
HAL Id: hal-04717839
https://hal.science/hal-04717839v1

Submitted on 2 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visualizing Variability Implemented with
Object-Orientation and Code Clones: A Tale of Two

Cities
Yann Brault, Philippe Collet, Anne-Marie Pinna-Dery

To cite this version:
Yann Brault, Philippe Collet, Anne-Marie Pinna-Dery. Visualizing Variability Implemented with
Object-Orientation and Code Clones: A Tale of Two Cities. SPLC ’24: 28th ACM International
Systems and Software Product Line Conference, Sep 2024, Dommeldange Luxembourg, Luxembourg.
pp.107-112, �10.1145/3646548.3673037�. �hal-04717839�

https://hal.science/hal-04717839v1
https://hal.archives-ouvertes.fr

Visualizing Variability Implemented with Object-Orientation and
Code Clones: A Tale of Two Cities

Yann Brault
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
yann.brault@etu.univ-cotedazur.fr

Philippe Collet
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
philippe.collet@univ-cotedazur.fr

Anne-Marie Pinna-Dery
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
anne-marie.pinna@univ-cotedazur.fr

Abstract
Understanding variability in large software systems poses signifi-
cant challenges for developers, especially when variability is im-
plemented within a single codebase using diverse language mecha-
nisms like in TypeScript. In this language, one can implement vari-
ability with traditional Object-Oriented (OO) techniques, but also
with dynamic loading mechanisms that organize different forms
of clones in sub-directories and files serving as internal variants.
While certain approaches may facilitate partial identification or
visualization, there exists no solution for handling all variability
mechanisms simultaneously.

In this paper, we propose an approach by detecting all mecha-
nisms and integrating two city-based representations to visualize
these implemented variabilities. The first representation adapts the
VariCity visualization and focuses on OO variability with classes
as buildings and usage relationships as streets. The second rep-
resentation leverages a codebase analysis combined with a code
clone detection technique to visualize the directory hierarchy as
streets and files as circular districts with shades and colors to high-
light cloning. Some visual mechanisms enable to display relevant
relationships between them, unveiling patterns of cross-usage and
variability architecture. We also report on the application of the
tooled approach on several large open-source systems.

CCS Concepts
• Software and its engineering → Software product lines;
Software reverse engineering; • Human-centered computing
→ Visualization systems and tools.

Keywords
software variability, software visualization, reverse-engineering,
code clones, clone detection

1 Introduction
Variability is more and more present in all forms and scales of
modern software-intensive systems [15, 16, 19]. While software
variability is usually defined as the ability of a software artifact to
be efficiently extended, changed, customized, or configured towards
a specific context [8], its management is the subject of many re-
search advances, that led to the Software Product Line (SPL) [3, 32]
paradigm. Still, numerous variability-rich systems do not follow a
comprehensive SPL approach as they gradually manage variability
using the host language mechanisms in a single codebase without
any other additional information or annotation regarding variabil-
ity [44]. Depending on the language, many different techniques and
mechanisms can be used together [8, 14, 40], from inheritance, over-
loading, and design patterns in object-oriented settings, to more

general-purpose parameterization or loading of source code files
in dynamic languages. As all these mechanisms are also used to
realize the business logic, the implemented variability is concealed
within the whole codebase. This is directly hindering its identifi-
cation and understanding as there is no traceability with domain
information [41, 42].

This multiple usage of variability implementation mechanisms
can be observed in recent general-purpose programming languages
such as TypeScript, which is the focus of this work. As for vari-
ability implementation, TypeScript exhibits several mechanisms
that can be employed. Some classical OO techniques [40] such as
inheritance and design patterns are easily accessible or can be sim-
ulated. In addition, the dynamic capabilities of the language can be
exploited to load files organized in directories and subdirectories
to handle variant code. This can lead to files with the same name
being duplicated, sometimes with several OO classes or functions,
with the same or different code in their implementations.

Some recent approaches have been proposed to identify OO vari-
ability implementations [41, 42] and visualize them using a 3D city
metaphor [28, 29] that have been shown to facilitate variability
understanding [27]. Some 3D visualizations have also been pro-
posed to represent code duplication metrics [18, 23, 38] while some
other proposals [11, 36] attempt to provide a forward-engineering
approach for building a SPL in JavaScript. To the best of our knowl-
edge, there is no comprehensive solution available to handle all
mechanisms simultaneously in codebases that do not contain any
other information except the implementation mechanisms.

