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A B S T R A C T

We study how altruism networks affect the demand for formal insurance. Agents with CARA utilities are
connected through a network of altruistic relationships. Incomes are subject to a common shock and to a large
individual shock, generating heterogeneous damages. Agents can buy formal insurance to cover the common
shock, up to a coverage cap. We find that ex-post altruistic transfers induce interdependence in ex-ante formal
insurance decisions. We characterize the Nash equilibria of the insurance game and show that agents act as if
they are trying to maximize the expected utility of a representative agent with average damages. Altruism thus
tends to increase demand of low-damage agents and to decrease demand of high-damage agents. Its aggregate
impact depends on the interplay between demand homogenization, the zero lower bound and the coverage
cap. We find that aggregate demand is higher with altruism than without altruism at low prices and lower at
high prices. Nash equilibria are constrained Pareto efficient.
1. Introduction

The poor in poor countries generally face large risks, especially
when it comes to health (illnesses, accidents) and livelihood (climate
events), see Banerjee and Duflo (2011). These risks are a major source
of stress and reduced well-being, as well as a likely cause of poverty
traps. Many such risks could, in principle, be covered by formal in-
surance, like public universal health coverage and crop and livestock
insurances offered by insurance companies. In the past 40 years, gov-
ernments and development institutions have worked hard to make
formal insurance accessible to households in need. Disappointingly,
however, these efforts have often encountered low take-up, e.g., Cole
et al. (2013). A recent industry report estimates that just 7% of the
value of the microinsurance market in developing countries is currently
captured, see Merry and Rozo Calderon (2022).

One likely explanation for such limited adoption of formal insurance
in high-risk contexts is informal safety nets, which may act as barriers
to formal insurance.1 There is widespread evidence that social networks
help individuals and households cope with negative shocks through
informal financial transfers and help in kind. These transfers and assis-
tance are motivated, to a large extent, by altruism, as individuals give
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E-mail addresses: tizie.bene@univ-amu.fr (T. Bene), yann.bramoulle@univ-amu.fr (Y. Bramoullé), frederic.deroian@univ-amu.fr (F. Deroïan).

1 Other explanations include price and income effects, liquidity constraints, mistrust, and lack of experience with insurance products, see Platteau et al. (2017).
These explanations are not mutually exclusive. We analyze how price effects interact with altruism networks in determining the demand for formal insurance.

2 Informal transfers may notably be motivated by altruism, social pressure, and informal insurance. We review the literature documenting evidence on altruism
below.

to others they care about.2 How do effective altruism networks, then,
affect the demand for formal insurance? Does altruism always reduce
the adoption of formal insurance? These questions have, so far, been
neglected; we review the scant literature on the interaction between
formal and informal insurance below.

This paper provides the first analysis of how altruism networks
affect the demand for formal insurance. We consider a community
of agents who care about each other. Agents face both a common
and an individual shock and can buy formal insurance to cover the
common shock. Once shocks and insurance claims are realized, agents
make private transfers to each other to support friends in need. We
find that altruism networks have a profound impact on demand for
formal insurance. Under altruism, an agent anticipates that her own
insurance decision will affect the outcomes of others she cares about.
Ex-post altruistic transfers thus induce interdependence in ex-ante de-
cisions to buy formal insurance. In our benchmark model, agents have
utilities with Constant Absolute Risk Aversion, heterogeneous damages,
and can buy any amount of formal insurance up to a coverage cap.
We find that altruism tends to homogenize the demands for formal
insurance. It increases demand of low-damage agents and decreases
https://doi.org/10.1016/j.jdeveco.2024.103335
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demand of high-damage agents. The overall impact then depends on
the interplay between damage heterogeneity, the zero lower bound and
the coverage cap. We find that the demand for formal insurance is
higher with altruism than without altruism at relatively low prices and
lower at relatively high prices. Altruism networks and formal insurance
are thus complements are low prices and substitutes at high prices.
Overall, our analysis shows that an appropriate description of the way
informal safety nets operate is key to understanding the determinants
and impacts of formal insurance adoption.

We introduce formal insurance into the model of altruism in net-
works studied in Bourlès et al. (2017, 2021). Agents are embedded in
a fixed altruism network, describing the structure of social preferences
in the community. An agent’s altruistic utility is a linear combination
of her private CARA utility and the private utilities of others she
cares about. We consider a connected altruism network: any agent can
be reached from any other agent through a directed path of caring
relationships. We assume that the common and the idiosyncratic shocks
are binary and independent, generate heterogeneous damages, and that
the idiosyncratic shock is large and only affects one agent at a time.
This guarantees that a directed path of transfers flows from any other
agent to the affected agent in equilibrium, a key simplifying assumption
(Assumption 1). We develop our analysis in several stages.

We first obtain an explicit characterization of the Nash equilibria of
the insurance game (Theorem 1). Under altruism, the insurance game
displays strategic substitutes: an agent’s demand for formal insurance
decreases when others buy more formal insurance. We show that all
agents act as if they are trying to maximize the utility of a representa-
tive agent with average damages and average demand. In equilibrium,
the average demand of altruistic agents is thus equal to the demand of a
selfish agent with average damages. Even though this average demand
is well-defined, Nash equilibria and individual demands are generally
indeterminate.

Second, we introduce a natural selection criterion to address equi-
librium indeterminacy. We say that a Nash equilibrium is robust to
conformism when it remains an equilibrium when adding vanishingly
small conformist pressures. We then show that there is a unique Nash
equilibrium robust to conformism, which minimizes variance over all
equilibria (Proposition 2). In this equilibrium, demand for formal in-
surance of low-damage agents is larger than without altruism while
demand for formal insurance of high-damage agents is lower. Altruism
thus tends to homogenize the demands for formal insurance.

Third, we compare the aggregate demand for formal insurance with
and without altruism, both in the absence of a cap (Theorem 2) and
when the cap is binding for all (Theorem 3). In the absence of a cap,
altruism is neutral at low prices and reduces demand at high prices.
When the price is relatively high, low-damage agents are constrained
by the zero lower bound on the amount of formal insurance they
can buy while high-damage agents are unconstrained. This reduces
the increases in demand for low-damage agents induced by altruism,
and leads to a negative aggregate impact. When the cap is binding
for all, altruism increases demand at low prices and reduces demand
at high prices. When the price is relatively low, high-damage agents
are now constrained by the coverage cap while low-damage agents
are unconstrained. This lowers the reductions in demand for high-
damage agents induced by altruism, and leads to a positive aggregate
impact. Overall, we find that altruistic transfers and formal insurance
are complements at low prices and substitutes at high prices.

Fourth, we analyze welfare and show that the Nash equilibria of
the insurance game are constrained Pareto efficient (Proposition 3).
Conditional on the constraint that informal transfers are obtained as
a Nash equilibrium, individual incentives to adopt formal insurance
are thus aligned with social welfare. This remarkable feature relies
on the representative agent’s property, which guarantees that payoffs
all move in the same direction. This provides a new context where
a counterpart to the first welfare theorem holds in the presence of

strategic interactions. c

2 
Our analysis contributes, first, to the literature on the economics
of altruism, initiated by Barro (1974) and Becker (1974).3 Altruism
appears to be a main motive behind informal transfers. Studies finding
evidence that some transfers are altruistically motivated include Foster
and Rosenzweig (2001), Leider et al. (2009), De Weerdt and Fafchamps
(2011), Ligon and Schechter (2012) and Fafchamps and Heß (2021).
For instance in a study on rural Tanzania, De Weerdt and Fafchamps
(2011) find that people with persistent health shocks and chronic
disabilities receive net support from family and friends. This indicates
that altruism, rather than a reciprocated insurance arrangement, is
operative. Altruism likely explains a large proportion of family remit-
tances, a main source of income for many poor households, e.g., Yang
(2011). We focus on this motive in this paper, and provide the first
analysis of the impact of altruism networks on formal insurance.

Our analysis contributes, second, to the literature on the interac-
tions between informal transfers and formal insurance.4 Arnott and
Stiglitz (1991) showed early on that informal risk-sharing can crowd
out demand for formal insurance.5 In their framework, informal risk-
sharing takes place within pairs of symmetrical agents and under
moral hazard. By contrast, we consider altruism networks connecting
heterogeneous agents and without moral hazard, and find that altruistic
transfers can be a complement to formal insurance at low prices. In an
empirical study on rural India, Rosenzweig (1988), finds that private
transfers in networks of families and friends play a central role in
risk-sharing, and often crowd out formal loans. Kinnan and Townsend
(2012) analyze data on formal and informal loans in rural Thailand.
They find evidence of large network spillovers: having an indirect
connection to a household with a formal loan has the same, strong
impact on consumption smoothing than having a formal loan. These
findings are consistent with our theoretical results. In our setup when
one agent adopts formal insurance, every agent indirectly connected
in the altruism network benefits. De Janvry et al. (2014) analyze the
demand for formal insurance against common shocks, when individual
utility depends on individual and aggregate wealth. They highlight
the strategic interactions and free-riding in individual decisions to
adopt formal insurance. While our setup differs in important ways,
our analysis confirms the key insight that in the presence of informal
transfer arrangements, individual decisions to adopt formal insurance
are interdependent.6 We show that these strategic interactions do not
necessarily lead to free-riding, however. In our context, even though
individual decisions to adopt formal insurance are strategic substitutes,
Nash equilibria are constrained Pareto efficient. Overall, we provide
the first analysis of demand for formal insurance when agents make
informal transfers through networks.

A recent branch of the literature on formal and informal insurance
studies index insurance, an innovative financial product where transfers
received by agents depend on an objective index, such as the amount of
rainfall measured at a weather station. A key feature of index insurance,
however, is that it carries basis risk. Agents have a risk of paying for
the insurance and suffering losses without being indemnified.7 Several
studies find empirical evidence that the demand for index insurance
rises with increased informal insurance, see Mobarak and Rosenzweig

3 See Galperti and Strulovici (2017) and Ray and Vohra (2020) for recent
heoretical studies of economic models of altruism.

4 One branch of this literature looks at how the introduction of formal
nsurance affects existing informal arrangements, see, e.g., Attanasio and
íos-Rull (2000), Boucher et al. (2016) and Takahashi et al. (2019).

5 Ehrlich and Becker (1972) show that formal insurance and self-insurance
re substitutes, where self-insurance is defined as costly actions that an agent
an take to reduce damages from the shock.

6 In our setup, formal insurance only covers the common shock rather than
verall wealth fluctuations and individual utility does not depend on individual
nd aggregate wealth.

7 Strictly speaking, index insurance should thus be classified as a derivative
ontract rather than an insurance contract, see Clarke (2016).
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(2012, 2013), Dercon et al. (2014) and Berg et al. (2020). These studies
develop models where individuals informally share risk in a group,
and the complementarity between index insurance and informal risk-
sharing arises because informal insurance helps cover the basis risk.
By contrast, we consider a standard indemnity insurance in our setup,
without basis risk, and networks of altruistic relationships. We show
that the demand for formal insurance can be higher with altruism than
without, in the presence of a coverage cap and damage heterogeneity.

Our analysis contributes, third, to a literature on informal transfers
and networks.8 Ambrus et al. (2014) characterize Pareto-constrained
isk-sharing arrangements when transfers flow through networks and
inks can be used as social collateral. Ambrus et al. (2022) analyze
areto-constrained risk-sharing arrangements under local informational
onstraints. Bourlès et al. (2017) consider a network of altruistic rela-
ionships and characterize the Nash equilibria of the game of transfers
or non-stochastic incomes. Bourlès et al. (2021) look at altruism
etworks when incomes are stochastic. None of these studies consider
ormal insurance, however. We introduce formal insurance into this
iterature, and provide the first analysis of the interplay between for-
al insurance and informal transfers through networks.9 We find that

ltruism networks have a first-order impact on demand for formal
nsurance.

