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Abstract—Physics-informed machine learning typically as-
sumes that the underlying physical laws are known and
abundant training data is available. These assumptions do
not hold in the context of self-organization of matter, a
phenomenon that leads to the emergence of patterns when a
surface is irradiated with an ultrafast laser beam. Indeed, due
to the constraints of the electronic data acquisition devices,
the creation of large datasets is made impossible. Moreover,
modeling this dynamic process is challenging as it involves
coupling between electromagnetism, thermodynamics and
fluid mechanics under far-from-equilibrium conditions that
are not yet fully understood. This paper aims at taking
a step forward towards a better understanding of this
complex phenomenon. We specifically focus on the laser
energy absorption of the surface, which is governed by the
distinctive characteristics of Maxwell’s equations in an inho-
mogeneous lossy medium. This involves modelling physics at
the nano scale and incurs high simulation costs that make
any exploration impractical. To address this major issue,
we investigate different physics-informed learning models.
In this low data regime, our study reveals that learning
a simple U-Net-based surrogate model surpasses (i) more
sophisticated neural architectures and (ii) the FDTD-based
solver in speed by several orders of magnitude. Interestingly,
our study highlights a link between the formation of patterns
and the magnitude of absorbed energy.

Index Terms—Machine learning, Knowledge discovery,
Physics-informed ML, Maxwell’s equations.

I. INTRODUCTION

In the real world, physical phenomena are often gov-
erned by complex systems described by partial differential
equations (PDEs). Despite important scientific advances
in numerical simulation, solving efficiently PDEs often
remains prohibitively expensive. To address this issue,
Physics-informed machine learning (PiML) [3], [4] has
recently emerged as a compelling strategy for (i) craft-
ing efficient surrogate solvers, (ii) augmenting physical
laws with data-driven models or more generally (iii)
constraining physics aware models [8]. Building upon this
available physical knowledge, many algorithmic contribu-
tions have allowed to (i) build suitable physics-regularized
loss functions, (ii) guide the initialization of deep neural
networks with consistent parameters or (iii) design new
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Fig. 1: Self-organization process triggered by ultrafast laser-
matter interaction. On the right: emergence of a pattern after
a series of double laser pulses.

(data+knowledge)-driven hybrid neural architectures. This
new line of research led to a novel generation of deep-
learning frameworks aiming to predict either the solution
of a PDE or the dynamics itself (e.g., PINN [12], FNO
[5], PINO [6], U-NO [11], PDE-Net [9], to cite a few).

Current PiML methods often assume well-known under-
lying physical laws or the availability of abundant training
data. The scenario, where (i) the PDEs only partially
explain the observations and (ii) there is a scarcity of data,
has been minimally explored up to now in the PiML litera-
ture. An example reflecting this unfavorable setting is self-
organization of matter, the target application considered
in this paper. Self-organization is the spontaneous pro-
cess where some form arises from an initially disordered
state. Nature provides many such examples (e.g., zebra
stripes, ripples of sand dunes, sea shells, etc.). In surface
engineering, self-organization of matter occurs when an
ultra-short laser pulse interacts with a surface (called
light coupling), inducing the emergence of patterns by
material modification (see Fig. 1). Indeed, when the pulse
interacts with the surface, the material heats up, becomes
liquid and moves, leading to the appearance of regularity
that can have significant practical value, e.g., in optics
[16], microbiology [10], or to induce hydrophobicity [13].
Laser texturing can also reduce bacterial colonization on
implants [15], while laser-induced periodic structures offer
potential in encryption and anti-counterfeiting applica-
tions. Despite its indisputable interest, modelling self-
organization of matter is complex because it involves
electromagnetism, thermodynamics and fluid mechanics,
whose interactions are still unknown. Consequently, there
is currently no PDE that accurately models the whole



physical phenomenon. Self-organization of matter faces a
second issue: the impossibility to access abundant data.
One of the major hurdles in acquiring large datasets
stems from the inability of existing electronic devices for
imaging on the fly the underlying dynamics going at the
speed of light. The few data available is obtained through
a complex setup involving a scanning electron microscope
(SEM) to capture multiprocess images of an alloy sample
after the laser-matter interaction has occurred.