In this paper, we propose an approach that facilitates the iden-
tification and visualization of these different types of variability
implementation mechanisms (cf. section 2) within a TypeScript
codebase by integrating two city-based representations [47] (cf.
Section 3) built from static analysis of the codebases. First, we adapt
the symfinder extraction toolchain [30, 41, 42] to obtain metrics
over OO mechanisms in TypeScript. We then rely on the VariCity
visualization principles [27–29] to create the 3D representation of
the first city, called ObjectCity, in which classes are represented
as buildings whose dimensions correspond to variability metrics,
while streets depict usage relationships. For the second city, an-
other static analysis gathers information from the detection of files
with the same names within all directories, and from a code clone
detection algorithm applied to all files. The second city, CloneCity,
visualizes the directory hierarchy as streets and files as circular dis-
tricts with different colors to point out duplication and cylindrical
shades to highlight clones obtained from a code clone detection
phase. In addition, files sharing duplicated code are linked by aerial
bridges, as well as classes visualized in both cities simultaneously.
We apply our approach to several large TypeScript codebases, show-
ing that different variability implementations can be detected and

Yann Brault, Philippe Collet, and Anne-Marie Pinna-Dery

displayed (cf. Section 4). Threats to validity are discussed in Sec-
tion 5, while Section 6 concludes this paper and discusses future
work.

2 Motivations
Differentiating variability within code assets can be organized
across three distinct parts: core, commonalities, and variations [4,
46]. The core corresponds to assets present in all final software
products. Commonalities represent shared elements among related
variations of code assets, while variations indicate the way and the
time code assets actually vary. Commonalities and variations are ab-
stracted as variation points (vp-s) and variants, respectively [20, 33].
A variation point identifies one or more locations where variation
may occur, while its variants articulate the specific ways in which
the variation point will diverge [20].

2.1 Implemented variabilities in TypeScript
The TypeScript language is built as an extension of JavaScript, being
prototype-based with a mix of imperative and functional paradigms,
with static typing over OO mechanisms. It is used extensively in
front-end and back-end development, but also to develop utilities 1.
The language notably gains popularity 2 by a good combination
of type safety, capacity to handle large projects, and availability
of strong tooling support to enhance productivity. To explore the
potential mechanisms in TypeScript to implement variability, we
havemanually studied the language definition [26] and several large
open-source systems to seek typical implementations as defined in
previous taxonomies [14, 40, 43]. The studied systems are the ones
presented in Section 4.

Object-orientation. TypeScript OO mechanisms are the first can-
didates to implement variability, with inheritance between classes
and interfaces, and vp-s being superclasses while subclasses are
variants.While thesemechanisms are similar to other OO languages
such as Java, method overloading does not directly exist in Type-
Script 3. Still, it is simulated by defining several method signatures
and amethod that groups each of the available types and parameters
that enables the correspondingmethod call.With thesemechanisms,
several design patterns that are typical of variability implementa-
tions (i.e., factory, strategy, template, decorator [14, 40, 43]) can also
be found in TypeScript.

Modules. Modules are an important part of the TypeScript lan-
guage as they foster good structuring and reusable components.
Every source file with an import or export directive is considered
a module, making the code encapsulation explicit. Based on the li-
brary pattern from JavaScript, the module concept can then be used
in projects of all sizes to organize features or plugins with dynamic
loading. Usually, one can find a main folder named after the feature
and inside sub-folders for each variant. Those sub-folders also share
common structures, with more sub-folders or files that have the
same name. As in many plugin architectures, naming conventions
and interfaces are accompanied by precise guidelines to define an

1https://blog.jetbrains.com/webstorm/2024/02/js-and-ts-trends-2024/
2ranked 2nd in march 2023 at https://www.libhunt.com/index
3https://www.typescriptlang.org/docs/handbook/2/functions.html#function-
overloads

interaction protocol between the core of the system and a plugin.
This naturally forms a vp on the top folder for plugins, where each
plugin is then a variant.

We show on Figure 1 an extract of a typical organization of mod-
ules to handle some variability extracted from the source code of
Echarts, a charting library for TypeScript. Both folders bar and
boxPlot on Figure 1 are examples of modules. They have a dupli-
cated file, e.g., install.ts serving a standardization purpose, and
non-duplicated files that exhibit some code duplication. In addition,
object-oriented mechanisms can be nested inside these variant mod-
ules. Finally, we have also observed that this dynamic loading of a
module can be used more specifically for parameterization, most
often with different files of the same names containing a similar
list of defined constants.

Figure 1: File duplication in Echarts file tree (Chart folder)

The analysis of the possible variability implementations in Type-
Script shows that several different mechanisms can be used to
realize variability with this language. Without any other additional
information or annotation regarding variability [44] and all variants
being organized within the same single codebase, these implemen-
tation spots are difficult to find and comprehend for an average
developer [27]. As these mechanisms also serve business logic and
project architecture, this further obscures variability implementa-
tions. In addition, the context of the single codebase implies that
the techniques that re-engineer features from clones of a whole
system cannot be applied [25].

