
HAL Id: hal-04717872
https://hal.science/hal-04717872v1

Submitted on 2 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification of Variability Implementations in
TypeScript: the 2Cities Visualization

Yann Brault, Philippe Collet, Anne-Marie Pinna-Dery

To cite this version:
Yann Brault, Philippe Collet, Anne-Marie Pinna-Dery. Identification of Variability Implementa-
tions in TypeScript: the 2Cities Visualization. SPLC ’24: 28th ACM International Systems and
Software Product Line Conference, Sep 2024, Dommeldange Luxembourg, Luxembourg. pp.22-25,
�10.1145/3646548.3676598�. �hal-04717872�

https://hal.science/hal-04717872v1
https://hal.archives-ouvertes.fr


Identification of Variability Implementations in TypeScript:
the 2Cities Visualization

Yann Brault
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
yann.brault@univ-cotedazur.fr

Philippe Collet
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
philippe.collet@univ-cotedazur.fr

Anne-Marie Pinna-Dery
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
anne-marie.pinna@univ-cotedazur.fr

Abstract
When variability is directly implemented in a single codebase with
languages supporting many different mechanisms, its identification
and comprehension are impeded by the absence of documenta-
tion, their scattered locations, and obviously, their diversity. This
is typically the case with TypeScript in which variability can be
implemented with Object-Oriented (OO) mechanisms, and design
patterns, but also with dynamic loading of files. This latter mecha-
nism allows for organizing internal variants of part of code in direc-
tories and files, usually containing code clones of different forms. In
this paper, we demonstrate 2Cities, a dedicated visualization based
on the city metaphor to highlight variability implementations in a
single TypeScript codebase. We introduce the detection toolchain
that gathers all the necessary information and variability metrics.
Then we detail the visualization mechanisms that use two dedi-
cated cities whose relations also highlight the architecture of the
implementation. The first one, ObjectCity, adapts the VariCity visu-
alization with classes as buildings shaped by their variability and
usage relationships as streets. The second one, CloneCity, visualizes
the directory hierarchy as streets and files as circular districts with
different colors to point out duplication and cylindrical shades to
highlight clones obtained from a code clone detection phase.

CCS Concepts
• Software and its engineering → Software product lines;
Software reverse engineering; • Human-centered computing
→ Visualization systems and tools.

Keywords
software variability, software visualization, reverse-engineering,
code clones, clone detection

1 Introduction
Not all variability-intensive systems are implemented like a full
Software Product Line (SPL). Many of them only realize variabil-
ity in a single codebase through the mechanisms provided by the
host programming language. As these mechanisms are also used
to realize the business logic and that no additional information
or annotation is available concerning variability [13], there is no
traceability with the domain knowledge [11]. Worse still, the very
identification of the implemented variability is hampered by its
burying in the code base and by the diversity of the used mecha-
nisms [5, 10]. This is the case with recent languages, which typically
integrate many different mechanisms, just like TypeScript. This
language is an extension with static OO typing of the JavaScript
language, which combines imperative and functional programming
with a prototype-based semantic.

In a companion paper, we manually studied the variability imple-
mentation mechanisms in TypeScript on several large open-source
systems such as Angular, Grafana, Echarts, or Nest [1]. Several dif-
ferent kinds of implementation can then be related to the concepts
of variation point (vp), a location where variation may occur, and
variants, the specific ways the vp differ [3]. First, similarly to other
OO languages, such as Java [12], mechanisms like inheritance be-
tween classes, and design patterns (i.e., factory, strategy, template,
decorator), can be spotted in TypeScript and are the first candidates
to implement variability.

As shown in the work on symfinder and VariCity, these mech-
anisms can be directly related to vp and variants, e.g., with in-
heritance the superclass is the vp while subclasses are variants.
Interestingly, method overloading does not exist in TypeScript but
can be simulated by several method signatures and one method
declaration grouping all previous signatures.

