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A COMPLETE FORMALIZATION OF FERMAT’S LAST THEOREM FOR

REGULAR PRIMES IN LEAN

ALEX J. BEST, CHRISTOPHER BIRKBECK, RICCARDO BRASCA, ERIC RODRIGUEZ BOIDI,

RUBEN VAN DE VELDE, AND ANDREW YANG

Abstract. We formalize a complete proof of the regular case of Fermat’s Last Theorem in the Lean4

theorem prover. Our formalization includes a proof of Kummer’s lemma, that is the main obstruction

to Fermat’s Last Theorem for regular primes. Rather than following the modern proof of Kummer’s

lemma via class field theory, we prove it by using Hilbert’s Theorems 90-94 in a way that is more

amenable to formalization.

1. Introduction

For x, y, z ∈ Z and n ∈ N with n > 2, Fermat’s Last Theorem (FLT) is the result that there are no
solutions to

xn + yn = zn

with x, y and z all different from 0. This apparently easy result has been stated by Pierre de Fermat
around 1637, but the first full proof, by Andrew Wiles and Richard Taylor, only appeared in 1995 in the
two papers [Wil95, TW95]. The quest for a proof of FLT has a long history of driving the development
of new mathematics and this has continued now as mathematicians and computer scientists look to
formalize mathematics. The importance of FLT lies not in the theorem itself (as number theory is full
of seemingly easy equations that turn out to be extremely difficult to solve), but in the theories that
has been developed to solve it. Indeed, one can say that the whole field of algebraic number theory
originated in attempting to prove FLT.

An elementary argument shows that it is enough to prove FLT in the case the exponent is a prime
number p 6= 2. In what follows we will describe the formalization (in the Lean4 theorem prover) of
FLT in the special case where the exponent p is what is known as a regular prime. That is, p is a
prime number (different from 2) that does not divide the class number of the p-th cyclotomic extension

Q(e
2πi
p )/Q. This case is significantly simpler than the full version and it is amenable to formalization

given the current state1 of our formalized libraries, such as mathlib [mC20]. There are several reasons
for wanting to formalize the regular case, firstly as a test of mathlib. Even though the tools we need here
are much more basic than those required for the full proof, by formalizing this case we have extensively
developed the number theory library, finding many issues with our original implementations which as a
result of this work have now been addressed. Secondly, many of the tools required are of independent
interest, such as discriminants, cyclotomic fields, ramification results, etc, all of which where originally
formalized as a part of this work. Having flt-regular as our goal allowed us to develop these theories
in a cohesive manner. Lastly, this represents the first formalization of a non-trivial family of cases of
FLT (a family that is conjecturally infinite). Throughout the paper, we use the symbol W for external
links. Almost every mathematical statement and definition will be accompanied by such a link directly
to the source code for the corresponding statement in mathlib or in flt-regular. To keep the links
usable, they are all to a fixed commit of the master branch (the most recent one at the time of writing).

In the previous work [BBBRB23] of (some of) the authors, we formalized the following first step
towards proving FLT in the regular case:

Theorem 1.1 (Case 1). Let p be an odd regular prime. Then xp + yp = zp has no solutions with
x, y, z ∈ Z and gcd(xyz, p) = 1.

Here we will be concerned with the second case, which replaces the condition that gcd(xyz, p) = 1
with xyz 6= 0. The main difficulty in this is the need for Kummer’s Lemma, which states that:

1A partial formalization of the full proof is a work in progress by Kevin Buzzard, and it will likely take several years to

complete.
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Theorem 1.2. Let p be an odd regular prime and let ζ ∈ C be a primitive p-th root of unity. If u ∈ Z[ζ]×

is a unit such that u ≡ a mod p for an integer a, then there exists v ∈ Z[ζ]× such that u = vp.

While there are several proofs of this result, many make use of class field theory or the p-adic class
number formula, which are beyond what is currently available in mathlib. For this reason, we have
instead opted for a more ‘elementary’ proof, requiring only some basic results about group cohomology,
specifically Hilbert’s Theorems 90-94.

Here is an outline of the paper. In Section 2 we fix the informal and formal notation that will be
used through the paper, explaining the very first issues that appear in the formalization process. In
Section 3, we recall how in [BBBRB23] we formalized Theorem 3.1, reducing FLT to Theorem 4.1. In
Section 4 we reduce the proof of Case 2 to Kummer’s lemma, Theorem 5.1. This is mathematically not
very difficult, but the proof is rather intricate, and its formalization is quite challenging. We then move
on the the heart of our work, the formalization of Kummer’s lemma. In Section 5, we prove Kummer’s
lemma assuming Hilbert’s Theorem 94, a cohomological result that is historically a precursor of global
class field theory. In particular, the only thing that remain to be proven is Theorem 6.1: if L/K is an
unramified extension of number fields of odd prime degree, then [L : K] divides the class number of K.
Starting with Section 6, our work is basically independent of FLT, and only concerns the cohomology of
number fields. We then reduce Theorem 6.1 to Theorem 6.2, and the latter to Hilbert’s Theorems 92 and
90, Theorems 7.1 and 8.1. In Section 7 we prove Hilbert’s Theorem 92, which is the hardest part of our
formalization. The proof we formalize is a simplification of Hilbert’s original proof, but it is still subtle
and requires a lot of care. In particular it depends on nontrivial results about the units of the ring of
integers of number fields. In Section 8 we explain the formalization of the version of Hilbert’s Theorem 90
that we need, using what is already in mathlib. This finishes the proof of Kummer’s lemma, and hence
the formalization of FLT for regular primes. In Section 9 we discuss some of the issues we encountered in
the formalization process, and how we solved them. Finally, in Section 10 we discuss some future work.

As it is clear from the above discussion, the paper follows a backwards reasoning: we start from
the final result we want to prove, and we work our way back to the results we need. This reflects our
formalization process: the final goal, FLT for regular primes, was clear from the beginning and the
statement was very easy to formalize. Also the fact that we needed to split the proof in the two cases
was clear, as all the known approaches follow this strategy. Once Case 1 was done, we moved to Case
2, and again all known approaches use Kummer’s lemma. A key observation is that, even if the proof is
difficult, the formalization of the statement is easy, so we decided to finish the work assuming Kummer’s
lemma. Now, as there are several possible ways of proving Theorem 5.1 that involve various complicated
objects (cohomology groups, L-functions etc.) it was key to chose an approach that could be formalised
in a reasonable time-frame. Working backwards, we were sure that we were really making progress at
any step of the formalization (of course there is always the risk of ending up with something very hard
to prove, but in this way we minimize the risk of formalizing useless definitions). This is a very different
strategy with respect to projects like the Liquid Tensor Experiment where the statement of the result is
already difficult to formalize, not only its proof.

2. Informal and formal notation

Throughout the paper, p will be an odd regular prime. Although FLT is a statement about the integers,
the proof we are formalizing (as all modern approaches) requires a significant input from algebraic number
theory. Here is a our basic setup. Let µp ⊆ C be the set of p-th roots of unity. We fix ζ ∈ µp a primitive
root of unity and we will write K for the number field Q(ζ). By definition of regularity, p does divide
the class number of K. The ring of integers of K will be denoted OK : we have that OK = Z[ζ] (a fact
that we formalized in [BBBRB23]).