2.2 Related work
Variability and city-based visualization. A recent mapping study

revealed that visualizations in the SPL domain primarily concen-
trate on feature models, employing tree or graph representations
[24]. These visualizations primarily aim to streamline the configu-
ration process concerning features. To represent variability at the
code level, certain approaches utilize colors or bar diagrams, while
others emphasize feature traces or interactions between features
and code [2, 5, 12, 17, 21]. Visualization-based tools are commonly
employed to aid in the understanding of large software systems
[6, 22, 39, 45], including aspects related to their variability imple-
mentations [2, 5, 13]. Given that software visualization involves
creating visual representations of software using visual objects
to depict structure and/or behavior, some recent approaches have
been proposed to identify OO variability implementations [41, 42]

https://blog.jetbrains.com/webstorm/2024/02/js-and-ts-trends-2024/
https://www.libhunt.com/index
https://www.typescriptlang.org/docs/handbook/2/functions.html#function-overloads
https://www.typescriptlang.org/docs/handbook/2/functions.html#function-overloads

Visualizing Variability Implemented with Object-Orientation and Code Clones: A Tale of Two Cities

and visualize them using a 3D city metaphor [28, 29]. This solu-
tion, named VariCity [27] has been shown to facilitate variability
understanding [27], but only when it is implemented with OO
mechanisms. The reader will find more details on it in Section 3.1
as we reuse and adapt VariCity to build our proposed visualization.

Code clone detection and visualization. As code duplication is
a simple way to reuse in software development that has many
negative impacts (e.g., bug introduction and propagation, higher
maintenance cost), code clone detection has been studied for many
years and different detection techniques have been proposed [1, 31,
34]. The output of detection is usually a clone pair, which is defined
as "a pair of code portions/fragments which are identical or similar
to each other". Code clones are classified into four main types [34],
with the first three considered as textually similar, and the fourth
one as functionally similar.We focus on Type 3 clones as they accept
text additions and deletions as well as various minor changes [34],
and we believe it can cover the many different changes that one
could use to realize a variant within the same codebase. Various
tools exist [9, 10, 35] but MSCCD [37, 48] is the most adapted to our
needs as it focuses on Type 3 clones and works with a language-
independent technique that can fit many programming languages.
Besides, many techniques and tools for clone visualization have also
been proposed [18]. Interestingly EvoStreet [38], which was one
of the first OO metric visualization using a city metaphor, has also
been enhanced to display code clones, but not for understanding
variability and not with other techniques such as OO mechanisms
like in our context. A similar 3D visualization was also proposed,
still only for code clones [23].

3 The 2CITIES Visualization
Rather than extendingVariCity [27, 30], which has been successfully
applied to visualize OO variability implementation mechanisms,
we decided to create two cities, one for each kind of variability
mechanism, and to avoid visual clutter.

3.1 VariCity for TypeScript, a.k.a., ObjectCity
First, we adapt the symfinder extraction toolchain [30, 41, 42] to ob-
tain metrics over inheritance, function overloading, and variability-
related design patterns (i.e., strategy, factory, template, decorator)
in TypeScript. We then rely on the VariCity visualization princi-
ples [27–29] to create the 3D representation of the first city, called
ObjectCity. Classes, whatever source files they are in, are repre-
sented as buildings whose dimensions correspond to variability
metrics (e.g., height for method overloading), while streets depict
usage relationships between these classes, as illustrated on Figure 2.
Additionally, identified design patterns are decorated with special
crowns, except for pyramidal crowns that designate entrypoint
classes, the points of interest specified by the user to scope the
search for OO variability and that are aggregated on the red street
(cf. left of Figure 2). Finally, additional relationships such as inher-
itance are visualized by aerial blue links between the super-class
and its sub-classes, as shown on the left of Figure 2.

3.2 CloneCity
The objective of CloneCity is to visualize variability implemented
with modules and files duplication, and code clone duplication (cf.

Section 2.1). We first extend the symfinder toolchain to perform
a second detection over the whole project tree to find file dupli-
cations based on the following rules. We define as a variant file
a file duplicated with the same name in at least two folders on
the same hierarchy level. If the file is duplicated in all folders at
the same level, it is referred to as a core file. Additionally, we de-
fine as a variant folder a folder containing a variant file, and a vp
folder is a folder being parent to at least two variant folders. Fi-
nally, the toolchain detects code clone duplication with the tool
MSCCD [37, 48], a language-independent tool focusing on Type 3
clones (cf. Section 2.2). Files containing duplicated code are labeled
as cloned files and create a clone pair (cf. Section 2.2).