The remainder of the paper is organized as follows. We introduce
ur framework in Section 2. We analyze the insurance game and the
mpact of altruism networks on the demand for formal insurance in
ection 3. We provide a concluding discussion in Section 4.

. Framework

We introduce formal insurance into the model of altruism in net-
orks studied by Bourlès et al. (2017, 2021). Consider a community
f 𝑛 ≥ 2 altruistic agents. Incomes are stochastic, and subject to
common shock and to an individual shock. The common shock

ffects all agents and both shocks generate heterogeneous damages.
n external institution sells a formal insurance covering damages from

he common shock. Each agent decides, ex-ante, how much formal
insurance to buy, up to a coverage cap. Once incomes and insurance
claims are realized, altruistic agents make informal transfers to each
other. We assume that agents act non-cooperatively in their formal
insurance and informal transfer decisions. The model thus has 3 stages.
In stage 1, agents decide how much formal insurance to buy. In stage
2, income shocks and insurance claims are realized. In stage 3, agents
make private transfers, conditional on realized incomes.

Stochastic Incomes. Agent 𝑖 has baseline wealth 𝑤𝑖 and faces a com-
mon and an individual shock. We consider binary shocks for simplic-
ity.10 Denote by 1̃𝑐 a binary random variable indicating whether the
ommon shock occurs: 1̃𝑐 = 1 with probability 𝑞𝑐 and 0 with probability
1 − 𝑞𝑐 . This common shock yields an income loss of 𝜇𝑖 > 0 for agent
. This shock could represent a problematic weather event, such as
eavy rainfalls or a drought, affecting farmers’ crops or pastoralists’
ivestocks. It could also represent a natural catastrophe, like a flood
r an earthquake. While all agents in the community are affected,
ome agents may suffer higher losses than others due to a higher risk
xposure.

8 One branch of the literature analyzes the stability of risk-sharing
etworks, see, e.g., Bloch et al. (2008) and Bramoullé and Kranton (2007).

9 Gagnon and Goyal (2017) develop a model where agents choose a net-
ork and a market binary action. They assume that the two actions are either

ubstitutes or complements, and analyze equilibria, welfare, and inequality. By
ontrast, market and network actions are not binary in our setup and whether
he two actions are substitutes or complements is not assumed, but rather a
ain outcome of the analysis.
10 The assumption that shocks are binary is common in the literature on

nsurance, see, e.g., Arnott and Stiglitz (1991), Berg et al. (2020), Clarke
2016), De Janvry et al. (2014) and Mobarak and Rosenzweig (2012).
3 
Agents may also suffer from an individual shock, independent from
the common shock. Denote by �̃�𝑖 the random variable capturing agent
𝑖’s stochastic income loss from the individual shock: �̃�𝑖 = 𝜆𝑖 > 0 with
probability 𝑞𝑖 and 0 with probability 1 − 𝑞𝑖. We assume that one agent,
and only one, is affected. This means that ∑𝑖 𝑞𝑖 = 1 and �̃�𝑖 > 0 ⇒ �̃�𝑗 = 0
or 𝑗 ≠ 𝑖. We will assume below that these individual shocks are large,
epresenting a serious adverse event such as an incapacitating accident
r illness, or the death of a household member.

Taken together, the facts that the individual shock is large and only
ffects one agent help structure the way informal transfers flow through
he altruism network. It leads all agents to make direct or indirect
ransfers eventually reaching the agent hit by the shock, as expressed
n Assumption 1 and Lemma 1 below. These assumptions thus provide
natural benchmark allowing us to manage the complexity inherent to
etworks.11 We discuss the implications of relaxing these assumptions,

and exploring richer stochastic structures and network patterns, in
Section 4.

To sum up, agent 𝑖 faces stochastic income

𝑖 − 𝜇𝑖1̃𝑐 − �̃�𝑖. (1)

ote that this formalization captures a large range of heterogeneities:
n baseline wealth, 𝑤𝑖, damage from the common shock, 𝜇𝑖, damage
rom the individual shock, 𝜆𝑖, and in probability to be affected by the
ndividual shock, 𝑞𝑖.

ormal insurance. An external institution offers insurance contracts
hat cover damages from the common shock. This could represent an
gricultural microinsurance covering crops or livestocks. This could
lso be a flood or earthquake insurance. By contrast, we assume that the
ndividual shock cannot be formally insured. This is consistent with the
act that formal insurance schemes are expanding in a very uneven way
n poor countries, depending on idiosyncratic factors such as targeted
overnment interventions and specific business initiatives, see Merry
nd Rozo Calderon (2022). At this stage, it thus not uncommon for
armers in poor villages to have to decide whether to adopt some crop
icroinsurance even when they do not have access to formal health

nd funeral insurances.12

Formal insurance has unit price 𝑝 ≥ 0 and coverage cap 𝐷 ≥ 0. Agent
may buy a quantity 𝑥𝑖 of formal insurance, where 0 ≤ 𝑥𝑖 ≤ 𝑚𝑖𝑛(𝐷, 𝜇𝑖),
t cost 𝑝𝑥𝑖. This quantity is bounded from above by the coverage cap
nd by the individual-specific damage. Let 𝐷𝑖 = 𝑚𝑖𝑛(𝐷, 𝜇𝑖) represent the
aximal amount of insurance that agent 𝑖 can buy. Caps on insurable
amages are common features of insurance contracts, see Cummins and
ahul (2004). They help insurers limit moral hazard and fraud, two
ajor concerns with microinsurance. Caps are also prevalent in disaster

nsurance, when the financial capacity of the insurance institution may
e limited by the extent of global losses.

To facilitate exposition and algebra, we derive some of our results
elow in the two benchmark cases of no cap, when all agents can be
ully covered and ∀𝑖, 𝐷𝑖 = 𝜇𝑖, and a binding cap, when no agent can
e fully covered and ∀𝑖, 𝐷𝑖 = 𝐷. Our analysis extends to the general
ase where the cap is binding for agents with high damages, but not
or agents with low damages.

If the common shock occurs, a part 𝑥𝑖 of the damages is then covered
y the formal insurance contract, and the effective income loss is equal
o the uninsured part 𝜇𝑖 − 𝑥𝑖. Agent 𝑖’s stochastic income at the end

11 The assumption that one, and only one, agent is affected by a shock is also
used for tractability in the literature on financial networks, see, e.g., Babus
(2016) and Cabrales et al. (2017). We show that that our results extend to
situations where several agents are affected by a shock when the network is
complete in Section 4.

12 Similarly, Attanasio and Ríos-Rull (2000) assume that agents face an
idiosyncratic and an aggregate shock and that the idiosyncratic shock is not

formally insured while the aggregate shock is insured by the government.
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of stage 1, after formal insurance decisions but before realizations of
shocks and informal transfers, is thus equal to

�̃�𝑖 = 𝑤𝑖 − 𝑝𝑥𝑖 − (𝜇𝑖 − 𝑥𝑖)1̃𝑐 − �̃�𝑖. (2)

We focus on the demand for formal insurance in our analysis, and
take the characteristics of the insurance contract, its price and coverage
limit, as given. Both characteristics of course reflect features of the
supply side. On prices, an important benchmark is provided by the
actuarial price 𝑝 = 𝑞𝑐 , equal to the equilibrium price in a competitive
insurance market with free entry, no frictions and no administrative
costs. These assumptions are very unlikely to hold in the emerging
insurance markets of poor countries, characterized by high barriers
to entry, frictions of all kinds, and high operational costs. All these
factors push the price upwards.13 And indeed, a main private actor of
the industry concludes that, compared to standard insurance contracts
in rich countries, microinsurance contracts in poor countries often
display higher premiums, see LLoyd’s (2009) p.8.14 Thus, our working
assumption is that the price of formal insurance is higher than the
actuarial price, 𝑝 > 𝑞𝑐 , and that this price captures, in a reduced-form
way, the extent of frictions in the local insurance market.

Informal transfers. In stage 3, once shocks and insurance claims
are realized, altruistic agents make informal transfers to each other.
We next describe how these transfers are determined. We adopt the
framework of Bourlès et al. (2017). We consider a simultaneous-move
game with complete information. Preferences and realized incomes are
thus common knowledge among agents.

Let 𝑐𝑖 denote consumption of agent 𝑖 after informal transfers are
realized. Let 𝐜−𝑖 denote the consumption profile of the other agents.
Agents may care about each other. Preferences have a private and
a social component. Agent 𝑖’s private preferences are represented by
utility function 𝑢𝑖 ∶ R → R with Constant Absolute Risk Aversion
(CARA):

𝑢𝑖(𝑐) = −𝑒−𝐴𝑐 . (3)

Agent 𝑖 may be altruistic towards others and her preferences are
represented by the altruistic utility function 𝑣𝑖 ∶ R𝑛 → R such that

𝑣𝑖(𝑐𝑖, 𝐜−𝑖) = 𝑢𝑖(𝑐𝑖) +
∑

𝑗≠𝑖
𝛼𝑖𝑗𝑢𝑗 (𝑐𝑗 ) (4)

where 𝛼𝑖𝑗 ∈ [0, 1] represents the strength of the altruistic relationship
between 𝑖 and 𝑗. By convention, 𝛼𝑖𝑖 = 0. The altruism network is
represented by the matrix 𝜶 = (𝛼𝑖𝑗 )𝑛𝑖,𝑗=1, describing the structure of
social preferences in the community.

Agent 𝑖 can give 𝑡𝑖𝑗 ≥ 0 to agent 𝑗. By convention, 𝑡𝑖𝑖 = 0. The col-
lection of bilateral transfers defines a network of transfers, represented
by the matrix 𝐭 ∈ R𝑛2

+ . Agent 𝑖’s consumption is equal to

𝑐𝑖 = 𝑦𝑖 +
∑

𝑗≠𝑖
(𝑡𝑗𝑖 − 𝑡𝑖𝑗 ) (5)

Since there is no transfer cost, informal transfers redistribute aggregate
income among agents: ∑𝑖 𝑐𝑖 =

∑

𝑖 𝑦𝑖.
In this third stage, agents play a non-cooperative game. Agents make

informal transfers to others in order to maximize their altruistic utility,
conditional on transfers made by others. We assume that the network
of informal transfers is a Nash equilibrium of this transfer game. The
transfer network is therefore characterized by the following conditions,

13 By contrast, donors’ and governments’ subsidies would push the insurance
rice downwards.
14 One important source of price differences is that microinsurance contracts

n poor countries typically feature common pricing and broad eligibility.
eterogeneity in risk is thus incorporated into higher premiums. By contrast,

nsurers in rich countries often practice screening and price discrimination

ased on individual attributes, see LLoyd’s (2009) p. 7–8.

4 
see Bourlès et al. (2017) for details. If 𝛼𝑖𝑗 > 0, define 𝜅𝑖𝑗 = −𝑙𝑛(𝛼𝑖𝑗 ) as
a virtual cost associated with the link between 𝑖 and 𝑗. Stronger links
have lower virtual cost. Then, 𝐭 is a Nash equilibrium of the transfer
game if and only if

∀𝑖, 𝑗, 𝑐𝑖 ≤ 𝑐𝑗 +
𝜅𝑖𝑗
𝐴

and 𝑡𝑖𝑗 > 0 ⇒ 𝑐𝑖 = 𝑐𝑗 +
𝜅𝑖𝑗
𝐴

(6)

where, recall, 𝐴 is the degree of absolute risk aversion. An agent does
not let the consumption of someone she cares about fall too much below
her own consumption.