As is customary in formalization projects, it is better to avoid working directly with the field Q(ζ)
(that would be Algebra.adjoin Q {ζ}), otherwise all our results would apply only to that extension of Q,
and not to any extension that is abstractly isomorphic to it. Instead, we work with any p-th cyclotomic
extension of Q, as follows.

variable {p : N+} {K : Type*} [Field K] [NumberField K]

[IsCyclotomicExtension {p} Q K]

The class IsCyclotomicExtension W, that is a fundamental prerequisite for our formalization, has been
introduced into mathlib during the first steps of our project (see [BBBRB23]). The instances [Field

K] and [NumberField K] ensure that K is an extension of Q that is generated by a primitive p-root of
2
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unity. We sometimes use [CharZero K] instead of [NumberField K] since some results in mathlib use this
formulation (the two hypothesis are equivalent in our context). Note that here p is of type (p : N+),
which is the type of positive natural numbers and in particular it is not a natural number. This causes
mild annoyances as we are forced to use the coercion (↑p : N) to see p as a natural number or the fact
that a prime number is positive to move back and forth. This is because IsCyclotomicExtension takes as
first argument a set (S : Set N+) (this is a design decision made at the beginning of the formalization of
the theory of cyclotomic extensions in mathlib, and our work here has highlighted the need for it to be
refactored in the future).

Instead of fixing a primitive p-th root of unity ζ once and forall, it is more convenient in Leanto work
with an unspecified root primitive root.

variable {ζ : K} (hζ : IsPrimitiveRoot ζ p)

One issue that appears, is that now (ζ : K) has type K, and not OK or O
×

K , forcing us to use several
coercions. To make the formalization process as smooth as possible, we usually consider (hζ.unit’ : O

×),
that is the same as ζ, but seen as a unit of the ring of integers. After having set the relevant @[simp]

and @[norm_cast] tags, we can use various tactics like push_cast or field_simp to avoid mathematically
irrelevant annoyances.

The ring of integers of K is denoted by O K W, and mathlib contains an extensive library of results
about it. For example, the fact that OK is a Dedekind domainW and the fact that OK = Z[ζ]W are
both formalized: the former in the work [BDNdC22]. To state that p is a prime, we use [Fact p.Prime]

(here (p : N)): indeed Nat.Prime is not a class, but using Fact we can record primality as an instance and
use typeclass inference. Since regularity is a property of a natural number, in order to define regularity
we cannot use the field K fixed above. We use instead CyclotomicField p Q: a fixed model of a p-th
cyclotomic extension of Q. Here is our definition of being a regular primeW.

/-- A natural number ‘n‘ is regular if ‘n‘ is coprime with the cardinal of the class group -/

def IsRegularNumber (n : N) [hn : Fact (0 < n)] : Prop :=

n.Coprime <| Fintype.card <| ClassGroup (O <| CyclotomicField 〈n, hn.1〉 Q)

def IsRegularPrime (p : N) [Fact p.Prime] : Prop := IsRegularNumber p

Note that we define the notion of being regular for any positive integer as being coprime with the class
number of the corresponding cyclotomic extension, but this is used in practice only for prime numbers:
in particular we do not claim that Kummer’s lemma holds for regular numbers, it is for example false
for n = 4. (This is customary in formalized mathematics, since primality is not needed to state the
condition, we do not assume it, even if this generality is not mathematically insteresting.) Our main
theorem is thenW.

/-- Fermat’s last theorem for regular primes. -/

theorem flt_regular {p : N} [Fact p.Prime] (hreg : IsRegularPrime p) (hodd : p 6= 2) :

FermatLastTheoremFor p := by . . .

Here FermatLastTheoremFor p W is the statement, existing in mathlib,

∀ a b c : N, a 6= 0 → b 6= 0 → c 6= 0 → a ^ p + b ^ p 6= c ^ p

3. Case 1

The proof of FLT in the regular case is split into two cases. The so called “first case” of FLT is the
following

Theorem 3.1 (Case 1). Let p 6= 2 be a regular prime. Then xp+yp = zp has no solutions with x, y, z ∈ Z
and gcd(xyz, p) = 1.

Here is the formalized statementW

theorem caseI {a b c : Z} {p : N} [Fact p.Prime] (hreg : IsRegularPrime p)

(caseI : ¬↑p | a * b * c) : a ^ p + b ^ p 6= c ^ p := . . .
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The formalization of this result was completed on October 13th 2022, a little less than one year later
than the starting date of the project. This work is described in [BBBRB23], and we will only briefly list
the main bits we formalized:

(1) Definitions of cyclotomic fields and cyclotomic extensions.2

(2) Definitions of norms, trace and discriminant for number fields.
(3) Computing the discriminant and ring of integers for p-power cyclotomic fields.
(4) Specific results about units in these cyclotomic field. For example that for p 6= 2 a prime, every

unit u ∈ Z[ζp]
× can be written as u = xζnp for some n ∈ Z and x ∈ Z[ζp]

× such that x ∈ R.
(5) The proof of FLT for n = 3 which was done independently by one of us (RVdV).

Our formalization was entirely in Lean3, and shortly after the end of this task, the transition from
Lean3 to Lean4 started. Once mathlib moved completely to Lean4, we started updating flt-

regular. For this, we used mathport, a tool developed by the mathlib community (especially by
Mario Carneiro and Gabriel Ebner) to port Lean3 projects to Lean4. Porting flt-regular, we en-
countered mainly two issues.

• Coercions (especially from O
×

K to OK to K) are omnipresent in our project, see [BBBRB23,
Section 3]. Lean4 handles coercions in a completely different way from Lean3, so part of the
code had to be rewritten by hand. Although tedious, the same issue had appeared in porting
mathlib, so the solutions were well understood.

• The way typeclass inference handles multiple inheritance changed in Lean4, see for exam-
ple [Wie23]. This caused slowdown in mathlib and in flt-regular3, which we worked to
solve by fixing the issues directly in mathlib, something that is now almost completely done
(see Section 9 below for more details).

Another important aspect of our work, described in [BBBRB23, Section 4], is integration to mathlib.
We now have more than 200 pull requests merged that were originally in flt-regular. Notably, almost
all the prerequisites needed to formalize the proof of Case 1 are now in mathlib (with the exception of
homogenization of polynomials) and we have already started the same process for Case 2. Even if the
whole proof of FLT for regular primes is unlikely to be included into mathlib (being very technical and
specific) we expect that all prerequisites will be upstreamed. Besides improving mathlib itself, we saw,
especially during the port, that this process reduces the work of maintaining the code, something that
can be very tedious due to the continuous development/expansion of mathlib.

4. Case 2

Given the formalization of Theorem 3.1 outlined in Section 3, to formalize the proof of FLT for regular
primes it is enough to consider the following (which is known as Case 2 of FLT for regular primes):

Theorem 4.1 (Case 2). Let p 6= 2 be a regular prime. Then xp + yp = zp has no solutions such that

• xyz 6= 0.
• gcd(x, y, z) = 1.
• p | xyz.