CloneCity aims at visualizing the different forms of clones that
have been detected while helping to comprehend their organization
and the potential relationships with its ObjectCity counterpart. The
city is visualized with folders as roads and files as circular districts
along the roads as illustrated on the right part of Figure 2. Files are
represented with their exported classes on top to obtain information
about potential OO variability implementations as mechanisms can
be nested (cf. Section 2.1). By default, all colored elements visualize
variability implementations. Colored files and folders represent
the use of modules and file duplication, with variations in tone
for the level of duplication, and a change in color for the different
duplicated files. The zoomed part on the right of Figure 2 shows
the highest level of duplication with the structure of a vp folder
and various core files from the Vim editor plugin for VsCode. Code
clone duplications are visualized with purple shades located on
top of files, visible on the top right part of Figure 2, which scale
according to the number of clones the file counts. Finally, both files
of a clone pair are linked by an aerial purple bridge when one is
hovered or selected to help the user pinpoint where code clones
are concentrated. This should reveal variant files that are actually
sharing some functionality by code being copied from one folder
to another.

3.3 Bridging the two cities
Each separate city offers a dedicated visualization of the different
variability implementations to focus the comprehension activity,
but the two cities are related in several ways. First, the process
to configure the 2Cities visualization actually starts by selecting a
source directory forCloneCity. Then the revealed zones inCloneCity
show some classes of interest, they can be added as entry points
in the ObjectCity view. Quite often, this is complemented by other
entry points selected by looking at the documentation and the
source code. For example Figure 3 depicts the 2Cities visualization
for Vim, in which several classes have been selected as entry points
and create the long streets showing their usages.

As a result, the classes displayed in CloneCity are a subset of
the ones visible in ObjectCity. When they appear in both cities,
they take the visual properties defined in ObjectCity, i.e., color, size
variations, design pattern crowns (cf. both parts of Figure 2). On
the contrary, the classes sitting on top of file districts that are not
visible in ObjectCity are represented as low gray buildings. To com-
plement the identical visual properties of the classes represented in
both cities, a yellow bridge (cf. left part of Figure 2) connecting the
two instance roofs of a class building can be displayed across the

Yann Brault, Philippe Collet, and Anne-Marie Pinna-Dery

(white annotations are not part of the visualization)

Figure 2: partial ObjectCity (left) and CloneCity (right) for the Vim system

Figure 3: A complete 2Cities visualization of Vim

two cities when either building is hovered or selected. In addition
to this cross-city bridge, if the class has inheritance relationships
with other classes, they are displayed simultaneously in both in Ob-
jectCity and CloneCity, only towards bridged classes. Consequently,
we expect the bridging of the two cities to help in visualizing and
comprehending integration and interaction between folders, files,
and classes within the whole codebase.

4 Preliminary Validation
To validate our approach, we applied it to 7 TypeScript (TS) open-
source projects, fromWeb applications to libraries and frameworks,
with a large range in size, either in Lines of Code (LoCs) or the
number of files. Systems were selected on Github considering their
popularity and their potential for variability. All results are available
online in a dedicated Zenodo archive [7].

Quantitative evaluation. We configured views revealing some
variability implementations on both cities and calculated metrics
to evaluate to which extent variability implementations are high-
lighted w.r.t. the whole codebase. For each project, we made some
automatic and manual measurements over the two cities that made
the 2Cities visualization, as well as the ratio of bridged classes.

In the different subject systems (cf. Table 1), we observed differ-
ent zones of implemented variability in ObjectCity. Some systems
like Angular reveal a large number of zones (30) with a small num-
ber of variants in total (170), showing many focused usage of OO
variability for different elements in the framework. On the contrary,
for the Vim plugin for VsCode, out of around 570 potential vp-s and
variants, the visualization has helped identify 4 zones, visualizing

around 400 class variants. We also observed different organizations
from the CloneCity metrics. Some like Vim have a small structure of
clones, but with almost 25% of cloned files inside, representing 40%
of bridged OO classes, meaning that some OO variability is also
managed with variant files. Other systems have a non-negligible
ratio of variant files, like Echarts with a ratio of 14.3%, and 25% of
cloned files as well. Interestingly, Angular and Material-ui are quite
opposed in their use of object orientation and code duplication.

We observed that both cities are able to focus on their kind of
variability while offering filtering capabilities so that specific zones
can be easily identified in each city. Cross-city bridging of classes
seems to help identify variability patterns, with classes sometimes
being used together with cloned files to implement variability.