Despite this unfavorable context, the ambitious goal of
this paper is to better understand this complex dynam-
ical system by leveraging the flexibility and efficiency
of physics-informed machine learning. More specifically,
we address the challenging prediction task of laser en-
ergy absorption of the surface. The energy distribution
involved in this process is intricate, as it arises from a
complex interplay between local nanoscale features. This
phenomenon is governed by the unique characteristics of
Maxwell’s equations in inhomogeneous lossy mediums,
requiring nano-scale physics modeling that comes with
high simulation costs, and make any exploration impracti-
cal. A previous attempt to develop a surrogate for solving
Maxwell’s equations using physics-aware neural networks
has been proposed in [7]. Known as MaxwellNet, this
PINN-like model involves training a neural network by
embedding the residual of Maxwell’s equations into a
physics-driven loss function. While our approach shares
the focus on Maxwell’s equations, it differs in significant
aspects. MaxwellNet considers the propagation of a sta-
tionary light wave (we consider an ultra short laser pulse)
through a transparent medium (we consider metals which
involve light-matter interactions) in 2D (we consider 3D).
Additionaly, MaxwellNet predicts the electric field, while
our focus is on the forecasting of the energy absorption
resulting from the photoexcitation of free electrons. By
directly predicting energy absorption, our aim is to re-
duce the computational time and gain quick insights into
material responses across various electromagnetic environ-
ments, addressing multiple physics-related questions.

The contribution of this paper is three-fold: (i) We show
that the way we pose the physical absorption problem
allows us to overcome the data scarcity issue and train
efficiently a simple surrogate model based on a U-Net
architecture; (ii) Interestingly, our large experimental
comparison study demonstrates that our model surpasses
more sophisticated physics-informed neural architectures.
We also show that our learned model allows a dramatic
improvement compared to traditional Finite-Difference
Time-Domain based solvers; (iii) An additional promising
finding of our study comes from the correlation we
exhibit between pattern formation and absorbed energy,
prompting further inquiry into the still open question
of the optimal arrangement of cavities/bumps favoring
energy absorption.

The rest of the paper is organized as follows: Section II
is devoted to the presentation of the preliminary back-

ground. Section III introduces our PiML model before
performing a large experimental study in Section IV. We
conclude in Section V and sketch promising lines of
investigation.

II. PRELIMINARY BACKGROUND

In this section, we recall the definition of Maxwell’s
equations as well as the Finite-Difference Time-Domain
(FDTD) method used as numerical analysis technique.
Even if this knowledge is not a prerequisite for understand-
ing the rest of this article (eventually, we will simply solve
an image-to-image regression task), reading the following
sections A. and B. will give the reader a better grasp
of (i) the underlying physics addressed in this study and
(ii) the origin of our physics-driven simulation data that
will be used for training the PiML models. Indeed, unlike
Physics-informed Neural Networks (PINN [12]) that are
trained while satisfying, through the minimization of PDE
residuals, any laws of physics, our approach benefits from
physical knowledge contained in simulation data. Like
FNO [5] and U-NO [11], that are also briefly recalled
in this section, our approach boils down to learning a
mapping between two function spaces.

A. Maxwell’s equations and FDTD method

With advancements in computational power, the FDTD
method, pioneered by [17], has experienced growing adop-
tion for numerically solving Maxwell’s equations. By
incorporating the dielectric function ϵr, the two curl oper-
ators in these equations can be reformulated as follows:

∇× E⃗ = −µ0
∂H⃗

∂t
; ∇× H⃗ = ϵ0ϵr

∂E⃗

∂t
+ σE⃗,

where t is the time, E⃗ and H⃗ are the electric and the
magnetic field, µ0 is the vacuum permeability, ϵ0 the
vacuum permittivity, ϵr the relative permittivity, σ the
electrical conductivity.

In the FDTD method, a central differences scheme is
employed within a Cartesian frame for both spatial curl op-
erators and time derivatives. This approach facilitates the
discretization of Maxwell’s equations, enabling numerical
solutions. The FDTD algorithm progresses through time
using a leapfrog arrangement, wherein each component of
E⃗ is updated and stored based on previous components of
H⃗ , while all components of H⃗ are updated from E⃗, and the
cycle repeats. Additionally, to ensure numerical stability,
the Courant condition must be satisfied. This condition
dictates that ∆t < 1

c
√

1
(∆x)2

+ 1
(∆y)2

+ 1
(∆z)2

, where c is the

speed of light in free space, ∆t the time step and ∆x, ∆y,
∆z are the spatial steps.