In addition, variability in TypeScript can be implemented by
reusing the JavaScript dynamic code loading capabilities through
the concept of modules. It enables one to create reusable compo-
nents that can be loaded from files through import/export instruc-
tions. They are structural patterns organizing folders on various
hierarchical levels, sometimes with a main folder standing for a
feature and sub-folders being the different implementations, fre-
quently leading to file duplication, notably for files with the same
goal, or having the same name. Figure 1 illustrates how the project
Echarts, a charting library for TypeScript, handles the variability of
its charts, with a chart folder as vp with its sub-folders containing
the variants. These folders all duplicate the same file, install.ts,
unifying the loading of charts in the system. Duplicated files may
only contain functions (cf. Figure 1), or constants with different
values, but they may also use classes and OO mechanisms, mixing
the different implementation mechanisms.

To comprehend the variability implemented with OO mecha-
nisms and design patterns, some recent approaches could be used
to identify it [10, 11], and visualize it through a 3D city visualiza-
tion [5–7]. However, the detection and visualization mechanisms
were only applied to the Java language. Moreover, these approaches
do not cover the identification of the internal variants that are char-
acterized by file duplication and code clones in specific directories.
While some 3D visualizations have also been proposed to represent
code duplication metrics [2, 4] no overarching approach can cur-
rently detect and visualize the different variability implementation
mechanisms of TypeScript.

In this paper, we demonstrate 2Cities, a 3D visualization based
on the city metaphor [14] to highlight variability implementations
in a single TypeScript project from static analyses of its codebase.
The visualization aggregates two city representations with links be-
tween them that can complement each separate representation. The



Yann Brault, Philippe Collet, and Anne-Marie Pinna-Dery

Figure 1: Duplication in TypeScript modules (Echarts)

first one, ObjectCity, focuses on displaying together classes that are
heavily loaded in variability implementation mechanisms. It adapts
the VariCity [5–7] visualization with classes as buildings shaped by
their variability metrics and usage relationships as streets. Design
patterns present in TypeScript are also displayed through specific
crowns over the concerned building. The second one, CloneCity,
is completely new. It gives a directory-centric overview of the
codebase and focuses on internal code clones with information
on the detection of files with the same names within all directo-
ries, and results of a code clone detection algorithm applied to all
files. CloneCity represents the directory hierarchy as streets, with
specific colors when similarities are present, and files as circular
districts whose colors change according to the level of duplication
found. In addition, different links (inheritance, bridge between the
same class represented in each city, clone pairs) appear on hovering.
All together the two representations and their relations facilitate
the understanding of the implemented variability1.

In the following, we first present in section 2 the detection
toolchain that gathers all the necessary information and variability
metrics. Then we detail how the visualization is built and used in
section 3.

2 Toolchain
Figure 2 depicts the complete toolchain organization, which is split
into three main parts. First, a source fetcher gets the source code
of the subject system from a git repository given in parameter.
Then a multi-stage detection searches for the OO variability im-
plementations and the clone-related ones. Finally, the web-based
visualization is generated so that it can be explored with a web
browser.

1The source code of 2Cities is available at https://github.com/DeathStar3/Varicity-TS,
while a demonstration video can be found at https://youtu.be/tMxa1_q5fq4.

Figure 2: The 2Cities toolchain

Detecting OO variability in TypeScript. To identify OO variability
implementation mechanisms, the symfinder toolchain [10, 11] is
reused and extended. We re-implemented the parser in TypeScript
to analyze TypeScript code and detect inheritance, function over-
loading as defined in the language, and several design patterns
(strategy, template, decorator, and factory). Following the symfinder
principles, it identifies vp-s and variants and stores them in a Neo4J
graph database [10]. The concept of hotspot is also reused to iden-
tify zones of interest, either containing many classes related by
usage relationships or the use of several OO mechanisms, or a class
heavily using one specific mechanism (e.g., many methods being
overloaded) [11]. This detection relates to steps 2 and 3 on fig. 2.

Detecting duplication at the file level. The second part of the
detection process, steps 4 and 5 per Figure 2, performs the identifi-
cation of duplication between files and folders. At this stage, the
tool traverses files and folders to detect file duplication over names
to identify potential variants based on the following rules: If a file
is duplicated with the same name in at least two distinct folders at
the same level, the file and its duplicate are defined as Variant files.
In the case where the file is duplicated in all folders of the same
hierarchical level, it is referred to as a Core file. We define a folder
containing a Variant file as a Variant folder, and a folder containing
at least two Variant folders as a VP folder.