For all profiles of incomes before transfers, a Nash equilibrium
exists and the profile of equilibrium incomes after transfers is unique.
This yields a well-defined mapping from incomes before transfers 𝐲
to incomes after transfers 𝐜. With CARA utilities, this mapping has a
complex piecewise linear shape which generally depends on details of
income realizations and of the structure of the altruism network.

Since we are interested here in how operative informal transfers
affect formal insurance take-up, we make the following simplifying
assumption. Say that agent 𝑖0 receives indirect support from the full
community if for any 𝑖 ≠ 𝑖0, there exists a path of informal transfers
connecting 𝑖 to 𝑖0, i.e., a set of distinct agents 𝑗1 = 𝑖, 𝑗2, . . . , 𝑗𝑙 = 𝑖0
such that for any 𝑠 < 𝑙, 𝑡𝑗𝑠𝑗𝑠+1 > 0. While amounts transferred are not
necessarily large, every other agent in the community is involved in
transfers eventually reaching agent 𝑖0.

Assumption 1. For any realization of income shocks and any profile
of formal insurance decisions, the agent hit by the individual shock
receives indirect support from the full community.

We show in the Appendix that for any connected altruism network
𝜶, there exists a threshold level on the magnitude of the idiosyncratic
shock, �̄�, such that Assumption 1 holds if ∀𝑖, 𝜆𝑖 ≥ �̄�. This threshold
may be quite low when altruistic ties are strong and with homogeneous
wealth and damages. It may be quite high, by contrast, when ties are
weak or under high wealth and damage heterogeneity. To sum up,
Assumption 1 holds when the altruism network is connected and when
the magnitude of the individual shock is high.

Note that this assumption does not mean that agents have aligned
incentives. In sparse connected networks, like the star or the line, most
agents only care about a small set of other agents. When 𝑖 cares about
𝑗, 𝑗 cares about 𝑘, and 𝑖 does not care about 𝑘, the altruistic utility of
𝑖 drops when 𝑗 transfers money to 𝑘. Still, the interplay of altruistic
behavior means that shocks propagate in the network. A shock on one
agent induces support from her direct friends. If the shock is large,
direct friends are, in turn, supported by their own friends, and so on,
leading to indirect support from the full community. We further discuss
Assumption 1, and what happens when it does not hold, in Section 4.

A key implication of Assumption 1 is that we can simply express
how consumption depends on incomes before transfers. Let �̂�𝑖𝑗 denote
the virtual cost of a least-cost path connecting 𝑖 to 𝑗 in 𝜶 and let
̂ 𝑖𝑗 = −𝑙𝑛(�̂�𝑖𝑗 ). Transfers must flow through such least-cost paths in a
ash equilibrium. Note that when the altruism network is connected,

here is a path connecting any two agents in it and these least costs are
ell defined for any pair of agents. Let �̄� = 1

𝑛
∑

𝑖 𝑦𝑖 denote the average
income before transfers in the community.

Lemma 1. Suppose that agent 𝑖0 suffers from the individual shock and
receives informal support from the full community. Then, for all 𝑖 including
𝑖0,

𝑐𝑖 = �̄� +
�̂�𝑖𝑖0
𝐴

− 1
𝑛
∑

𝑗

�̂�𝑗𝑖0
𝐴

We provide the proof of Lemma 1 and of all other results in Ap-
pendix. Lemma 1 shows that income after transfers is equal to the
sum of two terms: average income before transfers and a network term
that depends on who is hit by the individual shock and of relative
positions in the altruism network with respect to this agent. Income
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after transfers tends to be lower for agents who are ‘‘closer’’ to 𝑖0 in
he altruism network. To see why, consider a binary altruism network
here all links have the same strength, 𝛼𝑖𝑗 ∈ {0, 𝛼}. Then �̂�𝑖𝑖0 is simply
roportional to the network distance between 𝑖 and 𝑖0 in the altruism

network, i.e., the number of links in a shortest path between them. In
that case, 𝑐𝑖 if higher when 𝑖 is more distant from 𝑖0. More generally,
̂ 𝑖𝑖0 is a measure of distance between 𝑖 and 𝑖0 that extends the usual
notion of network distance to account for the strength in altruistic
relationships - a stronger link being associated with a lower distance.

From an ex-ante point of view, consumption 𝑐𝑖 is then the sum of
two random variables: average income and a network-based stochas-
tic term. When the altruism network is connected and 𝛼𝑖𝑗 > 0 ⇒

𝛼𝑖𝑗 = 1, then �̂�𝑖𝑗 = 0 and the second term disappears. Altruistic
transfers then yield equal income sharing and efficient insurance, see
Proposition 1 in Bourlès et al. (2021). In general, however, altruistic
links have strength lower than 1 and altruistic transfers do not yield
efficient insurance. Agents still bear some idiosyncratic risk, captured
by the network-based stochastic term identified in Lemma 1. This term
generally depends on 𝑞𝑖’s, the probabilities to be hit by the individual
shock, and on the altruism network 𝜶.

The insurance game and equilibrium selection. In the first stage,
each agent decides how much formal insurance to buy, anticipating
how informal transfers will operate ex-post. We consider, again and
consistently, a simultaneous-move game with complete information. A
profile of insurance decisions 𝐱∗ is a Nash equilibrium of the insurance
game if E𝑣𝑖(𝑥∗𝑖 , 𝐱

∗
−𝑖) ≥ E𝑣𝑖(𝑥𝑖, 𝐱∗−𝑖), ∀𝑖 and ∀𝑥𝑖 ∈ [0, 𝐷𝑖]. The expected util-

ity is computed over all possible realizations of common and individual
shocks.

We will show below that Nash equilibria of the insurance game
are generally indeterminate, which naturally raises the question of
selection. To make progress on this issue, we propose a natural selection
criterion based on conformism. Say that a Nash equilibrium is robust to
conformism if it remains an equilibrium when adding vanishingly small
conformist pressures. There is widespread evidence that conformism
matters in many contexts.15 It likely plays a role, in addition to altruism,
in explaining the decisions to buy unfamiliar insurance products for
individuals and households in poor countries’ communities.

Formally, let 𝜀 > 0 and define payoff functions of a perturbed game,
𝜋𝑖, as follows:

− 𝑙𝑛(−𝜋𝑖(𝑥𝑖, 𝐱−𝑖)) = −𝑙𝑛(−E𝑣𝑖(𝑥𝑖, 𝐱−𝑖)) −
1
2
𝜀(𝑥𝑖 − �̄�)2. (7)

The average community choice, �̄�, defines a community norm, and
agents incur a small log-additive cost of deviating from the norm.16

Formally, we say that a Nash equilibrium 𝐱∗ of the original game is
robust to conformism if 𝐱∗ is the limit of a sequence of Nash equilibria
of the perturbed game, 𝐱∗𝜀 , for a sequence of 𝜀 > 0 converging to 0.

Note in particular that if the insurance game has a symmetric
quilibrium, where all agents buy the same amount of insurance, then
his symmetric equilibrium is also a Nash equilibrium of the perturbed
ame for any 𝜀 > 0, and hence is robust to conformism. In a symmetric
quilibrium, all agents play the same action and hence incur no cost of
eviating from the community norm.

In what follows, our main objectives are to characterize the Nash
quilibria of the insurance game and the equilibria robust to con-
ormism, and to analyze their main properties (comparative statics,
elfare).

15 See, e.g., Boucher (2016), Goeree and Yariv (2015) and Munshi and
yaux (2006).
16 There are different ways to introduce conformism into our setup. Payoffs

7) capture two main features. First, altruistic agents care about others’ private
ell-being and do not internalize others’ social preferences. Second, a given
istance to the community norm induces a proportional reduction in agents’

tilities.

5 
3. Analysis

We develop our analysis in four stages. First, we compute the
demand for formal insurance in the absence of altruism. Second, we
characterize the Nash equilibria of the insurance game under altruism,
and the equilibria robust to conformism. Third, we study how the
demand for insurance with altruism compares to the demand without
altruism. Fourth, we analyze welfare.

3.1. Insurance demand without altruism

We start by characterizing the demand for formal insurance when
agents are not altruistic. Agents are then not affected by others’ deci-
sions and can only rely on their own formal insurance as a protection
against the common shock. This provides a key benchmark with which
to compare insurance demand under altruism. In addition, our equilib-
rium analysis below uncovers deep connections between both kinds of
demands.

Considering all the possible realizations of shocks, the expected
utility of agent 𝑖 as a function of the quantity of formal insurance 𝑥𝑖
is equal to

E𝑢𝑖(𝑥𝑖) = − [(1 − 𝑞𝑐 )(1 − 𝑞𝑖)𝑒−𝐴(𝑤𝑖−𝑝𝑥𝑖) + (1 − 𝑞𝑐 )𝑞𝑖𝑒−𝐴(𝑤𝑖−𝑝𝑥𝑖−𝜆𝑖)]

+ 𝑞𝑐 (1 − 𝑞𝑖)𝑒−𝐴(𝑤𝑖−𝑝𝑥𝑖−𝜇𝑖+𝑥𝑖) + 𝑞𝑐𝑞𝑖𝑒
−𝐴(𝑤𝑖−𝑝𝑥𝑖−𝜇𝑖+𝑥𝑖−𝜆𝑖),

hich simplifies into

𝑢𝑖(𝑥𝑖) = −𝑈𝑖(1 − 𝑞𝑐 + 𝑞𝑐𝑒
𝐴(𝜇𝑖−𝑥𝑖))𝑒𝐴𝑝𝑥𝑖 (8)

ith 𝑈𝑖 > 0. Taking derivatives, we see that 𝜕2E𝑢𝑖
𝜕𝑥2𝑖

< 0 and hence E𝑢𝑖 is
strictly concave in 𝑥𝑖. In addition,
𝜕E𝑢𝑖
𝜕𝑥𝑖

= 0 ⇔ 𝑥𝑖 = 𝜇𝑖 −
1
𝐴
𝑙𝑛(

1 − 𝑞𝑐
𝑞𝑐

𝑝
1 − 𝑝

). (9)

iven that the amount of insurance bought, 𝑥𝑆𝑖 , is greater than or equal
o 0 and lower than or equal to 𝐷𝑖, this yields17:

roposition 1. In the absence of altruism, individual demand for formal
nsurance is equal to

𝑆
𝑖 = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝜇𝑖 −

1
𝐴
𝑙𝑛(

1 − 𝑞𝑐
𝑞𝑐

𝑝
1 − 𝑝

), 0), 𝐷𝑖) (10)

The comparative statics of insurance demand in the absence of altru-
ism follow directly from Proposition 1. We see that individual demand
for formal insurance 𝑥𝑆𝑖 is weakly decreasing in price 𝑝 and weakly
increasing with damage 𝜇𝑖, risk aversion 𝐴, and probability of the shock
𝑞𝑐 . Individual demand for formal insurance is also unaffected by wealth
𝑤𝑖 and by features of the individual shock 𝜆𝑖 and 𝑞𝑖. This reflects the
well-known property that choices of agents with CARA preferences do
not depend on wealth nor on the presence of an independent shock.