In summary, to numerically solve the equations using
FDTD, it is essential to employ a central differences
scheme for both spatial and temporal differentiations
within a Cartesian coordinate system. This approach al-
lows for the accurate representation of electromagnetic
phenomena, including dispersive and lossy materials,
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Fig. 2: Simulation domain. The numerical solver simulates
the propagation of a laser pulse along the vertical axis
and its 3D interaction with the surface roughness, and
computes a measure of energy absorbed at every location
and instant A(x, y, z, t).

while ensuring numerical stability through adherence to
the Courant condition.

B. Energy absorption

In this paper, we resort to the FDTD method to investi-
gate the periodic energy deposition beneath a material’s
rough surface. The material features a roughness layer
composed of cavities and bumps, as illustrated in Fig. 2.
Positioned above the roughness layer is the source plane,
situated within air, where a soft source is introduced into
the computation grid. This soft source consists of an
electric field component, either E⃗x or E⃗y , representing an
electromagnetic wave polarized along the x or y direction,
respectively. This wave travels downward towards the
material surface at normal incidence.

Throughout our simulations, we utilize linearly polar-
ized light as the incident source, with the electric vector
oriented either in the x or y direction. To minimize
unwanted reflections at the boundaries, the computation
domain is entirely enclosed by Perfectly Matched Layers
(PML) [1], [2] in all six directions. PML are specialized
boundary layers with evolving artificial conductivities. As
depicted in Fig. 2, positioned around the boundary, these
layers serve the crucial function of absorbing outgoing
waves effectively, thereby minimizing reflections from the
interface between the actual medium and the boundary
medium. By keeping reflections from the actual bound-
ary at acceptably low levels, PML play a vital role in
simulating semi-infinitely extended media and preventing
nonphysical reflections at the edges of the simulation grid.

The complex amplitude of the electric fields, denoted
as Ẽ, is computed at intervals of half an optical cycle for
every FDTD cell. This computation involves extracting the
time-varying field value directly from the FDTD simula-
tion. Subsequently, the energy absorption, denoted as A,
is determined for each FDTD cell based on the complex
amplitude of the electric fields, as follows:

A(x, y, z, t) =
1

2
cϵ0

4πIm(ñ)

λ
Re(ñ)|Ẽ(x, y, z, t)|2, (1)

where λ is the wavelength in free space, ñ is the complex
refractive index with Re(ñ) the refractive index (respon-
sible for refraction) and Im(ñ) the extinction coefficient
(describes absorption).
We implemented our own numerical solver for simulating
the propagation of the laser pulse and computing the
energy absorption from our experimental data. This solver
will be used in the experiments described in Section IV.

C. FNO and U-NO

Neural operators aim at learning a mapping between
infinite dimensional spaces, including function spaces.
They are known to be universal approximators of operators
and have been shown to be very efficient for modeling
dynamics in the form of PDEs. Two recent representatives
of this family of models are Fourier Neural Operator
(FNO) [5] and U-shaped Neural Operator (U-NO) [11].
As depicted in Fig. 3, FNO lifts (with L) the input (the
surface topography in our case) to a higher dimension
channel space and applies Fourier layers before projecting
back (with P) and outputting the solution (the energy
absorption in our case). Each Fourier block consists, on
its upper part, in applying the Fourier transform followed
by a linear transform on the lower Fourier modes before
applying the inverse Fourier transform. To capture local
information, a linear transform is applied in a lower
branch (W). Finally, the composition of the two outputs
is fed to a non-linear activation function.
On the other hand, U-NO also adopts the Fourier
transform-based integration method, but differs from
FNO by following a U-shaped architecture. It first
performs an encoding by mapping the input to functions
defined with smaller domains and then applies a decoding
step to get a suited output function with skip connections
from the encoder part. Like FNO, each element of the
architecture takes the form of a Fourier layer.

