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A B S T R A C T

Does exposure to tropical cyclones affect fertility? This paper addresses this question by constructing a panel
dataset from geolocated micro-data about the fertility history of mothers along with their local exposure to
tropical cyclones for a sample of six developing countries for the 1985–2015 period. We then estimate the
causal effect of tropical cyclone shocks on women’s likelihood of giving birth. We find evidence that tropical
cyclone exposure has a significantly negative effect on motherhood. A cyclonic wind exposure between 60
and 117 km/h (resp. at least of 118 km/h) decreases the probability of giving birth by 7.8 (resp. 7.0) points
a year after exposure. We also observed that the magnitude of the effect varies with the degree of cyclonic
exposure associated with the mothers’ living environment and the number of children ever born. In particular,
the fall in the likelihood of giving birth is lower for mothers living in cyclone-prone areas and for those who
already have children. Alternative specifications of our baseline model provide further insights: (i) recent past
exposure to cyclones was associated with a lower decrease in fertility when exposed once again; and (ii) no
evidence of non-linearities was observed in the effect.
1. Introduction

Evidence about the consequences of exposure to cyclonic systems at
the individual level is still scarce (Anttila-Hughes and Hsiang, 2013).
This lack of comprehensive micro-studies, which could be supported
by strong data requirements, leaves many questions unanswered, es-
pecially how households reorganize their lives after being impacted
by tropical cyclones. Exposure to tropical cyclones along with the
associated destruction has the potential to impose high costs on house-
holds.1 The micro-impacts of such adverse shocks are probably stronger
in countries with weak institutional ways of coping, as is probably
the case in developing countries (Dessy et al., 2019). In this context,
children living in the household often play a specific role. They actively
contribute to daily activities such as caring for siblings or grandparents,
contributing to household chores, or directly participating in the labor
market (Banerjee and Duflo, 2007, 2011) and Finlay (2009).2 In light
of this, parents’ decision to have children is likely to be altered, both
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(H. Vérèmes).

1 These costs could relate to household income, livelihood, crop yields, assets, and loss of life.
2 Banerjee and Duflo (2011) and Finlay (2009) indicate that in the absence of insurance mechanisms, children’s contributions to households may substitute

for standard insurance and allow them to smooth consumption over time.
3 According to Noy and duPont IV (2018) a natural disaster could be viewed as the interaction between a natural hazard and an exposed and vulnerable

population (or assets) Given this definition, a non-exhaustive list of natural disasters include earthquake, flooding, landslide, tropical cyclones or tornado.

positively and negatively, after exposure to a shock such as a tropical
cyclone (Sellers and Gray, 2019). As a first piece of evidence, the data
used in this paper show that 12% of women who have been exposed
to cyclonic systems give birth the calendar year after the exposure
compared with 19% for those who have not been exposed. Our paper
therefore addresses the following question: does exposure to tropical
cyclones causally impact fertility?

Understanding how households adjust their behavior after being
exposed to adverse weather shocks such as tropical cyclones is of
interest to researchers and policymakers alike, especially in the context
of climate change that is expected to modify the frequency and intensity
of tropical cyclones in the near future (IPCC, 2019; Knutson et al.,
2020). However, the direction of these behavioral changes in terms
of fertility is a priori unclear from both a theoretical and empirical
perspective. In theoretical models such as those of Finlay (2009), Pört-
ner (2014), and Dessy et al. (2019), the direction of the post-disaster
decision to have children ultimately depends on assumptions about
the benefits and costs associated with children. Empirical findings are
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Ecological Economics 226 (2024) 108341 
inconclusive: (Nobles et al., 2015; Nandi et al., 2018), and Finlay
(2009) found an increase in family size after a natural disaster, whereas
a fall was identified by Evans et al. (2010), Pörtner (2014), Davis
(2017), and Norling (2022). Given the inconclusive nature of these
studies, it is still an open empirical question as to whether natural
disasters affect fertility.3 The main goal of this paper is to rigorously
stablish the direction and magnitude of the causal effect of tropical
yclones on women’s likelihood of giving birth using high-resolution
ata relating to their true exposure to tropical cyclones on the ground.