Detailed case study. We aimed at evaluating whether the zones of
variability implementations highlighted by 2Cities are relevant, i.e.,
valuable for understanding variability. We studied Vim (cf. Table 1)
by manually going back to the code and the documentation from
the visualization to systematically relate the highlighted zones to
some potential high-level features and their implementations. We
illustrate this case with the right part of Figure 2 and especially
the zoom on core files. With complementary information from the
source code, we grasp that this structure is used to implement a
feature related to the communication between the file system and
Vim, which is variable w.r.t. to the platform on which the engine
runs. An example of cross-city variability is shown on Figure 3. It
displays a dense inheritance pattern responsible for all commands
of Vim, with the abstract class BaseCommand on the far left, and
all variant implementations, more than 150, displayed on the long

Visualizing Variability Implemented with Object-Orientation and Code Clones: A Tale of Two Cities

ObjectCity CloneCity Bridges

Subject Main purpose
#
TS
LoCs

#
TS
files

TS
files
exc.
test

#
potential
vps +
variants

#
zones
revealed

#
exposed
variants
in zones

#
zones
relevant

#
vp+
variant
folders

#
variant
files

ratio
variant
files/
files

#
cloned
files

ratio
cloned
files/
files

ratio
bridged
classes
in zones

Angular Frontend framework 554k 5.8K 4.5K 2,843 30 ∼170 30 212 244 5.4% 457 10% ∼88%
Echarts Charting library 85.7K 589 553 973 8 ∼110 8 60 79 14.3% 139 25% ∼17%
Grafana Data dashboard 645K 5.9K 2.1K 2,246 12 ∼150 12 158 286 13.6% 395 18.8% ∼27%
Material-ui Frontend components 270K 4K 1K 1,231 1 7 1 25 20 1.9% 496 47.7% 100%
Nest Backend framework 75.5K 1.4K 1.2K 783 16 ∼90 16 30 45 3.8% 216 18% ∼97%
TypeScript Language compiler 666K 18.8K 317 1,662 9 27 9 11 11 3.5% 62 19.6% 59%
Vim VsCode editor plugin 47.3K 245 156 572 4 ∼410 4 8 10 6.4% 36 23% ∼40%

Table 1: Subject systems and metrics

street. However, it is noticeable by comparing the number of in-
heritance links displayed in CloneCity that only a fraction of the
variants are actually exported to be reused, indicating there is some
internal variability in the implementation of this feature.

Obviously, we cannot generalize from these findings, but the
current studies on the other systems also seem to show that the
most visible zones in both cities allow for unveiling the variability
related to some important features of the considered systems.

5 Threats to validity
Our preliminary evaluation is obviously limited as it does not rely
on an empirical assessment with for example an independent user
study. The main threat to its validity comes from the selection of
subjects and the observations. The subject systems were empirically
determined by the authors, which may inadvertently introduce
biases based on our perspectives or preferences. While we have
designed the evaluation scenarios ourselves, they are derived from
the validation of VariCity [27]. While this provides a foundation for
comparison and continuity, it also introduces the risk of inheriting
biases or assumptions. This is partly the case with our starting
process to guide the developer while building the 2Cities view. We
always started with the CloneCity visualization, and then found
object-oriented elements in this view or in the project (i.e., source
code, documentation) to populate the entry points necessary to
bootstrap the ObjectCity visualization.

As 2Cities is relying on external tools, it is also subject to their
induced threats. First, we reimplemented a symfinder analyzer for
TypeScript that is prone to the same limitations, i.e., the sensitivity
to different thresholds for hotspot determination and the lack of
fine-grained detection within code blocks. Still, the addition of
code clone detection mitigates this latter threat. We rely on the
VariCity visualization engine [27], which is configurable, but does
not automatically support the adaptation for visual impairments
(e.g., color blindness). Our toolchain is also directly reusing an
automated code clone detection tool, whereas studies on clones
mainly validate true and false positives with human expertise [1,
31, 34].

6 Conclusion
In this paper, we proposed a tooled approach to detect the different
variability implementation mechanisms of TypeScript and visualize
them in a two city-based representations. A first city takes the

information from the codebase structure and filenames combined
with a code clone detection to visualize the directory hierarchy as
streets and files as circular districts with clones being highlighted
as cylindrical shades on files or as colored districts. The second city
adapts the VariCity visualization [27, 30] to exhibit OO variability
zones with classes as buildings and usage relationships as streets.
Classes appearing in both cities can be bridged to ease the under-
standing between the two representations. We also reported on the
first validation steps on several open-source projects. It shows that
the different implementation zones are highlighted with different
means in the resulting visualizations. First qualitative observations
on a project also demonstrated that the zones of interest actually
correspond to valuable high-level features.