Even though, at the first sight, both FNO and U-NO
seem to be natural candidates for dealing with our task, we
claim that they might face several cons for addressing the
energy absorption prediction problem. First, the scarcity
of data might prevent both methods from efficiently opti-
mizing the large number of parameters. Second, as shown
in the following section, the energy absorption prediction
relies more on a image-to-image regression task than
on the prediction of a dynamics, as targeted by FNO
and U-NO. Finally, relying on a Fourier transform-based
integration method, they might face issues for generating
high frequencies.

III. ENERGY ABSORPTION PREDICTION,
SELF-ORGANIZATION DATASET, SIMULATIONS AND

U-NET-BASED PIML METHOD

In this section, we show how the prediction task of
energy absorption can be dramatically simplified into a
simple image-to-image regression task. This will have an
important impact in terms of computational time and data
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Fig. 3: Fourier Neural Operator (FNO) architecture.

requirement for learning. Then, we describe the protocol
we set-up for acquiring auto-organized surfaces. This in-
volves fine polishing, irradiating and finally characterizing
the surface by Scanning Electron Microscopy (SEM). This
complex experimental setup is key for obtaining images
that will be fed to the numerical solver in the experiments
described in Section IV. Finally, we present the U-Net-
based architecture used for learning an efficient surrogate
solver allowing us to predict accurately and quickly the
energy absorption.

A. Towards an image-to-image regression task

Our goal is to predict the energy absorbed by the
material when it is exposed to a laser pulse with a given
polarization. For a given material, this mainly depends on
the laser parameters (fluence, wavelength) but also on the
topography that is typically represented as a binary 3D ar-
ray, with 0 encoding for vacuum and 1 for the material. As
introduced in Eq. 1, the absorption A(x, y, z, t) is spatio-
temporal. The sheer volume of data that this requires to
manipulate and store is one reason why the numerical
solver are costly to run.

To address this issue, we propose to redefine the
prediction task so as to attain maximum training and
prediction speed while keeping the physically meaningful
information. This finally allows us to simplify the problem
into an image-to-image regression task as described below.
By cumulating the 3D topography along the propagation
direction z, we obtain a 2D topography height map that
can be viewed as a pseudo-3D array or 2.5D array since
the sum managed to keep the third dimension information
because the considered materials are not hollow. The out-
put of our prediction task is also a 2D array, encoding the
cumulated absorption at any x, y position. More precisely
and using an overloaded notation for the absorption, the
task is to predict:

A(x, y) :=

∫∫
z,t

A(x, y, z, t) dz dt.

Integrating the temporal dimension t is allowed by the fact
that the laser pulses are ultrafast, more precisely at the
femtosecond scale. Compared to other phenomena such
as heating, melting and convection, the effect of a single
laser pulse can be considered as instantaneous. Integrating
along the light propagation direction z is a compromise

to improve speed: we loose the information about the
absorption at different depths but most of the complex
effects happen in the first micrometers below the surface,
with an exponential decrease with depth.

B. Creation and acquisition of auto-organized surfaces

As our work fits in a global picture of understanding
the formation of nanoscale self-organization patterns, we
need to study the energy absorption on metal surfaces
representative of the one used in self-organization physical
experiments. These surfaces can be obtained through a
process that requires a variety of skills and that we
describe below. First, to achieve precise and high-quality
laser processing of metal surfaces, surface preparation,
involving an extremely fine polishing, is essential be-
fore laser irradiation. Next, the process involves irradi-
ating the surface with a number of cross-polarized laser
double pulses. Cross-polarized irradiation promotes self-
organization by inducing isotropic energy deposition on
the surface. It involves employing light beams with per-
pendicular polarization orientations to induce a specific
effect. The latter is further enhanced by controlling the
inter-pulse delay (in picoseconds), which governs the self-
organization regime and the final pattern observed on the
surface. To get a characterization of the surface topography
after laser irradiations, SEM is employed to provide highly
detailed images at significantly higher magnifications com-
pared to conventional optical microscopes.