Most studies exploring the effect of natural disasters on fertility
ainly focus on earthquakes. However, their results probably cannot

e extended to the case of cyclonic events for at least two reasons.
irst, the macro-literature has shown that the consequences of natural
isasters on economic growth are not identical for all types of disasters
omby et al. (2013) and Felbermayr and Gröschl (2014). We can
herefore conjecture that the magnitude or even the direction of the
ffect would differ for fertility depending on the type of natural dis-
ster (Norling, 2022). Second, empirical studies on earthquakes mainly
dopt a ‘‘one-event’’ approach by studying the fertility response after an
arthquake shock of high intensity Finlay (2009), Nobles et al. (2015)
nd Nandi et al. (2018). Although the causal effect observed in these
tudies is undisputed, they do not consider variability in terms of the
egree of exposure, the magnitude of the disaster event, or the existence
f possible intensification effects. The database constructed here allows
s to investigate such issues.

We first begin by presenting a simple theoretical framework of
arents’ decisions about fertility. The model thus developed, inspired
y the works of Ranjan (1999), Finlay (2009), and Norling (2022), is
sed to frame the discussion and development of the empirical model.
n particular, three working assumptions about post-cyclone fertility
esponses are derived from the model. The first suggests that after
n adverse shock such as tropical cyclone exposure, the likelihood of
iving birth is expected to fall in part because of a negative income
ffect. The second investigates the heterogeneous response of fertility
or mothers living in cyclone-prone areas and those living in non-prone
reas. In this respect, the model suggests that the former group is
ess sensitive to cyclone shocks. Finally, the third working assumption
elates to the response of fertility after tropical cyclone exposure with
espect to the number of children ever born. More specifically, the
odel suggests that the post-cyclone response in terms of fertility is

ndependent from the number of children ever born.
We draw on two main databases to provide empirical evidence for

ur research questions. We first exploit 14 waves of the Demographic
nd Health Survey (DHS) from six countries, namely Bangladesh, Cam-
odia, the Dominican Republic, Haiti, Madagascar, and the Philip-
ines.4 This cross-sectional household survey has several practical ad-
antages for the issue at hand: it is nationally representative, has a
arge number of observations, contains information about individuals’
haracteristics, and provides geographic information about the location
f households. In addition, the DHS includes the full fertility history
f each woman interviewed together with detailed information about
er geographic location. The second database used here is the Tropical
yclone Exposure Database (TCE-DAT) of Geiger et al. (2018). This
orldwide database provides high-resolution information about the
ind field profile of more than 2,700 cyclonic systems, including
84 that made landfall in the six developing countries examined in
his paper during the 1985–2015 period. By merging the geographic
nformation of these two databases along with the fertility history of
he DHS, we construct a panel data model that allows us to retrieve
he tropical cyclone exposure of a given woman in a given year for
he entire study period. The relationship between changes in tropical
yclone wind speed exposure and the likelihood of women giving birth

4 The choice of these DHS waves along with the countries studied in this
aper is guided by data requirements (see also Section 3.1).
 S

2 
is then examined by means of fixed-effect regressions. In this manner,
our panel reduced-form model has numerous advantages, since only a
minimal set of assumptions is imposed.5

Our main empirical results can be summarized as follows. First,
we can respond affirmatively to the abstract’s question and our first
working assumption: exposure to tropical cyclone wind speed does
indeed impact fertility. Our panel setup indicates that the direction
of the effect is negative. The point estimate suggests that a cyclonic
wind exposure between 60 and 117 km/h (resp. higher than 117 km/h)
leads to a 7.8-point (resp 7.0-point) fall in the probability of giving
birth 1 year after exposure. Second, our baseline estimates show that
the causal effect of wind speed exposure depends on the degree of
cyclonic exposure associated with the mother’s living environment.
The likelihood of giving birth decreases less in cyclone-prone areas,
suggesting that people adapt their behavior to the level of cyclonic risk.
Third, the magnitude of the fall in fertility also depends on the number
of children ever born, a result that is not in line with the insight of our
theoretical model. Specifically, in the data we find that mothers with
at least two children are much more likely to reduce their fertility after
a cyclone than women with no children. Lastly, we refine the nature of
the relationship between cyclonic exposure and fertility. In particular,
we find evidence of the following: (i) recent past exposure to cyclones is
associated with a lower decrease in fertility when exposed; and (ii) no
evidence of non-linearities is observed in the causal effect. Overall, our
results are estimated to be robust to other measures of tropical cyclone
exposure and several changes in terms of the sample restriction and/or
empirical specification.