Our formalization is the followingW

/-- CaseII. -/

theorem caseII {a b c : Z} {p : N} [hpri : Fact p.Prime]

(hreg : IsRegularPrime p) (hodd : p 6= 2)

(hprod : a * b * c 6= 0) (hgcd : ({a, b, c} : Finset Z).gcd id = 1)

(caseII : ↑p | a * b * c) : a ^ p + b ^ p 6= c ^ p := by . . .

Here is the strategy of the proof that we have formalized (following [BS66, Section V.7.1]). Let x, y
and z be coprime integers such that p | xyz and xp + yp = zp. First note that p divides exactly one of
x, y, z, and by an easy change of variables we can assume that p | z. Since we have to show that there
is nontrivial solution with gcd(x, y, z) = 1 and p | z, it is enough to prove that there is no nontrivial
solutions such that p ∤ y and p | z. The statement we are going to prove is thenW

2To date these are the only explicit examples of number fields in mathlib.
3In the beginning we simply increased the limit of memory allocations in the project, via the set_option maxHeartbeats

and set_option synthInstance.maxHeartbeats commands, and we worked with the slow code, but this was only a tem-

porary solution.
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lemma not_exists_Int_solution {p : N} [Fact (p.Prime)] (hreg : IsRegularPrime p)

(hodd : p 6= 2) :

¬∃ (x y z : Z), ¬↑p | y ∧ ↑p | z ∧ z 6= 0 ∧ x ^ p + y ^ p = z ^ p := by . . .

In OK we have that p = (1− ζ)p−1ε for some ε ∈ O
×

K and the norm of ζ−1 is p, in particularW p divides

an integer n in Z if and only if ζ − 1 divides n in OK . It follows that it is enough to proveW

lemma not_exists_solution’ : {p : N+} [Fact (p.Prime)]

(hreg : (p : N).Coprime <| Fintype.card <| ClassGroup (O K))

¬∃ (x y z : O K), ¬(hζ.unit’ : O K) - 1 | y ∧ (hζ.unit’ : O K) - 1 | z ∧ z 6= 0 ∧

x ^ (p : N) + y ^ (p : N) = z ^ (p : N) := by . . .

Note that here (p : N+) (since we need cyclotomic extensions) and then we are forced to consider the
coercion (p : N) to take exponentiation. Also, hreg is in terms of K rather than CyclotomicField p Q

(mathematically the two notions are of course equivalent): this is because we are proving results about
K, so it is more convenient to work with it directly. Since ultimately we will apply our results to the
case K = CyclotomicField p Q, this causes no problems.

Write z = pkz0 with z0 ∈ Z such that p ∤ z0. It suffices to prove that the more general equation

xp + yp = ε(ζ − 1)pmzp0

has no nontrivial solutions with x, y, z0 ∈ OK such that y and z0 are not divisible by 1− ζ. Here m > 0
and ε ∈ O

×

K . The proof follows by a descent argument (which will crucially depend on Kummer’s lemma)
where one shows that if such a solution exists for some m > 0 then automatically m > 1 and one can
construct a solution with m replaced by m− 1 > 0.

We now give more details about the proof, notably explaining where Kummer’s lemma is needed.
Assume we have x, y, z ∈ OK and ε ∈ O

×

K such that y and z are not divisible by 1− ζ and that we have

(1) xp + yp = ε(1− ζ)p(m+1)zp

for some natural number m. Note that we wrote m+1 instead of m but we are not assuming m > 0, so
this is equivalent to the above. This formulation is more amenable to formalization as we do not need to
keep around the assumption that m is positive. In what follows we will keep this choice of ζ fixed and
when discussing an arbitrary p-th root of unity we will denote them by η.

Let z and p denote the ideals generated by z and ζ − 1 respectively. Note that p is the only prime
ideal of OK above p. Then factoring (1) as ideals we haveW

∏

η∈µp

(x+ ηy) = (ζ − 1)p(m+1)
z
p.

It follows that each x+ ηy is divisible by (ζ− 1) in OKW. The idea now is to divide each side by (ζ− 1)p

and then after some manipulations, show that we can create a solution with a smaller power of m on the
right hand side.

For any η ∈ µp, we letW

q(η) =
x+ ηy

ζ − 1
,

which by the above we know lies in OK . Using this we then showW that this map composed with
reduction modulo p is a bijection between µp and OK/p. We denoteW by η0 be the unique p-th root of
unity such that q(η0) ≡ 0 mod p.

Let m = gcd((x), (y)). We have thatW m is coprime to p and moreoverWm divides the ideal generated
by q(η) for any η. We write cη for the ideal such that cη ·m = q(η). Then, for η1 6= η2, we see thatW cη1

and cη2
are coprime. MoreoverW, each cη is the p-th power of some ideal which we denote by aη.

Next we see thatW, for all η1, η2 ∈ µp we have, as fractional ideals,

(x+ η1y)/(x+ η2y) = cη1
/cη2

= (aη1
/aη2

)p

from which it follows thatW cη1
/cη2

, and hence (aη1
/aη2

)p, is principal. But now, since p is regular we
have thatW aη1

/aη2
is principal. Furthermore, sinceW aη0

= pma0 for some ideal a0, we have thatW
aη/a0 is principal for all η 6= η0. We also have thatW p does not divide a0 and this impliesW that
actually m ≥ 1.

Write

aη/a0 = αη/βη
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for αη, βη ∈ OK . Then, working back through the definitions we have thatW there is some unit εη such
that

(2) εη(x+ η0y)α
p
η = (x+ ηy)(ζ − 1)mpβp

η .

Now pick η1, η2 both different from η0. A simple manipulation of (2) givesW

(η2 − η0)εη1
(αη1

βη2
)p + (η0 − η1)εη2

(αη2
βη1

)p = (η2 − η1) ((ζ − 1)mβη1
βη2

)p .

But now note that each ηi − ηj = (ζ − 1)uij for some unit uij . Cancelling off we are then leftW with an
equation of the form

ε1x
′p + ε2y

′p = ε3(ζ − 1)pmz′p,

where ε1, ε2 and ε3 are units of OK . Setting u1 = ε1/ε2 and u2 = ε3/ε2 we get

(3) u1x
′p + y′p = u2(ζ − 1)pmz′p,

Since we already know that m ≥ 1, we are done if we can prove that u1 is a p-th power. This is the
crucial step where we need Kummer’s lemma, Theorem 5.1 below. Thanks to it, it is enough to show
that u1 is congruent to some some integer modulo p. To prove this, note that since (p) = pp−1, there
isW a unit u ∈ O

×

K such that pu = (ζ − 1)p−1. Substituting in (3), we see that p | u1x
′p + y′p. This

implies thatW there is some a ∈ OK such that u1 is congruent to ap modulo p. We conclude since for
any x ∈ OK , we have thatW xp is congruent to an integer modulo p.