From Proposition 1 and some simple algebra, we can also see
precisely when demand is interior, and this will play an important
role in the equilibrium analysis. When there is no cap, ∀𝑖, 𝜇𝑖 ≤ 𝐷, an
agent demands full coverage, 𝑥𝑆𝑖 = 𝜇𝑖 if and only if the price is lower
than or equal to the actuarial price, 𝑝 ≤ 𝑞𝑐 . At the other extreme, let
�̄�(𝜇𝑖) denote the threshold price level above which individual demand
is equal to zero. We have: �̄�(𝜇𝑖) =

𝑞𝑐𝑒𝐴𝜇𝑖
1−𝑞𝑐+𝑞𝑐𝑒𝐴𝜇𝑖

. Then individual demand
is interior, 0 < 𝑥𝑆𝑖 < 𝜇𝑖, if and only if 𝑞𝑐 < 𝑝 < �̄�(𝜇𝑖). Denote by 𝜇𝑚𝑖𝑛 and
𝑚𝑎𝑥 the lowest and highest damages in the population. All demands
re interior if and only if 𝑞𝑐 < 𝑝 < �̄�(𝜇𝑚𝑖𝑛). When �̄�(𝜇𝑚𝑖𝑛) ≤ 𝑝 ≤ �̄�(𝜇𝑚𝑎𝑥),
emand of high-damage agents is interior while low-damage agents do
ot buy any insurance.

17 We further show in Appendix that the profile of individual demands
identified in Proposition 1 is also the only profile robust to conformism. Adding
a vanishingly small amount of conformism has no impact in the absence of
altruism.
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Fig. 1. Individual demands for formal insurance without altruism and with coverage cap 𝐷 = 0.9.
By contrast when the cap is binding, 𝐷 ≤ 𝜇𝑖, agents may demand the
maximal amount of insurance for price levels above the actuarial price.
Let 𝑝(𝜇𝑖) > 𝑞𝑐 denote the threshold price level below which individual
demand is equal to the coverage cap, 𝑥𝑆𝑖 = 𝐷 ⇔ 𝑝 ≤ 𝑝(𝜇𝑖). Proposition 1
implies that 𝑝(𝜇𝑖) =

𝑞𝑐𝑒𝐴(𝜇𝑖−𝐷)

1−𝑞𝑐+𝑞𝑐𝑒𝐴(𝜇𝑖−𝐷) . Then individual demand is interior,
0 < 𝑥𝑆𝑖 < 𝐷 if and only if 𝑝(𝜇𝑖) < 𝑝 < �̄�(𝜇𝑖). Moreover, the two threshold
prices 𝑝(𝜇𝑖) and �̄�(𝜇𝑖) are both increasing in 𝜇𝑖.

One implication is that there is no price for which all demands are
interior when heterogeneity in damages is large enough. Then, there
is no price for which all demands are interior if and only if �̄�(𝜇𝑚𝑖𝑛) ≤
𝑝(𝜇𝑚𝑎𝑥), which is equivalent to 𝜇𝑚𝑎𝑥−𝜇𝑚𝑖𝑛 ≥ 𝐷. In this case, the demand
of the agent with largest damage is still at the coverage cap when the
demand of the agent with lowest damage becomes equal to zero. By
contrast if 𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛 < 𝐷, then 𝑝(𝜇𝑚𝑎𝑥) < �̄�(𝜇𝑚𝑖𝑛) and all individual
demands are interior when 𝑝(𝜇𝑚𝑎𝑥) < 𝑝 < �̄�(𝜇𝑚𝑖𝑛). This range of prices
tends to shrink with an increase in damage heterogeneity, through an
increase in the largest damage or a decrease in the lowest damage, and
with a decrease in the coverage cap.

We illustrate in Fig. 1. We consider a community of 𝑛 = 4 agents
with 𝐴 = 1, 𝑞𝑐 = 0.1, heterogeneous damages 𝜇1 = 1, 𝜇2 = 1.3, 𝜇3 =
1.6, 𝜇4 = 2, and binding cap 𝐷 = 0.9. We see that individual demand
decreases with price over its interior domain and that demands are
ordered by increasing damages. Fig. 1 illustrates a situation where
demands are never all interior. The price at which the lowest demand
becomes equal to zero is lower than the price at which the highest
demand becomes lower than the coverage cap.

3.2. Equilibrium characterization

Assume now that agents are altruistic. They decide how much
formal insurance to buy conditional on formal insurance decisions of
others, and anticipating how informal transfers will operate at the last
stage. Our key result here is to show that all agents act as if they are
trying to maximize the expected utility of a representative agent with
average damages and average demand. Formally, the insurance game
has a weighted potential function, equal to the expected utility of this
representative agent, see Monderer and Shapley (1996).

To show this, we first compute agents’ expected utility under altru-
ism and Assumption 1. From Lemma 1, income after transfers is equal
to the sum of average income before transfers and of a network term.
This network term depends on agents’ relative positions with respect
to the agent hit by the individual shock. Therefore, it is stochastically
independent from the common shock. Next, let �̄� = 1

𝑛
∑

𝑖 𝜇𝑖 denote the
average damage from the common shock and �̄� = 1 ∑ 𝑥 the average
𝑛 𝑖 𝑖

6 
demand for formal insurance. In our next result, we show that we can
reformulate agents’ expected utilities under altruism as the product of
two terms.

Lemma 2. When agents are altruistic and Assumption 1 holds, there exist
𝑉𝑖 > 0 such that

E𝑣𝑖(𝑥𝑖, 𝐱−𝑖) = −𝑉𝑖(1 − 𝑞𝑐 + 𝑞𝑐𝑒
𝐴(�̄�−�̄�))𝑒𝐴𝑝�̄�

The expected utility of any agent under both shocks is proportional
to the expected utility of a representative agent with average damage
and average insurance demand facing the common shock only. The
network position of agent 𝑖 affects her expected utility only through its
impact on the positive proportionality constant 𝑉𝑖. Formally, introduce

𝑣(𝜇, 𝑥) = −(1 − 𝑞𝑐 + 𝑞𝑐𝑒
𝐴(𝜇−𝑥))𝑒𝐴𝑝𝑥 (11)

In the absence of altruism, the demand of agent 𝑖 solves the problem
of maximizing 𝑣(𝜇𝑖, 𝑥𝑖) under the constraint that 𝑥𝑖 ∈ [0, 𝐷𝑖]. Under
altruism, by contrast, Lemma 2 shows that any agent is trying to
maximize the function 𝑣(�̄�, �̄�) under the same constraint.

This means that 𝑣(�̄�, �̄�) is a weighted potential of the insurance
game, see Monderer and Shapley (1996). Moreover, this function is
strictly concave in �̄�, and hence concave in 𝐱, which guarantees that
Nash equilibria coincide with potential maxima. We provide a detailed
proof in Appendix. Let 𝑥𝑆 (�̄�, �̄�) denote the solution to the problem of
maximizing 𝑣(�̄�, 𝑥) under the constraint 𝑥 ∈ [0, �̄�]. By Proposition 1,
𝑥𝑆 (�̄�, �̄�) = 𝑚𝑖𝑛(𝑚𝑎𝑥(�̄� − 1

𝐴 𝑙𝑛(
1−𝑞𝑐
𝑞𝑐

𝑝
1−𝑝 ), 0), �̄�). This is the individual

demand of an agent with average damages and facing a cap �̄� in the
absence of altruism.

Theorem 1. Suppose that agents are altruistic and that Assumption 1
holds. A profile of insurance decisions, 𝐱∗, is a Nash equilibrium of the
insurance game if and only if �̄�∗ = 𝑥𝑆 (�̄�, �̄�) and ∀𝑖, 𝑥∗𝑖 ∈ [0, 𝐷𝑖]. Nash
equilibria are the feasible profiles for which average demand is equal to the
demand of an agent with average damages in the absence of altruism.

Theorem 1 shows that in equilibrium, agents act as if they are
following the program of a social planner who maximizes a repre-
sentative agent’s expected utility. We emphasize that in our setup,
agents typically have misaligned incentives, i.e., they may care about
different people and informal transfers yield inefficient risk-sharing.
Still, Theorem 1 shows that agents’ incentives end up being aligned for
formal insurance decisions.

This results has several noteworthy implications. It shows, first,
that the insurance game is a game of strategic substitutes. More pre-
cisely, the best-response of agent 𝑖 to insurance decisions 𝐱 is 𝑥 =
−𝑖 𝑖
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𝑚𝑖𝑛(𝑚𝑎𝑥(𝑛𝑥𝑆 (�̄�) −
∑

𝑗≠𝑖 𝑥𝑗 , 0), 𝐷𝑖). Any agent tends to decrease their
demand of formal insurance when others increase their demands. More-
over, this decrease is one-to-one in the domain where individual de-
mand is interior. When agent 𝑗 adopts one unit of formal insurance, this
replaces stochastic − 1

𝑛𝜇𝑗 1̃𝑐 by non-stochastic − 1
𝑛 𝑝 in the income after

transfers of agent 𝑖. This reduces income variability and the incentives
to also adopt formal insurance.

Second, as long as the altruism network is connected and the size of
the individual shock is sufficiently high, Nash equilibria are unaffected
by the network’s structure and by agents’ network positions. Any feasible
profile where the average demand is equal to the equilibrium value is a
Nash equilibrium, regardless of who buys precisely which amount. And
these Nash equilibria do not change following changes in the altruism
network that respect Assumption 1. In particular, we can show that
if Assumption 1 holds for 𝜶, it also holds for 𝜶′ where 𝛼′𝑖𝑗 ≥ 𝛼𝑖𝑗 .

ash equilibria thus do not change following increases in the strength
f altruistic ties. This unexpected neutrality is a consequence of the
ultiplicative separability uncovered in Lemma 2.

Third, the aggregate demand for formal insurance under altruism is
ell-defined, and does not depend on equilibrium selection. For any
rice of formal insurance 𝑝, there is a unique level of equilibrium
emand ∑

𝑖 𝑥
∗
𝑖 (𝑝). This demand inherits intuitive comparative statics.

t decreases weakly with price 𝑝 and increases weakly following an
ncrease in damages 𝜇𝑖, risk aversion 𝐴, and probability of the common

shock 𝑞𝑐 . Moreover, aggregate demand increases linearly with 𝑛 if dam-
age mean and cap mean are preserved when population size increases.
Even though aggregate demand is well-defined, however, individual
demands are generally indeterminate. This motivates the analysis of
Nash equilibria robust to conformism.

Proposition 2. There is a unique Nash equilibrium robust to conformism,
equal to the equilibrium with lowest variance among all Nash equilibria.
When 𝑥𝑆 (�̄�, �̄�) ≤ 𝑚𝑖𝑛(𝜇𝑚𝑖𝑛, 𝐷), this equilibrium is symmetric and the
demand of all agents is equal to 𝑥∗𝑖 = 𝑥𝑆 (�̄�, �̄�). In this case, 𝜇𝑖 ≤ �̄� ⇒
𝑥∗𝑖 ≥ 𝑥𝑆𝑖 and 𝜇𝑖 ≥ �̄� ⇒ 𝑥∗𝑖 ≤ 𝑥𝑆𝑖 .

When 𝑥𝑆 (�̄�, �̄�) > 𝑚𝑖𝑛(𝜇𝑚𝑖𝑛, 𝐷), there exist two threshold damage levels
𝜇1, 𝜇2 such that 𝜇𝑚𝑖𝑛 < 𝜇1 < 𝜇𝑚𝑎𝑥 and �̄� < 𝜇2 < 𝜇𝑚𝑎𝑥. Agents with
damages below 𝜇1 demand full insurance, 𝜇𝑖 < 𝜇1 ⇒ 𝑥∗𝑖 = 𝜇𝑖, while
all agents with damages above 𝜇1 demand the same amount. In addition,
𝜇𝑖 < 𝜇2 ⇒ 𝑥∗𝑖 ≥ 𝑥𝑆𝑖 and 𝜇𝑖 > 𝜇2 ⇒ 𝑥∗𝑖 ≤ 𝑥𝑆𝑖 .