Our paper draws on at least three strands of the economic litera-
ture. First, by merging spatially geolocated micro-data with weather
variables, our paper forms part of a new but flourishing body of
literature that studies the effect of weather shocks on socioeconomic
variables (e.g., Deschênes and Greenstone (2011), Kudamatsu et al.
(2012), Anttila-Hughes and Hsiang (2013), Barreca et al. (2018), Dessy
et al. (2019), Sellers and Gray (2019), Marchetta et al. (2019) and Nor-
ling (2022)). We contribute to this research by focusing on the effect
of a specific weather variable, namely tropical cyclones, on fertility.
Second, our paper contributes to the literature on how households
respond after an adverse event (e.g., Morduch (1995), Banerjee and
Duflo (2007) and Alam and Pörtner (2018)) by exploring how they
react to a cyclonic event that induces the loss of property, crops, and
livelihoods. Further, in developing countries, having children enables
households to smooth their consumption over time. We thus add to
this body of literature by providing evidence for six developing coun-
tries regularly subjected to tropical cyclones. Finally, our paper makes
an important contribution to the literature on the effect of natural
disasters on fertility. To the best of our knowledge, four compara-
ble papers to our own focus on cyclonic events.6 First, Evans et al.
(2010) investigate how the fertility rate in US counties responds to
storm advisories, finding that low-severity advisories are associated
with a positive fertility effect, while high-severity advisories are as-
sociated with a negative effect. Second, Pörtner (2014) examines the
effect of hurricane risks and shocks in Guatemala. He exploits cross-
sectional and historical data about hurricane occurrences and finds a
negative association between fertility and tropical cyclone exposure
at the municipal level. Third, Davis (2017) employs rainfall data as
a measure of tropical cyclone exposure and observes that high levels
of rainfall in Nicaraguan municipalities are associated with increased

5 First, the panel allows us to alleviate problems relating to omitted vari-
bles by fully controlling the individual and time fixed effects. Second, insofar
s tropical cyclone exposure can be viewed as (quasi-)random, exploiting year-
o-year variations in wind speeds experienced by inhabitants on the ground
llows us to identify their causal effects.

6 Other papers on the post-fertility effect of earthquakes are discussed in

ection 4.1.
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Ecological Economics 226 (2024) 108341 
fertility. Fourth, Norling (2022) investigates how fertility responds to
disasters in Africa, finding that fertility is negatively associated with
disasters. Our paper overcomes many of the problems associated with
these four papers, since our panel setup alleviates concerns relating
to the unobserved heterogeneity of mothers. We rely on a measure
of tropical cyclone exposure, namely wind speed, which is directly
related to its physical intensity and destructiveness.7 Furthermore, we
investigate the heterogeneity dimension with respect to the degree of
cyclonic exposure in the mother’s living environment and the number
of children ever born.

The roadmap of this paper is as follows. Section 2 presents some
theoretical elements about fertility and natural disasters as a whole.8
Section 3 details the data used in the empirical analysis. Section 4
develops our econometric framework and discusses identification as-
sumptions. Section 5 presents the results. Finally, Section 6 provides
the conclusions.

2. Theoretical background

2.1. Economic theory on fertility

Theoretical models explaining fertility are based on the quality–
quantity model first developed by Becker (1960), Mincer (1963),
and Willis (1974) along with its subsequent extensions.9 In general,
the model environment considers a representative household that max-
imizes utility over consumption, the quantity of children, and their
quality. The budget constraint is comprised of labor income, benefits
and costs associated with children and their education, and the inter-
est gained from saving. Becker (1993) assumes that with increasing
income, the demand for child quality increases disproportionately with
child quantity. This produces an inverse relationship between income
and fertility. In these models, particular focus is given to education as
an investment in human capital (Becker, 1992; Azarnert, 2006; Lee and
Mason, 2010; Pörtner, 2014; Vogl, 2016).