With the above setup and setting π = ζ − 1, the formalization of this argument concludes thatW we
have (see Section 2 for an explanation of the various notations):

variable {K : Type*} {p : N+} [hpri : Fact p.Prime] [Field K]

[NumberField K] [IsCyclotomicExtension {p} Q K] (hp : p 6= 2) [Fintype (ClassGroup (O K))]

(hreg : (p : N).Coprime <| Fintype.card <| ClassGroup (O K)) {ζ : K} (hζ : IsPrimitiveRoot ζ p)

{x y z : O K} {ε : (O K)×} {m : N} (hy : ¬ hζ.unit’.1 - 1 | y) (hz : ¬ hζ.unit’.1 - 1 | z)

(e : x ^ (p : N) + y ^ (p : N) = -- i.e. assume we have a solution with m+1

ε * ((hζ.unit’.1 - 1) ^ (m + 1) * z) ^ (p : N))

lemma exists_solution’ : ∃ (x’ y’ z’ : O K) (ε3 : (O K)×), ¬ π | y’ ∧ ¬ π | z’ ∧

x’ ^ (p : N) + y’ ^ (p : N) = ε3 * (π ^ m * z’) ^ (p : N) --then we get a solution with m

5. Kummer’s lemma

Kummer’s lemma states the following:

Theorem 5.1. Let p be an odd regular prime and let ζ be a primitive p-th root of unity. If u ∈ O
×

K is a

unit such that u ≡ n mod p for an integer n, then there exists v ∈ O
×

K such that u = vp.

A modern proof of Kummer’s lemma goes as follows.

Proof of Theorem 5.1. Let us consider the extension K(u1/p)/K: it is a Kummer, hence abelian, exten-
sion. By a rather elementary argument (see [Was97, second proof of Theorem 5.36] or the proof at the
end of this section), the extension is everywhere unramified (here is where the assumption on u is needed),
so K(u1/p) is contained in L, the Hilbert class field of K(u1/p). By class field theory, [L : K(u1/p)] is
the class number of K(u1/p) and in particular p ∤ [L : K(u1/p)]. It follows that the degree of K(u1/p)/K
cannot be p: the only other possibility is that the degree is 1, so K(u1/p) = K and u has a p-th root in
K and hence in O

×

K . �

The formalization of global class field theory is a long term project, but we are currently quite far from
it, making impossible to formalize such a proof. There are other modern proofs, for example using the
p-adic regulator, but again their formalization is unfeasible at the moment. For this reason we instead
follow a more elementary proof relying on some basic ramification results and Hilbert’s Theorems 90,
92 and 94 (see [HLA+98] for the original formulation). Those are historically the starting point of
modern class field theory, so in a sense our formalized proof is the one above, but written in much more
down-to-earth terms.

The formalization of the statement is the following (notations as in Section 2)W

theorem eq_pow_prime_of_unit_of_congruent (u : (O K)×)

(hcong : ∃ n : Z, (p : O K) | (u - n : O K)) : ∃ v, u = v ^ (p : N) := by . . .
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Note we decided to spell out explicitly the condition that u is congruent to n modulo p, without actually
using ≡ in the formal statement. This is if course equivalent, and we felt that the API was better suited
to work with division (we could also have worked with ideals, but again this is more cumbersome).

We now describe with more details the proof we formalized. Let u ∈ O
×

K and n ∈ Z such that

u ≡ n mod p. Suppose for a moment that if w ∈ O
×

K is a unit such that (ζ − 1)p | w− 1 then there exists
some v ∈ K such that vp = w. Admitting this claim, we see that with our setup we have u ≡ a mod p
for some integer a. Now this means that up−1 ≡ 1 mod p, which means that up−1 ≡ 1 mod (ζ − 1)p−1

and hence up−1 ≡ 1 mod (ζ− 1)p. Using the claim we then have a v′ (which must necessarily be a unit)
such that v′p = up−1. So choosing v = u/v′ we see that vp = u as required.

So it remains to prove the claim, which is formalized as followsW

theorem not_for_all_zeta_sub_one_pow_dvd_sub_one_of_pow_ne (u : (O K)×)

(hcong : (hζ.unit’ - 1 : O K) ^ (p : N) | (u : O K) - 1) : ¬∀ v : K, v ^ (p : N) 6= u := by . . .

To see this, assume for contradiction that the claim is false, so u is not a p-th power and let L = K(u1/p).
The extension K(u1/p)/K is a Kummer extension that by our assumption has degree p. Note that there
was no theory of Kummer’s extensions in mathlib when the project began, and we developed it from the
ground up. This new material is now fully integrated in the library and it fairly complete: for example
mathlib knows that K(u1/p)/K is Galois with cyclic Galois group.

We now claim that K(u1/p)/K is unramified. Again we had to develop the theory of unramified
extensions from scratch, and this material is now in the process of being integrated into mathlib. The
formal statement we use to prove unramifiedness is the followingW

lemma isUnramified (L) [Field L] [Algebra K L]

[IsSplittingField K L (X ^ (p : N) - C (u : K))] : IsUnramified (O K) (O L) := by . . .

Here L is the splitting field of Xp − u over the cyclotomic field K. Consider the polynomial

Pu =
((ζ − 1)X − 1)p + u

(ζ − 1)p
∈ K[X ]

First of all we have thatW Pu ∈ OK [X ], it is monicW and has degree pW. Moreover, in K[X ] we have
thatW

Pu =
(

X − (ζ − 1)−1
)p

+

(

u

ζ − 1

)p

.

Since we are assuming that u is not a p-th power we have thatW Pu is irreducible over K. MoreoverW,
the roots of Pu are the

αm :=
1− ζmu1/p

ζ − 1
,

for m = 0, . . . , p − 1 and so Pu is the minimal polynomial of any of the αm over K and henceW, by
Gauss’s lemma, over OK . An explicit computation shows that X − αm1 and X − αm2 are coprime if
m1 6= m2, and thusW Pu is a separable polynomial over OL and in particularW it is separable over OK/I
for any maximal ideal I ⊆ OK . Since clearly L = K(αm) and αm has separable polynomial modulo any
maximal ideal of OK , we have thatW the extension L/K is everywhere unramified. Note that the proof
of unramifiedness, although not very complex, is quite intricate, and it required us to develop the theory
of unramified extensions. In doing so we formalized, among other things the following:

(1) Definition of the relative different ideal dK/F := ((OK)∗)−1 where

M∗ = {α ∈ K| TrK/F (αM) ∈ OF }.

This is now in mathlibW

(2) Proving that if K/F is an extension of number fields and S denote the set of α ∈ OK be such
that K = F (α) thenW

dK/F = (m′

α(α) : α ∈ S)

where mα is denotes the minimal polynomial of α.
(3) If pF , pK prime ideals in K,F respectively, with peK ‖ pF for e > 0. ThenW

p
e−1
K | dK/F .

(4) If K = F (α) and mα is separable modulo a prime ideal pF , thenW pF is unramified in OK .
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The situation is now the following: we have a unit u ∈ O
×

K that is not a p-th power and moreover the

extension K(u1/p)/K is everywhere unramified. We need to find a contradiction. Note that we have
yet to use regularity of p. It is unlikely that one can finish the proof without some sort of class field
theory result that allows one to deduce information about the class group by the existence of an abelian
unramified extension. The one we formalize is Hilbert’s Theorem 94, whose second part, Theorem 6.1
below, finishes the proof since by regularity p cannot divide the class number of K.