Proposition 2 shows that adding a vanishingly small amount of
conformism is sufficient to break equilibrium indeterminacy. When a
symmetric equilibrium exists, it is the unique equilibrium robust to
conformism and the demand of all agents is simply equal to the demand
of the representative agent. Existence of a symmetric equilibrium is
guaranteed, in particular, when the cap is binding for all, ∀𝑖, 𝐷 ≤ 𝜇𝑖.
In the absence of a cap or when the cap is not binding for low-
damage agents, a symmetric equilibrium may not exist. In that case, the
unique equilibrium robust to conformism has lowest variance among
all Nash equilibria. It displays a natural form of constrained symmetry:
agents with low damages demand full insurance, while agents with high
damages all demand the same amount of insurance. If there are 𝑘 agents
such that 𝜇𝑖 > 𝜇1, then this amount is equal to (𝑛𝑥𝑆 (�̄�, �̄�)−

∑

𝜇𝑖<𝜇1
𝜇𝑖)∕𝑘.

Proposition 2 further identifies a key implication of altruistic trans-
fers under damage heterogeneity. Altruism tends to homogenize the
demands for formal insurance: it increases demand of agents with low
damages and reduces demand of agents with high damages. Ex-post
altruistic transfers leads to align ex-ante incentives to buy insurance.
All agents act as if they are trying to maximize the utility of a repre-
sentative agent with average damages. This leads low-damage agents
to demand more insurance than without altruism, and high-damage
agents to demand less. To analyze the impact of altruism on aggregate
demand, we then need to check whether the increases dominate the
decreases.

We illustrate Proposition 2 in Fig. 2. Parameter values are the

same as in Fig. 1, except that now 𝜇𝑚𝑎𝑥 < 𝐷 and all agents can

7 
obtain full coverage. Individual demands with altruism and in the
unique equilibrium robust to conformism are depicted with plain lines.
Demands without altruism are depicted with dotted lines. Here, �̄� =
1.475 and the threshold price level above which 𝑥𝑆 (�̄�) ≤ 𝜇𝑚𝑖𝑛 and
a symmetric equilibrium exists is 𝑝 = 0.152. Above this threshold,
individual demands with altruism are all equal to the demand of the
representative agent. Over the full price range, we see that demand
with altruism is larger than without altruism for agents with damages
𝜇1 = 1 and 𝜇2 = 1.3 and lower for agents with damages 𝜇4 = 2. For
agent with damage 𝜇3 = 1.6, demand with altruism is (slightly) higher
than without altruism at relatively low prices and lower than without
altruism at higher prices.

3.3. Impact of altruism on aggregate demand: no cap

We now analyze how altruism affects the aggregate demand for
formal insurance. We consider the situation with no cap in this Section
and analyze a binding cap in the next Section. Assume, then, that all
agents can be fully covered, ∀𝑖, 𝜇𝑖 ≤ 𝐷. We show that two different
domains emerge. When all selfish demands are interior, increases in
demand for low-damage agents induced by altruism exactly compen-
sate the decreases in demand for high-damage agents. Altruism has no
impact on aggregate demand. By contrast when low-damage agents are
constrained by the zero lower bound in the absence of altruism, they
do not buy insurance. This reduces how much their demand increases
under altruism. High-damage agents are not constrained, however.
Decreases in demand for high-damage agents now dominate increases
in demand for low-damage agents, and the overall impact of altruism
is to reduce demand for formal insurance.

Denote by 𝑥𝑆 aggregate demand in the absence of altruism and 𝑥𝐴

aggregate demand under altruism. By Theorem 1, 𝑥𝑆 =
∑

𝑖 𝑥
𝑆 (𝜇𝑖) while

𝑥𝐴 = 𝑛𝑥𝑆 (�̄�). Moreover, all agents obtain full coverage at low prices,
𝑥𝑆 = 𝑥𝐴 = 𝑛�̄� if 𝑝 ≤ 𝑞𝑐 , while no agent buys formal insurance at high
prices, 𝑥𝑆 = 𝑥𝐴 = 0 if 𝑝 ≥ �̄�(𝜇𝑚𝑎𝑥). Our next result characterizes what
happens for intermediate levels of prices.

Theorem 2. Suppose that all agents can be fully covered, ∀𝑖, 𝜇𝑖 ≤
𝐷. Depending on insurance price 𝑝, aggregate demand in the absence of
altruism, 𝑥𝑆 , is equal to, or lower than, aggregate demand under altruism,
𝑥𝐴.

𝑝 ≤ �̄�(𝜇𝑚𝑖𝑛) ⇒ 𝑥𝐴 = 𝑥𝑆 and �̄�(𝜇𝑚𝑖𝑛) < 𝑝 < �̄�(𝜇𝑚𝑎𝑥) ⇒ 𝑥𝐴 < 𝑥𝑆 .

Theorem 2 uncovers the existence of two qualitatively different
domains. When 𝑞 < 𝑝 < �̄�(𝜇𝑚𝑖𝑛), all selfish demands are interior. We
know from Proposition 1 that interior demand is a linear function
of damage 𝜇𝑖. The average of the selfish demands is then equal to
the demand of a representative agent with average damages. And this
neutrality range shrinks following a decrease of the lowest damage.
By contrast when �̄�(𝜇𝑚𝑖𝑛) < 𝑝 < �̄�(𝜇𝑚𝑎𝑥), selfish agents with relatively
low damages are constrained by the zero lower bound, and do not
buy any formal insurance. Demand of the representative agent is then
lower than the average of the selfish demands. This substitution range
expands following an increase in damage heterogeneity, through an
increase in highest damage or a decrease in lowest damage.

3.4. Impact of altruism on aggregate demand: binding cap

We now analyze how altruism affects the aggregate demand for
formal insurance under a binding cap, ∀𝑖, 𝐷 ≤ 𝜇𝑖. The cap gives rise to
a range of relatively low prices where demand of high-damage agents
is constrained, while demand of low-damage agents is not. On this
range, the altruism-induced reductions in insurance demand for high-
damage agents are then lower in magnitude while the increases in
insurance demand for low-damage agents are unaffected, as compared
to the no cap situation. Overall, the increases dominate the decreases,

and altruism now leads to a higher aggregate demand at relatively low
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Fig. 2. Demands for formal insurance with and without altruism in the absence of a cap, for 𝜇1 = 1, 𝜇2 = 1.3, 𝜇3 = 1.6, 𝜇4 = 2.
prices. By contrast, what happens at relatively high prices is similar
to the no cap case, and altruism leads to a lower aggregate demand.
Whether there exists an intermediate price range where altruism is
neutral now depends on damage heterogeneity.

Under a binding cap, demand is maximal at low prices, 𝑥𝑆 = 𝑥𝐴 =
𝑛𝐷 if 𝑝 ≤ 𝑝(𝜇𝑚𝑖𝑛), and equal to zero at high prices, 𝑥𝑆 = 𝑥𝐴 = 0 if 𝑝 ≥
̄(𝜇𝑚𝑎𝑥). Our next result characterizes what happens for intermediate
levels of prices.

Theorem 3. Suppose that no agent can be fully covered, ∀𝑖, 𝐷 ≤ 𝜇𝑖.
The comparison between aggregate demands in the absence of altruism, 𝑥𝑆 ,
and under altruism, 𝑥𝐴, depends on damage heterogeneity and on insurance
price, 𝑝.

Under high damage heterogeneity if 𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛 ≥ 𝐷, then there exists
𝑝∗ such that �̄�(𝜇𝑚𝑖𝑛) ≤ 𝑝∗ ≤ 𝑝(𝜇𝑚𝑎𝑥) and 𝑝(𝜇𝑚𝑖𝑛) < 𝑝 < 𝑝∗ ⇒ 𝑥𝑆 < 𝑥𝐴 and
𝑝∗ < 𝑝 < �̄�(𝜇𝑚𝑎𝑥) ⇒ 𝑥𝑆 > 𝑥𝐴.

Under low damage heterogeneity if 𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛 < 𝐷, then 𝑝(𝜇𝑚𝑖𝑛) <
𝑝 < 𝑝(𝜇𝑚𝑎𝑥) ⇒ 𝑥𝑆 < 𝑥𝐴, 𝑝(𝜇𝑚𝑎𝑥) ≤ 𝑝 ≤ �̄�(𝜇𝑚𝑖𝑛) ⇒ 𝑥𝑆 = 𝑥𝐴, and
�̄�(𝜇𝑚𝑖𝑛) < 𝑝 < �̄�(𝜇𝑚𝑎𝑥) ⇒ 𝑥𝑆 > 𝑥𝐴.

Theorem 3 shows that there are two qualitatively different cases.
When damage heterogeneity is large and 𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛 ≥ 𝐷, demands
in the absence of altruism are never all interior. In this case, there
is no price range over which altruism is neutral. Aggregate demand
with altruism is first higher, and then lower than aggregate demand
without altruism as insurance price increases. By contrast when damage
heterogeneity is low, there is an intermediate price range for which
all selfish demands are interior. On this price range, altruism has no
impact on aggregate demand. Below this price range high-damage
agents are constrained by the cap, while above it low-damage agents
are constrained by the zero lower bound. Overall, this shows that with a
coverage cap, formal insurance and altruistic transfers are complements
at relatively low prices and substitutes at relatively high prices.

We illustrate Theorem 3 in Figs. 3 and 4. The Figures depict the
average demand for formal insurance with and without altruism. Fig. 3
represents a situation of high heterogeneity, for the same parameters
as in Fig. 1. Fig. 4 represents a situation of low heterogeneity, with
damages equal to 𝜇1 = 1, 𝜇2 = 1.2, 𝜇3 = 1.3, 𝜇4 = 1.5; the other
parameters are unchanged. In both cases, the demand is higher under
altruism at relatively low prices (complements) and lower at relatively
high prices (substitutes). With high heterogeneity, the two demands
cross once in the intermediate range while with low heterogeneity, the
two demands coincide on some intermediate price range.
8 
3.5. Welfare

Finally, we analyze the welfare properties of the insurance game. By
Lemma 2, we know that every agent’s expected utility is proportional to
a common function, E(𝑣𝑖(𝐱)) = 𝑉𝑖𝑣(�̄�, �̄�). This implies that agents’ inter-
ests are aligned. When one agent takes a decision which increases her
utility, the utility of all other agents also increases. As a consequence,
individual incentives are aligned with social welfare. Formally, say that
𝐱 ∈ 𝛱𝑖[0, 𝐷𝑖] is a constrained Pareto optimum of the insurance game if
there exists no other profile 𝐱′ ∈ 𝛱𝑖[0, 𝐷𝑖] such that ∀𝑖,E𝑣𝑖(𝐱′) ≥ E𝑣𝑖(𝐱)
and ∃𝑖,E𝑣𝑖(𝐱′) > E𝑣𝑖(𝐱). The Pareto optimum is constrained since we
are considering ex-ante insurance decisions only, while maintaining the
assumption of a non-cooperative Nash equilibrium in ex-post altruistic
transfers.

Proposition 3. The Nash equilibria of the insurance game coincide with
its constrained Pareto optima.