Other extensions of the model explore the demand for children
as a demand for insurance (Pörtner, 2001). This ‘‘risk-insurance’’ hy-
pothesis supposes that in harsh poverty conditions, children function
as a kind of generalized insurance against an uncertain future, with
this insurance function being one of the main explanations of the high
fertility rate (Cain, 1983; Robinson, 1986). The insurance strategy can
derive from the number of children and their risk of death. Generally
analyzed in the context of the demographic transition (Becker, 1992;
Schultz, 1997; LeGrand et al., 2003; Doepke, 2005; Azarnert, 2006),
some studies focus on the impact of mortality as a shock (Norling,
2022). The increase in fertility in response to expected future child
mortality is also known as the ‘‘hoarding’’ effect. In models where
mortality is stochastic and parents wish to preserve a certain number of
children, the ‘‘hoarding’’ effect occurs. If fertility is chosen sequentially,
there is also a ‘‘replacement’’ effect: parents may condition their fertility
decisions on the survival of previously born children (Doepke, 2005).

The insurance strategy can also derive from the uncertainty of
expected future income (Ranjan, 1999; Pörtner, 2001). This uncertainty
notably occurs in the labor market (Kreyenfeld, 2010, 2015; Hanappi

7 More specifically, Pörtner (2014) employs historical records,(Evans et al.,
010) use advisory data, and Norling (2022) relies on the Emergency Events
atabase, worldwide data known to be subject to several biases (Botzen et al.,
019).

8 Given the scarce literature on the specific effect of tropical cyclones on
ertility, we sometimes broaden the spectrum by considering natural disasters
s a whole. However, given the specific characteristics of tropical cyclones and
he associated damage, they may simply be viewed as a natural disaster with
he broader literature as a relevant departure point. In this respect, exposure
o tropical cyclones and natural disasters are synonymous.

9 The interested reader may refer to Schultz (1997) for a review of these
xtensions.
3 
et al., 2017). More recently, many studies have analyzed the link
between uncertainty and fertility, especially in the context of economic
recessions in developed countries.10 The underlying argument of these
studies is that greater uncertainty about future prospects will encourage
couples to postpone and possibly to forego childbearing altogether,
because this irreversible investment has long-term consequences on
resources (Aassve et al., 2021). In this context, aggregate fertility seems
pro-cyclical over the business cycle11 (Sobotka et al., 2011; Gozgor
et al., 2021). This finding is also shown by Ranjan (1999) with a two-
period stochastic model of fertility that takes into account the perceived
uncertainty about future income. Finally, other works introduce the
perception of uncertainty (or risk aversion) to explain fertility vari-
ations, showing that at times of heightened uncertainty, risk-averse
individuals will postpone childbearing more than risk lovers (Schmidt,
2008; Hofmann and Hohmeyer, 2013). Vignoli et al. (2020) propose a
conceptual framework for studying fertility decisions under uncertain
conditions based on expectations and ‘‘experience’’.

2.2. Impact of natural disasters on fertility

Based on the literature on the determinants of fertility, some authors
explore the impact of natural disaster shocks on fertility, mostly adopt-
ing an empirical perspective (Finlay, 2009; Evans et al., 2010; Pörtner,
2014; Nobles et al., 2015; Nandi et al., 2018; Dessy et al., 2019),
or (Norling, 2022)). They examine the meaning and magnitude of the
potential impact of natural disasters on fertility and sometimes explore
potential explanatory factors. Empirical evidence about the effect of
natural disasters and, more generally, weather anomalies on fertility
is mixed.

The positive impact can be explained by the replacement effect,
the insurance mechanism relating to income uncertainty or a fall in
the opportunity cost of having children. The replacement effect (or
‘‘hoarding’’ effect) is examined by Nobles et al. (2015) in the context
of the Indian Ocean Tsunami in 2004 or by Nandi et al. (2018) for the
2001 Gujarat earthquake in India. Finlay (2009) studies the insurance
mechanism and argues that children can be used to smooth consump-
tion over time. More precisely, she shows how fertility can increase
after a disaster if and only if the benefit associated with children is
higher than the cost of taking care of them. In the model of Dessy
et al. (2019) for drought in Madagascar, an exogenous decrease in
labor market productivity has two opposing effects on the opportunity
cost of children.12 On the one hand, it decreases the foregone income
of women when they spend time out of the labor market to care for
children. On the other hand, the income effect renders each additional
child more costly. Dessy et al. (2019) assume that the former prevails
over the latter.13 Sellers and Gray (2019) observe the same result for
climate shocks relating to temperature and precipitation where the
reduction in the opportunity cost of having children (especially in rural
areas) is the main driver of the increase of fertility.