In this study, we consider 4 series of 51 SEM 800×800
images, some of them shown in Fig. 4. A polished sample
is irradiated at 50 different locations with 1, 2, ..., 50
double pulses (a non-irradiated region is also considered,
for a total of 51). The 4 series are obtained by varying
the laser fluence and the delay between the two pulses
(other parameters being fixed). We can observe that by
changing these two parameters, we can obtain diverse
patterns, including stripes, cavities or meshes. We can also
note that after a certain number of double pulses, chaotic
behaviors may appear. It is important to specify that these
SEM images do not constitute our training set. To learn
neural architectures from (input-output) pairs, we will need
to perform simulation experiments from these images to
obtain the corresponding (output) absorption (see Sec. IV).

C. Neural architecture for predicting energy absorption

From the surfaces obtained (and imaged) through the
process described in Sec. III-B, our approach is to learn to
predict the 2D absorption as detailed in III-A. We will thus
use the acquired SEM images to define our input topogra-
phies. Each topography will be fed to our numerical solver
for Maxwell’s equations (as explained in II-A). We will
retain the 2D absorption A(x, y) produced by the solver
as our ground truth. Details about the training dataset
generation are provided in Sec. IV-A. In terms of models,
we suggest to learn a U-Net that is a go-to architecture
for tasks that can be framed as image-to-image.
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Fig. 4: SEM images of surfaces irradiated with cross-
polarized double pulses, varying the number of double
pulses between 0 and 50, for 4 combinations of laser
fluence and delay (between the two laser pulses).
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Fig. 5: U-Net for predicting the absorption from the
topography height map. All 3x3 convolutions are followed
by a ReLU activation and a batch normalization layer.

U-Net is a convolutional network originally designed
for semantic segmentation tasks, particularly in biomedical
image analysis [14]. This architecture allows the network
to capture both local and global information efficiently,
making it well-suited for tasks where precise localiza-
tion is essential. However, its design can be repurposed
for regression tasks to predict continuous values instead
of discrete labels. Thanks to the simplification of the
energy prediction task (as described in Sec. III-A), we
can now leverage this property of U-Net. The regression
neural architecture, depicted in Fig. 5, comprises two key
components: the contracting path, which extracts features
and reduces spatial dimensions, and the expansive path,
which restores spatial resolution for precise localization.
The former includes double convolution blocks for feature
extraction and downsampling blocks for spatial reduction.
The latter involves upsampling blocks to restore resolution
and double convolution blocks for refining features. All
3x3 convolutions are followed by a ReLU activation and
a batch normalization layer. The final output layer, a single
convolutional layer with a kernel size of 1, aggregates
features from the expansive path to produce the regression
output which is fed to a MSE loss function (see Eq. 2).

IV. EXPERIMENTS

In this section, we first present the training dataset
specifically generated for this study. Then, we detail the
learning setup and the PiML methods compared, before
analyzing the results.

Solver

No rotation

90° rotation

E

E

E

E

Topography Absorption

Dataset

Fig. 6: Illustration of examples of the dataset com-
posed of pairs of (topography,absorption) images. We
use rotated images so that all examples virtually have
the same polarization.

A. Simulation data generation from SEM images

To utilize SEM images and construct the dataset using
our numerical solver employing the FDTD method, we
made several assumptions. Given that our solver operates
in a 3D spatial domain to compute solutions of Maxwell’s
equations, we transformed our scanned 2D images into
3D representations. This transformation involved adding
depth under the assumption that brighter pixels in the
image are closer to the SEM sensor than darker pixels.
To ensure accuracy, we supplemented the surface with
additional material underneath, accounting for the PML
to dissipate sufficient energy. In our simulations, we begin
by establishing an orthonormal reference frame within the
provided space. From there, we simulate the propagation
of a wave traveling downward towards the material surface
at normal incidence along the z-axis. Throughout these
simulations, we employ linearly polarized light as the inci-
dent source, with the electric vector aligned either in the x
or y direction to derive A(x, y) =

∫∫
z,t

A(x, y, z, t) dz dt.
For a given surface, the numerical solver can actually gen-
erate 2 different values of A(x, y). As illustrated in Fig. 6,
when nanostructures are present, the pattern of absorption
strongly depends on electromagnetic wave polarization.
Let us denote S(x, y, z) a surface before laser irradiation
and, with an additional notation overloading A0(x, y)
(resp. A90(x, y)) the energy absorption respectively for
electric vector aligned in the x (resp. y) direction. In order
to enforce the equivalence assumption, which is more data-
efficient, we rotated the initial surface to generate A0(x, y)
and A90(x, y) from S(x, y, z), as illustrated in Fig. 6.

