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Abstract
The increasing complexity of deep learning models neces-
sitates advanced methods for model coverage assessment, a
critical factor for their reliable deployment. In this study, we
introduce a novel approach leveraging topological data anal-
ysis to evaluate the coverage of a couple dataset & classi-
fication model. By using tools from topological data analy-
sis, our method identifies underrepresented regions within the
data, thereby enhancing the understanding of both model per-
formances and data completeness. This approach simultane-
ously evaluates the dataset and the model, highlighting areas
of potential risk. We report experimental evidence demon-
strating the effectiveness of this topological framework in
providing a comprehensive and interpretable coverage assess-
ment. As such, we aim to open new avenues for improving the
reliability and trustworthiness of classification models, laying
the groundwork for future research in this domain.

Introduction
The coverage assessment of Artificial Intelligence based
(AI-based) models becomes more and more complicated due
to the recent architectures of Deep Learning (DL). There-
fore, it becomes also an emerging research subject. This re-
search theme has the objective to evaluate in the same time
the model stability and generalizability applied on some do-
main represented by the dataset used. The AI coverage con-
cept, such as code coverage which is based on code and
test examples, is based on the couple the ML model and the
dataset evaluation.

The deployment of DL models in real-world applications
highlights further the issues related to the lack of thorough
coverage evaluation (Sun et al. 2019). Indeed, the present
available approaches, which use software coverage assess-
ment, such as Neuron Coverage (Guo et al. 2018) based
on Modified Condition/Decision Coverage (MC/DC), are
not useful to handle correctly the misbehavior of DL mod-
els (Zohdinasab et al. 2023). Thus, this study underscores
the necessity of thorough coverage evaluation as a corner-
stone for high-quality performance assessment. By leverag-
ing topological methods, we aim to detect and rectify data-
sparse regions within the model’s scope. Ensuring com-
prehensive coverage evaluation is essential for mitigating
risks and ensuring the ethical and reliable deployment of
DL-based systems, thereby enhancing overall model perfor-
mance and trustworthiness.

Our study outlines three main contributions and novelties:
1. Introduction of the Trust Rips Complex: We propose

a novel method for evaluating classification model cov-
erage by combining topological features from persis-
tence diagrams with model confidence levels, creating
the ”Trust Rips Complex” that links data structure with
model performance.

2. Impact of Data Augmentation on Persistence: We
demonstrate that expanding datasets within the model’s
expected domain decreases persistence, leading to a
more homogeneous data distribution. Statistical and vi-
sual analyses show that data augmentation reduces the
number of sparse regions or ”holes” in the dataset, im-
proving the evaluation of model’s coverage.

3. TDA Framework for Enhanced Model Coverage: We
present a framework that integrates topological data anal-
ysis (TDA) with model confidence to effectively enhance
model coverage, as evidenced by a significant global re-
duction in persistence. The work emphasizes the impor-
tance of thorough coverage evaluation for reliable de-
ployment of deep learning systems.

The rest of the paper is structured as follows: Related
work section treats the current state of the art concerning
DL coverage approaches. This is followed by the Proposed
approach section, detailing our methodology, including the
use of persistence diagrams to analyze the lifetime of each
topological hole. In the Results and discussion section, we
present our findings with comprehensive visualizations and
comparisons of results. We interpret the implications of our
results, discuss potential applications and address their lim-
itations. Finally, in the Conclusion and perspectives sec-
tion, we provide a synthetic account our work and suggest
future research directions to enhance and improve our ap-
proach.

Related Work
To our knowledge, the first recorded contribution on cover-
age assessment of AI models is based on the intrinsic eval-
uation close to code coverage. Indeed, Pei et al. (Pei et al.
2017) introduced the neural coverage based on non-activated
and activated neurons verification. Thus, the estimated cov-
erage is presented by the rate of activated neurons over the
total number of neurons (NC = AC/N) where NC defines



Figure 1: Workflow of the proposed approach summarized in a four-steps iterative process.