6. Hilbert’s Theorem 94

Hilbert’s Theorem 94 has two parts to it. Continuing our backwards reasoning, we start with the
second one, that we used above to finish the proof of unramifiedness.

Theorem 6.1. [Hilbert’s Theorem 94, part 2] Let L/K is be an unramified cyclic finite extension of
number fields of odd prime degree, then [L : K] divides the class number of K.

Proof. To prove the theorem, assume that [L : K] does not divide the class number and note that if I
is any ideal of OK such that IL, the extension to OL of I, is principal then I is automatically principal.
Indeed, we have NormL/K(IL) = I [L:K] and, IL being principal means that I [L:K] is principalW. Since

[L : K] is coprime with the class number we have that I is principalW. In particular, we see that it is
enough to show that there is a non-principal ideal of OK that becomes principal in OL. This is precisely
the content of part 1 of Hilbert’s Theorem 94, Theorem 6.2 below. �

A formalization of the above argument is the followingW. We include also the proof, that is very
short and follows our informal proof above. The declaration exists_not_isPrincipal_and_isPrincipal_map is
Theorem 6.2 below.

theorem dvd_card_classGroup_of_isUnramified_isCyclic (K L : Type*)

[Field K] [Field L] [NumberField K] [NumberField L] [Algebra K L]

[FiniteDimensional K L] [IsGalois K L] [IsUnramified (O K) (O L)]

[IsCyclic (L ≃a[K] L)] (hKL : Nat.Prime (finrank K L))

(hKL’ : finrank K L 6= 2) :

finrank K L | Fintype.card (ClassGroup (O K)) := by

obtain 〈I, hI, hI’〉 := exists_not_isPrincipal_and_isPrincipal_map K L hKL hKL’

letI := Fact.mk hKL

rw [← Int.ofNat_dvd,

(Nat.prime_iff_prime_int.mp hKL).irreducible.dvd_iff_not_coprime,

Nat.isCoprime_iff_coprime]

exact fun h 7→ hI (IsPrincipal_of_IsPrincipal_pow_of_Coprime _ _ h _

(Ideal.isPrincipal_pow_finrank_of_isPrincipal_map _ hI’))

Note that IsCyclic (L ≃a[K] L) is automatic by the other assumptions, but we find it more convenient to
explicitly add it. In the applications, it is found by typeclass inference, so this does not cause any issue.

We now move on to the first part of Hilbert’s Theorem 94, which states that:

Theorem 6.2. [Hilbert’s Theorem 94, part 1] Let L/K be an unramified cyclic extension of number
fields of odd prime degree, then there is a non-principal ideal of OK that becomes principal in OL.

Proof. This is a consequence of Hilbert’s Theorem 92, Theorem 7.1 below. Let η ∈ O
×

K be a unit with

NormL/K(η) = 1 and such that for all w ∈ O
×

K we have η 6= w/σ(w), where σ is a fixed generator
of Gal(L/K). By Hilbert’s Theorem 90, Theorem 8.1 below, there is β ∈ OK such that β 6= 0 and
β = σ(β)η. We let I := OK ∩ (β), the ideal of OK given by the ideal of OL generated by β. We claim
that I satisfies the required properties. Suppose for a moment that IOL = (β). This obviously implies
that the extension of I to OL is principal. If I were principal generated by γ, there would be a unit
w ∈ O

×

K such that β = γw. Substituting into β = σ(β)η, since σ(w) = w by w ∈ OK , we get η = γ/σ(γ)
that is absurd. In particular I is not principal.

We now prove that IOL = (β). Since σ−1(β) = σ−1(η)β, we have thatW σ−1(I)OL = (β). Being L/K
unramified, this implies thatW IOL = (β) (this is a technical point where we use the unramifiedness
assumption to factor IOL into product of prime ideals). �

Our formalization of the above theorem is the followingW.

theorem exists_not_isPrincipal_and_isPrincipal_map (K L : Type*)

[Field K] [Field L] [NumberField K] [NumberField L] [Algebra K L]
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[FiniteDimensional K L] [IsGalois K L] [IsUnramified (O K) (O L)] [h : IsCyclic (L ≃a[K] L)]

(hKL : Nat.Prime (finrank K L)) (hKL’ : finrank K L 6= 2) :

∃ I : Ideal (O K), ¬I.IsPrincipal ∧ (I.map (algebraMap (O K) (O L))).IsPrincipal := by

obtain 〈〈σ, hσ〉〉 := h

obtain 〈η, hη, hη’〉 := Hilbert92 hKL hKL’ σ hσ

exact exists_not_isPrincipal_and_isPrincipal_map_aux σ hσ η hη (not_exists.mpr hη’)

Here, exists_not_isPrincipal_and_isPrincipal_map_aux isW

theorem exists_not_isPrincipal_and_isPrincipal_map_aux

[IsDedekindDomain A] [IsUnramified A B] (η : B×) (hη : Algebra.norm K (algebraMap B L η) = 1)

(hη’ : ¬∃ α : B×, algebraMap B L η = (algebraMap B L α)/σ (algebraMap B L α)) :

∃ I : Ideal A, ¬I.IsPrincipal ∧ (I.map (algebraMap A B)).IsPrincipal := by . . .

The formal proof is a faithful translation of the informal one above.

7. Hilbert’s Theorem 92

The main technical input in our formalization of Kummer’s lemma is the following result:

Theorem 7.1 (Hilbert’s Theorem 92). Let K/k be a cyclic extension of number fields of odd prime degree
and let σ be a generator of the Galois group. Then there exists a unit u ∈ O

×

K such that NormK/k(u) = 1

and for all ε ∈ O
×

K we have u 6= ε/σ(ε).

We formalize the above statement asW:

lemma Hilbert92

[Algebra k K] [IsGalois k K] [FiniteDimensional k K](hKL : Nat.Prime (finrank k K))

(hpodd : finrank k K 6= 2) (σ : K ≃a[k] K) (hσ : ∀ x, x ∈ Subgroup.zpowers σ) :

∃ u : (O K)×, Algebra.norm k (u : K) = 1 ∧ ∀ ε : (O K)×, (u : K) 6= ε / (σ ε : K) :=

Note that by Hilbert’s Theorem 90, Theorem 8.1 below, we know that any such u must be of the form
w/σ(w) for w ∈ OK . So the content is in showing that w cannot always be chosen to be a unit. This
translates to saying that a certain cohomology group does not vanish as opposed to the usual vanishing
result associated with Hilbert’s Theorem 90. As remarked by [SD01], the cohomological point of view
does not make the proof easier, so we instead follow the classical proof described in therein, which also
has the advantage of being more amenable to formalization given the current state of mathlib.

The constructions of a unit satisfying the requirements of Hilbert’s Theorem 92 will be a consequence
of the existence of a particular set of units.

7.1. Fundamental system of units.

Definition 7.2. Let σ be a generator of Gal(K/k) (with K/k as in Theorem 7.1) and let r be rkZ(O
×

k ).

Let U′

K/k = O
×

K/O×

k and let U′

K/k,tors denote the torsion subgroup. Let

UK/k = U
′

K/k/U
′

K/k,tors,

which we note is naturally a Z[Gal(K/k)]-module. Then a fundamental system of r+1 units is a choice
of r + 1 elements {hi} of UK/k such that

UK/k/〈hi〉Z[Gal(K/k)]

is finite with minimal index.

