix. As 𝛼 converges to 1∕𝜆1(𝐺):
(1) The rank correlation between diffusion and targeting centrality converges to −1;

(2) The rank correlation between diffusion and the sender’s centrality to target others converges to 1.

Proposition 2 reveals a strong asymmetry between targeting centrality and centrality to target others, when the target only does not 
retransmit. This asymmetry stands in stark contrast with diffusion centrality, which remains symmetric if 𝐺 is undirected: 𝑛⋅𝑘 = 𝑛𝑘⋅. 
The agent with the highest centrality in terms of hearing the information and is also the most central in terms of information diffusion 
(Banerjee et al. (2013)).

When targets do not propagate information concerning them, the symmetry disappears. The centrality of agents as targets departs 
from their centrality at targeting others. In a bullying context, for instance, it means that an individual ability to bully others may 
significantly differ from their vulnerability to being bullied themselves.

Sender does not retransmit.

When 𝐺 is undirected, the correspondence across the sender-only and target-only measures, 𝑛 ⋅𝑘 = 𝑛 𝑘⋅ and 𝑛 𝑘⋅ = 𝑛 ⋅𝑘, allows us 
to rely on the result from the previous section.

This implies that, under no retransmission by the sender alone, the rank correlation between diffusion and targeting centrality 
converges to 1 as 𝛼 converges to 1∕𝜆1, while the rank correlation between diffusion centrality and the centrality to target others 
converge to −1. This property holds for any primitive 𝐺; the proof for directed networks is similar to the proof of Proposition 2 and 
omitted for clarity.

Both sender and target do not retransmit.

What if both senders and recipients refrain from retransmitting information? This scenario presents a hybrid of the preceding two 
sections, where conflicting dynamics come into play. The direction of the rank correlation between diffusion and targeting centrality 
for elevated 𝛼 values hinges on the network’s structure. Yet, as demonstrated through simulations in the forthcoming section, it 
becomes evident that diffusion and targeting centralities possess the capability to yield markedly distinct rankings.

5.3. Random graphs under both sender and target no-transmission

Consider Erdös-Renyi random graphs with 𝑛 = 50 agents and a link formation probability of 𝑝 = 0.2. We randomly select 1, 000
graphs and, for each graph, calculate the correlation between the two measures across nodes for various values of 𝛼. We know that 
for small values of 𝛼 comparing nodes according to their targeting centrality or their diffusion centrality yields equivalent results. 
The question is: what happens as 𝛼 increases? The findings are depicted in Fig. 3 that represents the 5𝑡ℎ, 50𝑡ℎ, and 95𝑡ℎ percentiles 
13

of the distribution of correlations as the value of 𝛼∕𝛼max approaches 1.
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The close relation between 𝑛𝑗 and 𝑛 𝑗 breaks down when 𝛼 approaches its maximal value. Correlation is generally decreasing 
and concave in 𝛼.14 For values close to 1∕𝜆1(𝐺), the correlation between the two measures tends to be quite low, about 0.23 for 
the median network, and displays significant dispersion, from −0.12 at the 5𝑡ℎ percentile to 0.50 at the 95𝑡ℎ percentile. Fig. 4 in the 
Appendix shows that the rank correlation between the two measures exhibits very similar patterns: an initially strong rank correlation 
between diffusion and targeting centrality plunges and comes close to 0 as 𝛼∕𝛼max approaches 1.

This example demonstrates that the individuals with the highest values on targeting centrality are not necessarily the same as the 
individuals with the highest values on diffusion centrality, for values of 𝛼 close to 𝛼max.15

6. Reachability

Both diffusion centrality (Section 3) and targeting centrality (Section 4) count the expected total number of messages from a 
sender to a recipient. For instance, Cruz et al. (2017) assume that 𝑗 grants a favor to 𝑖 each time he receives 𝑖’s request.

However, in some contexts it may not be the number of times someone hears the information that matters, but whether the 
information reaches the target. Say that 𝑗 will satisfy 𝑖’s request if he hears about it, and that this is a one-time favor. The relevant 
question is then whether 𝑖’s request reaches 𝑗. In this case, we are interested in the reachability of 𝑗. Denote by 𝑝𝑖𝑗 (𝑡, 𝐺) ∈ [0, 1] the 
probability of 𝑖’s request for a favor successfully reaching 𝑗 within the first 𝑡 periods and 𝑝𝑖𝑗 (𝐺) = lim𝑡→∞ 𝑝𝑖𝑗 (𝑡, 𝐺).

We define the reachability of 𝑗 as 
∑

𝑖 𝑝𝑖𝑗 (𝐺), the overall expected number of favors provided by 𝑗 when every agent sends a 
request. The computation of these probabilities depends on details of the underlying process of request transmission. We consider the 
unique anonymous diffusion process compatible with diffusion centrality, 𝑓𝑡,𝐷𝐶 , in what follows; our result below can be extended 
to alternative assumptions.

Not surprisingly, reachability does not display additive properties. For instance, suppose that 𝑖 has a direct connection with 𝑗 and 
an indirect connection through a common friend. In this case, 𝑝𝑖𝑗 = 𝛼 + (1 − 𝛼)𝛼2 = 𝛼 + 𝛼2 − 𝛼3. We next derive a general formula 
based on the inclusion-exclusion principle, which could be used for algorithmic implementation. Let us introduce some notions and 
notations. Denote by 𝑤1 ∩𝑏 𝑤2 ∩𝑏 ... ∩𝑏 𝑤𝑘 the intersection of the beginning of the 𝑘 walks 𝑤1, 𝑤2, ..., 𝑤𝑘. Define 𝐿(𝑤1, ..., 𝑤𝑘) as 
follows:

𝐿(𝑤1, ...,𝑤𝑘) =
𝑘∑

𝑠1=1
𝑙(𝑤𝑠1

) −
∑
𝑠1<𝑠2

𝑙(𝑤𝑠1
∩𝑏 𝑤𝑠2

) + ...+ (−1)𝑘+1𝑙(𝑤1 ∩𝑏 ... ∩𝑏 𝑤𝑘).

The general idea here is to count common beginnings only once. As soon as two walks separate, however, we add the lengths of the 
remaining segments. For instance, with 𝑘 = 2, 𝐿(𝑤1, 𝑤2) = 𝑙(𝑤1) + 𝑙(𝑤2) − 𝑙(𝑤1 ∩𝑏 𝑤2). Finally, write 𝑤1 ≠ ... ≠𝑤𝑘 to denote that the 
𝑘 walks 𝑤1, ..., 𝑤𝑘 are distinct.