Other empirical evidence nevertheless points to the negative effect
of natural disasters on fertility. Skidmore and Toya (2002) study the im-
pact of climatic disasters in 89 countries. Adopting a macro perspective,
they find a positive effect on economic growth but a negative impact on
fertility. In the special case of tropical cyclones, Berlemann and Wenzel
(2018) observe a positive impact on fertility in low-income countries
but a negative effect for countries with high levels of development. This

10 The interested reader may refer to Aassve et al. (2021) or Sobotka et al.
(2011) for a review.

11 This result can be nuanced as in the work of Buckles et al. (2021).
12 The opportunity cost of an additional child is also known as the shadow

price. In what follows, both terms are used interchangeably.
13 Another reason based on more psychological factors is that motherhood

is a means of coping after an emotionally traumatic experience (Carta et al.,

2012).
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negative impact may at least partly be explained by conjunctural (Lind-
strom and Berhanu, 1999) and psychological factors (Arnberg et al.,
2011). The negative effect of natural disasters or climate anomalies on
fertility has also been found in micro-economic studies. Thiede et al.
(2022) emphasize that climate exposure affects mothers’ reproductive
outcomes but only in specific locations and for specific subgroups. This
heterogeneous impact underscores the need to consider specific groups
within a given population. For the United States, Evans et al. (2010)
also observe some heterogeneity with an increase in fertility for low-
category hurricanes but a decrease for high-category hurricanes. The
negative effect can also be explained by an increase in the opportunity
cost of having children, for instance if people have to engage in
reconstruction activities, (Kochar, 1999; Evans et al., 2010; Alam and
Pörtner, 2018; Berlemann and Wenzel, 2018; Norling, 2022) or by the
uncertainty caused by the disaster shock (Davis, 2017; Pörtner, 2014;
Wang et al., 2022).

2.3. Theoretical model proposition

This subsection develops a model regarding parental decisions about
fertility. The model environment involves two periods. The household
has utility in both periods but experiences some uncertainties about
outcomes in period 2 (Pörtner, 2014). The overall utility 𝑈 of the
ousehold is the sum of utility in period 1 (𝑈1) and the expected utility
n period 2 (𝐸(𝑈2)):

= 𝑈1 + 𝐸(𝑈2)

n each period, the household receives utility from consumption of a
eneral good 𝑐. In the utility function, we consider the log of con-
umption to have a diminishing marginal utility of consumption such
hat 𝑈1 = ln(𝑐1) and 𝑈2 = ln(𝑐2) (Finlay, 2009). The household budget
onstraint indicates that income from period 1 𝑌1 is spent by consuming
𝑐1 and by supporting the cost 𝑘 of raising ever-born children 𝑛1. In
period 2, the budget constraint differs. We assume that children born
in period 1 contribute positively to household income 𝑤𝑛1, with 𝑤 > 0.

his new income supplements the income received in period 2 𝑌2. The
expenditure of period 2 is similar to that of period 1:

𝑌1 = 𝑐1 + 𝑘𝑛1
𝑌2 +𝑤𝑛1 = 𝑐2 + 𝑘𝑛2

Following (Ranjan, 1999), we assume that income in period 2 varies
with probability.14 Thus, the expected utility of period 2 depends on
the probability of exposure to natural disasters 𝜆 in period 2. We model
exposure to natural disasters (or cyclones) as income loss, because these
events have the potential to destroy homes and reduce the economic
value of assets such as buildings, land, or crops, which is particularly
relevant in developing countries where agricultural activities are still
predominant. In the event of an adverse shock, we assume that income
decreases by a quantity equal to 𝛿𝑌2 with 𝛿 ∈ [0, 1]. Assuming an
absence of intertemporal discounting and saving, the household can
choose the number of goods and children to have in each period to
maximize an additively separable utility function of the following form:

𝑈 = ln(𝑌1−𝑘𝑛1)+𝜆[ln(𝑌2(1−𝛿)+𝑤𝑛1−𝑘𝑛2)]+(1−𝜆)[ln(𝑌2+𝑤𝑛1−𝑘𝑛2)] (1)