In general, informal transfers generate externalities in decisions to
take up formal insurance. When an agent adopts formal insurance, her
income stream changes. Through informal transfers, this affects others’
income streams and utilities. Under our assumptions, however, and
quite remarkably, individual incentives are aligned with social welfare.
This is due to the multiplicative separability identified in Lemma 2.
Proposition 3 can thus be viewed as a form of second-best welfare
theorem. Note, however, that the Nash equilibria of the insurance
game are not first-best efficient. Since agents are risk-averse, first-best
outcomes would involve full insurance over both risks at actuarial
prices. However, Proposition 3 shows that, conditional on the fact that
the individual risk is imperfectly insured by altruistic transfers, the
Nash equilibria of the insurance game are constrained Pareto-efficient.

4. Discussion and conclusion

We provide the first analysis of the introduction of formal insurance
into a community connected through altruistic ties. Agents face a
common and an individual shock and can buy formal insurance to cover
the common shock, up to a coverage cap. We assume that the altruism
network is connected, that the individual shock is large, and that
damages are heterogeneous. Ex-post altruistic transfers make ex-ante
decisions to buy formal insurance interdependent, and we characterize
the Nash equilibria of this insurance game. Under CARA utilities, agents
act as if they are trying to maximize the expected utility of a repre-
sentative agent with average demand and average damages. A main
effect of altruism is therefore to homogenize the demands for formal

insurance. It increases demand of low-damage agents and decreases
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Fig. 3. Impact of altruism on aggregate demand for formal insurance under high damage heterogeneity.
Fig. 4. Impact of altruism on aggregate demand for formal insurance under low damage heterogeneity.
demand of high-damage agents. The overall impact then depends on
the interplay between damage heterogeneity and the two constraints
on the amount of formal insurance agents can buy, the zero lower
bound and the coverage cap. When all agents can be fully covered, the
demand for formal insurance is unaffected by altruism at low prices and
lower with altruism than without at high prices. When no agent can be
fully covered, the demand for formal insurance is higher at low prices
under altruism, and lower at high prices. Overall, we find that altruism
networks have a first-order effect on the adoption of formal insurance.

Any analysis of formal insurance adoption in the presence of
network-based informal transfers has to address, somehow, the com-
binatorial complexity inherent to networks. In our analysis, we address
this complexity by assuming that agents face a large, uninsured individ-
ual shock affecting one, and only one, agent at a time. This shock then
leads to indirect support from the full community. We argue that these
assumptions are realistic, and provide a natural benchmark to analyze
the impact of altruism networks on formal insurance. Relaxing these
assumptions is an interesting, and challenging, direction for future
research.

Assumption 1 and indirect support from the full community may not
hold, for instance, if the individual shock is small or if it can be formally
insured. In general, Lemma 1 extends as follows.18 Given equilibrium
transfers 𝐭, denote by 𝐠 the binary graph of transfers, 𝑔𝑖𝑗 = 1 ⇔ 𝑡𝑖𝑗 > 0

18 See Theorem 1 in Bourlès et al. (2021).
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and 𝑔𝑖𝑗 = 0 otherwise, by 𝐶 a weak component of 𝐠, and by 𝐠𝐶 the
subgraph of 𝐠 induced by 𝐶. Then, with CARA utilities,

𝑐𝑖 = �̄�𝐶 + 𝑓 (𝑖, 𝐠𝐶 ,𝜶) (12)

where 𝐶 is 𝑖’s component, �̄�𝐶 =
∑

𝑖∈𝐶 𝑦𝑖
|𝐶|

is the average income in
this component and 𝑓 (𝑖, 𝐠𝐶 ,𝜶) depends on the subgraph 𝐠𝐶 and on
𝑖’s position in this subgraph. The difficulty is that components 𝐶
and subgraphs 𝐠𝐶 are equilibrium objects which, in general, vary in
complex ways with realized incomes.

This complexity already appears in our setup, for instance, if we
assume that there is no individual shock, ∀𝑖, 𝜆𝑖 = 0. Who gives to
whom and how much then depends on baseline wealth 𝑤𝑖, damages
𝜇𝑖, whether the common shock is realized, and insurance decisions 𝑥𝑖.
To analyze the impact of altruism networks on formal insurance, we
need to somehow discipline this dependence.

A natural way to go beyond Assumption 1 is to consider net-
works with specific structures. To illustrate, consider complete net-
works where every agent cares equally about every one else. We show
in the Appendix that for complete networks, our analysis directly
extends to situations with multiple individual shocks.19 Alternatively,

19 More precisely, Theorems 1–3 extend for complete networks to any
stochastic structure of individual shocks under the following three conditions.
(1) Individual and common shocks are independent, (2) individual shocks are
high enough and not too different from each other in magnitude, and (3) at
least one agent gets a shock and at least one agent does not get a shock.
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we could consider separate communities with strong ties within and
weak ties across. This could capture, for instance, subcastes in an Indian
village, e.g., Mazzocco and Saini (2012). Informal transfers would then
mostly happen within communities, and would flow between commu-
nities in specific circumstances only, such as large community-level
shocks.

Another important direction for future research is to understand
how interactions between formal insurance and informal transfers may
depend on the motives underlying the informal transfers. We focused
on altruism in our analysis. In reality, mutually beneficial informal
insurance arrangements are another important source of informal trans-
fers.20 We know that different motives generally yield qualitatively dif-
ferent departures from efficient risk-sharing, see Bourlès et al. (2021).
Presumably, different motives will also have different impacts on for-
mal insurance. For instance, under altruism agents partially internalize
the effect of their decisions to buy formal insurance on other people
they care about. This should help align interests and reduce free-
riding and miscoordination in formal insurance decisions, compared to
informal insurance.
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Appendix

Proofs of statements on Assumption 1. From Proposition 4 and its
proof in Bourlès et al. (2021), we know that for any connected altruism
network and any income realizations of others 𝐲−𝑖, agent 𝑖 receives
indirect support from the full community if

𝑦𝑖 ≤ 𝑚𝑖𝑛𝑗≠𝑖𝑛(𝑦𝑗 +
1
𝐴
�̂�𝑗𝑖) −

∑

𝑘≠𝑖
(𝑦𝑘 +

1
𝐴
�̂�𝑘𝑖)

When 𝑖 is hit by the idiosyncratic shock, 𝑦𝑖 = 𝑤𝑖−𝑝𝑥𝑖−(𝜇𝑖−𝑥𝑖)1𝑐−𝜆𝑖
while 𝑦𝑗 = 𝑤𝑗−𝑝𝑥𝑗−(𝜇𝑗−𝑥𝑗 )1𝑐 for 𝑗 ≠ 𝑖. Thus, 𝑖 receives indirect support
from the full community when

𝜆𝑖 ≥ 𝑤𝑖 − 𝑝𝑥𝑖 − (𝜇𝑖 − 𝑥𝑖)1𝑐 − 𝑚𝑖𝑛𝑗≠𝑖𝑛(𝑤𝑗 − 𝑝𝑥𝑗 − (𝜇𝑗 − 𝑥𝑗 )1𝑐 +
1
𝐴
�̂�𝑗𝑖)

+
∑

𝑘≠𝑖
(𝑤𝑘 − 𝑝𝑥𝑘 − (𝜇𝑗 − 𝑥𝑘)1𝑐 +

1
𝐴
�̂�𝑘𝑖)

Define �̄� as the maximum of the right hand side over situations
where the common shock occurs or not (1𝑐 = 0 or 1) and over choices
of formal insurance (𝐱 ∈ 𝛱𝑖[0, 𝐷𝑖]). This maximum exists because the
right hand side is a continuous function of 𝐱 and 𝛱𝑖[0, 𝐷𝑖] is a compact
space. This shows that Assumption 1 holds if ∀𝑖, 𝜆𝑖 ≥ �̄�. □

Proof of Lemma 1. From Assumption 1 and Bourlès et al. (2017), we
know that 𝑢′(𝑐𝑖) = �̂�𝑖𝑗𝑢′(𝑐𝑖0 ) for every 𝑖 ≠ 𝑖0. This is equivalent to

𝑐𝑖 − 𝑐𝑖0 =
�̂�𝑖𝑖0
𝐴

.

Conservation of income then implies that
∑

𝑖
𝑐𝑖 = 𝑛𝑐𝑖0 +

∑

𝑖≠𝑖0

�̂�𝑖𝑖0
𝐴

=
∑

𝑖
𝑦𝑖

Therefore, 𝑐𝑖0 = �̄� − 1
𝑛
∑

𝑖≠𝑖0
�̂�𝑖𝑖0
𝐴 while 𝑐𝑖 = 𝑐𝑖0 +

�̂�𝑖𝑖0
𝐴 . □

Proof of Lemma 2. When agent 𝑖0 is hit by the individual shock,
verage income before transfers is equal to �̄� = �̄�− 𝑝�̄�− (�̄� − �̄�)1𝑐 −

𝜆𝑖0
𝑛 .

By Lemma 1, income after transfers of agent 𝑖 is then equal to 𝑐𝑖 =
�̄� +

�̂�𝑖𝑖0
𝐴 − 1

𝑛
∑

𝑗
�̂�𝑗𝑖0
𝐴 . Taking the expectation over realizations of the

common shock and the individual shocks yields

E𝑢𝑖 = −(1 − 𝑞𝑐 )(
∑

𝑖0

𝑞𝑖0𝑒
−𝐴(�̄�−𝑝�̄�−

𝜆𝑖0
𝑛 +

�̂�𝑖𝑖0
𝐴 − 1

𝑛
∑

𝑗
�̂�𝑗𝑖0
𝐴 ))

− 𝑞𝑐 (
∑

𝑖0

𝑞𝑖0𝑒
−𝐴(�̄�−𝑝�̄�−

𝜆𝑖0
𝑛 −(�̄�−�̄�)+

�̂�𝑖𝑖0
𝐴 − 1

𝑛
∑

𝑗
�̂�𝑗𝑖0
𝐴 ))

which can be rewritten

E𝑢𝑖 = [−
∑

𝑖0

𝑞𝑖0𝑒
−𝐴(�̄�−

𝜆𝑖0
𝑛 +

�̂�𝑖𝑖0
𝐴 − 1

𝑛
∑

𝑗
�̂�𝑗𝑖0
𝐴 )]𝑒𝐴𝑝�̄�[1 − 𝑞𝑐 + 𝑞𝑐𝑒

𝐴(�̄�−�̄�)]

And define 𝑈𝑖 =
∑

𝑖0
𝑞𝑖0𝑒

−𝐴(�̄�−
𝜆𝑖0
𝑛 +

�̂�𝑖𝑖0
𝐴 − 1

𝑛
∑

𝑗
�̂�𝑗𝑖0
𝐴 ) > 0 such that E𝑢𝑖 =

−𝑈𝑖𝑒𝐴𝑝�̄�[1 − 𝑞𝑐 + 𝑞𝑐𝑒𝐴(�̄�−�̄�)]. Next, we have

𝑣𝑖 = E𝑢𝑖 +
∑

𝑗
𝛼𝑖𝑗E𝑢𝑗

Define 𝑉𝑖 = 𝑈𝑖 +
∑

𝑗 𝛼𝑖𝑗𝑈𝑗 > 0. This yields

𝑣𝑖 = −𝑉𝑖𝑒𝐴𝑝�̄�[1 − 𝑞𝑐 + 𝑞𝑐𝑒
𝐴(�̄�−�̄�)]. □

roof of Theorem 1. The first order conditions of the problem
𝑎𝑥𝑥𝑖∈[0,𝐷𝑖]E𝑣𝑖(𝑥𝑖, 𝐱−𝑖) are: (1) 0 < 𝑥𝑖 < 𝐷𝑖 ⇒