neural coverage rate, AC defines activated neurons number
and N defines the total number of neurons). Based on this
approach, Tian et al. (Tian et al. 2018) proposed an auto-
mated testing tool applied on autonomous driving and ex-
tended the neural coverage to other DL architectures rather
than CNN developed by Pei et al.. Ma et al. (Ma et al. 2018a)
proposed a set of criteria for dataset to evaluate the coverage.
Following the same methodology, (Sun et al. 2018) proposed
four criteria adapted from the Modified Condition/Decision
Coverage (MC/DC) process developed in (Hayhurst 2001).
Kim, Feldt, and Yoo (Kim, Feldt, and Yoo 2019) added
the diversity criteria of the dataset evaluating the coverage.
However, as mentioned by (Harel-Canada et al. 2020), the
neural coverage is evaluating the software coverage and not
the coverage of the AI decisions model. On the other hand,
Xie et al. (Xie et al. 2019) proposed fuzzy logic based ap-
proach. The authors estimate the intermediary non covered
zones to then estimate the coverage of the model. All these
approaches were compared by (Yan et al. 2020) by extract-
ing the correlations between the evaluation criteria of the
coverage and the robustness of the given model. The authors
concluded that these approaches based on neural coverage
are evaluating the coverage partially. Odena et al. (Odena
et al. 2019) proposed a coverage approach named Tensor-
Fuzz. This approach is developed to evaluate the black-box
models by its analyzer function. Furthermore, Mani et al.
(Mani et al. 2019) integrated the classification boundaries of
a test dataset to ensure coverage. the authors propose four
metrics; i) equivalence partitioning, ii) centroid positioning,
iii) boundary conditioning and iv) pairwise boundary condi-
tioning. However, all these methods do not consider the ro-
bustness of the model. In other words, coverage is computed
only for the test dataset despite some integration of adver-
sarial attack techniques such as DeepMutation proposed by
(Ma et al. 2018b).

Another approach is developed by Adjed et al. (Ad-
jed et al. 2022) introduced a new coverage metric mixing
the robustness of the model and the spatial representation
of the test dataset. The authors use abstract interpretation

adapted from deep learning robustness (Gehr et al. 2018) and
TDA (Chazal and Michel 2021) for spatial representation by
building simplicial complexes directly from the dataset, us-
ing the persistent homology theory.

Despite the developed approaches in the literature, the
coverage challenge of AI models remains complex and dif-
ficult. This difficulty can be summarized into two main as-
pects which are the application environment which is huge
and the deep learning architecture with billions of parame-
ters. The use of topological data analysis for coverage, as
used for telecommunication (De Silva and Ghrist 2006), can
be a promising research focus to handle in the same time the
environment and model stability. Thus, in the current work,
an approach using TDA is proposed to highlight the cover-
age of ML models by considering the spatial representation
in one side and the performance model in the other.

Proposed Approach
The coverage definition considered in the current work is ex-
tracted from Confiance.ai1 program: The coverage of a cou-
ple ”Dataset + ML Model” is the ability of the execution
of the ML Model on this dataset to generate elements that
match the expected space. (Adjed et al. 2023).

The proposed approach relies the exploration of the ho-
mological features of the evaluation dataset and the DL
model performances mapped with the application domain.
In addition, a new concept is proposed named Trust Rips
Complex which extends the Vietoris-Rips simplicial com-
plex by incorporating an additional parameter α ∈ [0, 1]
which is the confidence level of the classification model M .
Specifically, the Trust Rips complex is a Rips complex built
by considering only those data points for which the model
M predicts with a confidence level greater than or equal to
α. This selective approach allows for a focus on the regions
where the model’s predictions are most reliable. Then the
Trust Rips Complex is characterized by two parameters, α

1A French community dedicated to the design and industrialisa-
tion of trustworthy critical systems based on artificial intelligence
www.confiance.ai



described above and r from the radius of simplicial complex
filtration.

This approach is divided into four steps, as illustrated in
Figure 1 and detailed below.

1. Selection of a couple (Model, Dataset): This step can
be considered as the initiation or selection. It includes
the selection of the learned model to be evaluated and
the evaluation dataset.

2. Local analysis of the coverage of the expected space:
In this step, a Trust Rips Complex is constructed by com-
bining the evaluation dataset with the trained model, for
each given confidence level α and radius r. Subsequently,
a persistence diagram is generated for each class and
each α based on the constructed simplicial complexes.
By analyzing these persistence diagrams, we identify the
existence of topological holes by computing their life-
times, defined as persistence (d − b), where d and b rep-
resent the death and birth of each hole, respectively. Per-
sistences that exceed a certain threshold are flagged as in-
dicators of heterogeneous and underrepresented regions
in the dataset.

