
HAL Id: hal-04718040
https://hal.science/hal-04718040v1

Submitted on 2 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning normal and delayed behavior of max-plus
linear systems from input and output event data

Ibis Velasquez, Euriell Le Corronc, Euriell Le Corronc, Yannick Pencolé

To cite this version:
Ibis Velasquez, Euriell Le Corronc, Euriell Le Corronc, Yannick Pencolé. Learning normal and delayed
behavior of max-plus linear systems from input and output event data. 2024 IEEE 20th International
Conference on Automation Science and Engineering (CASE), Aug 2024, Bari, Italy. �hal-04718040�

https://hal.science/hal-04718040v1
https://hal.archives-ouvertes.fr


Learning normal and delayed behavior of max-plus linear systems from
input and output event data

Ibis Velasquez1, Yannick Pencolé1, and Euriell Le Corronc1

Abstract— In this paper, we introduce the problem of learning
max-plus linear models from event data available through
unlabeled logs. We present a method for obtaining these models
when the logs contain input and output event dates generated
by a system in both normal conditions and abnormal conditions
caused by failures. The properties of the method are presented,
as well as results from a simulated example.

I. INTRODUCTION

Timed Event Graphs (TEGs) are a type of discrete event
system that can be represented using linear equations in alge-
braic structures called dioids [1]. They are especially useful
when modeling systems with synchronizations and delays,
like manufacturing systems and transportation networks. We
are interested in the problem of learning the models of
these systems from data available through logs. The acquired
models could then be used to apply control methods to the
system [1] or to perform fault diagnosis [8].

The subject of obtaining these linear models has been
frequently discussed in the literature as an identification
problem, and several approaches have been introduced.
Examples include state-space identification from input and
output data with knowledge of the structure of the system,
discussed in [3], or from state data, presented in [7] as a
regression problem. Another example is the identification of
stochastic systems from input and state data discussed in [9]
and [4]. However, these methods estimate parameters of a
unique underlying system from a single set of measurements.
We propose a simple method for learning complete input-
output models of a system for normal behavior and abnormal
behavior deriving from failures; the starting point is data
available through unlabeled logs containing input and output
event dates obtained in both operating conditions.

II. TIMED EVENT GRAPHS INMax
in [[γ, δ]]

A. Timed Event Graphs

Timed Event Graphs (TEGs) are a subclass of timed Petri
nets in which each place has precisely one upstream tran-
sition and one downstream transition, all arcs have weight
one, and transitions are fired as soon as they are enabled
(earliest firing rule). The events of a TEG are the firings of its
transitions. The following definition introduces the notations
associated with TEGs that will be used throughout this paper.

Definition 1: A timed event graph [1], [10] G is a 5-tuple
G = (P, T ,A,M0, D) such that P (resp. T ) is a finite set

1LAAS-CNRS, Université de Toulouse, CNRS, INSA, UT3. Toulouse,
France.
{ibis.velasquez, yannick.pencole,
euriell.le.corronc}@laas.fr

of nodes called places (resp. transitions) (P ∩T = ∅); A ⊆
(P × T ) ∪ (T × P) is the set of arcs going from places to
transitions and from transitions to places, and every place
has precisely one incoming arc and one outgoing arc; M0 :
P → N is the initial marking; D : P → N is the holding
time (or duration) for a token in a place.

The transitions in a TEG are divided in three disjoint sub-
sets: internal transitions (denoted xi) have both incoming and
outgoing arcs, output transitions (denoted yi) have incoming
arcs but do not have outgoing arcs, and input transitions (ui)
have outgoing arcs but no incoming arcs. This paper deals
with non-autonomous TEGs, meaning that neither the set of
input transitions nor the set of output transitions are empty.
Input events are triggered by sources external to the TEG (as
input transitions are considered to always be enabled).

Example 1: Fig. 1 represents a TEG with two inputs (u0,
u1), two outputs (y0, y1), three internal transitions (x0, x1,
x2) and eight places (p0, ..., p7). The holding times of all
places except p1 and p6 are equal to zero.

B. Dioids

The structure of a TEG and the firings of its transitions
can be described using dioids. A dioid is as a semiring with
addition ⊕ and product ⊗ where ⊕ is idempotent (a⊕a = a).
The zero element is denoted ε and the identity element is
denoted e. In a dioid (D,⊕,⊗), the definition of addition ⊕
induces a partial order ⪰ : ∀a, b ∈ D, a ⪰ b⇔ a = a⊕ b.
Dioids are described in detail in [1] and papers on the subject
of TEGs and max-plus linear systems; only some essential
notions will be described in this section.