𝜕E𝑣𝑖
𝜕𝑥𝑖

= 0, (2) 𝑥𝑖 = 0 ⇒
𝜕E𝑣𝑖
𝜕𝑥𝑖

≤ 0, and (3) 𝑥𝑖 = 𝐷𝑖 ⇒
𝜕E𝑣𝑖
𝜕𝑥𝑖

≥ 0. These conditions are necessary
and sufficient by concavity. By Lemma 2,
𝜕E𝑣𝑖 = 𝑉𝑖

1 𝜕𝑣 (�̄�, �̄�)

𝜕𝑥𝑖 𝑛 𝜕𝑥
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Nash conditions are then equivalent to the first order conditions
of the problem 𝑚𝑎𝑥𝐱∈𝛱𝑖[0,𝐷𝑖]𝑣(�̄�, �̄�), which are also necessary and suf-
ficient. Moreover, a solution 𝐱∗ is such that 𝐱∗ ∈ 𝛱𝑖[0, 𝐷𝑖] and �̄�∗ is a
olution to 𝑚𝑎𝑥𝑥∈[0,�̄�]𝑣(�̄�, 𝑥). □

roof of Proposition 2. Payoffs in the perturbed game are equal to
𝑖(𝑥𝑖, 𝐱−𝑖) = 𝑉𝑖𝑣(�̄�, �̄�)𝑒

1
2 𝜀(𝑥𝑖−�̄�)

2
. The first-order derivative is equal to

𝜕𝜋𝑖
𝜕𝑥𝑖

= [1
𝑛
𝜕𝑣
𝜕𝑥

(�̄�, �̄�) + 𝜀(1 − 1
𝑛
)(𝑥𝑖 − �̄�)𝑣(�̄�, �̄�)]𝑉𝑖𝑒

1
2 𝜀(𝑥𝑖−�̄�)

2

and, moreover, 𝜋𝑖 is concave in 𝑥𝑖 when 𝜀 is small enough. Introduce
he functions 𝑉 (𝐱) = 1

2
∑

𝑖(𝑥𝑖 − �̄�)2 and 𝜑(𝐱) = −𝑙𝑛(−𝑣(�̄�, �̄�)) − 𝜀(1 −
1
𝑛 )𝑉 (𝐱). With some algebra, we see that: 𝜕𝑉

𝜕𝑥𝑖
= 𝑥𝑖 − �̄� and 𝜕𝜑

𝜕𝑥𝑖
=

− 1
𝑛
𝜕𝑣∕𝜕𝑥

𝑣 (�̄�, �̄�) − 𝜀(1 − 1
𝑛 )(𝑥𝑖 − �̄�). Therefore, 𝜕𝜋𝑖

𝜕𝑥𝑖
= (−𝑣)𝑉𝑖𝑒

1
2 𝜀(𝑥𝑖−�̄�)

2 𝜕𝜑
𝜕𝑥𝑖

.

ince (−𝑣)𝑉𝑖𝑒
1
2 𝜀(𝑥𝑖−�̄�)

2
> 0, the function 𝜑 is an ordinal potential for the

perturbed game. A profile 𝐱 is a Nash equilibrium iff it satisfies the
first order conditions of the program 𝑚𝑎𝑥𝐱𝜑(𝐱) under the constraints
0 ≤ 𝑥𝑖 ≤ 𝐷𝑖.

Next, let us show that 𝜑 is strictly concave if 𝜀 > 0 is small enough.
Compute the second order derivatives of 𝜑. Introduce the function 𝑓
such that 𝑓 (𝜇, 𝑥) = 𝑞𝑐 (1−𝑞𝑐 )𝐴𝑒𝐴(𝜇−𝑥)

(1−𝑞𝑐+𝑞𝑐𝑒𝐴(𝜇−𝑥))2
> 0. We have: 𝜕2𝜑

𝜕𝑥2𝑖
= − 1

𝑛2
𝑓 (�̄�, �̄�) −

(1 − 1
𝑛 )

2 and, if 𝑗 ≠ 𝑖, 𝜕2𝜑
𝜕𝑥𝑖𝜕𝑥𝑗

= − 1
𝑛2
𝑓 (�̄�, �̄�) + 𝜀 1

𝑛 (1 − 1
𝑛 ). Denote by 𝐉 a

atrix of ones and by 𝐈 the identity matrix. The hessian of 𝜑 can then
e written as
2𝜑 = (− 1

𝑛2
𝑓 (�̄�, �̄�) + 𝜀 1

𝑛
(1 − 1

𝑛
))𝐉 − 𝜀(1 − 1

𝑛
)𝐈

and this matrix is negative definite when 𝜀 is positive and small
enough.21

This shows that the perturbed game has a unique Nash equilibrium.
Next, consider a sequence of 𝜀 > 0 converging to 0 and let 𝐱𝜀 be the
Nash equilibrium of the perturbed game. Consider a subsequence of
𝐱𝜀 converging to some profile 𝐱. Let us show that 𝐱 must be a Nash
equilibrium of the original game with lowest variance.

Equilibria of the perturbed game satisfy the necessary and sufficient
conditions: 0 < 𝑥𝜀𝑖 < 𝐷𝑖 ⇒ 𝜕𝜑

𝜕𝑥𝑖
= 0; 𝑥𝜀𝑖 = 𝐷𝑖 ⇒ 𝜕𝜑

𝜕𝑥𝑖
≥ 0; and

𝜀𝑖 = 0 ⇒ 𝜕𝜑
𝜕𝑥𝑖

≤ 0. Taking the limit of these conditions as 𝜀 tends
to 0 yields: 0 < 𝑥𝑖 < 𝐷𝑖 ⇒ 𝜕𝑣

𝜕𝑥 (�̄�, �̄�) = 0; 𝑥𝑖 = 𝐷𝑖 ⇒ 𝜕𝑣
𝜕𝑥 (�̄�, �̄�) ≥ 0;

and 𝑥𝑖 = 0 ⇒ 𝜕𝑣
𝜕𝑥 (�̄�, �̄�) ≤ 0. This shows that 𝐱 is a Nash equilibrium

of the original game. Suppose that it does not have lowest variance,
and let 𝐱′ be another Nash equilibrium such that 𝑉 (𝐱′) < 𝑉 (𝐱). By
continuity, 𝑉 (𝐱𝜀) converges to 𝑉 (𝐱). Consider 𝜀 small enough such that
𝑉 (𝐱𝜀) > 𝑉 (𝐱′). Then,

𝜑(𝐱𝜀) = −𝑙𝑛(−𝑣(�̄�, 𝑥𝜀)) − 𝜀(1 − 1
𝑛
)𝑉 (𝐱𝜀) < −𝑙𝑛(−𝑣(�̄�, �̄�′)) − 𝜀(1 − 1

𝑛
)𝑉 (𝐱′)

ince −𝑙𝑛(−𝑣(�̄�, 𝑥𝜀)) ≤ 𝑙𝑛(−𝑣(�̄�, 𝑥′)) because 𝐱′ is an equilibrium of the
riginal game. This shows that 𝐱𝜀 does not maximize 𝜑, a contradiction.
herefore, any converging subsequence of 𝐱𝜀 converges to an equilib-
ium of the original with lowest variance. We show in the final step
hat there is a unique equilibrium that minimizes variance over all
quilibria. Since the strategy space is compact, 𝐱𝜀 must then converge
o this equilibrium.

An equilibrium of the original game with lowest variance solves
𝑖𝑛𝐱𝑉 (𝐱) under the constraints 0 ≤ 𝑥𝑖 ≤ 𝐷𝑖 and ∑

𝑖 𝑥𝑖 = 𝑛𝑥∗, where 𝑥∗ is
he equilibrium average demand. Note that we can exclude situations
here 𝑥𝑖 = 0 for some 𝑖. In that case, there exists 𝑗 such that 𝑥𝑗 > 𝑥∗ and
small Pigou-Dalton transfer from 𝑗 to 𝑖 decreases variance. Denote by
the Lagrange multiplier of the constraint ∑𝑖 𝑥𝑖 = 𝑛𝑥∗. The necessary

nd sufficient first order conditions are: 𝑥𝑖 < 𝐷𝑖 ⇒ 𝑥𝑖 = 𝑥∗ + 𝜈 and
𝑖 = 𝐷𝑖 ⇒ 𝑥𝑖 ≤ 𝑥∗ + 𝜈. This implies that agents with relatively low

21 In this case, ∇2𝜑 = −𝑎𝐉 − 𝑏𝐈 with 𝑎, 𝑏 > 0. For any vector 𝐳 ≠ 𝟎,
𝐳𝑡(∇2𝜑)𝐳 = −𝑎(

∑

𝑧 )2 − 𝑏(
∑

𝑧2) < 0.
𝑖 𝑖 𝑖 𝑖 i

11 
values of 𝐷𝑖’s demand the maximal amount of insurance, while agents
with relatively high value of 𝐷𝑖’s all demand the same amount.

Order agents through increasing 𝐷𝑖 and suppose that there are two
different equilibria with lowest variance, 𝐱 = (𝐷1,… , 𝐷𝑝, 𝑥,… , 𝑥) and
𝐲 = (𝐷1,… , 𝐷𝑞 , 𝑦,… , 𝑦) with 𝑝 < 𝑞. We know that 𝐷𝑝 ≤ 𝑥 and 𝐷𝑞 ≤ 𝑦.
Moreover, 𝑥 ≤ 𝐷𝑞 since 𝐱 is a feasible profile and 𝑦 < 𝑥 since the
average is constant and agents 𝑝 + 1 to 𝑞 have a higher action in
the second profile. This means that 𝑦 < 𝑦, a contradiction. Therefore,
there is a unique equilibrium with lowest variance, and hence a unique
equilibrium robust to conformism. Finally, note that if this equilibrium
is symmetric, 𝑥𝑖 = 𝑥𝑆 (�̄�) and hence 𝜇𝑖 ≤ �̄� ⇒ 𝑥𝑖 ≥ 𝑥𝑆𝑖 while 𝜇𝑖 ≥ �̄� ⇒
𝑥𝑖 ≤ 𝑥𝑆𝑖 . Otherwise, 𝑥𝑖 = 𝐷𝑖 ⇒ 𝑥𝑖 ≥ 𝑥𝑆𝑖 and if 𝑥𝑖 = 𝑥 < 𝐷𝑖, demand
decreases for agents with damage above a threshold and increases for
agents with damage below this threshold. □

Proof of Theorem 2. There are three cases. If 𝑞𝑐 ≤ 𝑝 ≤ �̄�(𝜇𝑚𝑖𝑛),
then 𝑥𝑆 (𝜇𝑖) and 𝑥𝑆 (�̄�) are all interior. By Proposition 1, 𝑥𝑆 (𝜇𝑖) = 𝜇𝑖 −
1
𝐴 𝑙𝑛(

1−𝑞𝑐
𝑞𝑐

𝑝
1−𝑝 ) and hence 𝑥𝑆 =

∑

𝑖 𝜇𝑖 −
𝑛
𝐴 𝑙𝑛(

1−𝑞𝑐
𝑞𝑐

𝑝
1−𝑝 ) = 𝑛𝑥𝑆 (�̄�) = 𝑥𝐴.

If �̄�(𝜇𝑚𝑖𝑛) < 𝑝 < �̄�(�̄�), then demand is zero for agents with lowest
damages and interior for the representative agent. Then, 𝑥𝑆 (𝜇𝑖) ≥
𝑖 −

1
𝐴 𝑙𝑛(

1−𝑞𝑐
𝑞𝑐

𝑝
1−𝑝 ) with at least one strict inequality. This yields 𝑥𝑆 >

𝑖 𝜇𝑖 −
𝑛
𝐴 𝑙𝑛(

1−𝑞𝑐
𝑞𝑐

𝑝
1−𝑝 ) = 𝑛𝑥𝑆 (�̄�) = 𝑥𝐴.