Proposition 3. Consider a model of political intermediation under 𝑓𝑡,𝐷𝐶 and the assumption that 𝑖’s request for a favor from 𝑗 is not 
retransmitted to 𝑖 or by 𝑗. The probability of 𝑖’s request successfully reaching 𝑗 within the first 𝑡 periods is equal to

𝑝𝑖𝑗 (𝑡,𝐺) =
|∪𝑠≤𝑡𝑊 𝑖𝑗 (𝑠,𝐺)|∑

𝑘=1
(−1)𝑘+1

∑
𝑤1≠...≠𝑤𝑘∈∪𝑠≤𝑡𝑊 𝑖𝑗 (𝑠,𝐺)

𝛼𝐿(𝑤1 ,...,𝑤𝑘).

Note that the first term in the formula is equal to 
∑

𝑤∈∪𝑠≤𝑡 𝑊 𝑖𝑗 (𝑠,𝐺)
𝛼𝑙(𝑤) which is equal to 𝑛 𝑖𝑗 (𝑡, 𝐺). Proposition 3 then clarifies 

the difference between the number of times 𝑗 is expected to hear about 𝑖’s request and the probability that 𝑗 will hear about it. This 
formula is combinatorially complex, which confirms that computing these probabilities in practice is computationally hard. Applied 
researchers therefore have two options. One, straightforward but computationally intensive, is to rely on numerical simulations to 
obtain approximate values of these probabilities, as follows. Simply generate 𝑁 realizations of information diffusion at random and 
count the number of times 𝐾 that 𝑖’s request for a favor reaches 𝑗. Then, 𝐾∕𝑁 converges to 𝑝𝑖𝑗 as 𝑁 tends to infinity. A similar 
numerical procedure underlies the structural estimations in Banerjee et al. (2013).

Alternatively, and as proposed by Banerjee et al. (2013), researchers can rely on simpler proxies which are easier to compute and 
likely to be highly correlated with these probabilities. Proxies vary in their usefulness, however, and the literature still lacks formal 
results on why and when we should expect diffusion centrality to perform well empirically. In a context of targeted requests, such as 
political intermediation, we conjecture that targeting centrality may provide a significantly better proxy than diffusion centrality.

7. Conclusion

This paper contributes in three significant ways.

14 This result does not rely on the use of Erdös-Renyi random graphs. Similar patterns can be shown within graphs possessing small-world characteristics— a small 
average path length and substantial clustering, as discussed in Watts (2004), see Fig. 5 in the Appendix.
15 Banerjee et al. (2013, 2019) assume that 𝛼 = 1∕𝜆1(𝐺) in their empirical implementation of diffusion centrality with 𝑡 <∞. Cruz et al. (2017) also assume that 
14

𝛼 = 1∕𝜆1(𝐺).
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First, we have characterized the information diffusion process that underlies diffusion centrality. Diffusion centrality hinges on 
tallying the volume of messages dispatched from a particular sender to a given recipient when the initial message gets transmitted 
through the network. We call a diffusion process anonymous if each agent treats each of their neighbors the same way and conditions 
their transmission of information only on the history of messages received, not their origin. We show that the unique anonymous 
diffusion process compatible with diffusion centrality is the following: in each period, each agent transmits exactly the amount of 
messages they received in the previous period to each of their neighbors.

Crucially, this process operates under the assumption that both the initial sender and the recipient subsequently retransmit the 
message. Within the domain of targeted communications, messages containing the identity of the sender and/or target, we question 
this assumption that the sender or the target or both will retransmit the information.

Our second contribution is thus to introduce the concept of targeting centrality. This concept relies on measures of the expected 
number of messages from a sender to a given recipient when the sender and/or the target do not retransmit the request. We provide 
explicit formulas for these measures across both finite and infinite time horizons. Through formal results and simulations, we show 
that targeting centrality and diffusion centrality can be quite different when there is a high probability of transmission.

Lastly, we define an agent’s reachability as the probability of their receipt of information disseminated by fellow agents. We provide 
an explicit formula to compute this measure.

Which measure provides a better proxy of the measure of influence that researchers are interested in depends on the specific 
context studied and is therefore an empirical question. We conjecture that targeting centrality and reachability will perform better 
than diffusion centrality in contexts where the transmitted information explicitly mentions the identities of the sender and/or the 
target.

In particular, we believe that bullying and cyberbullying would be promising areas to apply these concepts. Cook et al. (2010)

reviews individual and environmental characteristics predicting bullying behavior. Future research could study how the distribution 
of these characteristics interacts with one’s position in the network to predict vulnerability to bullying and the potential for a bully 
to cause harm.

Our work opens the door to other research questions. Targeting centrality and reachability still share some limitations with 
diffusion centrality, and more work can be done in the future to deepen our understanding of diffusion in networks. It would notably 
be interesting to introduce concepts of trust in our framework. This could be done, for instance, by relaxing the assumption that the 
probability of receiving a message is the same across all pairs of senders and recipients. Instead, these probabilities could differ across 
pairs, with 𝛼𝑖𝑗 representing the level of trust between the two agents.

Relaxing the assumption of multiple retransmissions of multiple messages in the network is another natural, and challenging, 
direction of research. Introducing strategic behavior in information transmission would be even more challenging and rewarding. For 
instance, with targeted requests, agents could aim at transmitting information along the shortest paths toward the target.
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Appendix A. Discussion around two papers

A.1. Banerjee et al. (2013)

Theorem 1 shows that the neat interpretation of diffusion centrality only holds under the specific anonymous diffusion process 
𝑓𝑡,𝐷𝐶 specified in (7). This highlights a difference between the models of information transmission underlying the two centrality 
notions proposed by Banerjee et al. (2013).

The paper starts by clearly stating that the process of information diffusion that underlies communication centrality and their 
15

structural estimations is based on an assumption of perfect recall: “In each subsequent period, households that have been informed 
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in previous periods pass information to each of their neighbors, independently, with probability 𝑞𝑃 if they are participants and with 
probability 𝑞𝑁 if they are not.”, (Banerjee et al. 2013, 1236498-2).