Definition 2: A dioid (D,⊕,⊗) is complete if it is closed
for infinite sums and the left and right distributivity of the

u0

u1

p0 p1

1

p2

p3

p4

p5

p6

2

p7

x0 x1

x2

y0

y1

Fig. 1. A TEG with two inputs and two outputs.



product with respect to addition holds for infinite sums.
Example 2: The Boolean set B = {0, 1} with the logical

or as the addition ⊕ and the logical and as the multiplication
⊗, with ε = 0 and e = 1, is a complete dioid: (B, or, and).

A complete dioid (D,⊕,⊗) admits a top element denoted
⊤ =

⊕
a∈D a ∈ D and an associative, commutative, idem-

potent greatest lower bound (or infimum) operator denoted
∧: ∀a, b ∈ D, a ∧ b =

⊕
{x ∈ D | a ⪰ x⊕ a, b ⪰ x⊕ b},

which admits ⊤ as neutral element. Also, a ⪰ b⇔ b = a∧b.
We denote a0 = e and ∀i ∈ N+, ai = aai−1. The

Kleene star operator ∗ is defined as a∗ =
⊕

i≥0 a
i; and

for matrices M ∈ Dn×n, M∗ =
⊕

i≥0 M
i. In a complete

dioid (D,⊕,⊗), the least solution of ax⊕ b = x is x = a∗b.

C. Residuation
Let f : D → C be an isotone mapping between two

complete dioids D and C. Mapping f is residuated if for
every b ∈ C, there exists a greatest solution for f(x) ⪯ b
denoted f ♯(b) =

⊕
x∈D,f(x)⪯b x (the residual of f ). It is the

unique isotone mapping such that f◦f ♯ ⪯ IC and f ♯◦f ⪰ ID
where IC (resp. ID) is the identity mapping on C (resp. D).

Example 3: The mapping Ra : x 7→ x ⊗ a over a dioid
D (right multiplication by a) is a non-invertible residuated
mapping. Its residual, R♯

a(b) (right division), acts as a pseudo
inverse and is denoted b◦/a =

⊕
x∈D,xa⪯b x. b◦/a is therefore

the greatest solution to xa ⪯ b. Note that (xa)◦/a ⪰ x.

D. Dioids of power series
Let B[[γ, δ]] be the set of formal power series s in two

commutative variables γ and δ with exponents in Z (series
of monomials γnδt; n, t ∈ Z) and coefficients in B = {0, 1}.
s is denoted s =

⊕
(n,t)∈Z2 c(n, t)γnδt with c : Z2 → B.

Let s1(resp.2) =
⊕

(n,t)∈Z2 c1(resp.2)(n, t)γ
nδt ∈ B[[γ, δ]]

denote any pair of formal power series, we have s1 ⊕
s2 =

⊕
(n,t)∈Z2(c1(n, t) or c2(n, t))γ

nδt and s1 ⊗ s2 =⊕
(n,t)∈Z2 c(n, t)γnδt with c(n, t) defined in (B, or, and) as

c(n, t) =
⊕

n=n1+n2,t=t1+t2
c1(n1, t1)⊗ c2(n2, t2).

(B[[γ, δ]],⊕,⊗) is a complete commutative dioid with ε =⊕
(n,t)∈Z2 0γnδt and e = 1γ0δ0 ⊕

⊕
(n,t)∈Z2 0γnδt. In the

previous expressions, 0 stands for the absence of a monomial
in the series and 1 stands for its presence, so the notation
will be simplified; for instance, e = γ0δ0.

Definition 3: Let us define the congruence relation ≡
as s1 ≡ s2 ⇔ γ∗(δ−1)∗s1 = γ∗(δ−1)∗s2. Dioid
(Max

in [[γ, δ]],⊕,⊗) is the quotient of dioid (B[[γ, δ]],⊕,⊗)
induced by the congruence relation ≡.

An equivalent class [s]γ∗(δ−1)∗ ∈Max
in [[γ, δ]] covers all the

series of B[[γ, δ]] that are equivalent modulo γ∗(δ−1)∗. The
zero element in Max

in [[γ, δ]] is [ε]γ∗(δ−1)∗ and the identity
element is [e]γ∗(δ−1)∗ . In the following, [s]γ∗(δ−1)∗ will
simply be denoted s ∈ Max

in [[γ, δ]]. The following rule
applies to the addition of monomials in (Max

in [[γ, δ]],⊕,⊗):

γnδt ⊕ γn′
δt = γmin(n,n′)δt. (1)

Since Max
in [[γ, δ]] is complete, any couple s1, s2 ∈

Max
in [[γ, δ]] accepts an infimum denoted s1 ∧ s2 which can

be computed based on the following rule for monomials:
γnδt ∧ γn′

δt
′
= γmax(n,n′)δmin(t,t′).