As future work, we first plan to integrate the visualization with
a development environment to reproduce the type of controlled
experiment with developers that have been conducted on VariC-
ity [27]. In the longer term, our plan entails analyzing variability
in API definitions to enhance the facilitation of identification and
understanding of implemented variability.

Acknowledgments
We thank Martin Bruel for his contribution in the TypeScript ex-
tension of symfinder , as well as Alexandre Arcil, Gabriel Cogne,
Chenzhou Liao, and Dan Nakache for their contribution in the
development of the first prototype of 2Cities.

References
[1] Danyah Alfageh, Hosam Alhakami, Abdullah Baz, Eisa Alanazi, and Tahani

Alsubait. 2020. Clone Detection Techniques for JavaScript and Language Inde-
pendence. International Journal of Advanced Computer Science and Applications
11, 4 (2020).

[2] Berima Andam, Andreas Burger, Thorsten Berger, andMichel RV Chaudron. 2017.
Florida: Feature location dashboard for extracting and visualizing feature traces.
In Proceedings of the Eleventh International Workshop on Variability Modelling of
Software-intensive Systems. ACM, 100–107.

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[4] Felix Bachmann and Paul Clements. 2005. Variability in Software Product
Lines. Technical Report CMU/SEI-2005-TR-012. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA.

[5] Alexandre Bergel, Razan Ghzouli, Thorsten Berger, and Michel R. V. Chaudron.
2021. FeatureVista: Interactive Feature Visualization. In Proceedings of the 25th
ACM International Systems and Software Product Line Conference - Volume A.
Association for Computing Machinery, New York, NY, USA, 196–201.

[6] Deborah A Boehm-Davis, Jean E Fox, and Brian H Philips. 1996. Techniques for
exploring program comprehension. In Empirical Studies of Programmers. 3–37.

[7] Yann Brault, Philippe Collet, and Anne-Marie Pinna-Dery. 2024. Visualizing
Variability Implemented with Object-Orientation and Code Clones: A Tale of Two

Yann Brault, Philippe Collet, and Anne-Marie Pinna-Dery

Cities - Companion Technical Report. Technical Report. https://doi.org/10.5281/
zenodo.12527153

[8] Rafael Capilla, Jan Bosch, Kyo-Chul Kang, et al. 2013. Systems and software
variability management. Concepts Tools and Experiences (2013).

[9] Wai Ting Cheung, Sukyoung Ryu, and Sunghun Kim. 2016. Development nature
matters: An empirical study of code clones in JavaScript applications. Empirical
Software Engineering 21 (2016), 517–564.

[10] James R. Cordy and Chanchal K. Roy. 2011. The NiCad Clone Detector. In
2011 IEEE 19th International Conference on Program Comprehension. 219–220.
https://doi.org/10.1109/ICPC.2011.26

[11] Alejandro Cortiñas, Miguel R Luaces, and Óscar Pedreira. 2022. spl-js-engine:
a JavaScript tool to implement software product lines. In Proceedings of the
26th ACM International Systems and Software Product Line Conference-Volume B.
66–69.

[12] Slawomir Duszynski andMartin Becker. 2012. Recovering variability information
from the source code of similar software products. In 2012 Third International
Workshop on Product LinE Approaches in Software Engineering (PLEASE). IEEE,
37–40.

[13] Janet Feigenspan, Christian Kästner, Sven Apel, Jörg Liebig, Michael Schulze,
Raimund Dachselt, Maria Papendieck, Thomas Leich, and Gunter Saake. 2013. Do
background colors improve program comprehension in the# ifdef hell? Empirical
Software Engineering 18, 4 (2013), 699–745.

[14] Cristina Gacek and Michalis Anastasopoules. 2001. Implementing Product Line
Variabilities. In Proceedings of the 2001 Symposium on Software Reusability: Putting
Software Reuse in Context (SSR ’01). ACM, 109–117.

[15] Matthias Galster. 2019. Variability-Intensive Software Systems: Product Lines
and Beyond. In Proceedings of the 13th International Workshop on Variability
Modelling of Software-Intensive Systems (VaMoS ’19). ACM, 1–1.

[16] Matthias Galster, DannyWeyns, Dan Tofan, BartoszMichalik, and Paris Avgeriou.
2013. Variability in Software Systems — A Systematic Literature Review. IEEE
Transactions on Software Engineering 40, 3 (2013), 282–306.

[17] Orla Greevy, Michele Lanza, and Christoph Wysseier. 2005. Visualizing feature
interaction in 3-D. In 3rd IEEE International Workshop on Visualizing Software for
Understanding and Analysis. IEEE, 1–6.