3. Generation data: A data generation/collection is
achieved in this step for all identified holes. Thus, this
added data can be performed by data collection, augmen-
tation and/or generation.

4. Homogeneous local coverage evaluation: Based on the
threshold for accepted holes, we assess that the model
performs equivalently in the given topology if its evalu-
ation on the newly augmented dataset yields an accuracy
of at least α. If this condition is met, we conclude that the
model covers the expected domain to a threshold of α.

Implementation
The implementation of the proposed approach is summa-
rized in the Algorithm 1. Therefore, the identification of not
filled areas is performed by analyzing the persistence dia-
grams by identifying the farthest point from the diagonal
line and by analyzing visually the grid of Trust Rips com-
plexes. Then, a visual localization and a filling of the related
areas on the real data cloud is achieved. Several statistics
computed from the persistence are used to discriminate the
non filled areas. The application of the whole approach is
performed on the half-moon dataset explained in the next
section.

We emphasize that visual analysis is only feasible for
datasets with up to three dimensions and serves as a heuris-
tic tool to support our statistical analysis by highlighting
topological patterns. For higher-dimensional data, a new al-
gorithm based on distribution densities is needed to detect
sparse regions, as visual analysis is not applicable in those
cases.

Regarding the data generation step for the presented case,
once the data-sparse regions were identified, a uniform gen-
eration of data within the corresponding rectangular areas
was carried out.

Concerning the homogeneity criteria, several options are
possible. In the experiment presented, the chosen criterion

Algorithm 1: Coverage Analysis of Deep Learning Model

Input: Dataset D, Classification model M
Output: Local evaluation of M ’s coverage
repeat

Step 1: Local Coverage Analysis
- Construction of Trust Rips complexes with different
trusts α and different radius r arranged in a grid
- Construction of persistence diagrams associated to
each class
- Identification of data-sparse regions
- Compute statistical measures of persistence: mean,
max, first quartile, third quartile...
- Plot box plots
Step 2: Data Generation
- Generate synthetic data in identified data-sparse re-
gions
- Augment dataset D to form D′

- Update D with D′

Step 3: Final Analysis and Comparison
- Compare visually the grid before data generation with
the last grid after data generation
- Compare the last statistical measures of persistence
computed with those of the first analysis
- Compare the last box plot with the first box plot to
assess significance of improvements

until Homogeneity criteria is met or until convergence
Step 4: Homogeneous coverage evaluation
- Evaluate M with the last augmented dataset D′

was achieving a sufficient reduction in the initial mean per-
sistence. However, this criterion must be adjusted according
to the tools used and the data distribution, as the extent of
reduction may be limited by either of these factors.

Experiments and Discussions
In this section, we present the findings from our analysis of
DL model coverage. We start by presenting the dataset and
the classification model M used in the whole experiment,
followed by the presentation of the obtained results.

Dataset and Model Preparation
Two half-moons are generated to implement the whole
workflow presented in Figure 1. This dataset was generated
using the make moons function from the scikit- learn li-
brary, with added Gaussian noise (σ = 0.2) and consisting
of 960 points. Figure 2 illustrates the dataset generated. The
choice of this dataset is motivated by its simplicity in terms
of model implementation and results visualization and inter-
pretation.

The Deep Neural Network (DNN) M is a sequential
model defined as follows:

• Input Layer: Accepts an input with shape (2, 1).
• Hidden Layer 1: A dense layer with 128 units and ReLU

activation function.
• Hidden Layer 2: A dense layer with 64 units and ReLU

activation function.



• Hidden Layer 3: A dense layer with 32 units and ReLU
activation function.

• Output Layer: A dense layer with 1 unit and Sigmoid
activation function.

This basic DNN was trained on the presented dataset and
tested in an another generated half-moons dataset of 240
points obtaining a test accuracy of around 95%.