E. Linear systems in Max
in [[γ, δ]]

Let G be a TEG containing nu input transitions, nx

internal transitions and ny output transitions. G can be
modeled as a linear system in Max

in [[γ, δ]] through the state
representation: {

X = AX ⊕BU
Y = CX

(2)

where A ∈ Max
in [[γ, δ]]

nx×nx details the connections
among internal transitions, and B ∈Max

in [[γ, δ]]
nx×nu (resp.

C ∈ Max
in [[γ, δ]]

ny×nx ) details the connections from input
(resp. internal) transitions to internal (resp. output) transi-
tions. The places making these connections are represented
in entries of A, B and C through the addition of monomials
γnδd where d is the holding time and n is the number of
initial tokens. When there are no places connecting two given
transitions, the respective entry is ε and denoted · in the
matrix. X , U and Y in (2) are column vectors of dimension
nx, nu and ny respectively. Their components are series
detailing the firings of the transitions (see Example 7 in
Section IV-B for an illustration).

Example 4: The matrices of the state representation of the
TEG in Fig. 1 are:

A =

 · γ2δ0 ·
γ0δ1 · ·
· γ1δ0 ·

 , B =

γ0δ0 ·
· ·
· γ0δ0

 ,

C =

(
· γ0δ0 ·
· γ0δ0 γ0δ2

)
.

The relation between inputs and outputs in a TEG is

Y = HU (with H = CA∗B ∈Max
in [[γ, δ]]

ny×nu). (3)

Therefore, the outputs of a TEG depend on both its
structure (through matrices A, B and C) and the applied
input (U ). In this paper, only input and output events are
considered observable, meaning that internal events cannot
be measured. Equation (3) will therefore be essential in
learning the behavior of these systems.

Definition 4: A TEG is in in phase [10] if ∀i ∈
{0, ..., ny − 1}, ∀j ∈ {0, ..., nu − 1}, Hij ̸= ε ⇒ (Hij ⪰
γ0δ0). This means that the output transitions can only be
fired once the input transitions preceding them are fired.

Example 5: The transfer matrix of the TEG in Fig. 1 is

H =

(
γ0δ1(γ2δ1)∗ ·

γ0δ1 ⊕ (γ1δ3)(γ2δ1)∗ γ0δ2

)
. (4)

This TEG is in phase. In the following, only TEGs that are
in phase will be considered.

III. FAILURES IN TIMED EVENT GRAPHS

This section introduces the essential notions regarding fail-
ures in TEGs based on the algebraic and structural properties
presented in the previous section.

A TEG is considered to be failing if it produces series or
trajectories in X , U or Y that are not part of its expected
behavior as described by the state representation (2). The
unexpected trajectories describe abnormal runs caused by
failures in the TEG. These failures are defined as changes in



the parameters related to the places of the TEG, and will be
divided in two kinds: time failures and resource failures.

Definition 5: A time failure [10] held by a place p ∈ P
whose normal duration is d = D(p) is a relative delay θ ∈
N+ so that the real duration associated with p is d+θ ∈ N+.

In practice, examples of a time failure include the deterio-
ration of a machine resulting in longer processing durations
than normal. The definition of a resource failure naturally
derives from that of a time failure.

Definition 6: A resource failure held by a place p ∈ P
whose normal initial marking is n =M0(p) ≥ 1 is a relative
shortfall ϕ ∈ {1, ..., n} so that the real initial marking of p
is n− ϕ ∈ N.

Intuitively speaking, resource failures constitute removals
of the tokens initially present in a TEG. In practice, such a
failure may represent the deterioration of a resource, like a
machine being able to process fewer products simultaneously
than normal. Only resource failures which do not block
the system will be considered (so every run of the system
produces an output).

The abnormal runs caused by failures can only be detected
if they generate observations that differ from the observations
of normal runs. The max-plus linear systems in this paper
are partially observable, so observations include all firings
of input and output transitions (U and Y respectively), but
not the firings of internal transitions (X).

Definition 7: A failure in a system with transfer matrix
H is detectable [10] if it leads to the production of a real
output Y that is different from the normal output HU for
the same input.

Failures that do not generate abnormal observations are
undetectable and will not be covered in the following.

The behavior of a max-plus linear system of normal
transfer matrix H which contains failures may be described
with a new matrix H ′ ⪰ H , meaning that failures can
generate abnormal runs that are delayed with respect to
normal runs with the same input. This was proved for time
failures in [10], the next proposition extends the proof to all
failures considered in this paper.

Proposition 1: Let H be the normal transfer matrix of a
system. If the system produces an abnormal run with input U
and output Y generated by sets of time and resource failures,
then there exists a matrix H ′ ⪰ H such that Y = H ′U .