Then, on diffusion centrality, Banerjee et al. (2013) p.1236498-6 state regarding their model that “at each iteration every informed 
node tells each neighbor with probability 𝑞”. It could easily be inferred that “informed node” still refers to ever informed node. 
However, as we clarify in Section 3.3, the assumption underlying that concept of diffusion centrality is that only informed nodes 
receiving the information at 𝑡 − 1 can transmit it at 𝑡.

The model description of Banerjee et al. (2019), p.2472 suffers from similar imprecision: “In each period, with probability 𝑤𝑖𝑗 ∈
(0, 1], independently across pairs of neighbors and history, each informed node 𝑖 informs each of its neighbors 𝑗 of the piece of 
information and the identity of its original source.”

A.2. Cruz et al. (2017)

Cruz et al. (2017) build a model of political intermediation, where a citizen’s request for a favor is transmitted to the elected 
politician through the social network. Two candidates 𝐴 and 𝐵 compete for votes. Voter 𝑖 derives utility 𝑈𝑗

𝑖
from the clientelistic 

goods and services received from candidate 𝑗 if elected. Requests for clientelistic goods (or services) are assumed to travel through 
the social network to the politicians, and voters are assumed to get utility 𝑏 each time they obtain a good.

In their model, the expected benefit that voter 𝑖 gets from politician 𝑗 is equal to 𝑏𝑛𝑖𝑗 where 𝑛𝑖𝑗 is the number of time the politicians 
hears the request (1). Implicitly, this means that politicians deliver a good each time they hear the request. It then follows in their 
model that 𝑗 ’s vote share is an affine function of 𝑛⋅𝑗 =

∑
𝑖 𝑛𝑖𝑗 under diffusion process 𝑓𝑡,𝐷𝐶 . The vote share simply depends on the 

candidates’ Katz-Bonacich centrality. This is the central theoretical prediction that the authors bring to data.

Note in passing that there are a couple of slight inconsistencies in this description. The implicit assumption that every successful 
request translates into a new favor does not seem consistent with the assumption of voter 𝑖 asking for a specific favor. In addition, 
Cruz et al. (2017) further assume that 𝛼 = 1∕𝜆1(𝐺) where 𝜆1(𝐺) is 𝐺’s largest eigenvalue. In that case, the number of successful 
requests diverges to infinity and this model predicts that politicians will provide an infinite number of favors.16

More to the point of this paper: in a context in which politician 𝑗 grants a favor to 𝑖 each time 𝑗 receives the information, it is 
strange to assume that 𝑗 is retransmitting the request. In fact, when a request specifically mentions the identity of the recipient and 
the target, it seems more sensible to assume that the request would not be retransmitted by the target nor by the person initiating 
the request during diffusion. This is what targeting centrality and reachability do.

Appendix B. Latex notation

Add this code to the preamble of your LaTeX document to create symbols like 𝑥 or 𝑛 :

\documentclass{article}

\usepackage{tikz, mathtools}

\usetikzlibrary{arrows.meta}

\tikzset{tail/.tip={Straight Barb[reversed, length=1.5pt]}}

\newcommand{\limstyle}[1]{\mathclap{\scriptsize{#1}}}

\newcommand{\overrighttail}[2][]{\tikz[baseline,anchor=base]{\node[inner sep=0pt,#1](a){$#2$};

\draw[tail-]([shift={(1pt,2pt)}]a.north west)--([shift={(-1pt,2pt)}]a.north east);}}

\newcommand{\overlefttail}[2][]{\tikz[baseline,anchor=base]{\node[inner sep=0pt](a){$#2$};

\draw[-tail]([shift={(1pt,2pt)}]a.north west)--([shift={(-1pt,2pt)}]a.north east);}}

\newcommand{\overleftrighttail}[2][]{\tikz[baseline,anchor=base]{\node[inner sep=0pt](a){$#2$};

\draw[tail-tail]([shift={(1pt,2pt)}]a.north west)--([shift={(-1pt,2pt)}]a.north east);}}

Appendix C. Targeting centrality in finite time

The sender does not retransmit.

Alternatively, each walk 𝑤 from 𝑖 to 𝑗 of length 𝑡 (𝑤 ∈𝑊𝑖𝑗 (𝑡)) can be uniquely decomposed into: a cycle of length 𝑙 from 𝑖 to 𝑖
(possibly 𝑙 = 0) and a walk of length 𝑡 − 𝑙 in 𝑊 𝑖𝑗 (𝑡 − 𝑙). This decomposition implies that:

𝑥𝑖𝑗 (𝑡,𝐺) =
∑

𝑤∈𝑊𝑖𝑗 (𝑡,𝐺)
𝛼𝑡 =

𝑡∑
𝑙=0

∑
𝑐∈𝐶𝑖(𝑙,𝐺),𝑤′∈𝑊 𝑖𝑗 (𝑡−𝑙,𝐺)

𝛼𝑡

16 Cruz et al. (2017) incorrectly claim on p. 3011: “For this particular value of 𝛼, Katz centrality is equal to eigenvector centrality”. As 𝛼→ 1∕𝜆1(𝐺), Katz-Bonacich 
16

centrality 𝑛𝐴 diverges to infinity. It is the ratio 𝑛𝐴∕𝑛𝐵 which converges to the ratio of the eigenvector centralities of the two candidates.
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=
𝑡∑

𝑙=1

( ∑
𝑐∈𝐶𝑙(𝑙,𝐺)

𝛼𝑙

) ⎛⎜⎜⎜⎝
∑

𝑤′∈𝑊 𝑖𝑗 (𝑡−𝑙,𝐺)

𝛼𝑡−𝑙
⎞⎟⎟⎟⎠ .

Hence,

𝑥𝑖𝑗 (𝑡,𝐺) =
𝑡∑

𝑙=0
𝑥𝑖𝑖(𝑙) 𝑥 𝑖𝑗 (𝑡− 𝑙). (18)

Both sender and target do not retransmit.