Figure 2: A visualization of the original data: two half-
moons with Gaussian noise σ = 0.2

Obtained Results
Visual Coverage Analysis. To shed evidence of the sig-
nificance of the proposed approach, we report a series of
plots that are created and arranged in a grid format, where
each row represents a different radius parameter of the Rips
complex, and each column represents a different confidence
level α as illustrated in Figures 3 and 4 comparing before
data generation (BDG) and post data generation (PDG) step
for model confidence α = 0.8 and α = 0.98, respectively.
Each grid of figures can be interpreted in two distinct ways.
Firstly, by reading horizontally, the changes in the Trust Rips
complexes by increasing the radius r incrementally. This
vertical reading provides insights into how the topological
structure of the data evolves with varying levels of granular-
ity. Secondly, by reading vertically, the impact of data gener-
ation for each radius. Together, these two perspectives offer
a comprehensive view of the coverage for a given model’s
confidence level.

In Figures 3 and 4, a local analysis of the cover-
age of the model M with a confidence level of 0.8 and
0.98, respectively, across different filtration radius (r ∈
{0.05, 0.15, 0.25}) to identify areas with insufficient data to
proceed. Depending on the radius, this visual analysis al-

lowed us to clearly identify regions where the data cover-
age is sparse throughout the grid of Trust Rips complexes
as illustrated in Figure 5. The second line of sub-figures
(d), (e) and (f) of the two figure 3 and 4 illustrate the vi-
sual results after data generation step, where we can see that
several topological holes are reduced or totally filled. The
visual comparison of holes between Figure 5 and Figure 6
highlights the impact of the data generation step. It can be
seen easily that the data in Figure 6 is more homogeneous
than the original data illustrated in Figure 5. However, in the
first and the third columns of figures 3 and 4, the impact the
generation is less visible due to too small (0.05) or too large
(0.25) radius value used.

The same analysis can be seen in figures 7 and 8 describ-
ing the persistence diagrams for model’s confidence level of
0.8 and 0.98, respectively. The first line of these figures illus-
trates two persistence diagrams of the original data (in BDG
step) for class 0 and class 1. Whereas the second line repre-
sents the persistent diagrams of the augmented data (in PDG
step). The generation of the data is based on simplicial com-
plexes of radius 0.15. Thus, it can be seen that several holes
around 0.15 to 0.20 of radius value are moved closer to iden-
tity curve. Therefore, the holes with birth value much greater
than 0.15 are not impacted. This is resulted from Algorithm
1, where the data generation is based on visual analysis, by
treating only appeared holes.

(a) (b) (c)

(d) (e) (f)

Figure 3: Trust simplicial complexes with α = 0.8 (a), (b)
and (c) represent simplicial complexes for radius 0.05, 0.15
and 0.25 for BDG, respectively, and (d), (e) and (f) represent
simplicial complexes for radius 0.05, 0.15 and 0.25 for PDG

Statistical Coverage Analysis. As a second set of experi-
ments, we conduct a statistical analysis by computing sev-
eral key statistical characteristics from the persistence dia-
grams presented in Figures 7 and 8. The statistical measures
are number of holes, mean persistence and maximum per-
sistence. This statistical analysis allows us to assess the con-
tribution of the data generation, and the effort still required
to further reduce data sparseness. Table 1 provides these sta-
tistical results for two confidence level α values (0.8 and



(a) (b) (c)

(d) (e) (f)

Figure 4: Trust simplicial complexes with α = 0.98 (a), (b)
and (c) represent simplicial complexes for radius 0.05, 0.15
and 0.25 for BDG, respectively, and (d), (e) and (f) represent
simplicial complexes for radius 0.05, 0.15 and 0.25 for PDG

Figure 5: Data-sparse regions identified visually in the Trust
Rips complex r = 0.15 α = 0.8.

0.98). A slight improvement for the the two statistics, mean
and maximum persistence, can be seen, although it is dif-
ficult to interpret them easily. In the other side, by mixing
these results with the number of holes, we can see that the
data generation decrease the mean and maximum and in-
crease the number of holes. Each data generated splits the
hole on two or more holes and reduces its persistence si-
multaneously. Furthermore, Figure 9 and Figure 10 illustrate
more statistics by box plots for before and after data genera-
tion of both classes 0 and 1 and for two model’s confidence

Figure 6: Trust Rips complex post data generation r = 0.15
α = 0.8.