We are going to show that a fundamental system of units exists. Instead of working directly with
UK/k, we find it more convenient to formalize a more general situation and then restrict to the specific
setting above. We begin with any additive commutative group G playing the role of UK/k, which we also
assume is a OK-module (for UK/k the action will be given by ζ 7→ σ). Note that the natural notation for
UK/k is multiplicative rather than additive, but to use the language of modules we are forced to work
with additive groups. Since we need to use the element ζ ∈ OK several times, we decided to work in this
section with a different model of the ring of integers of KW:

def CyclotomicIntegers : Type := AdjoinRoot (cyclotomic p Z)

local notation "A" => (CyclotomicIntegers p) -- This is just Z[ζ]
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This means that A is Z[α], where α is an unspecified root of the p-th cyclotomic polynomial (of course
this ring is abstractly isomorphic to OK). We start by defining the notion of system of s unitsW where
s is a natural number. It is just a set of s elements of G that are linearly independent over A.

structure systemOfUnits (G : Type*) [AddCommGroup G] (s : N) where

units : Fin s → G --A choice of s elements of G

linearIndependent : LinearIndependent A units

We proveW that if G is free as Z-module of rank s(p− 1), than a system of s units always exists.
We now move on to the definition of fundamental systems of r units. We start by introducingW the

notion of maximal system of s units.

abbrev systemOfUnits.IsMaximal {s : N} {p : N+} {G : Type*} [AddCommGroup G]

[Module A G] (sys : systemOfUnits (G := G) p s) :=

Fintype (G / Submodule.span A (Set.range sys.units))

By definition, being maximal means that the quotient by the submodule generated by the elements of
the system of units is finite. We then proveW that if there is a system of s units then there is a maximal
one if rkZ(G) = s(p− 1).

A system of s units is fundamentalW if it is maximal and the submodule generated by the elements
of the system has index smaller than those generated by any other maximal system.

def systemOfUnits.IsFundamental [Module A G] (h : systemOfUnits p G s) :=

∃ _ : h.IsMaximal, ∀ (S : systemOfUnits p G s) (_ : S.IsMaximal), h.index ≤ S.index

We then proveW that a fundamental system of s units always exists if G is free as Z-module of rank
s(p− 1) . The key property of fundamental systems of units is the following

Lemma 7.3. Let a0, . . . , as−1 be integers not all divisible by p and {hi} a fundamental system of s units,
then

s−1
∏

i=0

hai

i 6= u/σ(u)

for any u ∈ UK/k.

Our formalization is (note the additive notation)W

lemma corollary [Module A G] (S : systemOfUnits p G s) (hs : S.IsFundamental)

(a : Fin s → Z) (ha : ∃ i , ¬ (p : Z) | a i) :

∀ g : G, (1 - zeta p) · g 6= Σ i, a i · S.units i := by . . .

Here zeta : CyclotomicIntegers p := AdjoinRoot.root _ is the fixed root of the p-th cyclotomic polynomial
in A, that corresponds to the primitive p-th root of unity ζ (and that acts as the fixed generator σ).

7.2. Hilbert 91. We now go back to our specific situation of a cyclic field extension K/k. We want to
show that a system of fundamental r + 1 units exists in the case r = rkZ(O

×

k ) and G = UK/k. As UK/k

is torsion-free and hence free, this amounts to show that its rank is (r+1)(p− 1). This is essentially the
content of Hilbert’s Theorem 91. We begin by defining the group U

′

K/k = O
×

K/O×

k asW:

def RelativeUnits (k K : Type*) [Field k] [Field K] [Algebra k K] :=

((O K)× / (MonoidHom.range <|

Units.map (algebraMap (O k) (O K) : (O k) →* (O K))))

Here MonoidHom.range <| Units.map (algebraMap (O k) (O K) : (O k) →* (O K))) denotes the image of the
units in k under the natural embedding into O

×

K . Since we are going to work with a fixed generator of

the Galois group, we find it more convenient to package together all the data we haveW.

def relativeUnitsWithGenerator (_hp : Nat.Prime p) (_hKL : finrank k K = p)

(σ : K ≃a[k] K) (_hσ : ∀ x, x ∈ Subgroup.zpowers σ) : Type _ :=

RelativeUnits k K

This is the same as RelativeUnits, but it contains the choice of a generator σ. Finally, we define our
additive torsion-free group UK/k = U

′

K/k/U
′

K/k,tors asW:
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local notation "G" =>

Additive (relativeUnitsWithGenerator p hp hKL σ hσ) /

AddCommGroup.torsion (Additive (relativeUnitsWithGenerator p hp hKL σ hσ))

Here, if H is a multiplicative group, Additive H is the same group, but with additive notation. As explained
above we are forced to use it, and it causes a little bit of friction, but all the relevant results to go from H

to Additive H were already in mathlib. We showW that if we consider G as a Z[X ]-module via X 7→ σ,
then it is torsion with respect to the subgroup generated by the cyclotomic polynomial. This endowsW
G with a structure of an A-module. Moreover, we showW that it has rank (as a Z-module) is equal to
(r+ 1)(p− 1) (this step is rather delicate: we need first of all to take care of the quotient by the torsion
submodule and then we use that our extension is unramified at infinite places since p is assumed to be
odd).

Putting it all together, we can use our general existence result above to show that this there is in fact
a fundamental system of r + 1 units for G as claimed by Hilbert’s Theorem 91W:

lemma Hilbert91 :

∃ S : systemOfUnits p G (NumberField.Units.rank k + 1), S.IsFundamental :=

systemOfUnits.IsFundamental.existence p hp G

(NumberField.Units.rank k + 1) (finrank_G p hp hKL σ hσ)

7.3. Proving Hilbert’s Theorem 92. We can now finish the proof of Hilbert’s Theorem 92, reducing
the proof of Fermat’s Last Theorem for regular primes to Hilbert’s Theorem 90.

Let K/k be as in 7.1. Remember that in particular p is an odd prime and that σ is a generator of
Gal(K/k). Recall that r = rkZ(O

×

k ) and let hi be a fundamental system of r+1 units for UK/k, that exists

by Hilbert’s Theorem 91 above. We denote by Hi fixed lifts to elements of O×

K . We fix h ∈ N be such

that k contains a ph-th root of unity ν but no ph+1-th root (note we allow h to be zero). Let ξ = νp
h−1

which is now a p-th root of unity as above, with the convention that if h = 0 we have ξ = ν = 1.4

With these notations the proof proceeds as follows (in the formalization most of the statements are
actually more general than those below, for example stated for any family of r elements of O×

K when the
fact that being a fundamental system of r units is not needed):

(1) By Hilbert’s Theorem 90, Theorem 8.1 below, we know that, since ξ has norm 1, we can write
ξ = ε/σ(ε) for some ε ∈ OK .