We conducted numerical simulations involving the four
sets of 51 scanned surfaces already depicted in Fig. 4,
each characterized by a refractive index of n = 2.15
and an extinction coefficient of k = 4.3. To reduce
SEM noise, we preprocess these images using a Gaussian
blur filter with σ = 4. We use our numerical solver to
simulate the irradiation by a femtosecond laser with a
wavelength of λ = 1.03µm, polarized along either the x
or y axis. To work at physically relevant scale and fit into
the hardware constraints (GPU memory), the simulation
spatial resolution is chosen as dx = dy = 1.67nm
and dz = 1nm. The spatial domain covers roughly



Test (0.18 8) Test (0.21 2) Test (0.25 36) Test (0.26 28) Av. training Nb of
Model mean (σ) mean (σ) mean (σ) mean (σ) time (s) parameters
U-Net 8.6 (9.9) 6.0 (6.5) 5.1 (4.5) 12.0 (14.6) 1740 ∼2e+6
FNO 20.2 (22.3) 13.7 (16.0) 10.0 (11.3) 19.2 (20.3) 5127 ∼1e+8
FNO conv3x3 19.3 (23.8) 14.4 (15.0) 9.6 (10.8) 18.9 (20.9) 5247 ∼1e+8
FNO+U-Net 16.7 (20.7) 11.2 (13.9) 8.9 (9.3) 17.7 (20.0) 13317 ∼1e+8
U-NO 25.2 32.4 15.7 18.5 10.9 11.9 30.8 33.2 4273 ∼1e+8

TABLE I: Comparison of the 5 PiML methods on the 4 test series in terms of errors (mean and standard deviation σ)
as well as average training time and number of parameters.

1.5µm, with the material occupying half of the z direction,
including 20nm of roughness. The PML size is set to
50 (cells). With two polarizations, we generated from the
solver pairs of topography and absorbed energy, resulting
in a total of 408 = 4×51×2 pairs. To expand our dataset
and learn on smaller patches, we extract 9 crops per image
using a sliding window scheme to create new pairs of size
320×320 pixels, leading to a final count of 3672 = 408×9
training pairs (S,A) with an overlapping. It is important
to note that these simulations are purely computational
and do not involve physical experimentation. Furthermore,
we normalized the 2D energy absorption by the energy
absorbed by a flat surface. This normalization is essen-
tial because the numerical solver uses a source with a
non-uniform fluence and was not calibrated to provide
meaningful output in terms of raw values. By normalizing,
we can correct this issue, allowing this quantity to be
interpreted as an increase or decrease in energy absorption
compared to a flat surface.

B. Experimental setup and PiML methods compared

In this study, we compare 5 different PiML methods:
(i) U-Net as described in Sec. III-C with the number of
(down/up)-sampling blocks ∈ {3, 4, 5, 6} as hyperparam-
eter; (ii) FNO [5] with the following hyperparameters:
number of Fourier layers ∈ [3, 4, 5], the size of the
lift L ∈ [16, 32, 64], the number of Fourier modes ∈
[128, 192, 256]; (iii) FNO conv3x3, a variant of FNO with
a convolution W of size 3x3; (iv) FNO+U-Net, a variant
exploiting the composition of the outputs of FNO and
U-Net; (v) U-NO [11] with the optimal hyperparameters
obtained with FNO and uno out channels=[16,32,32,16],
uno scalings=[[1.0,1.0], [0.5,0.5], [0.5,0.5], [4.0,4.0]].
For each method, we repeat 4 times (once for each series
playing the role of a test set) the following leave-one-
series-out cross-validation procedure: 2 series of SEM im-
ages are used to train the models with all hyperparameters
configurations, the third series being employed to evaluate
the validation accuracy; the process is repeated 3 times
over the 3 folds and the average validation accuracy is
used to decide on the best hyperparameters; Finally, the
latter are used to learn a model from the 3 series and
evaluated on the test series.