Detecting duplication at the code level. Finally, a code clone dupli-
cation detection is conducted by an external tool, MSCCD [9, 15].
It is a language-independent code clone detection tool relying on
ANTLR grammar to adapt its detection to several languages. It
mainly detects Type 3 clones 2 as they are the only type of clones
allowing for addition and deletion while keeping textual similari-
ties [8]. We consider that this type of clone is the most appropriate
to match a potential variability implementation mechanism. The
detection of code clones, step 6 on Figure 2, outputs a list of clone
pairs, which are pairs of identical or textually similar code frag-
ments, ranging from a code instruction to a whole file [8]. This
list is parsed and used to complement files data from the Neo4J
graph database, step 7 on Figure 2, to label cloned files, and add
code clone relationships between files of the same clone pair. We
define a cloned file as a file that is part of a clone pair, and which

2A Type 3 clone corresponds to copied fragments including modification, addition, or
deletion of statements, and changes in identifiers, literals, types, layout, and comments.

https://github.com/DeathStar3/Varicity-TS
https://youtu.be/tMxa1_q5fq4


Identification of Variability Implementations in TypeScript: the 2Cities Visualization

(white annotations are not part of the visualization)

Figure 3: The 2Cities visualization for Nest

is consequently the source or the target of a code clone relation-
ship. Finally, a snapshot of the database is extracted to a dedicated
back-end server to be used for visualization (step 8 on fig. 2).

3 Visualization
While VariCity [5, 6] reuses the symfinder output on detected OO
mechanisms to build a city-based visualization, it does not support
intra-clone variability. To build a complete visualization, we decided
to split it into two cities [14], rather than doing an extension of
VariCity. As clone-related data bring a lot of information, i.e., several
hierarchical directory levels, file duplication, and code clones, this
extension would be too overloaded. In addition, we consider that
each type of variability implementation (i.e., OO and clone-related)
is worth visualizing by itself to comprehend their organizations,
but also together to understand their interactions, their potential
impacts on each other, and to make structural patterns appear.
Figure 3 is used in the following to illustrate visual properties of
the 2Cities visualization.

ObjectCity. The first city is built following the VariCity princi-
ples [5, 6] so that classes concentrating variability implementations
are highlighted. Buildings varying in size account for many in-
ternal variants, with method variants influencing the height and
constructor variants the width. A variation in shape, specifically
with crowns, identifies design patterns, for example, chimneys
identify factories. Entrypoints buildings are the starting point of
ObjectCity, representing classes of interest selected by the user.
They are aggregated along a main red road and are identified with a
pyramidal crown. All buildings representing classes related to them

by usage relationships are organized around green roads starting
from the concerned building. More links, such as additional usage
or inheritance relationships, can be displayed as the building is hov-
ered over. To make them noticeable, classes being part of hotspots
are displayed in yellow for vp-s and blue for variants.

CloneCity. As the other part of the static analysis focuses on find-
ing clones at the file level and within files throughout the whole
codebase, the second city, CloneCity, is built to display the complete
directory hierarchy given as input, usually a src folder. The city
is thus structured by folders, displayed as streets. Files are aggre-
gated along the streets and represented by circular districts. Each
district has on its top the classes it exports, visualized similarly
as in ObjectCity, which allows the distinction of files with many
classes, but also the use of OO mechanisms within files, facilitat-
ing the identification of combined variability implementations. All
elements are displayed in gray by default and are colored when
detected as variability implementations. Duplicated folders are as-
signed a purple color, darkening according to their duplication level,
while the more a file is duplicated, the more its color is vibrant.
As file duplication is based on naming, a new color is assigned to
the duplicated files for each different name, making it easier to
differentiate each file. In addition, cloned files are identified by a
cylindrical purple shade, whose height changes according to the
number of code clones, allowing the detection of files with highly
duplicated code. Finally, files of a clone pair are linked by an aerial
purple bridge when one of them is hovered over or selected. All
this helps reveal files that have duplicated code fragments from
one another and help understand if it is a structural duplication or
variability-related duplication.