(a) Class 0, BDG (b) Class 1, BDG

(c) Class 0, PDG (d) Class 1, PDG

Figure 7: Persistent diagrams of trust simplicial complexes
for α = 0.8 for class 0 before and after data generation rep-
resented by (a) and (c), respectively, and class 1 for before
and after data generation presented (b) and (d), respectively.

levels 0.8 nad 0.98, respectively.

Discussions
This section discusses the implications and significance of
the statistical analysis results, highlighting how the persis-
tence characteristics reveal the data structure and potential
applications.

As a sanity-check, we report the persistence diagrams as-
sociated to the Trusts Rips complexes built from the half-



(a) Class 0, BDG (b) Class 1, BDG

(c) Class 0, PDG (d) Class 1, PDG

Figure 8: Persistent diagrams of trust simplicial complexes
for α = 0.98 for class 0 before and after data generation rep-
resented by (a) and (c), respectively, and class 1 for before
and after data generation presented (b) and (d), respectively.

number
of holes

max mean

cl
as

s

α BDG PDG BDG PDG BDG PDG

0 0.8 91 154 0.0710 0.0643 0.0203 0.0153
0.98 65 110 0.0680 0.0643 0.0202 0.0146

1 0.8 96 128 0.0836 0.0794 0.0190 0.0165
0.98 65 87 0.0836 0.0794 0.0203 0.0162

Table 1: Persistence statistics comparison for before and
Post data generation.

moons dataset in order to verify the correlation between
TDA coverage and the signal-to-noise ratio, which dis-
tinguishes meaningful information in the data from non-
significant noise on it.

The persistence diagrams reported in Figures 7 and 8
show a local improvement of by an increase in point density
near the identity line and a decrease further away. It should
be noted that the two figures are illustrating data genera-
tion for a trust Rips complex with radius of 0.15, then holes
appearing with radius greater than this value would not be
filled by the data generation step due to the local improve-
ment. i.e., From the two figures, it can be seen that the per-
sistence of holes appearing in the persistence diagram with
high radius (≫ 0.15) are not getting an important change.
Then, an iterative approach to fill gradually these holes by
varying simplicial complex radius could be a solution (local
identification).

An additional evaluation based on persistence statistics is
performed. In order to shed evidence in the behavior de-
scribed concerning the density of points near the identity
line. Table 1 carry over additional results by computing re-

ductions of 25% and 28% for class 0, and 13% and 21% for
class 1 in the mean persistence of the associated diagrams
for α = 0.8 and α = 0.98, respectively. Then, despite the
local data generation, a significant global improvement is
obtained by the proposed approach.

The density with respect to points furthest from the iden-
tity line is measured using a metric based on the number
of points within ”confidence regions” as introduced in the
work of (Chazal and Michel 2021). Specifically, for a given
β ∈ R+, the confidence region of a persistence diagram is
defined as the half-space {(x, y) ∈ R2 | y ≥ x + β}. The
results obtained using this metric are presented in Table 2. A
reduction in the number of points furthest from the identity
line is sufficiently evident for class 0. This reduction is less
pronounced for class 1. This can be explained that class 1
is less sparse than class 0. We can see from the table that
even after data generation, the class 1 is less sparse than
0. The data-sparse regions identified in Figure 5 are char-
acterized independently to holes detected in the persistence
diagram. Intuitively, this means that these regions contain
only small holes that are quickly filled during the filtration
process. This also highlights the limitations of visual anal-
ysis, emphasizing the necessity for Cartesian identification
of holes and adaption of the filling parameters, in terms of
number of generated data for a given hole, is discussed in a
subsequent section.

Another important point to consider regarding the pro-
posed approach is the limitation imposed by the data distri-
bution within the expected domain of the model M . Specif-
ically, the expected domain of a given classification model
adheres to a certain distribution, which may inherently con-
tain numerous holes of various dimensions that are theoreti-
cally not possible to fill due to the nature of the data distribu-
tion. This implies that if we initiate Algorithm 1 with a suffi-
ciently varied dataset, the mean persistence is likely to intu-
itively converge to a constant during the iterative process of
the proposed approach. In many cases, the expected domain
is infinite, making the exact mean persistence challenging
to determine. However, it is possible to estimate it empir-
ically by applying the law of large numbers. Thus, with a
sufficiently large number of iterations, an empirical estima-
tion of the mean persistence can be obtained at the end of
the loop in the ideal case (considering other limiting factors
such as the data generation algorithm, for instance). Further-
more, the workflow of proposed approach can be applied to
other ML models, such as regression and object detection.