Proof: The proposition has been proved for time
failures in [10]. Regarding resource failures, let the normal
system be modeled as a TEG G = (P, T ,A,M0, D) with
transfer matrix H = CA∗B (3). A set of resource failures
results in a new TEG G′ = (P, T ,A,M ′

0, D) by altering the
initial marking of the places containing the failures. Let us
denote this set of places Pf , then ∀pi ∈ Pf ,M′

0(pi) =
M0(pi) − ϕi and ∀p ∈ P \ Pf ,M′

0(p) = M0(p). Let
H ′ = C ′(A′)∗B′ be the matrix associated with G′, then
Y = H ′U in the abnormal run.

By construction, every place pi in G is associated with a
monomial mi = γniδti in either A, B or C. This monomial
becomes m′

i = γni−ϕiδti for a place containing a failure
in G′. Since γniδti ⊕ γni−ϕiδti = γmin(ni,ni−ϕi)δti =

γni−ϕiδti (1), then m′
i ⪰ mi. If m′

i is present in matrix
A′, then A′ ⪰ A and (A′)∗ ⪰ A∗. The same is true if
m′

i is in C ′ or B′ (C ′ ⪰ C and B′ ⪰ B). Therefore,
H ′ = C ′(A′)∗B′ ⪰ H = CA∗B.

Finally, let us define a new TEG G′′ = (P, T ,A,M ′
0, D

′)
resulting from a set of both time and resource failures on the
original normal TEG G, with an associated matrix H ′′. When
different places contain different types of failures, H ′′ ⪰ H
follows from the previous proof. This leaves the scenario
of different types of failure occurring in the same places. In
this case, the monomials associated with those places become
m′′

i = γni−ϕiδti+θi . We have m′′
i ⊕m′

i = γni−ϕiδti+θi ⊕
γni−ϕiδti = γni−ϕiδmax(ti,ti+θi) = γni−ϕiδti+θi so m′′

i ⪰
m′

i. Since m′
i ⪰ mi and the relation ⪰ is transitive, then

m′′
i ⪰ mi. Following the logic of the precedent paragraph,

this results in H ′′ ⪰ H for TEG G′′ as well.

IV. LEARNING MAX-PLUS LINEAR SYSTEMS FROM LOGS

The purpose of this paper is to propose a method for
estimating the transfer matrix H and the delayed behavior
matrices (caused by failures, previously denoted H ′ and
H ′′) of a system whose dynamics are initially unknown.
This section describes how the available information on the
system is presented through a log and how the proposed
method takes advantage of this log to achieve its goals.

A. Assumptions regarding the logs

The proposed method uses data presented as different runs
(i.e. an input vector U and its respective output vector Y )
which together constitute a log. A log is assumed to contain
at least one normal run of the system (produced during nor-
mal behavior). The log may contain delayed runs, generated
during abnormal behavior caused by either the same set of
failures or by different sets of failures for different runs,
potentially mixing both kinds (see Definitions 5 and 6). The
runs are finite and independent of each other.

For instance, let us consider a group of machines that are
restarted every morning and shut down every night, working
at different failing stages. For each machine, every day would
be considered a different run, and all the runs of all the
machines can be combined in a single log.

B. Describing logs in Max
in [[γ, δ]]

In practice, the runs considered in this paper contain
couples (v, d) where v is the name of the event and d is its
date of occurrence (see Example 6 below). Each run details
an input that has been applied to the system and its respective
output (so v can be an input or an output event). A log
contains N runs numbered from 0 to N-1.

Example 6: The following log is composed of two runs,
one for each line, produced by a system modeled by the TEG
in Fig. 1. In the first run, each transition is fired twice. In
the second run, u0, y0 and y1 are fired once and u1 twice.

(u1, 1)(u1, 1)(u0, 2)(u0, 2)(y0, 3)(y0, 3)(y1, 3)(y1, 5)
(u0, 0)(u1, 0)(u1, 0)(y0, 1)(y1, 2)

Obtaining trajectories in Max
in [[γ, δ]] from runs is straight-

forward. A log containing N runs of the system can be



described as two N-tuples: U = (U0, ..., UN−1) for the input
vectors and Y = (Y0, ..., YN−1) for their respective output
vectors. Note that input vector Ui of run i in the log is not
to be confused with transition ui in the TEG.

In each vector, the first occurrence of an event will be
translated as the first monomial of its respective series, γ0δt,
where t is its date. Subsequent occurrences follow the same
rule with an ascending exponent of γ. All series start with γ0

(and not γn with n > 0) because all runs are considered to
be independent and the system is in phase (so the outputs are
not ahead of the inputs and the numbering of their events also
starts at zero) (see Definition 4). Finally, the last monomial
of a series describing n occurrences of an event is γnδ+∞,
meaning that occurrence n never happens.