If both sender 𝑖 and target 𝑗 ≠ 𝑖 do not retransmit, then we can decompose each walk from 𝑖 to 𝑗 of length 𝑡 uniquely into: a cycle 
of length 0 ≤ 𝑙1 < 𝑡 from 𝑖 to 𝑖 (the empty set corresponding to 𝑙1 = 0), a walk in 𝑊 𝑖𝑗 (𝑙2) of length 1 ≤ 𝑙2 ≤ 𝑡 − 𝑙1 and a cycle of length 
𝑡 − 𝑙1 − 𝑙2 from 𝑗 to 𝑗 in G[-i] (the empty set corresponding to a cycle of length 0). This implies that:

𝑥𝑖𝑗 (𝑡,𝐺) =
∑

𝑤∈𝑊𝑖𝑗 (𝑡,𝐺)
𝛼𝑡

=
𝑡−1∑
𝑙1=0

∑
𝑐∈𝐶𝑖(𝑙1 ,𝐺),𝑤′∈𝑊 𝑖𝑗 (𝑙2 ,𝐺),𝑐′∈𝐶𝑗 (𝑡−𝑙1−𝑙2 ,𝐺[−𝑖])

𝛼𝑡

=
𝑡−1∑
𝑙1=0

𝑡−𝑙1∑
𝑙2=1

( ∑
𝑐∈𝐶𝑖(𝑙1 ,𝐺)

𝛼𝑙1

) ⎛⎜⎜⎜⎝
∑

𝑤′∈𝑊 𝑖𝑗 (𝑙2 ,𝐺)

𝛼𝑙2

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

∑
𝑐′∈𝐶𝑖(𝑡−𝑙1−𝑙2 ,𝐺[−𝑖])

𝛼𝑡−𝑙1−𝑙2
⎞⎟⎟⎠

=
𝑡−1∑
𝑙1=0

𝑡−𝑙1∑
𝑙2=1

𝑥𝑖𝑖(𝑙1,𝐺) 𝑥 𝑖𝑗 (𝑙2) 𝑥𝑗𝑗 (𝑡− 𝑙1 − 𝑙2,𝐺[−𝑖]).

When both sender and target are the same, excluding retransmission of messages by sender and recipients is the same, so we let 
𝑥 𝑖𝑖 = 𝑥 𝑖𝑖.

Appendix D. Proofs

Proof of Proposition 2. Our proof makes use of arguments appearing in the proof of Theorem B.1 in the Online Appendix of Banerjee 
et al. (2019). A main difference is that we consider limits as 𝛼 tends to 1∕𝜆1 for 𝑡 =∞ rather than limits as 𝑡 tends to ∞ for a fixed 𝛼.

Suppose first that matrix 𝐺 is positive and diagonalizable. Let 𝜆1 be the spectral radius of 𝐺 and 𝜆2, ..., 𝜆𝑛 be the other eigenvalues. 
By Perron-Frobenius Theorem, 𝜆1 > |𝜆𝑘| for 𝑘 ≠ 𝑖. Then,

𝐺 = 𝑉 Λ𝑉 −1

with

𝑉 = (𝑣𝑅1 , ..., 𝑣
𝑅
𝑛
)

𝑉 −1 =
⎛⎜⎜⎝
𝑣𝐿1
...

𝑣𝐿
𝑛

⎞⎟⎟⎠
and 𝑣𝑅

𝑘
is a column 𝑛 by 1 vector, the right eigenvector associated with 𝜆𝑘 , while 𝑣𝐿

𝑘
is a row 1 by 𝑛 vector, the left eigenvector 

associated with 𝜆𝑘. Indeed, 𝐺𝑉 = 𝑉 Λ and 𝑉 −1𝐺 = Λ𝑉 −1, and hence 𝐺𝑣𝑅
𝑘
= 𝜆𝑘𝑣

𝑅
𝑘

and 𝑣𝐿
𝑘
𝐺 = 𝜆𝑘𝑣

𝐿
𝑘

. Moreover, ∀𝑖, 𝑣𝑅1 (𝑖) > 0 and 
𝑣𝐿1 (𝑖) > 0.

We have:

𝐺𝑡 = 𝑉 Λ𝑡𝑉 −1

𝐺𝑡 = 𝜆𝑡1𝑣
𝑅
1 𝑣

𝐿
1 + ...+ 𝜆𝑡

𝑛
𝑣𝑅
𝑛
𝑣𝐿
𝑛

and hence

[𝛼𝐺 + ...+ 𝛼𝑡𝐺𝑡]𝑖𝑗 = (𝛼𝜆1 + ...+ 𝛼𝑡𝜆𝑡1) 𝑣
𝑅
1 (𝑖) 𝑣

𝐿
1 (𝑗) + ...+ (𝛼𝜆𝑛 + ...+ 𝛼𝑡𝜆𝑡

𝑛
) 𝑣𝑅

𝑛
(𝑖) 𝑣𝐿

𝑛
(𝑗)

[𝛼𝐺 + ...+ 𝛼𝑡𝐺𝑡]𝑖𝑗 =
𝑛∑

𝑘=1

(
𝑡∑

𝑠=1
𝛼𝑠𝜆𝑠

𝑘

)
𝑣𝑅
𝑘
(𝑖) 𝑣𝐿

𝑘
(𝑗).
17

First, let us consider diffusion centrality with infinite time, 𝑛𝑖⋅(𝐺) =
∑

𝑗 𝑛𝑖𝑗 (𝐺), which converges when 𝛼𝜆1 < 1:
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𝑛𝑖𝑗 (𝐺) =
𝑛∑

𝑘=1

( ∞∑
𝑠=1

𝛼𝑠𝜆𝑠
𝑘

)
𝑣𝑅
𝑘
(𝑖) 𝑣𝐿

𝑘
(𝑗),

𝑛𝑖𝑗 (𝐺) =
𝑛∑

𝑘=1

𝛼𝜆𝑘

1 − 𝛼𝜆𝑘
𝑣𝑅
𝑘
(𝑖) 𝑣𝐿

𝑘
(𝑗).

This yields

𝑛𝑖⋅(𝐺) =
∑
𝑗

𝑛𝑖𝑗 (𝐺) =
𝑛∑

𝑘=1

𝛼𝜆𝑘

1 − 𝛼𝜆𝑘
𝑣𝑅
𝑘
(𝑖)

(∑
𝑗

𝑣𝐿
𝑘
(𝑗)

)
As 𝛼 converges to 1∕𝜆1, the first term diverges to infinity while all other terms are finite since |𝜆𝑘| < 𝜆1. This means that

𝑛𝑖𝑗 (𝐺) ∼
𝛼𝜆1

1 − 𝛼𝜆1
𝑣𝑅1 (𝑖) 𝑣

𝐿
1 (𝑗),

𝑛𝑖⋅(𝐺) ∼
𝛼𝜆1

1 − 𝛼𝜆1
𝑣𝑅1 (𝑖)(

∑
𝑗

𝑣𝐿1 (𝑗)),

and hence

𝑛𝑖⋅(𝐺)
𝑛𝑖′⋅(𝐺)

→
𝑣𝑅1 (𝑖)

𝑣𝑅1 (𝑖
′)
.