Identification process. Each city can be analyzed by itself and
used to comprehend the variability implementations it visualizes.
However, the visualization is meant to start with CloneCity first to
have a grasp of the file structure and then use the city to find classes
of interest and input them intoObjectCity. This city is then extended
with classes found from complementary information taken in the
source code or the project documentation3. Classes displayed in
both cities (i.e., the ones exported by their file in CloneCity) have all
the visual properties defined in ObjectCity, i.e., color, size variations,
design pattern crowns, and various links, and are connected by a
cross-cities yellow bridge. However, if they are visualized in only
one city, they keep their size variations and design pattern crowns if
they have some, but are automatically grayed. This color distinction
helps to understand which classes might only serve structural pur-
poses from those serving project-wide features. If cities are worth
visualizing by themselves, the bridging of both brings another di-
mension to help comprehend integration and interaction between
folders, files, and classes within the whole codebase, as well as
observing the structural organization of implemented variabilities.

For example, in the ObjectCity part on Figure 3 two towers de-
tach from the city. The taller, located behind the highlighted clone
shades, is a logger that provides multiple logging levels, all imple-
mented through overloaded methods to accept various parameters,

3Contrary to VariCity [5], our current prototype is not integrated into an IDE and
does not support code browsing from the visualization.



Yann Brault, Philippe Collet, and Anne-Marie Pinna-Dery

Figure 4: CloneCity for Nest (folder packages)

hence the size of the building. The second pillar, far in the back-
ground in CloneCity, is an adapter to communicate with different
web servers, through duplicated methods and method overloading.
Similarly, the long streets aggregating many classes are visible in
both cities. All these classes are exceptions, with the longest street
representing the hierarchy of runtime exceptions and the other web
exceptions. In CloneCity, one can also observe that web exceptions
are the only ones covered with clone shades. This shows that these
exceptions combine multiple variability implementation mecha-
nisms by heavily duplicating their codes. One could also interpret
this as a bad smell.

4 Conclusion
2Cities is a visualization that highlights the different variability
implementations that can be observed in variability-rich Type-
Script projects that realize it in a single codebase. Based on the
city metaphor applied twice, it displays a first city, CloneCity, that
visualizes the directory hierarchy as streets and files as colored
circular districts to show file duplication and code clones. The sec-
ond one, ObjectCity, supports the visualization of Object-Oriented
variability implementations with city displaying classes as build-
ings shaped by their variability metrics. Results on multiple large
open-source projects are available in a companion paper [1].

As future work, we aim to enhance the whole toolchain to sup-
port JavaScript and cover more projects in a broader validation. In
the longer term, we want to analyze other artifacts related to con-
figuration and deployment to be able to identify variability across
all of them.

Acknowledgments
We thank Martin Bruel for his contribution in the TypeScript ex-
tension of symfinder , as well as Alexandre Arcil, Gabriel Cogne,
Chenzhou Liao, and Dan Nakache for their contribution in the
development of the first prototype of 2Cities.

References
[1] Yann Brault, Philippe Collet, and Anne-Marie Dery-Pinna. 2024. Visualizing

Variability Implemented with Object-Orientation and Code Clones: A Tale of
Two Citie. In Proceedings of the 28th International Systems and Software Product
Line Conference - Volume A (Luxemburg) (SPLC ’24).

[2] Muhammad Hammad, Hamid Abdul Basit, Stan Jarzabek, and Rainer Koschke.
2020. A systematic mapping study of clone visualization. Computer Science
Review 37 (2020), 100266. https://doi.org/10.1016/j.cosrev.2020.100266

[3] Ivar Jacobson, Martin Griss, and Patrik Jonsson. 1997. Software reuse: architecture
process and organization for business success. Vol. 285. acm Press New York.