Let us now focus our discussion on the first-order condition with respect
to the optimal number of children to have in period 2. The latter can
be written as follows:
𝜕𝑈
𝜕𝑛2

= 0 ⇔ 𝑛2 =
𝑌2 (1 − 𝛿(1 − 𝜆)) +𝑤𝑛1

𝑘
(2)

14 Although (Ranjan, 1999) assumes that income increases with probability
/2 and decreases with probability 1/2, we take probability as a parameter
etween 0 and 1.
4 
The comparative statics of Eq. (2) informs us about the direction of the
effect of a given parameter on the number of children to be born in
period 2. Regarding the share of income loss due to the occurrence of
an adverse event such as a cyclone 𝛿, we obtain:
𝜕𝑛2
𝜕𝛿

=
−(1 − 𝜆)𝑌2

𝑘
< 0 (3)

An increase in the amount of lost income has a negative incidence on
fertility, which leads us to the first working assumption to be tested in
the empirical analysis:

Working assumption 1: All else being equal, after an adverse shock
such as a tropical cyclone, the likelihood of motherhood is expected
to fall.

It may be interesting to compute the functional form of the derivative
of (3) with respect to the probability of being exposed 𝜆. Indeed,
we cannot exclude the fact that the effect of cyclonic exposure on
motherhood depends on the degree of exposure for people living in the
most exposed areas. The latter is written as:

𝜕2𝑛2
𝜕𝛿𝜕𝜆

=
𝑌2
𝑘

> 0 (4)

Given that the number of children is a decreasing function as the share
of income loss, the positive sign of (4) indicates that 𝑛2 decreases less in
the areas more frequently exposed to the disaster. Our second working
assumption to test empirically is as follows:

Working assumption 2: All else being equal, in cyclone-prone
areas, the sensitivity of fertility to cyclonic exposure is lower.

Finally, our data allow us to investigate whether post-cyclone fertility
depends on the presence of children ever born in the household. In the
model, the derivative of (3) with respect to 𝑛1 is thus:

𝜕2𝑛2
𝜕𝛿𝜕𝑛1

= 0 (5)

Consequently, our theoretical framework implies that the number of
children to be born in period 2 after tropical cyclone exposure is not
related to the number of children born in period 1. Our third working
assumption is as follows:

Working assumption 3: All else being equal, the post-cyclone
fertility response does not depend on the number of children ever
born.

These three working assumptions will frame our empirical results. Sec-
tion 5 aims to provide an empirical response to these three assumptions.

3. Empirical background and data

3.1. Demographic and health survey

Our primary source of micro-data about female fertility is the DHS
of cyclone-exposed countries. The DHS is a series of cross-sectional
surveys performed approximately every 5 years. The survey is generally
conducted by national institutes of statistics with the technical and
financial support of international institutions. For each phase of the
DHS, a nationally representative sample of women aged from 15 to
49 years is interviewed. Detailed information is collected about the
women’s sociodemographic (e.g., household composition, education
level, number of children, household well-being) and health character-
istics (e.g., infant mortality, nutritional practices, malaria prevalence,
contraceptive use). Among the broad range of information available in
the DHS, we exploit the mother’s fertility history in depth. This retro-
spective record allows us to retrieve information about the children’s
year of birth and sex or the women’s age at childbirth. Based on this

fertility history, we construct a panel dataset of women and define a
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binary variable to indicate whether or not a woman gave birth during
a given year.

Let us now describe in further detail the sample selection of the
DHS, because it has important implications on the design of our em-
pirical study. The sample of each DHS wave is a two-level stratified
random sample. At the first level, the country’s territory is divided
into thousands of clusters with a number of clusters being randomly
selected.15 At the second level, for each cluster selected at the first
level, around 30 households are randomly chosen. The geographic
information used to locate the women is taken from the first-level
selection. In particular, for each selected cluster, the data producer
provides geographic information about its centroid. However, to ensure
the confidentiality of the selected households, the data producer does
not provide the exact latitude and longitude of the cluster’s centroid but
instead randomly displaces the actual location within a 2 (or 10) km
radius in urban (or rural) areas. We then combine information about
the cluster’s location with tropical cyclone data to retrieve the wind
speed exposure experienced by inhabitants on the ground.