Example 7: The log in Example 6 contains two runs
numbered 0 and 1. It is translated as U = (U0, U1) and
Y = (Y0, Y1). Each vector Ui (resp. Yi) has two components
containing series describing the firings of u0 and u1 (resp.
y0 and y1). The vectors in Max

in [[γ, δ]] from this log are:

U0 =

(
γ0δ2 ⊕ γ2δ+∞

γ0δ1 ⊕ γ2δ+∞

)
, Y0 =

(
γ0δ3 ⊕ γ2δ+∞

γ0δ3 ⊕ γ1δ5 ⊕ γ2δ+∞

)
,

for the first line (run 0) and, for the second line (run 1):

U1 =

(
γ0δ0 ⊕ γ1δ+∞

γ0δ0 ⊕ γ2δ+∞

)
, Y1 =

(
γ0δ1 ⊕ γ1δ+∞

γ0δ2 ⊕ γ1δ+∞

)
.

C. Estimating transfer matrices from a log

Once the information in the available log has been trans-
lated in terms of Max

in [[γ, δ]], it is possible to use it explain
the dynamics of the underlying system. Let us consider a
system with nu inputs, ny outputs, and unknown normal
transfer matrix H . As previously stated, a log containing
N runs of this system is expressed as U = (U0, ..., UN−1)
and Y = (Y0, ..., YN−1). Evidently, if all runs are normal,
Yi = HUi for every run i in the log. According to the
properties of residuation presented in section II-C and the
definition of right division presented in Example 3, the
residual Yi◦/Ui constitutes an upper bound of the unknown
transfer matrix: Yi◦/Ui ⪰ H ∀i ∈ {0, ..., N − 1}. The next
proposition naturally follows.

Proposition 2: Let us consider a log containing N runs of
a system with both normal and delayed runs. The infimum of
the right residuals of each output vector Yi over its respective
input vector Ui constitutes an upper bound of the normal
transfer matrix of the system. Formally,

N−1∧
i=0

(Yi◦/Ui) ⪰ H. (5)

Proof: As mentioned, for a normal run i, Yi = HUi,
then Yi◦/Ui = (HUi)◦/Ui ⪰ H . For a delayed run j,
there exists H ′ such that Yj = H ′Uj (Proposition 1), then
Yj◦/Uj = (H ′Uj)◦/Uj ⪰ H ′ and since H ′ ⪰ H and the
order relation is transitive, then Yj◦/Uj ⪰ H . Finally, the
two previous order relations regarding H imply that for any
two given runs j and i, (Yi◦/Ui)∧H = H and (Yj◦/Uj)∧H =
H; since the operator ∧ is associative and commutative,
(Yi◦/Ui)∧ (Yj◦/Uj)∧H = H ⇔ (Yi◦/Ui)∧ (Yj◦/Uj) ⪰ H .

It is therefore possible to summarize all the information
conveyed in the log in a single upper bound of H . The better
the quality of the runs (see Section IV-F), the closer this
upper bound is to H . This will be exploited by the method
presented in the following sections.

D. General objectives

There are two main goals for the method introduced in
this paper. Starting from a log described as N-tuples U and
Y, the first goal is to estimate the transfer matrix describing
the normal behavior of the system, H . The estimated transfer
matrix will be denoted H̃0. The second goal is to identify
delayed behavior matrices to explain all the runs in the log,
that is, to obtain a set of matrices {H̃1, ..., H̃F } such that
∀i,∃k ∈ {0, ..., F} s.t. Yi = HkUi.

In order to achieve these goals, the proposed method is
divided in two steps. The first step is to compute a set
of matrices S = {M0, ...,MF } to explain all the runs in
the log. Algorithm 1 does this by returning matrices whose
entries are finite or truncated series. The final step is to
obtain the estimated transfer matrix H̃0 and the delayed
behavior matrices {H̃1, ..., H̃F } whose entries are infinite
series by extending the finite series in the matrices in S (see
Section IV-F).