For each method, the training process consists in learn-
ing a model h∗

θ that outputs a 320× 320 image of energy
absorption given a topography S. h∗

θ is parameterized by θ

(the parameters of the considered architecture) and learned
by solving the following problem:

h∗
θ = argmin

hθ

1

N × 3202

N∑
i=1

∥hθ(Si)−Ai∥2F , (2)

where N is the total number of pairs (Si, Ai) representing
the pairs of (topography,absorption) images and ||.||F is
the Frobenius norm. In our leave-one-series-out procedure,
N = 2 × 51 × 2 × 9 = 1836 for each run. Note that we
solve Problem 2 with a weight decay equal to 1e− 7. All
the networks have been trained for 100 epochs using an
Adam optimizer.

C. Analysis of the results

The results are reported in Table I where the mean
(absolute error) and the standard deviation σ are computed
over all the pixels of the test images. In order to interpret
the magnitude of these numbers, it is worth noting that the
range of values for the energy absorption depends on the
topography of the pattern. As illustrated in Fig. 7 (second
column), it can vary from 0 to about 1000. Taking into
account this information, we can see that all the PiML
methods perform pretty well for predicting the energy
absorption. But the most striking remark we can make
from this table is that our simple image-to-image U-Net
architecture outperforms the other competitors while being
much cheaper in terms of computational time and number
of parameters. This finding confirms our intuition that the
other PiML approaches struggle to capture the dynamics
with such scarce data. We can also notice that the model
behaves well on the four series even if predicting the
last one (0.26 28) seems more challenging. In this low
data regime, this can be explained by the fact that this
fourth series is mainly composed of cavities that are under-
represented in the other series. Finally, we can note that
the 5 models work very well on the third series. This can
be explained by the fact that this latter does not exhibit
any chaotic behavior with a late appearance of the first
patterns, leading to a much simpler prediction task.

We illustrate in Fig. 7 some representative prediction
results from the four series. The visual inspection confirms
the ability of U-Net to generalize to unfamiliar patterns.
The second (Ground truth A) and third columns (Predicted
hθ(S)) illustrate the capacity of U-Net to outputs very
similar images. The relative difference (hθ(S)−A)/A is
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Fig. 7: Illustration of prediction results. From left to right: Topography S, ground truth energy absorption A, predicted
energy absorption hθ(S) by U-Net, relative error of U-Net prediction (hθ(S)−A)/A, relative error histogram, relative
error of FNO, FNO conv3x3, FNO+U-Net and U-NO.

reported in the fourth column, where the lighter the better.
To emphasize the good prediction ability of U-Net, we
report on the right hand side of Fig. 7 the relative error for
the four competitors, exhibiting much more pronounced
differences, yet still acceptable. The success of U-Net
despite scarce data can be attributed to the dimensionality
reduction we imposed. By transforming the complex 3D
topography into a 2D height map that retains essential
height information, the model can more efficiently learn
and identify critical features that influence energy ab-
sorption. This simplification is particularly advantageous
because a 3D-to-2D task typically requires more data to
capture features accurately.

D. Speedup and interactive exploration

The numerical solver used is implemented on GPU. Our
simulations have been sized based on the GPU memory
available to run the simulations (24GB). The average
runtime for a simulation on 1 SEM image is just above
30 minutes (exactly 1857sec) which corresponds to 8.5
GPU-days for the 408 images.

Training the network for 100 epochs takes less than 30
minutes. The time to process a full 800× 800 image with
our U-Net (the network being fully convolutional, it is
not limited in the image size it can take as input), on the
same machine and averaged over the whole set and with a
batch size of 30, is 12.5ms per image. Compared to the 30
minutes, this corresponds to a speedup over 106 (exactly
144000×). With a batch size of 1, simulating the case
where we want to process images as soon as possible, the
latency goes up to 97ms in average. The CPU version takes
1.3 second per full-size image. Given the speedup of the
model, we created an offline web application that allows
the user to explore interactively the absorption predicted
by the model, working with the nominal input size for our
U-Net, namely 320×320 images1.

1The code of the web application as well as that of the experiments
and the datasets will be made available upon acceptance of the paper.