Next, consider targeting centrality. Recall, if the target does not retransmit, 𝑛 ⋅𝑗 =
∑

𝑖≠𝑗 𝑛 𝑖𝑗 denotes the targeting centrality of 𝑗. 
From Proposition 1,

𝑛 ⋅𝑗 (𝐺) =
∑

𝑖≠𝑗 𝑛𝑖𝑗 (𝐺)
1 + 𝑛𝑗𝑗 (𝐺)

.

Using the formulas above,

∑
𝑖≠𝑗

𝑛𝑖𝑗 (𝐺) ∼
𝛼𝜆1

1 − 𝛼𝜆1

(∑
𝑖≠𝑗

𝑣𝑅1 (𝑖)

)
𝑣𝐿1 (𝑗),

1 + 𝑛𝑗𝑗 (𝐺) ∼
𝛼𝜆1

1 − 𝛼𝜆1
𝑣𝑅1 (𝑗 )𝑣

𝐿
1 (𝑗),

and hence

𝑛 ⋅𝑗 (𝐺)→
∑

𝑖≠𝑗 𝑣
𝑅
1 (𝑖)

𝑣𝑅1 (𝑗)
.

If we adopt the normalization 
∑

𝑖 𝑣
𝑅
1 (𝑖) = 1, which we can do, this yields

𝑛 ⋅𝑗 (𝐺)→ 1
𝑣𝑅1 (𝑗)

− 1.

This implies that the rank correlation between diffusion and targeting centrality converges to −1 as 𝛼 converges to 1∕𝜆1.

Consider instead the centrality of 𝑖 to target others 𝑛 𝑖⋅(𝐺) =
∑

𝑗≠𝑖 𝑛 𝑖𝑗 (𝐺) under the assumption that the target does not retransmit. 
We get

𝑛 𝑖⋅(𝐺) =
∑
𝑗≠𝑖

𝑛𝑖𝑗 (𝐺)
1 + 𝑛𝑗𝑗 (𝐺)

,

𝑛𝑖𝑗 (𝐺)
1 + 𝑛𝑗𝑗 (𝐺)

∼
𝑣𝑅1 (𝑖) 𝑣

𝐿
1 (𝑗)

𝑣𝑅1 (𝑗) 𝑣
𝐿
1 (𝑗)

=
𝑣𝑅1 (𝑖)

𝑣𝑅1 (𝑗)
,

𝑛 𝑖⋅(𝐺)→ 𝑣𝑅1 (𝑖)[
∑
𝑗≠𝑖

1
𝑣𝑅1 (𝑗)

].

Suppose we adopt here the normalization 
∑

𝑖
1

𝑣𝑅1 (𝑖)
= 1. Then, 𝑛 𝑖⋅(𝐺) → 𝑣𝑅1 (𝑖)(1 −

1
𝑣𝑅1 (𝑖)

) = 𝑣𝑅1 (𝑖) −1 and the rank correlation converges 

to 1.

Finally, suppose that 𝐺, the adjacency matrix of the network, is primitive. Then, 𝜆1 the spectral radius of 𝐺 is a simple eigenvalue 
18

of 𝐺 and for any other eigenvalue 𝜆𝑘, 𝜆1 > |𝜆𝑘|. Moreover, ∀𝑖, 𝑣𝑅1 (𝑖) > 0 and 𝑣𝐿1 (𝑖) > 0. We know that we can find matrices 𝐻 that 
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are positive, diagonalizable with the same spectral radius, and arbitrarily close to 𝐺. For these matrices 𝐻 , we have 𝑛𝑖⋅(𝐺)
𝑛𝑖′ ⋅(𝐺) →

𝑣𝑅1 (𝑖)
𝑣𝑅1 (𝑖

′)
, 

𝑛 ⋅𝑗 (𝐺) → 1
𝑣𝑅1 (𝑗)

− 1 and 𝑛 𝑖⋅(𝐺) → 𝑣𝑅1 (𝑖) − 1 as 𝛼 tends to 1∕𝜆1. By continuity, all these statements also hold for 𝐺. ■

Proof of Proposition 3. We consider requests eventually reaching 𝑗 from a walk in ∪𝑠≤𝑡𝑊 𝑖𝑗 (𝑠, 𝐺) as events. We know that the 
request reaches its target if and only if it reaches it through such a walk. We can then apply the principle of inclusion-exclusion to 
these events. This implies that

𝑝𝑖𝑗 (𝑡) =
|∪𝑠≤𝑡𝑊 𝑖𝑗 (𝑠,𝐺)|∑

𝑘=1
(−1)𝑘+1

∑
𝑤1≠...≠𝑤𝑘∈∪𝑠≤𝑡𝑊 𝑖𝑗 (𝑠,𝐺)

𝑝(𝑤1 ∧ ... ∧𝑤𝑘)

where 𝑝(𝑤1 ∧ ... ∧𝑤𝑘) is the probability of the info reaching 𝑗 through all walks 𝑤1, 𝑤2, ..., 𝑤𝑘. Next, let us show recursively that 
𝑝(𝑤1 ∧ ... ∧𝑤𝑘) = 𝛼𝐿(𝑤1 ,...,𝑤𝑘).

For any walk 𝑤, the probability that a request will travel all the way through 𝑤 is 𝑝(𝑤) = 𝛼𝑙(𝑤). Next, take two walks 𝑤 ≠ 𝑤′

originating in 𝑖. The chain rules tell us that 𝑝(𝑤 ∧𝑤′) = 𝑝(𝑤) 𝑝(𝑤′|𝑤) where 𝑝(𝑤′|𝑤) is the probability that 𝑖’s request will go through 
𝑤′ conditional on having gone through 𝑤.

𝑝(𝑤′|𝑤) = 𝑝(𝑤′ ⧵ (𝑤 ∩𝑏 𝑤
′)|𝑤) = 𝛼𝑙(𝑤′)−𝐽 (𝑤,𝑤′)

with 𝐽 (𝑤, 𝑤′) denoting the number of links initially common to 𝑤 and 𝑤′: 𝐽 (𝑤, 𝑤′) = 𝑙(𝑤 ∩𝑏 𝑤
′). Hence,

𝑝(𝑤 ∧𝑤′) = 𝛼𝑙(𝑤)+𝑙(𝑤′)−𝑙(𝑤∩𝑏𝑤
′) = 𝛼𝐿(𝑤,𝑤′).