[18] Muhammad Hammad, Hamid Abdul Basit, Stan Jarzabek, and Rainer Koschke.
2020. A systematic mapping study of clone visualization. Computer Science
Review 37 (2020), 100266. https://doi.org/10.1016/j.cosrev.2020.100266

[19] Rich Hilliard. 2010. On Representing Variation. In Proceedings of the Fourth
European Conference on Software Architecture: Companion Volume (ECSA ’10).
ACM, 312–315.

[20] Ivar Jacobson, Martin Griss, and Patrik Jonsson. 1997. Software reuse: architecture
process and organization for business success. Vol. 285. acm Press New York.

[21] Christian Kästner, Salvador Trujillo, and Sven Apel. 2008. Visualizing Software
Product Line Variabilities in Source Code. In SPLC (2). 303–312.

[22] Rainer Koschke. 2003. Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey. Journal of Software Mainte-
nance and Evolution: Research and Practice 15, 2 (2003), 87–109.

[23] Rainer Koschke and Marcel Steinbeck. 2021. SEE Your Clones With Your Team-
mates. In 2021 IEEE 15th International Workshop on Software Clones (IWSC). 15–21.
https://doi.org/10.1109/IWSC53727.2021.00009

[24] Roberto Erick Lopez-Herrejon, Sheny Illescas, and Alexander Egyed. 2018. A
systematic mapping study of information visualization for software product line
engineering. Journal of software: evolution and process 30, 2 (2018), e1912.

[25] Jabier Martinez, Xhevahire Tërnava, and Tewfik Ziadi. 2018. Software Product
Line Extraction from Variability-Rich Systems: The Robocode Case Study. In Pro-
ceedings of the 22nd International Systems and Software Product Line Conference-
Volume 1 (SPLC ’18). ACM, 132–142.

[26] Microsoft. 2012. TypeScript language Website. https://www.typescriptlang.org/
Accessed on April 2024.

[27] JohannMortara, Philippe Collet, andAnne-Marie Dery-Pinna. 2024. Visualization
of object-oriented software in a city metaphor: Comprehending the implemented
variability and its technical debt. J. Syst. Softw. 208 (2024), 111876. https:
//doi.org/10.1016/J.JSS.2023.111876

[28] Johann Mortara, Philippe Collet, and Anne-Marie Dery-Pinna. 2021. Visualiza-
tion of Object-Oriented Variability Implementations as Cities. In 2021 Working
Conference on Software Visualization (VISSOFT). Luxembourg (virtual), Luxem-
bourg, 76–87.

[29] Johann Mortara, Philippe Collet, and Anne-Marie Dery-Pinna. 2022. Customiz-
able Visualization of Quality Metrics for Object-Oriented Variability Implementa-
tions. In Proceedings of the 26th ACM International Systems and Software Product
Line Conference - Volume A (Graz, Austria) (SPLC ’22). Association for Computing
Machinery, New York, NY, USA, 43–54.

[30] Johann Mortara, Philippe Collet, and Xhevahire Tërnava. 2020. Identifying and
Mapping Implemented Variabilities in Java and C++ Systems using symfinder. In
Proceedings of the 24th ACM International Systems and Software Product Line Con-
ference - Volume B (Montreal, QC, Canada) (SPLC ’20). Association for Computing
Machinery, New York, NY, USA, 9–12.

[31] Morteza Zakeri Nasrabadi, Saeed Parsa, Mohammad Ramezani, Chanchal Roy,
and Masoud Ekhtiarzadeh. 2023. A systematic literature review on source code
similarity measurement and clone detection: Techniques, applications, and chal-
lenges. J. Syst. Softw. 204 (2023), 111796. https://doi.org/10.1016/J.JSS.2023.111796

[32] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer Science &
Business Media.

[33] Rick Rabiser. 2019. FeatureModeling vs. DecisionModeling: History, Comparison
and Perspectives. In Proceedings of the 23rd International Systems and Software
Product Line Conference-Volume B (SPLC ’19). ACM, 134–136.

[34] Chanchal Kumar Roy and James R Cordy. 2007. A survey on software clone
detection research. Queen’s School of Computing TR 541, 115 (2007), 64–68.

[35] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. 2016. SourcererCC: scaling code clone detection to big-code. In Proceedings
of the 38th International Conference on Software Engineering (Austin, Texas) (ICSE
’16). Association for Computing Machinery, New York, NY, USA, 1157–1168.
https://doi.org/10.1145/2884781.2884877

[36] Alcemir Rodrigues Santos, Ivan do Carmo Machado, and Eduardo Santana de
Almeida. 2016. Riple-hc: javascript systems meets spl composition. In Proceedings
of the 20th International Systems and Software Product Line Conference. 154–163.