To conduct our research, we apply several restrictions to our sam-
ple. First, among all the countries with DHS micro-data, we select only
those with a non-zero exposure to tropical cyclones. Second, given
the essential nature of the geographic information about the cluster
locations, we exclude the DHS waves without geographic information.
For the DHS with geographic information, we exclude households
living in clusters without exploitable coordinates.16 Third, as we use
retrospective data about womens’ fertility, we must ensure that a given
woman was really exposed to a given tropical cyclone in a given year.
To do so, we follow (Kudamatsu, 2012) and Anttila-Hughes and Hsiang
(2013) by restricting our final sample to mothers declaring that they
have always lived in their current home.17 It should be noted that
for some DHS waves, information about the date of arrival in the
current home is missing for all the observations. As we believe that
this knowledge about the mother’s place of residence is indispensable
for our study purposes, we only select DHS waves for which this
information is recorded.18 These restrictions leave us with a sample of
six countries, namely Bangladesh, Cambodia, the Dominican Republic,
Haiti, Madagascar, and the Philippines.19 Finally, as we iterate back-
wards to construct our panel database, we exclude all records for which
the woman’s age is below the threshold of 15 years.20 This restriction
implies that the number of observations per woman depends on her age
at the time of the survey, the year of the survey by itself as well as of
the year of the first available observation of our meteorological data
(see Section 3.2 below).

Table 1 reports a selection of summary statistics at the time of the
interview for women aged between 15 and 49 years included in our
analysis. In the cross-section, the total number of children per woman
was 3.21. The average age at first childbirth was around 20 years.
Approximately 25% of women reported having no education, while

15 For instance, in Madagascar, 285 out of 21,500 clusters were selected for
he 1997 phase of the DHS compared with 600 in 2008.
16 Missing geographic information may be due to (i) inconsistencies in the
eported geographic coordinates or (ii) the incapacity of the data producer to
ccess some clusters (ICF Macro, 1998, 2010).
17 In a robustness check, we relax this assumption (see Appendix E).
18 The absence of information about the mother’s date of arrival in her
urrent home is problematic, even if geographic information about the clus-
er locations is available. In particular, tropical cyclone exposure could be
ttributed to a woman when she lived elsewhere at the time.
19 Overall, we use 14 DHS waves. Details about DHS waves included together
ith additional information on women and their exposure can be found in
able 7 of Appendix A.
20 For instance, for a woman born in 1973 and aged 35 at the time of the

nterview in 2008, we build annual records of her fertility from 1988 onwards.
his woman thus enters our dataset at the age of 15 with her last record
orresponding to the year of the interview.
5 
around 42% reported a level equivalent to primary education at best.
This results in a relatively low number of years at school (around
3.5 years). Overall, Table 1 also shows that heterogeneity exists de-
pending on the countries. To complete the picture, we report in Table 7
of Appendix A similar summary statistics for each DHS wave employed
in our empirical studies.

3.2. Tropical cyclone data and wind speed exposure

Tropical cyclones are natural atmospheric phenomena that develop
mainly in tropical regions. A cyclone is a non-frontal synoptic scale
system that rotates clockwise in the Southern Hemisphere and counter-
clockwise in the Northern Hemisphere. It is organized around a center
of low atmospheric pressure known as the eye, which is bounded by
convective clouds that form an eye wall and precipitating spiral bands
that wrap around it. This highly convective phenomenon is character-
ized by strong surface winds. Cyclonic systems are divided into several
categories according to the intensity of the associated winds, defined as
the maximum wind speed at an altitude of 10 m, averaged over 10 min
(except in the United States where it is averaged over 1 min). In this
paper, we use the terms tropical system, cyclonic system, and tropical
cyclone interchangeably to designate tropical systems of any magni-
tude.21 The wind associated with cyclonic systems can cause severe
damage. Tamura (2009)’s study lists the types of damage according
to different wind speed thresholds. For instance, maximum 10-minute
averaged winds of 90 km/h can damage roof tiles, while above 162
km/h, the load constraints of the main frames of high-rise buildings
exceed the elastic limit. The devastating effects of tropical cyclones are
mostly due to the strong winds (CCR, 2020).22