E. Computing the finite behavior matrices

Algorithm 1 takes advantage of (5) by using the left term
of the inequality to propose a finite estimation of the transfer
matrix and not only an upper bound, under the assumption
that enough information on the dynamics of the system is
conveyed in the log:

M0 =

N−1∧
i=0

(Yi◦/Ui). (6)

This algorithm also aims at identifying the behavior of the
system for the delayed runs produced by detectable failures.
By Definition 7, for such failures, Y ̸= HU . This means
that if the estimated matrix M0 is accurate enough, it is
possible to discern delayed behavior from normal behavior
by calculating M0U for a given run and comparing it to
Y . An estimation of the delayed behavior matrix explaining
abnormal runs can also be calculated via (6) using the
delayed subset of runs. Furthermore, if more than one set
of failures produced the runs in the log, a single estimation
may not explain them all; in order to identify different
behaviors, Yi = MkUi must be checked before including the
information conveyed by run i in the estimation Mk. When
done recursively until all the runs are explained, one obtains
a set containing F delayed behavior matrices M1, ...,MF .

The inputs of Algorithm 1 are U and Y. Its output is the
set S = {M0, ...,MF } containing finite matrices describing
the behaviors of the system, with M0 estimating normal
behavior. The algorithm starts by initializing the necessary
variables. Ie (resp. Ine) is the set containing the indices
of the runs explained (resp. not explained) by the current
matrix M . The algorithm will perform until the set of
unexplained run indices is empty (loop starting in line 5).



Algorithm 1
Input: U,Y
Output: S

1: Let U = (U0, ..., UN−1) ▷ N-tuple of input vectors
2: Let Y = (Y0, ..., YN−1) ▷ N-tuple of output vectors
3: S ← ∅ ▷ Set of behavior matrices
4: Ine ← {0, ..., N − 1} ▷ Indices of unexplained runs
5: while Ine ̸= ∅ do
6: M ← (⊤)i,j ▷ Behavior matrix
7: Ie ← ∅ ▷ Indices of explained runs
8: for i ∈ Ine do
9: M ′ ←M ∧ (Yi◦/Ui)

10: if M ′Ui = Yi then
11: M ←M ′

12: Ie ← Ie ∪ {i}
13: Ine ← Ine \ {i}
14: end if
15: end for
16: for i ∈ Ie do
17: if MUi ̸= Yi then
18: Ine ← Ine ∪ {i}
19: end if
20: end for
21: S ← S ∪ {M}
22: end while
23: return S

We go on to perform the computations explained in the
previous paragraphs. Line 10 checks whether the current
matrix explains the current run in order to update the matrix;
the loop on the explained runs (line 16) updates this set if
there are runs contained in it that are no longer explained.
Finally, the finite estimated matrix is added to the resulting
set (line 21) and a new iteration of the main loop starts.

As stated, since all the runs are finite, the entries in the
matrices in S are not periodic even if the underlying system
is a periodic system. The extra step needed to obtain a
satisfactory estimation of the transfer matrix and the behavior
matrices will be explained in section IV-F.

Regarding complexity, Algorithm 1 is in O(N2) as it has a
loop iterating on the N runs of the log, which in turn contains
two separate loops on the sets of indices. The complexity of
the residuation, the infimum and the product between two
series with n monomials each are each in O(n2 log(n)).
Overall, M ∧ (Y ◦/U) and MU are in O(n2

un
2
yn

2 log(n)).

F. Obtaining infinite series

Every matrix Mk ∈ S produced by Algorithm 1 is
composed of finite series only and is not yet the transfer
matrix of an underlying TEG. In some cases, the residuation
can result in series lesser than or non-comparable to γ0δ0,
in which case the respective entry will be assumed to be
equal to ε because the systems are assumed to be in phase
(see Definition 4). However, in most cases the behavior of
a TEG is periodic (with a production rate) and so are the
entries in the transfer matrix H̃k, so to finally get an estimate

of this matrix, every finite series s =
⊕n

i=1 γ
ciδti from Mk

must be extended as a periodic series s∞ = p ⊕ qm∗ =
p⊕q⊕qm⊕qm2⊕ . . . (p expresses the transient behavior, q
is the pattern, and monomial m encapsulates this pattern [1]).
To perform this extension, it is required that the finite series
s embeds at least at q and qm (s = p⊕

⊕I
i=0 qm

i⊕ r, with
I > 1, and r a finite series) which depends on the quality
of the log. For this, in some runs, input events must be both
frequent enough and delayed enough to exploit the resources
of the system at the intended production rate. Also, some
runs must contain enough events for the system to express
its periodic pattern at least twice. These properties are similar
to those required in the method for estimating periodic series
found in [5].

The algorithm used in this step analyzes the set of n
monomials of series s and computes a series s′ = p′ ⊕
q′ ⊕ q′m′ based on the strategy composed of a sequence
of stages [S0,S1, . . . ]. Stage Si, i ≥ 0 is summarized as
follows. We first consider that p′ =

⊕i
j=1 γ

cjδtj (for i = 0,
p′ = ε). Then, we assume that the pattern q′ relies on the n−i

2

monomials
⊕i+n−i

2
j=i γcjδtj of s, that is checking whether s

can be rewritten as s′ = p′ ⊕ q′ ⊕ q′m′ (two occurrences of
the pattern). If it is true, the search ends and Si is a success.
If not, and if the transient behavior of s∞ is really p′, then
the pattern that we seek involves fewer monomials, so we
check for a pattern involving n−i

2 − 1 monomials, and so
on1. Finally, if no pattern is found, Si+1 is applied.