(2) We can assume that there is some E ∈ O
×

K such that

ξ = E/σ(E)

as otherwise we could take ξ as the element required by 7.1.
(3) Note that from ξ = E/σ(E) we have thatW NormK/k(E) = Ep.
(4) Let ηi = NormK/k(Hi) for i ∈ 0, . . . , r and let ηr+1 := NormK/k(E) = Ep (again most of the

formal statements are for general ηi).
(5) There existW a, ai ∈ Z for i ∈ 0, . . . , r + 1 such that

r+1
∏

i=0

ηai

i = νap

with ai0 not divisible by p for some i0. Moreover, if ν = 1 (i.e. h = 0) then we can take i0 to be
different from r + 1.

(6) With these exponents ai in hand we can now construct our element. SetW

J := ν−a
r+1
∏

i=0

Hai

i .

where we set Hr+1 = E. We need to show it satisfies the required properties.
(7) Taking its norm we have thatW

NormK/k(J) =

(

r+1
∏

i=0

ηai

i

)

ν−ap

which is 1 by our the condition on the ai’s in (5).

4In the formalization this convention is automatic, as 0− 1 = 0 for natural numbers in Lean.
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(8) Now if J was of the form ε/σ(ε) for some unit ε, then the same would be true of its image in
UK/k. Its image is

ν−a
r
∏

i=0

hai

i ·Ear+1 .

Now, since ν ∈ O
×

k , its image in the quotient is 1 (remember that here we are using multiplicative

notation). Moreover, since Ep = NormK/k(E) also belongs to O
×

k we have that its image is 1,
so the image of E is torsion. Being UK/k torsion-free, we have that E becomes equal to 1 in the
quotient and the image of J is

r
∏

i=0

hai

i .

(9) By Lemma 7.3 to conclude the proof it is enough to show that not all of the ai for i ∈ {0, . . . , ar}
are divisible by p. Assume for contradiction this is the case, then ar+1 must be divisible by p.
Now, this means h 6= 0 since otherwise this would contradict our choice of ai’s. But now this
means that ηr+1 = NormK/k(E) = Ep is the p-th power of a unit in k (this follows from (5)).
In particular E is a unit now in k. But this means that σ(E) = E, in particular ξ = 1, but this
cannot be the case as we have already shown h 6= 0.

The proof of the last two points are inlined in the proof ofW almostHilbert92, that is Hilbert’s Theorem
92 with the additional assumption that K/k is unramified at all infinite places.

Remark 7.4. Note that we have slightly simplified the proof of Hilbert’s Theorem 92 as found in [HLA+98],
which splits into two cases, the first when K does not contain an p-th root and the second where it con-
tains a ph-th root (but not a ph+1-th root) for some h. Our proof instead allows h = 0 and so follows
the second case.

8. Hilbert’s Theorem 90

Hilbert’s Theorem 90 is a nowadays classical result about Galois cohomology. mathlib already
contains a version of (a generalization of) it, thanks to the work of Amelia Livingston, see [Liv23]. We
explain in this section the precise statement we need, and how to get there given what already is in
mathlib.

The statement we needed above is the following, matching Hilbert’s original formulation.

Theorem 8.1 (Hilbert’s Theorem 90, concrete version). Let L/K by a cyclic extension of fields and let
σ ∈ Gal(L/K) be a generator. If η ∈ L is such that NormL/K(η) = 1, then there exists an ε ∈ OL such
that ε 6= 0 and ησ(ε) = ε.

Proof. By clearing denominators, it is enough to prove that there is ε ∈ L such that ε 6= 0 and η = ε/σ(ε).
We then deduce the theorem from Noether’s generalization of Hilbert’s Theorem 90, Theorem 8.2 below.
Let c : Gal(L/K) → L× be the functionW τ 7→

∏n
i=0 σ

i(η), where n ∈ N is the unique natural number
smaller than the order of Gal(L/K) such that σn = τ . Using that NormL/K(η) =

∏

τ∈Gal(L/K) τ(η) = 1

we have thatW c is a cocycle, i.e. c(τ1τ2) = τ1(c(τ2))c(τ1). Since H1(G,L×) is trivial by Theorem 8.2,
we have that c is a coboundary. By definition this means that there is x ∈ L such that c(τ) = τ(x)/x for
all τ ∈ Gal(L/K) and in particular c(σ) = σ(x)/x. Since c(σ) = η, we have that xη = σ(x) and ε = x−1

satisfies the conditions of the theorem. �

Here is our formalizationW

variable {K L : Type*} [Field K] [Field L] [Algebra K L]

[IsGalois K L] [FiniteDimensional K L]

{A B : Type*} [CommRing A] [CommRing B] [Algebra A B] [Algebra A L] [Algebra A K]

[Algebra B L] [IsScalarTower A B L] [IsScalarTower A K L] [IsFractionRing A K]

[IsDomain A] [IsIntegralClosure B A L] [IsDomain B]

lemma Hilbert90_integral (σ : L ≃a[K] L) (hσ : ∀ x, x ∈ Subgroup.zpowers σ)

(η : B) (hη : Algebra.norm K (algebraMap B L η) = 1) :

∃ ε : B, ε 6= 0 ∧ η * galRestrict A K L B σ ε = ε := by . . .

Note that in the formalization, instead of working with OK and OL (the integral closure of Z in K and L
respectively), we decided to work with general integral domains A and B such that B is in the integral
closure of A in L; see Section 9 for more details about this design decision.
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The formal proof follows the informal one, clearing denominators (a step that in Leanis not completely
trivial since we need to consider the restriction of σ to B) and deducing the theorem fromW

lemma Hilbert90 {η : L} (hη : Algebra.norm K η = 1) :

∃ ε : L, η = ε / σ ε := by . . .

Note that even if technically the statement does not contain the fact that ε 6= 0, this is automatic: if
ε = 0, then σ(ε) = 0 and hence ε/σ(ε) = 0 (remember that in Leandivision by 0 returns 0), so η = 0,
that is impossible because NormL/K(η) = 1.

Everything is now reduced to the following

Theorem 8.2 (Noether’s generalization of Hilbert’s Theorem 90). Let L/K by a Galois extension of
fields with Galois group G. Then H1(G,L×) is trivial.

This is a nowadays classical result in group cohomology, and we will not recall the proof. Thanks to
the formalization project [Liv23] by Amelia Livingston, it is already present in mathlibW

/-- Noether’s generalization of Hilbert’s Theorem 90: given a finite extension of fields and a

function ‘f : Aut_K(L) → L×‘ satisfying ‘f(gh) = g(f(h)) * f(g)‘ for all ‘g, h : Aut_K(L)‘,

there exists ‘β : L×‘ such that ‘g(β)/β = f(g)‘ for all ‘g : Aut_K(L).‘ -/

theorem isMulOneCoboundary_of_isMulOneCocycle_of_aut_to_units

(f : (L ≃a[K] L) → L×) (hf : IsMulOneCocycle f) :

IsMulOneCoboundary f := by . . .

here IsMulOneCocycle and IsMulOneCoboundary are defined as followsW (where M is any G module, for a
group G)

def IsMulOneCocycle (f : G → M) : Prop := ∀ g h : G, f (g * h) = g · f h * f g

def IsMulOneCoboundary (f : G → M) : Prop := ∃ x : M, ∀ g : G, g · x / x = f g

Note that group cohomology here is defined in very concrete terms, as cocycles modulo coboundaries,
and not via an abstract machinery like derived functors (that exist in mathlib). Even if at some
point mathlib will need the connection between this two definitions, the current design choice is very
convenient for us, since it allowed to prove the explicit theorem we need quickly.