E. Exploring physics questions using the fast proxy

We consider a couple of physical interrogations around
energy absorption and analyze whether conclusions drawn
with our U-Net would be coherent with the ones drawn
from the numerical solver. Both questions are concerned
about the total absorption of a topography, which is a
scalar value obtained by integrating the absorption images
spatially and temporally as follows:

A :=

∫∫∫∫
x,y,z,t

A(x, y, z, t) dx dy dz dt.

The initial inquiry pertains to the overall absorption’s
evolution as the number of double pulses increases, taking
into account both pulses with polarizations at 0 and 90
degrees, denoted as A0+A90. To improve interpretability,
we normalize the total absorption by its initial measure-
ment (at N = 0 impulsion), as the numerical solver was
not calibrated to produce meaningful output in its original
scale. Predicted and ground truth overall absorption are
plotted in Fig. 8 showing the capacity of the model
to predict the absorption tendency, yet having a little
systematic bias, i.e. under-estimating the absorption.

Initially, during the first few double pulses, the actual
energy absorption remains relatively consistent and low.
However, after numerous pulses, there is a significant
increase, eventually reaching a plateau. Sometimes, as
the material undergoes multiple irradiations, the energy
absorption decreases due to deterioration. Very interest-
ingly, the absorption keeps increasing for the third series.
Observing this series from Fig. 4, we can conclude that this
definitely makes sense as the dynamics has not yet reached
a chaotic behavior. The predicted energy absorption fol-
lows a similar trend to the actual absorption, enabling us
to draw the same conclusion.

A second question is about the relative absorption
between both polarizations. More precisely, we are inter-
ested in determining whether the self-organized structures
exhibit differential absorption between the two polariza-
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Fig. 8: Overall absorption (sum of the two pulses) as a function of the number of cross polarized pulses within the
series. The absorption tends to increase with the self-organisation. The prediction follows the ground truth.
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Fig. 9: Absorption difference between the two polarizations presented as a ratio (1 means no difference). The first two
series show no directional preference while the others get specialized to an orientation after self-organization starts.
The prediction follows the ground truth.

tions or if they are direction-independent. Therefore, we
computed and plotted the ratio between A0 and A90. Fig. 9
shows the predicted and ground truth ratios, as a function
of the progressive auto-organization of the surfaces.

Here again, the model prediction follows the same
tendency as the ground truth from the simulator and would
lead to the same overall conclusions, being it for the two
series that exhibit orientation specialization and the other
two that show no specificity (values oscillating around 1).

V. CONCLUSION AND PERSPECTIVES

In this paper, we efficiently deal with the prediction of
energy absorption of irradiated surfaces by simplifying the
task into a image-to-image regression problem. We show
that in the low data regime characterizing the application at
hand, learning a U-Net architecture leads to better results
than more sophisticated PiML models. The experimental
results show a good accuracy and exhibit a promising
correlation between the absorbed energy and the self-
organization of patterns. Our main perspective involves
using this very fast and differential proxy of the absorption
as a building block for end-to-end learning of the (non-
observable) dynamics that happens between and after the
two pulses. The control of the self-organization process
upon multi-pulse excitation is inherently complex, as a
dissipative structure adheres to laws governing energy and
entropy flux optimization that are not fully understood.
In these delicate conditions, mastering laser parameters to
achieve a uniform and reproducible pattern is imperative
for precise surface engineering. Predicting and understand-
ing absorption mechanisms is thus the crucial first step in
guiding the structuring process during irradiation. Access
to electromagnetic absorption for any type of surface

opens up the possibility of considering a much broader
range of conditions, thereby enabling more efficient design
of metasurfaces essential for the development of optical
devices, sensors, and energy-harvesting systems. Potential
applications of the model include its ability in inverse
design tasks, such as identifying structures optimized for
maximal or minimal absorption, or with specific spatial
distributions tailored to particular requirements. Addition-
ally, restricting predictions solely to 2D absorption may
limit exploration of complex phenomena. Thus, extending
predictions to 3D absorption, either at the simulator’s scale
or, for efficiency, at a coarser resolution (e.g., predicting
three absorption values per x, y location: surface, shallow,
and deep) may be necessary to capture the full scope of
the phenomenon under study.
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