[4] Rainer Koschke and Marcel Steinbeck. 2021. SEE Your Clones With Your Team-
mates. In 2021 IEEE 15th International Workshop on Software Clones (IWSC). 15–21.
https://doi.org/10.1109/IWSC53727.2021.00009

[5] JohannMortara, Philippe Collet, andAnne-Marie Dery-Pinna. 2024. Visualization
of object-oriented software in a city metaphor: Comprehending the implemented
variability and its technical debt. J. Syst. Softw. 208 (2024), 111876. https:
//doi.org/10.1016/J.JSS.2023.111876

[6] Johann Mortara, Philippe Collet, and Anne-Marie Dery-Pinna. 2021. Visualiza-
tion of Object-Oriented Variability Implementations as Cities. In 2021 Working
Conference on Software Visualization (VISSOFT). Luxembourg (virtual), Luxem-
bourg, 76–87.

[7] Johann Mortara, Philippe Collet, and Anne-Marie Dery-Pinna. 2022. Customiz-
able Visualization of Quality Metrics for Object-Oriented Variability Implementa-
tions. In Proceedings of the 26th ACM International Systems and Software Product
Line Conference - Volume A (Graz, Austria) (SPLC ’22). Association for Computing
Machinery, New York, NY, USA, 43–54.

[8] Chanchal Kumar Roy and James R Cordy. 2007. A survey on software clone
detection research. Queen’s School of Computing TR 541, 115 (2007), 64–68.

[9] Yuichi Semura, Norihiro Yoshida, Eunjong Choi, and Katsuro Inoue. 2018.
Multilingual Detection of Code Clones Using ANTLR Grammar Definitions.
In 2018 25th Asia-Pacific Software Engineering Conference (APSEC). 673–677.
https://doi.org/10.1109/APSEC.2018.00088

[10] Xhevahire Tërnava, Johann Mortara, and Philippe Collet. 2019. Identifying and
Visualizing Variability in Object-Oriented Variability-Rich Systems. In Proceed-
ings of the 23rd International Systems and Software Product Line Conference -
Volume A (Paris, France) (SPLC ’19). Association for Computing Machinery, New
York, NY, USA, 231–243.

[11] Xhevahire Tërnava, Johann Mortara, Philippe Collet, and Daniel Le Berre. 2022.
Identification and visualization of variability implementations in object-oriented
variability-rich systems: a symmetry-based approach. Journal of Automated
Software Engineering 29 (Feb. 2022), 1–51.

[12] Xhevahire Tërnava and Philippe Collet. 2017. On the Diversity of Capturing
Variability at the Implementation Level. In Proceedings of the 21st International
Systems and Software Product Line Conference - Volume B (SPLC ’17). ACM, 81–88.

[13] Xhevahire Tërnava and Philippe Collet. 2017. Tracing Imperfectly Modular
Variability in Software Product Line Implementation. In International Conference
on Software Reuse (ICSR ’17). Springer, 112–120.

[14] Richard Wettel and Michele Lanza. 2007. Visualizing software systems as cities.
In 2007 4th IEEE International Workshop on Visualizing Software for Understanding
and Analysis. IEEE, 92–99.

[15] Wenqing Zhu, Norihiro Yoshida, Toshihiro Kamiya, Eunjong Choi, and Hiroaki
Takada. 2022. MSCCD: grammar pluggable clone detection based on ANTLR
parser generation. In Proceedings of the 30th IEEE/ACM International Conference
on Program Comprehension (Virtual Event) (ICPC ’22). Association for Comput-
ing Machinery, New York, NY, USA, 460–470. https://doi.org/10.1145/3524610.
3529161

https://doi.org/10.1016/j.cosrev.2020.100266
https://doi.org/10.1109/IWSC53727.2021.00009
https://doi.org/10.1016/J.JSS.2023.111876
https://doi.org/10.1016/J.JSS.2023.111876
https://doi.org/10.1109/APSEC.2018.00088
https://doi.org/10.1145/3524610.3529161
https://doi.org/10.1145/3524610.3529161

	Abstract
	1 Introduction
	2 Toolchain
	3 Visualization
	4 Conclusion
	Acknowledgments
	References