Following this algorithm, the estimation of s∞ leads to
an expression written p′ ⊕ q′m′∗. By construction, if the
quality of the log is satisfactory and the series is periodic,
this algorithm necessarily ends as p′ necessarily converges
to p. The periodic part q′ might not be the shortest but
computing the canonical expression of p⊕ q′m′∗ [6],[2] will
lead to the shortest equivalent q. If a pattern is not found,
then the underlying series is assumed to be non-periodic and
is flattened by removing its last monomial (γnδ+∞).

Finally, the result of the two-step method detailed in
Section IV-E and the previous paragraphs is the set of
matrices {H̃0, H̃1, . . . , H̃F } with the following properties.

Property 1: ∀i ∈ {0, ..., N−1},∃k ∈ {0, ..., F} s.t. Yi =
H̃kUi. This means that for every run there is at least one
behavior matrix that explains it in the resulting set.

Property 2: ∀k ∈ {1, ..., F}, H̃k ⪰ H̃0. The estimated
delayed behavior matrices are greater than the estimated
transfer matrix.

Property 3: ∀k ∈ {0, ..., F},∃i ∈ {0, ..., N−1} s.t. Yi =
H̃kUi. Every matrix in the set of behavior matrices explains
at least one run.

G. Example

The TEG in Fig. 1 serves as a model for a system divided
in two tasks. The first task is activated by input event u0 and

1In practice, before looking for such a pattern, the algorithm checks
whether it has previously searched for a pattern involving kl events where
l is the number of events involved in the n−i

2
− 1 monomials. If this is

the case, there is no solution with n−i
2

− 1 monomials and the algorithm
directly checks with n−i

2
− 2 monomials, and so on.



includes places p0, p1 and p3. This task has a production rate
of two tokens per time unit, paced by the circuit between x0

and x1, and output y0 signals its completion. The second
task, modeled by places p2, p4 and p6, is activated by input
event u1 and takes two time units. Its completion depends
on the completion of the first task and results in output y1.
The initial token in p4 translates the fact that the second task
is one resource ahead of the first one, so it can be initiated
by event u1 before the completion of the first task.

Three sets of failures were simulated for this example.
The first one is a time failure of one time unit on place p6,
the second one is composed of two resource failures of one
token each on places p3 and p4, and the last one is the union
of the three previous failures.

N = 3000 runs of the system were simulated, 750 for
each set of failures and 750 for the normal system. These
runs had a number of events ranging from 4 to 8 and three
scenarios were chosen (with 250 runs for each): the events
of u1 all taking place after those of u0, then vice versa, and
then both inputs having events in no particular order.

The algorithm was implemented as part of the C++ library
MaxPlusDiag, relying on MinMaxGD [2]. It returns a set
containing five matrices. The first two follow (truncated at
event 6 for conciseness):

M0=

(
γ0δ1 ⊕ γ2δ2 ⊕ γ4δ3 ⊕ γ6δ+∞ γ6δ+∞

γ0δ1 ⊕ γ1δ3 ⊕ γ3δ4 ⊕ γ5δ5 ⊕ γ6δ+∞ γ0δ2 ⊕ γ6δ+∞

)
M1=

(
γ0δ1 ⊕ γ2δ2 ⊕ γ4δ3 ⊕ γ6δ+∞ γ6δ+∞

γ0δ1 ⊕ γ1δ4 ⊕ γ3δ5 ⊕ γ5δ6 ⊕ γ6δ+∞ γ0δ2 ⊕ γ6δ+∞

)
M0 is the least of all matrices and describes the normal

behavior of the system. The remaining four matrices describe
delayed behavior. The algorithm to obtain periodic series
described in the previous section was applied and returned
the following matrices:

H̃0 =

(
(γ0δ1)(γ2δ1)∗ ·

γ0δ1 ⊕ (γ1δ3)(γ2δ1)∗ γ0δ2

)
,

H̃1 =

(
(γ0δ1)(γ2δ1)∗ ·

γ0δ1 ⊕ (γ1δ4)(γ2δ1)∗ γ0δ2

)
,

H̃2 =

(
(γ0δ1)(γ2δ1)∗ ·

γ0δ1 ⊕ (γ1δ4)(γ2δ1)∗ γ0δ3

)
,

H̃3 =

(
(γ0δ1)(γ1δ1)∗ ·
(γ0δ3)(γ1δ1)∗ γ0δ2

)
,

H̃4 =

(
(γ0δ1)(γ1δ1)∗ ·
(γ0δ4)(γ1δ1)∗ γ0δ3

)
.