Assume now that we have proven that 𝑝(𝑤′
1 ∧ ... ∧𝑤′

𝑘−1) = 𝛼
𝐿(𝑤′

1 ,...,𝑤
′
𝑘−1) for any set of 𝑘 −1 walks originating in 𝑖 (𝑘 ≥ 2) and that 

we have constructed 𝐽 ((𝑤′
1 ∧ ... ∧𝑤′

𝑘−2), 𝑤) for any {𝑤1, ..., 𝑤𝑘−2} and 𝑤 that originates in 𝑖.
Take a set of 𝑘 walks originating in 𝑖: {𝑤1, ..., 𝑤𝑘}. Clearly,

𝑝(𝑤1 ∧ ... ∧𝑤𝑘) = 𝑝(𝑤1 ∧ ... ∧𝑤𝑘−1) 𝑝(𝑤𝑘|𝑤1 ∧ ... ∧𝑤𝑘−1). (19)

The probability that a request will go through 𝑤𝑘 conditional on having gone through all walks in {𝑤1, ...𝑤𝑘−1} is the probability 
that it will go through the remainder of 𝑤𝑘 once we remove the initial links that may have been accounted for:

𝑝(𝑤𝑘|𝑤1 ∧ ... ∧𝑤𝑘−1) = 𝛼𝑙(𝑤𝑘)−𝐽 ((𝑤1∧...∧𝑤𝑘−1),𝑤𝑘) (20)

where 𝐽 ((𝑤1 ∧ ... ∧𝑤𝑘−1), 𝑤𝑘) is the number of links initially common to (𝑤1 ∧ ... ∧𝑤𝑘−1) and 𝑤𝑘. Note that 𝐽 ((𝑤1 ∧ ... ∧𝑤𝑘−1), 𝑤𝑘)
equals the number of links initially common to both 𝑤𝑘 and (𝑤1 ∧ ... ∧𝑤𝑘−2) plus the number of links initially common to both 𝑤𝑘

and 𝑤𝑘−1 minus the double counting17:

𝐽 ((𝑤1 ∧ ... ∧𝑤𝑘−1),𝑤𝑘) = 𝐽 ((𝑤1 ∧ ... ∧𝑤𝑘−2),𝑤𝑘) + 𝐽 (𝑤𝑘−1,𝑤𝑘) − 𝐽 ((𝑤1 ∧ ... ∧𝑤𝑘−2),𝑤𝑘−1 ∩𝑏 𝑤𝑘)). (21)

Using (20) in (19) along with our induction hypothesis tells us that

𝑝(𝑤1 ∧ ... ∧𝑤𝑘) = 𝛼𝐿(𝑤1 ,...,𝑤𝑘−1) 𝛼𝑙(𝑤𝑘)−𝐽 ((𝑤1∧...∧𝑤𝑘−1),𝑤𝑘).

Expanding the terms in (21), we get

𝑙(𝑤𝑘) − 𝐽 ((𝑤1 ∧ ... ∧𝑤𝑘−1),𝑤𝑘) = 𝑙(𝑤𝑘) −
∑

𝑠∈{1,..𝑘−1}
𝑙(𝑤𝑠 ∩𝑏 𝑤𝑘) + ...+ (−1)𝑘−1𝑙(𝑤1 ∩𝑏 ... ∩𝑏 𝑤𝑘)

=𝐿(𝑤1, ...,𝑤𝑘) −𝐿(𝑤1, ...,𝑤𝑘−1).

It follows that 𝑝(𝑤1 ∧ ... ∧𝑤𝑘) = 𝛼𝐿(𝑤1 ,...,𝑤𝑘). ■

Appendix E. From finite to infinite time

As discussed within the main text, the exact formulas for targeting centrality in finite time, while straightforwardly programmable, 
exhibit greater computational demands compared to the infinite time formula, particularly for larger values of 𝑡. A crucial question 
becomes whether we can employ the formula for targeting centrality in infinite time to effectively approximate the formula for 
targeting centrality in finite time, especially for large values of 𝑡.

Let’s consider the scenario where the target refrains from retransmission. To what extent does the ratio between 𝑛𝑖𝑗 (𝑡, 𝐺) and the 
count of cycles 𝑗𝑗 having lengths less than or equal to 𝑡 (including the null cycle),
19

17 The number of links common to (𝑤1 ∧ ... ∧𝑤𝑘−2) and the initial intersection between 𝑤𝑘 and 𝑤𝑘−1 .
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𝑛𝑖𝑗 (𝑡,𝐺)
1 + 𝑛𝑗𝑗 (𝑡,𝐺)

,

serve as a suitable approximation for 𝑛 𝑖𝑗 (𝑡, 𝐺) as 𝑡 becomes large? Proposition 4 below confirms the affirmative stance, demonstrating 
that Δ𝑖𝑗 (𝑡) ∶= 𝑛 𝑖𝑗 (𝑡)(1 + 𝑛𝑗𝑗 (𝑡, 𝐺)) − 𝑛𝑖𝑗 (𝑡, 𝐺) rapidly converges to 0 as 𝑡 grows.

Definition. We say that sequence Δ𝑖𝑗 (𝑡, 𝐺) ≥ 0 converges geometrically towards 0 as 𝑡 →∞ if there exists 𝐿 > 0 and 𝜀 < 1 such that 
Δ𝑖𝑗 (𝑡, 𝐺) ≤𝐿𝜀𝑡.

Proposition 4. Δ𝑖𝑗 (𝑡, 𝐺) ∶= 𝑛 𝑖𝑗 (𝑡, 𝐺)(1 + 𝑛𝑗𝑗 (𝑡, 𝐺)) − 𝑛𝑖𝑗 (𝑡, 𝐺) ≥ 0 converges geometrically towards 0 as 𝑡 →∞.