If �̄�(�̄�) ≤ 𝑝 < �̄�(𝜇𝑚𝑎𝑥), then demand is equal to zero for the
representative agents and is positive for agents with highest damages.
This implies that 𝑥𝑆 > 0 = 𝑥𝐴. □

Proof of Theorem 3. Denote by �̂�𝑖 = �̂�(𝜇𝑖) = 𝜇𝑖 −
1
𝐴 𝑙𝑛(

1−𝑞𝑐
𝑞𝑐

𝑝
1−𝑝 ), such

that 𝑥𝑆𝑖 = 𝑚𝑖𝑛(𝑚𝑎𝑥(�̂�𝑖), 0), 𝐷. (1) Suppose first that 𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛 < 𝐷
and 𝑝(𝜇𝑚𝑎𝑥) < �̄�(𝜇𝑚𝑖𝑛). (1.1) If 𝑝(𝜇𝑚𝑖𝑛) < 𝑝 < 𝑝(𝜇𝑚𝑎𝑥), then 𝑥𝑆 (𝜇𝑚𝑖𝑛) =
̂(𝜇𝑚𝑖𝑛) > 0 and 𝑥𝑆 (𝜇𝑚𝑎𝑥) = 𝐷 < �̂�(𝜇𝑚𝑎𝑥). Thus, 𝑥𝑆 =

∑

𝑖 𝑥
𝑆
𝑖 <

𝑖𝑛(𝑛𝐷,
∑

𝑖 �̂�𝑖) = 𝑥𝐴. (1.2) If 𝑝(𝜇𝑚𝑎𝑥) ≤ 𝑝 ≤ �̄�(𝜇𝑚𝑖𝑛), then 𝑥𝑆𝑖 = �̂�𝑖 and
𝑆 =

∑

𝑖 �̂�𝑖 = 𝑥𝐴. (1.3) If �̄�(𝜇𝑚𝑖𝑛) < 𝑝 < �̄�(𝜇𝑚𝑎𝑥), then 𝑥𝑆 (𝜇𝑚𝑖𝑛) = 0 >
̂(𝜇𝑚𝑖𝑛) and 𝑥𝑆 (𝜇𝑚𝑎𝑥) = �̂�(𝜇𝑚𝑎𝑥). Thus, 𝑥𝑆 =

∑

𝑖 𝑥
𝑆
𝑖 > 𝑚𝑎𝑥(0,

∑

𝑖 �̂�𝑖) = 𝑥𝐴.
2) Suppose, second, that 𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑖𝑛 ≥ 𝐷 and �̄�(𝜇𝑚𝑖𝑛) ≤ 𝑝(𝜇𝑚𝑎𝑥). (2.1)

If 𝑝(𝜇𝑚𝑖𝑛) < 𝑝 ≤ 𝑝(�̄�), then 𝑥𝑆 (𝜇𝑚𝑖𝑛) < 𝐷 and hence 𝑥𝑆 < 𝑛𝐷 = 𝑥𝐴. (2.2)
f �̄�(�̄�) ≤ 𝑝 < �̄�(𝜇𝑚𝑎𝑥), then 𝑥𝑆 (𝜇𝑚𝑎𝑥) > 0 and hence 𝑥𝑆 > 0 = 𝑥𝐴. (2.3)
f 𝑝(�̄�) ≤ 𝑝 ≤ �̄�(�̄�), then 𝑥𝐴 = 𝑛�̂�(�̄�) =

∑

𝑖 �̂�(𝜇𝑖). Therefore, 𝑥𝑆 − 𝑥𝐴 =

𝑖 𝑥
𝑆 (𝜇𝑖) − �̂�(𝜇𝑖). For a given 𝜇𝑖, the function 𝑥𝑆 (𝜇𝑖) − �̂�(𝜇𝑖) is equal to

−�̂�(𝜇𝑖) if 0 ≤ 𝑝 ≤ 𝑝(𝜇𝑖), 0 if 𝑝(𝜇𝑖) ≤ 𝑝 ≤ �̄�(𝜇𝑖), and −�̂�(𝜇𝑖) if �̄�(𝜇𝑖) ≤ 𝑝 ≤ 1.
his function is thus weakly increasing overall, and strictly increasing
ver [0, 𝑝(𝜇𝑖)] ∪ [�̄�(𝜇𝑖), 1]. The sum of these functions is thus strictly

increasing over the union of these sets, which is equal to the whole
interval [0, 1] since �̄�(𝜇𝑚𝑖𝑛) ≤ 𝑝(𝜇𝑚𝑎𝑥). Therefore, 𝑥𝑆 −𝑥𝐴 is a continuous
nd strictly increasing function of price, is strictly negative at 𝑝(�̄�) and

strictly positive at �̄�(�̄�). Therefore, it is equal to zero precisely once, at
∗, on the interval [𝑝(�̄�), �̄�(�̄�)].

Finally, if 𝑝(𝜇𝑚𝑖𝑛) < 𝑝 < �̄�(𝜇𝑚𝑖𝑛), then 𝑥𝑆 (𝜇𝑚𝑖𝑛) = �̂�(𝜇𝑚𝑖𝑛) > 0 and
𝑥𝑆 (𝜇𝑚𝑎𝑥) = 𝐷 < �̂�(𝜇𝑚𝑎𝑥). Thus, 𝑥𝑆 =

∑

𝑖 𝑥
𝑆
𝑖 < 𝑚𝑖𝑛(𝑛𝐷,

∑

𝑖 �̂�𝑖) = 𝑥𝐴.
nd if 𝑝(𝜇𝑚𝑎𝑥) < 𝑝 < �̄�(𝜇𝑚𝑎𝑥), then 𝑥𝑆 (𝜇𝑚𝑖𝑛) = 0 > �̂�(𝜇𝑚𝑖𝑛) and

𝑥𝑆 (𝜇𝑚𝑎𝑥) = �̂�(𝜇𝑚𝑎𝑥). Thus, 𝑥𝑆 =
∑

𝑖 𝑥
𝑆
𝑖 > 𝑚𝑎𝑥(0,

∑

𝑖 �̂�𝑖) = 𝑥𝐴. This shows
that �̄�(𝜇𝑚𝑖𝑛) ≤ 𝑝∗ ≤ 𝑝(𝜇𝑚𝑎𝑥). □

roof of Proposition 3. By Theorem 1, we know that the Nash
quilibria are the maxima of the function 𝜑 ∶ 𝐱 → 𝑣(�̄�, �̄�). Let us show
ow that Pareto optima are also the maxima of this function. If 𝐱 is
ot a Pareto optimum, there exists 𝐱′ and 𝑖 such that E𝑣𝑖(𝐱′) > E𝑣𝑖(𝐱).

This implies that 𝑉𝑖𝜑(𝐱′) > 𝑉𝑖𝜑(𝐱) and hence 𝐱 is not a maximum of
𝜑. Reciprocally, suppose that 𝐱 is not a maximum of 𝜑 and let 𝐱′ be
such that 𝜑(𝐱′) > 𝜑(𝐱). Then, for every 𝑖, 𝑉𝑖𝜑(𝐱′) > 𝑉𝑖𝜑(𝐱) and hence
𝑣𝑖(𝐱′) > E𝑣𝑖(𝐱) and 𝐱 is not a Pareto optimum. □

omplete networks and multiple shocks
Consider complete networks, with 𝛼𝑖𝑗 = 𝛼, as in Arrow (1981). Relax

ssumption 1, and assume that all agents in set 𝑆 are affected by the

diosyncratic shock, with |𝑆| = 𝑠 and 1 ≤ 𝑠 ≤ 𝑛−1. We first characterize
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equilibrium consumption under the assumption that every agent with
a shock receives informal support while every agent without a shock
gives informal support. In a second stage, we will derive conditions
under which this assumption holds. Under this assumption, every agent
with a shock ends up with the same consumption level, denoted by 𝑐𝐿,
while every agent without a shock ends up with consumption level 𝑐𝐻 .
These consumption levels must satisfy two equations: 𝑠𝑐𝐿+(𝑛−𝑠)𝑐𝐻 = 𝑛�̄�
and 𝑐𝐻 − 𝑐𝐿 = 𝜅∕𝐴 where 𝜅 = −𝑙𝑛(𝛼). This yields 𝑐𝐿 = �̄�− (1 − 𝑠

𝑛 )
𝜅
𝐴 and

𝐻 = �̄� + 𝑠
𝑛
𝜅
𝐴 .

Next, consider general stochastic structures of individual shocks.
Assume that with probability 𝑞𝑆 , all agents in set 𝑆 are affected
y the shock. Assume, also, that individual and common shocks are
ndependent. Denote by 1𝑆 (𝑖) an indicator variable equal to 1 if 𝑖 ∈ 𝑆
nd 0 otherwise, and by 𝜆𝑆 =

∑

𝑖∈𝑆 𝜆𝑖. Expected selfish utility is equal
o

𝑢𝑖 = −(1 − 𝑞𝑐 )
∑

𝑆
𝑞𝑆𝑒

−𝐴(�̄�−𝑝�̄�− 𝜆𝑆
𝑛 + 𝑠

𝑛
𝜅
𝐴−1𝑆 (𝑖)

𝜅
𝐴 )

− 𝑞𝑐
∑

𝑆
𝑞𝑆𝑒

−𝐴(�̄�−𝑝�̄�−(�̄�−�̄�)− 𝜆𝑆
𝑛 + 𝑠

𝑛
𝜅
𝐴−1𝑆 (𝑖)

𝜅
𝐴 )

nd hence E𝑢𝑖 = 𝑈𝑖𝑣(�̄�, �̄�) with 𝑈𝑖 =
∑

𝑆 𝑞𝑆𝑒
−𝐴(− 𝜆𝑆

𝑛 + 𝑠
𝑛

𝜅
𝐴−1𝑆 (𝑖)

𝜅
𝐴 ) > 0. This

eans that Lemma 2 extends, and hence that Theorems 1–3 extend.
This reasoning is valid when every agent with a shock receives

upport while every agent without a shock gives support. In turn, this
olds when

∉ 𝑆 ⇒ 𝑤𝑖 − 𝑝𝑥𝑖 − (𝜇𝑖 − 𝑥𝑖)1𝑐 ≥ �̄� − 𝑝�̄� − (�̄� − �̄�)1𝑐 −
𝜆𝑆
𝑛

+ 𝑠
𝑛
𝜅
𝐴

∈ 𝑆 ⇒ 𝑤𝑖 − 𝑝𝑥𝑖 − (𝜇𝑖 − 𝑥𝑖)1𝑐 − 𝜆𝑖 ≤ �̄� − 𝑝�̄� − (�̄� − �̄�)1𝑐 −
𝜆𝑆
𝑛

− (1 − 𝑠
𝑛
) 𝜅
𝐴

These inequalities hold for any choice of formal insurance and any
ealization of the common shock when 𝜆𝑆

𝑛 and 𝜆𝑖−
𝜆𝑆
𝑛 are large enough.

This is guaranteed, for instance, for any 𝛿 such that 𝜆𝑖 ∈ [𝜆, 𝜆+ 𝛿] for 𝜆
igh enough since 𝜆𝑆

𝑛 ≥ 𝜆
𝑛 and 𝜆𝑖 −

𝜆𝑆
𝑛 ≥ 𝜆

𝑛 − 𝛿. □
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