The estimated transfer matrix H̃0 is equal to the real nor-
mal transfer matrix of the system in (4) and, as mentioned,
describes the fastest behavior: H̃k ⪰ H̃0 ∀k ∈ {1, ..., 4}. The
matrix describing the slowest behavior is H̃4: H̃4 ⪰ H̃k ∀k ∈
{0, ..., 3}. Matrices H̃2 and H̃3 are non-comparable among
themselves, but both are greater than H̃1.

In matrix H̃1, only entry (1, 0) is different from the respec-
tive entry in H̃0 (starting on the second event). This suggests
failures occurring on places found exclusively between input
u0 and output y1, namely p2 and p4. In H̃2, the same logic
suggests failures upstream of y1 (places p2, p4 and p6). H̃3

suggests failures downstream of u0 (places p0, ..., p4, p7).
In H̃4, all the entries that are different from ε show delayed
behavior, so the failures could potentially be in any place.
On that matter, note that the entry that is equal to ε for the
normal matrix was kept as such for the other matrices. All of
these results are coherent with the failures that were injected
in the simulations.

After completion of the algorithm, we evaluated which
runs were explained by which matrices: 763 out of the 3000
runs in the log are explained by H̃0, 518 are explained by
H̃1, 763 by H̃2, 768 by H̃3 and 761 by H̃4. Some runs are
explained by several matrices, which was expected because
outputs also depend on inputs (and not only on the behavior
of the system) and some inputs may not exploit the dynamics
of the system.

V. CONCLUSIONS

We have introduced the subject of learning max-plus
linear systems from logs containing input and output event
dates for normal and abnormal behavior of a system, and
proposed a method for obtaining these models relying on
the residuation of matrices in Max

in [[γ, δ]]. The core of this
method is synthesized in Algorithm 1, which results in a
set of matrices explaining all the information conveyed in a
log. These matrices are then extended to finally obtain the
potentially periodic behavior of the underlying system.

Several future work possibilities arise from our method.
Since the abnormal behavior of the system is generated by
failures, one application would be obtaining models that
can be used to perform model-based diagnosis [8], [10].
Other interesting prospects include covering more types of
failures, like the suppression of arcs in the TEG, or directly
performing a diagnosis process by classifying the runs.

REFERENCES

[1] F. Baccelli, G. Cohen, G.J Olsder, and J.-P Quadrat. Synchronization
and linearity: an algebra for discrete event systems. Wiley and sons,
UK, 1992.

[2] B. Cottenceau, M. Lhommeau, L. Hardouin, and J.-L Boimond. Data
processing tool for calculation in dioid. In 5th International Workshop
on Discrete Event Systems, 2000.

[3] B. De Schutter, T.J.J. van den Boom, and V. Verdult. State space
identification of max-plus-linear discrete event systems from input-
output data. In Proceedings of the 41st IEEE Conference on Decision
and Control, volume 4, pages 4024–4029, 2002.

[4] S. Farahani, T.J.J. van den Boom, and B. De Schutter. Exact and
approximate approaches to the identification of stochastic max-plus-
linear systems. Discrete Event Dynamic Systems, 24:447–471, 2013.

[5] F. Gallot, J.-L. Boimond, and L. Hardouin. Identification of Linear
Systems using MA and ARMA Model in Dioid. In IFAC Conference
on System Structure and Control, pages 593–599, 1998.

[6] S. Gaubert. Théorie des systèmes linéaires dans les dioı̈des. PhD
thesis, École des Mines de Paris, 1992.

[7] J. Hook. Max-plus linear inverse problems: 2-norm regression and
system identification of max-plus linear dynamical systems with
gaussian noise. Linear Algebra and its Applications, 2019.

[8] E. Le Corronc, Y. Pencolé, A. Sahuguède, and C. Paya. Failure
detection and localization for timed event graphs in (max,+)-algebra.
Discrete Event Dynamic Systems, 31:513–552, 2021.

[9] T.J.J. van den Boom, B. De Schutter, and V. Verdult. Identification
of stochastic max-plus-linear systems. In Proceedings of the 2003
European Control Conference (ECC’03), Cambridge, UK, 2003.

[10] I. Velasquez, Y. Pencolé, and E. Le Corronc. Analysis and control of
timed event graphs in (max,+) algebra for the active localization of
time failures. Discrete Event Dynamic Systems, 34:53–93, 2024.