Proof. By convention, set 𝑛𝑗𝑗 (0) = 0. It can be checked that

𝑛𝑖𝑗 (𝑡,𝐺) =
𝑡∑

𝑠=0
𝑥 𝑖𝑗 (𝑠)𝑛𝑗𝑗 (𝑡− 𝑠,𝐺). (22)

Indeed,

𝑛𝑖𝑗 (𝑡,𝐺) =
𝑡∑

𝑙=0

𝑙∑
𝑠=0

𝑥 𝑖𝑗 (𝑠,𝐺)𝑥𝑗𝑗 (𝑙 − 𝑠) =
𝑡∑

𝑠=0

𝑡∑
𝑙=𝑠

𝑥 𝑖𝑗 (𝑠,𝐺)𝑥𝑗𝑗 (𝑙 − 𝑠,𝐺)

=
𝑡∑

𝑠=0

𝑡−𝑠∑
𝑠′=0

𝑥 𝑖𝑗 (𝑠,𝐺)𝑥𝑗𝑗 (𝑠′,𝐺) =
𝑡∑

𝑠=0
𝑥 𝑖𝑗 (𝑠,𝐺)𝑛𝑗𝑗 (𝑡− 𝑠,𝐺).

Δ𝑖𝑗 (𝑡,𝐺) = 𝑛 𝑖𝑗 (𝑡,𝐺)(1 + 𝑛𝑗𝑗 (𝑡,𝐺)) − 𝑛𝑖𝑗 (𝑡,𝐺) =
𝑡∑

𝑠=0
𝑥 𝑖𝑗 (𝑠,𝐺)(1 + 𝑛𝑗𝑗 (𝑡,𝐺))

−
𝑡∑

𝑠=0
𝑥 𝑖𝑗 (𝑠,𝐺)𝑛𝑗𝑗 (𝑡− 𝑠,𝐺) =

𝑡∑
𝑠=0

𝑥 𝑖𝑗 (𝑠,𝐺)
(
1 + 𝑛𝑗𝑗 (𝑡,𝐺) − 𝑛𝑗𝑗 (𝑡− 𝑠,𝐺)

)
are all positive elements.

Recall that 1 + 𝑛𝑗𝑗 (𝑡, 𝐺) =
∑𝑡

𝑠=0 𝛼
𝑠[𝐺𝑠]𝑗𝑗 , such that 𝑛𝑗𝑗 (𝑡, 𝐺) − 𝑛𝑗𝑗 (𝑡 − 𝑠, 𝐺) =

∑𝑡

𝑙=𝑡−𝑠 𝛼
𝑙[𝐺𝑙]𝑗𝑗 .

Moreover 𝑥 𝑖𝑗 (𝑠, 𝐺) ≤ 𝑥𝑖𝑗 (𝑠, 𝐺) = 𝛼𝑠[𝐺𝑠]𝑖𝑗 .
Using these two inequalities in Δ𝑖𝑗 (𝑡) gives us

Δ𝑖𝑗 (𝑡,𝐺) ≤
𝑡∑

𝑠=0
𝛼𝑠[𝐺𝑠]𝑖𝑗

(
𝑡∑

𝑙=𝑡−𝑠
𝛼𝑙[𝐺𝑙]𝑗𝑗

)
.

Let 𝜌(𝐺) be the spectral norm of matrix 𝐺, i.e., its largest eigenvalue. Using the facts that 𝐺𝑖𝑗 ≤ 𝜌(𝐺) and 𝜌(𝐺𝑙) = 𝜌(𝐺)𝑙 , we have:

Δ𝑖𝑗 (𝑡) ≤
𝑡∑

𝑠=0
𝛼𝑠𝜌(𝐺𝑠)

(
𝑡∑

𝑙=𝑡−𝑠
𝛼𝑙𝜌(𝐺𝑙)

)
≤

𝑡∑
𝑠=0

𝛼𝑠𝜌(𝐺)𝑠 𝛼
𝑡−𝑠𝜌(𝐺)𝑡−𝑠

1 − 𝛼𝜌(𝐺)
≤ 𝛼𝑡𝜌(𝐺)𝑡 𝑡+ 1

1 − 𝛼𝜌(𝐺)

Now, for any 𝜀 such that 𝛼𝜌(𝐺) < 𝜀 < 1, we can check that (𝑡+1)𝛼
𝑡𝜌(𝐺)𝑡

𝜀𝑡
converges towards 0. This shows that there exists 𝐿 > 0

such that Δ𝑖𝑗 (𝑡) ≤𝐿𝜀𝑡. ■
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Appendix F. Additional figures

Fig. 4. Rank Correlation between targeting and diffusion centrality. We take 1000 Erdös-Renyi random graphs with 𝑛 = 50 agents and probability of link 
formation 𝑝 = 0.2. The figure plots the 5𝑡ℎ percentile, median, and 95𝑡ℎ percentile of the rank correlation between targeting and diffusion centrality across agents 
within graphs for the value of 𝛼∕𝛼max on the horizontal axis.

Fig. 5. Rank Correlation between targeting and diffusion centrality. We take 1000 small world graphs where 𝑙 links within 5 fully connected groups of 
10 agents are randomly rewired across groups. The figure plots the 5𝑡ℎ percentile, median, and 95𝑡ℎ percentile of the rank correlation between targeting and diffusion 
centrality across agents within the graphs as 𝑙 increases.

References

Atay, Ata, Mauleon, Ana, Schopohl, Simon, Vannetelbosch, Vincent, 2022. Key players in bullying networks. UB Economics–Working Papers E22/422. Universitat de 
Barcelona.

Ballester, Coralio, Calvó-Armengol, Antoni, Zenou, Yves, 2006. Who’s who in networks. Wanted: the key player. Econometrica 74 (5), 1403–1417.

Ballester, Coralio, Zenou, Yves, 2012. Key player policies when contextual effects matter. J. Math. Sociol. 38.
21

Banerjee, Abhijit, Chandrasekhar, Arun G., Duflo, Esther, Jackson, Matthew O., 2013. The diffusion of microfinance. Science 341.

http://refhub.elsevier.com/S0022-0531(24)00126-1/bib89BF5D11D3E4CE48D92FFA1F04F2D6C1s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib89BF5D11D3E4CE48D92FFA1F04F2D6C1s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib9674A5A0E7A0A230ED27A1AB30E87B29s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib51BB2E7C7EEAD24E315A84617C8F16E2s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib22FE0156FEE67E380187707BAE970369s1


Journal of Economic Theory 222 (2024) 105920Y. Bramoullé and G. Genicot

Banerjee, Abhijit, Chandrasekhar, Arun G., Duflo, Esther, Jackson, Matthew O., 2019. Using gossips to spread information: theory and evidence from two randomized 
controlled trials. Rev. Econ. Stud. 86 (6), 2453–2490.