9. Implementation issues

We now describe two implementation issues we encountered during our formalization project. As the
problem of the coercions from O

×

K to OK to K and the diamonds related characteristic zero fields are
already discussed in [BBBRB23, Section 3], we will not discuss those.

After the port to Lean4, we noticed that the project was very slow in several places, making almost
impossible to progress with the formalization. In collaboration with the mathlib community (especially
Matthew Ballard, Kevin Buzzard and Floris van Doorn), we identified that the main bottleneck was the
definition of the ring of integers of a number field in mathlib, that was

def RingOfIntegers := integralClosure Z K

@[inherit_doc] scoped notation "O" => NumberField.ringOfIntegers

In general, if A is an R-algebra, the type of integralClosure R A is Subalgebra R A. This has the advantage
that a lot of instances, for example CommRing (O K), are found automatically by Lean. On the other hand,
it causes the following drawback. mathlib contains the following instanceW, where α is a type endowed
with SMul A α, that is a scalar multiplication by A.

instance [SMul A α] (S : Subalgebra R A) : SMul S α := . . .

Mathematically this simply means that if we know how to multiply elements of α by any (a : A) we
can also multiply elements of α by any (s : S). In particular, any time an instance like SMul (O K) (O K)

is needed (for example looking for Module (O K) (O K)), Lean will look for an instance of SMul K (O K)

(a mathematically meaningless problem), and this search will of course fail. What we realised is that
this search is rather slow to fail, and, due to the intricacies of the algebra hierarchy in mathlib, it is
performed many times. We tried to manually lower the priority of the above instance, but this did not
solve the problem. Indeed it is sometimes difficult to control the path chosen by the typeclass inference
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system, and this solution would not scale anyway. In the pull request #12386 we then decided to change
the definition of ringOfIntegers toW

def RingOfIntegers : Type _ := integralClosure Z K

The only difference with the above one is that the type of O K is now Type _ rather than Subalgebra Z K.
To be precise, O K is now the underlying type of integralClosure Z K: this means that, for example, the
following instanceW

instance : CommRing (O K) := inferInstanceAs (CommRing (integralClosure _ _))

has to be added by hand (here the command inferInstanceAs allows Lean to see through the definition of
RingOfIntegers). On the other hand, it also means that the instance from SMul K (O K) to SMul (O K) (O K)

is not even considered when solving Module (O K) (O K). This simple modification made essentially all
mathlib’s file related to ring of integers of number fields much faster (see the benchmark results) and
drastically improved the speed of flt-regular. Note that the number of instances that have to be
added by hand is quite limited, and the gain in speed is huge: we expect that a similar modification will
be needed in mathlib in the future for other analogous situations, for example in the definition of the
adele ring of a global field.

Another issue is related to field extensions: if L/K is such an extension, than OL is naturally an
OK-algebra. If moreover K and L are number fields, it is easy to prove that mathematically OL is the
integral closure of OK in L. In Lean this equality (of types!) is not provable, and the formal translation
of this results is the datum of an isomorphism (as OK-algebras) between OL and the integral closure of
OK in L. Working with such an isomorphism can be annoying, as it is going to appear several times. To
avoid this issue, we decided to work more generally in the so called AKLB setting:

variable {A K L B : Type*} [CommRing A] [CommRing B] [Field K] [Field L]

[Algebra A B] [Algebra A L] [Algebra A K] [Algebra B L]

[IsScalarTower A B L] [IsScalarTower A K L] [IsFractionRing A K] [IsIntegralClosure B A L]

Any result holding in this setting will apply both to B = O L and to B = integralClosure (O K) L, allowing
very often to avoid the use of the isomorphism above (one may assume IsIntegralClosure Z A K to state
that A “is” OK). This setting is very common in algebraic number theory, and we believe this way of
formalizing it should be used in mathlib every time it is possible.

10. Future work

As explained in [BBBRB23, Section 4], one peculiar aspect of our project is that the integration to
mathlib is happening in real time. Even if we don’t think the full proof of Fermat’s Last Theorem for
regular primes should be included into mathlib (as is it very technical and mathematically superseded
by more modern approaches), most of the prerequisites we formalized are fundamental results in algebraic
number theory and should move to the main library. The process of opening pull requests from flt-

regular to mathlib never stopped, and we expect that all the relevant material will end up in mathlib

at some point. One notable example of this process is the proof of Fermat’s Last Theorem for n = 3,
that is now in mathlibW. Note that this case has to be done by hand, even when taking into account
modern proofs and it is rather non trivial (for example it is more difficult than the case n = 4, also in
mathlibW). In particular, this case will be need for Kevin Buzzard’s project of formalizing a proof of
the full Fermat’s Last Theorem.

Concerning future formalizations, one natural question that is left by the current status of flt-

regular is that the condition for a prime of being regular is rather abstract, and difficult to be proved

in practice. Indeed, the computation of the class number of Q(e
2πi
n ) is a difficult problem, even on

paper. Thanks to Xavier Roblot’s work, Minkowski’s bound is in mathlibW. In particular it is easy

to proveWW that both Z[e
2πi
3 ] and Z[e

2πi
5 ] are principal ideal domains (since the Minkowski’s bound is

1 in this cases), and hence 3 and 5 are regular primesWW (we also know that 2 is regularW) and the
case n = 5 of Fermat’s Last Theorem followsW. This is to our knowledge the first formalization of the
nonexistence of nontrivial solutions to

x5 + y5 = z5

A natural question is to give more explicit examples of regular primes. One can prove that Z[e
2πi
p ] is

principal for all p ≤ 19 (the converse also holds), but the proof is more and more involved: indeed
Minkowski’s bound becomes exponentially larger and one has to check a lot of cases by hand (on the
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other hand we think that the case p = 7 should be doable without too much trouble). Note that it is

known that Z[e
2πi
p ] a principal ideal domain if and only if it is a Euclidean domain (and for p ≤ 13 this

is equivalent to be norm-Euclidean), so in principle one can prove regularity (at least for p ≤ 13) via an
explicit computation, but again this is very cumbersome and in any case it cannot work for p > 19 (for

example Z[e
2πi
23 ] has class number 3, so 23 is regular). The modern approach to prove regularity is via

the following (see [Was97, Theorem 5.34])

Theorem 10.1. An odd prime p is regular if and only if p does not divide the denominator of the
Bernoulli number Bn for n = 2, 4, . . . , p− 3.

Since Bernoulli numbers are very easy to compute (and already in mathlibW) this criterion gives
a very easy way of checking whether a given p is regular (for example one immediately obtains that
the only irregular primes p ≤ 100 are 37, 59 and 67). The proof of Theorem 10.1 requires the p-adic
class number formula, that is proved using p-adic L-functions. The basics theory of p-adic L-functions
have been formalized by Narayanan in Lean3 (see [Nar23]), and a port to Lean4 is work in progress.
For these reasons we believe that the formalization of Theorem 10.1 is within reach, and we plan to
accomplish it in the near future.
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