α Confidence
regions BDG

Confidence
regions PDG

Class 0 0.80 16 15
0.98 11 9

Class 1 0.80 12 12
0.98 9 8

Table 2: Number of points of the persistence diagrams in
confidence region with β = 0.04 for before and post data
generation.



(a) Class 0, BDG (b) Class 1, BDG

(c) Class 0, PDG (d) Class 1, PDG

Figure 9: Box plots representing statistics of persistence of
trust simplicial complex with α = 0.8 for before and after
data generation (vertically) and class 0 and class 1 (horizon-
tally), respectively

Conclusions and Perspectives

Conclusions

In this work, we proposed, using topological concepts, to
evaluate classification model coverage. By combining topo-
logical features from persistence diagrams with model confi-
dence levels, we introduced the Trust Rips Complex, linking
data structure with model performance.

Expanding datasets within a model’s expected domain
generally decreases persistence, filling sparse regions and
improving coverage. Our statistical analysis showed that
data augmentation led to a significant decrease in persistence
statistics, indicating a more homogeneous data distribution.
Visual analysis supported this, revealing that data augmen-
tation reduced or eliminated holes in the initial dataset, as
seen in the Trust Rips Complexes and persistence diagrams.
Box plot analysis demonstrated a significant global reduc-
tion in persistence, highlighting the practical impact of our
approach. Our framework effectively combines TDA with
model confidence to enhance model coverage evaluation.

This study underscores the importance of thorough cov-
erage evaluation for reliable DL-based system deployment.
While our findings are promising, further research is needed
to refine the data generation process and validate our ap-
proach on more complex datasets and higher-dimensional
spaces, ensuring scalability and broader applicability.

(a) Class 0, BDG (b) Class 1, BDG

(c) Class 0, PDG (d) Class 1, PDG

Figure 10: Box plots representing statistics of persistence of
trust simplicial complex with α = 0.98 for before and after
data generation (vertically) and class 0 and class 1 (horizon-
tally), respectively

Perspectives
The current exploratory study lays the groundwork for sev-
eral promising future research directions. The perspectives
discussed here outline the next steps for enhancing and ex-
panding the scope of our topological coverage analysis for
deep learning models.
Tests on Larger Datasets. To validate the robustness and
scalability of our approach, it is essential to conduct tests on
larger datasets. For instance, the MNIST dataset, which is
widely recognized in the field of image classification, pro-
vides a more extensive and diverse set of samples. This will
allow us to evaluate the performance of our method in han-
dling a broader range of data points.
Data-Sparse Identification Algorithm. One limitation of
the proposed approach is the inability to identify data-sparse
regions. An interesting avenue for future research could fo-
cus on this topic, specifically on finding the Cartesian co-
ordinates of points that define the characteristics associated
with any point on a given persistence diagram.
Data Generation algorithm for Data-Sparse Regions.
Addressing data-sparse regions is crucial for improving the
reliability of the coverage assessment of a classification
model. We propose developing a new topological diffusion
algorithm specifically designed to generate data that corre-
spond to these sparse regions.
Topological Metric for Local Coverage. Another promis-
ing avenue is the development of a topological metric for
local coverage, based on statistics extracted from persistent



homology. This metric can be combined with other exist-
ing metrics to provide a more comprehensive assessment
of model coverage. By integrating topological insights with
conventional performance metrics, we can achieve a more
nuanced understanding of the model’s behavior and ensure
more thorough coverage evaluation.
Distinguishing Noise from Signal. The distinction between
noise and signal in persistence diagrams is often subjective,
especially with small persistence data. To address this is-
sue, a study can help identify objective boundaries between
noise and signal, we aim to establish clearer criteria for dis-
tinguishing significant topological features from irrelevant
noise. This will enhance the precision of our evaluation and
contribute to more reliable interpretations of the results.

These perspectives not only build on the findings of our
current study but also pave the way for innovative advance-
ments in the field of topological data analysis and classifica-
tion model evaluation. By addressing these areas, we aim to
develop more robust, comprehensive, and reliable methods
for assessing and improving the performance of AI models
in real-world applications.
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