Beaman, Lori, BenYishay, Ariel, Magruder, Jeremy, Mobarak, Ahmed Mushfiq, 2021. Can network theory-based targeting increase technology adoption? Am. Econ. 
Rev. 111 (6), 1918–1943.

Bloch, Francis, Jackson, Matthew O., Tebaldi, Pietro, 2023. Centrality measures in networks. Soc. Choice Welf., 1–41.

Bonacich, Phillip, 1987. Power and centrality: a family of measures. Am. J. Sociol. 92 (5), 1170–1182.

Cook, Clayton R., William, Kirk R., Guerra, Nancy G., Kim, Tia E., Sadek, Shelly, 2010. Predictors of bullying and victimization in childhood and adolescence: 
a meta-analytic investigation. School Psychol. Q. 25 (2), 65–83.

Cruz, Cesi, Labonne, Julien, Querubin, Pablo, 2017. Politician family networks and electoral outcomes: evidence from the Philippines. Am. Econ. Rev. 107 (10), 
3006–3037.

Dequiedt, Vianney, Zenou, Yves, 2017. Local and consistent centrality measures in parameterized networks. Math. Soc. Sci. 88, 28–36.

Drago, Francesco, Mengel, Friederike, Traxler, Christian, 2020. Compliance behavior in networks: evidence from a field experiment. Am. Econ. J. Appl. Econ. 12 (2), 
96–133.

Duarte, Raúl, Finan, Frederico, Larreguy, Horacio, Schechter, Laura, 2019. Brokering Votes with Information Spread via Social Networks. NBER Working Papers 26241. 
National Bureau of Economic Research, Inc.

Duncan, A., 2004. Powers of the adjacency matrix and the walk matrix. Collection, 4–11.

Guilbeault, Douglas, Centola, Damon, 2021. Topological measures for identifying and predicting the spread of complex contagions. Nat. Commun. 12 (1), 1–9.

Jackson, Matthew O., Rogers, Brian W., 2007. Relating network structure to diffusion properties through stochastic dominance. B. E. J. Theor. Econ. 7 (1), 1–13.

Jackson, Matthew O., Rogers, Brian W., Zenou, Yves, 2017. The economic consequences of social-network structure. J. Econ. Lit. 55 (1), 49–95.

Katz, Leo, 1953. A new status index derived from sociometric analysis. Psychometrika 18 (1), 39–43.

Kaufman, Tessa M.L., Huitsing, Gijs, Bloemberg, Rick, Veenstra, René, 2021. The systematic application of network diagnostics to monitor and tackle bullying and 
victimization in schools. Int. J. Bullying Prev. 3 (1), 75–87.

King, Maia, 2024. Walk-independence probabilities and WIP centrality: a new heuristic for diffusion probabilities in networks. Soc. Netw. 78, 173–183.

Lamberson, P.J., 2016. Diffusion in networks. In: Bramoullé, Y., Rogers, B., Galeotti, A. (Eds.), Oxford Handbook of the Economics of Networks. Oxford University 
Press.

López-Pintado, Dunia, 2008. Diffusion in complex social networks. Games Econ. Behav. 62 (2), 573–590.

Rose, Christiern, 2019. Optimal injection points for information diffusion. Econ. Lett. 175, 67–70.

Sadler, Evan, 2022. Ordinal centrality. J. Polit. Econ. 130 (4), 926–955.

Vogels, Emily A., 2022. Teens and Cyberbullying 2022. Report. Pew Research Center.
22

Watts, D.J., 2004. Six Degrees: The Science of a Connected Age. W. W. Norton.

http://refhub.elsevier.com/S0022-0531(24)00126-1/bibAFE4DAD194418BABC8276AE02A1031EAs1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bibAFE4DAD194418BABC8276AE02A1031EAs1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib359D05CF69986659CA8AED9B61560793s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib359D05CF69986659CA8AED9B61560793s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib5C986D9978AFFD9C574F67D11DCA23AFs1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib586EC61829DBAE369E7C552CCB017BA4s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib7FC4297C12C22335641D6A176793886Bs1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib7FC4297C12C22335641D6A176793886Bs1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib1F8A6757007B2990B6511B19748337C6s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib1F8A6757007B2990B6511B19748337C6s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bibED86CC7A89B0D0742B124DF44998E7F3s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib5DE80327349C9279FB379A916D413DEBs1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib5DE80327349C9279FB379A916D413DEBs1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bibAEC3E82F0FB6CF6F18534149EDB97301s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bibAEC3E82F0FB6CF6F18534149EDB97301s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib2DB239F5AC0EE00353D93ECFA1A4CBEAs1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bibF8DD15025DDF92842C64EEA3ECECC717s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib1C914D1923C02479A8BD59755EC3D3FCs1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bibF137AE45B9B1F65C30888067D7B95DF5s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib7574FA36F1E1E45E14FC3BFD16E91429s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib722F2588C872120D11B9683B9C141F88s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib722F2588C872120D11B9683B9C141F88s1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bibE8AFF97609A86FB995A6F29AB04EAEFBs1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib7BD1F0851C68E496713FAEC20C69A4BDs1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib7BD1F0851C68E496713FAEC20C69A4BDs1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib2F0FA2422F74C509128CB38CDAACECFFs1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bibE34DC35991029F08755C0E6B3189EB5Ds1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bib001DCC2B74154AC3156B49A62979CDBFs1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bibEBE68969329DFE953368BF87F8B736BAs1
http://refhub.elsevier.com/S0022-0531(24)00126-1/bibFCED0DCCA3A6086078DD5D6BB24576E0s1

	Diffusion and targeting centrality
	1 Introduction
	2 Literature
	3 Information diffusion in networks
	3.1 Setup
	3.2 Diffusion processes in networks
	3.3 Diffusion centrality

	4 Targeting centrality
	4.1 Motivation
	4.2 Definitions and notation
	4.3 Infinite time
	4.4 Finite time

	5 Comparison between targeting and diffusion centrality
	5.1 An example
	5.2 Formal comparison
	5.3 Random graphs under both sender and target no-transmission

	6 Reachability
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A Discussion around two papers
	A.1 Banerjee et al. (2013)
	A.2 Cruz et al. (2017)

	Appendix B Latex notation
	Appendix C Targeting centrality in finite time
	Appendix D Proofs
	Appendix E From finite to infinite time
	Appendix F Additional figures
	References