[37] Yuichi Semura, Norihiro Yoshida, Eunjong Choi, and Katsuro Inoue. 2018.
Multilingual Detection of Code Clones Using ANTLR Grammar Definitions.
In 2018 25th Asia-Pacific Software Engineering Conference (APSEC). 673–677.
https://doi.org/10.1109/APSEC.2018.00088

[38] Marcel Steinbeck, Rainer Koschke, and Marc O Rudel. 2019. Comparing the
evostreets visualization technique in two-and three-dimensional environments
a controlled experiment. In 2019 IEEE/ACM 27th International Conference on
Program Comprehension (ICPC). IEEE, 231–242. https://doi.org/10.1109/ICPC.
2019.00042

[39] Margaret-Anne D Storey, Davor Čubranić, and Daniel M German. 2005. On the
use of visualization to support awareness of human activities in software devel-
opment: a survey and a framework. In Proceedings of the 2005 ACM symposium
on Software visualization. 193–202.

[40] Mikael Svahnberg, Jilles VanGurp, and Jan Bosch. 2005. A taxonomy of variability
realization techniques. Software: Practice and experience 35, 8 (2005), 705–754.

[41] Xhevahire Tërnava, Johann Mortara, and Philippe Collet. 2019. Identifying and
Visualizing Variability in Object-Oriented Variability-Rich Systems. In Proceed-
ings of the 23rd International Systems and Software Product Line Conference -
Volume A (Paris, France) (SPLC ’19). Association for Computing Machinery, New
York, NY, USA, 231–243.

[42] Xhevahire Tërnava, Johann Mortara, Philippe Collet, and Daniel Le Berre. 2022.
Identification and visualization of variability implementations in object-oriented
variability-rich systems: a symmetry-based approach. Journal of Automated
Software Engineering 29 (Feb. 2022), 1–51.

[43] Xhevahire Tërnava and Philippe Collet. 2017. On the Diversity of Capturing
Variability at the Implementation Level. In Proceedings of the 21st International
Systems and Software Product Line Conference - Volume B (SPLC ’17). ACM, 81–88.

[44] Xhevahire Tërnava and Philippe Collet. 2017. Tracing Imperfectly Modular
Variability in Software Product Line Implementation. In International Conference
on Software Reuse (ICSR ’17). Springer, 112–120.

[45] Alfredo R Teyseyre and Marcelo R Campo. 2008. An overview of 3D software
visualization. IEEE transactions on visualization and computer graphics 15, 1
(2008), 87–105.

[46] C. Reid Turner, Alfonso Fuggetta, Luigi Lavazza, and Alexander L. Wolf. 1999. A
Conceptual Basis for Feature Engineering. Journal of Systems and Software 49, 1
(1999), 3–15. https://doi.org/10.1016/S0164-1212(99)00062-X

[47] Richard Wettel and Michele Lanza. 2007. Visualizing software systems as cities.
In 2007 4th IEEE International Workshop on Visualizing Software for Understanding
and Analysis. IEEE, 92–99.

[48] Wenqing Zhu, Norihiro Yoshida, Toshihiro Kamiya, Eunjong Choi, and Hiroaki
Takada. 2022. MSCCD: grammar pluggable clone detection based on ANTLR
parser generation. In Proceedings of the 30th IEEE/ACM International Conference
on Program Comprehension (Virtual Event) (ICPC ’22). Association for Comput-
ing Machinery, New York, NY, USA, 460–470. https://doi.org/10.1145/3524610.
3529161

https://doi.org/10.5281/zenodo.12527153
https://doi.org/10.5281/zenodo.12527153
https://doi.org/10.1109/ICPC.2011.26
https://doi.org/10.1016/j.cosrev.2020.100266
https://doi.org/10.1109/IWSC53727.2021.00009
https://www.typescriptlang.org/
https://doi.org/10.1016/J.JSS.2023.111876
https://doi.org/10.1016/J.JSS.2023.111876
https://doi.org/10.1016/J.JSS.2023.111796
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1109/APSEC.2018.00088
https://doi.org/10.1109/ICPC.2019.00042
https://doi.org/10.1109/ICPC.2019.00042
https://doi.org/10.1016/S0164-1212(99)00062-X
https://doi.org/10.1145/3524610.3529161
https://doi.org/10.1145/3524610.3529161

	Abstract
	1 Introduction
	2 Motivations
	2.1 Implemented variabilities in TypeScript
	2.2 Related work

	3 The 2CITIES Visualization
	3.1 VariCity for TypeScript, a.k.a., ObjectCity
	3.2 CloneCity
	3.3 Bridging the two cities

	4 Preliminary Validation
	5 Threats to validity
	6 Conclusion
	Acknowledgments
	References