3.2.1. TCE-DAT characteristics
A prerequisite for our empirical study is a measure of wind speed ex-

perienced by the population on the ground. As ground station weather
data are not reliable at a detailed level for the six developing countries
under scrutiny here, we use the worldwide TCE-DAT of Geiger et al.
(2018). To produce this database, Geiger et al. (2018) calculate an
estimate of the lifetime’s maximum surface wind speed at each spatial
location (on a 0.1◦×0.1◦ grid over land) for more than 2,700 landfalling
yclonic systems between 1950 and 2015. As the pre-1980 data records
equired to compute wind speed are of lower quality, we adopted
cautious approach by placing our cut-off several years after 1980,

amely in 1985.23 The calculation is based on the International Best
rack Archive for Climate Stewardship (IBTrACS) archive (Knapp et al.,
010) that contains all the necessary information for a wind field
odel such as that of Holland (1980), which is widely used in studies

n the evaluation of risks associated with the landfalling of tropical
yclones (Peduzzi et al., 2012). Geiger et al. (2018) implement the
evised hurricane pressure-wind model of Holland (2008) in which the
aximum surface wind speed 𝑊 in m s−1 (for a given pixel)24 at radial

21 We nevertheless acknowledge that three classes of cyclonic phenomena
exist. First, a tropical depression has a wind speed of less than 63 km/h.
Second, a tropical storm is between 63 and 117 km/h. Third, above 117 km/h,
it is called a tropical cyclone in the Indian Ocean and the South Pacific, a
hurricane in the North Atlantic and the North-East Pacific, and a typhoon in
the North-West Pacific.

22 Using post-cyclone insurance data, CCR (2020) finds that the vast majority
of insurance claim payments are due to wind speed as opposed to rainfall,
landslides, or storm surges.

23 Geiger et al. (2018) indicate that data records are sometimes incomplete
or of poor quality before the early 1980s. We confirm that using data since
1981 (the first available date for the rainfall variable in our econometric spec-
ification) has no incidence on the main message of this paper. Corresponding
results are available upon request.

24 For simplicity, we do not add an index to designate pixels.
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Table 1
Sample mean for a selection of women’s characteristics.
Source: DHS and authors’ own calculations.

Variable Sample mean Bangladesh Dominican Republic Haiti Cambodia Madagascar Philippines

Woman’s age 26.80 26.48 26.88 26.85 27.55 26.25 26.52
Woman’s age at first birth 20.12 17.59 19.60 20.62 20.89 18.93 21.73
Woman’s age at first marriage 18.25 14.89 17.83 19.90 19.10 15.29 20.59
Number of children 3.21 2.77 2.67 3.38 3.45 3.85 3.02
Year of education 3.43 3.01 4.03 3.52 3.10 2.65 3.89
No education 0.25 0.47 0.05 0.35 0.35 0.40 0.03
Primary education 0.42 0.31 0.46 0.41 0.54 0.48 0.26
Secondary education 0.24 0.18 0.32 0.23 0.11 0.11 0.41
Tertiary education 0.09 0.04 0.16 0.01 0.01 0.01 0.29

Observation 58 653 4401 12 512 10 611 10 860 10 190 10 079

Notes: Statistics are computed on the cross-section of 58,653 women included in our analysis after applying the sample restrictions described in Section 3.1.
Table 2
Summary statistics of the weather variables for the DHS clusters during the 1981–2015 period.
Source: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of Harris et al. (2014), and authors’ own
calculations.

No. of
exposures

No. of
exposures
𝑊 ∈ [60, 118[

No. of
exposures
𝑊 ≥ 118

Wind speed
when 𝑊 > 0

Rainfall Temperature

Mean 7.40 6.20 1.20 93.50 19.00 25.60
Standard deviation 7.30 6.00 1.60 32.20 8.10 1.90
Min. 0.00 0.00 0.00 61.20 1.90 16.40
Percentile 1% 0.00 0.00 0.00 63.50 5.60 18.30
Percentile 5% 0.00 0.00 0.00 64.60 8.40 22.30
Percentile 10% 0.00 0.00 0.00 65.80 10.50 23.40
Percentile 25% 2.00 1.00 0.00 71.60 13.60 25.00
Percentile 50% 6.00 5.00 1.00 84.30 17.50 25.90
Percentile 75% 9.00 8.00 2.00 99.00 22.90 26.90
Percentile 90% 19.00 16.00 4.00 138.40 29.70 27.70
Percentile 95% 24.00 20.00 5.00 166.10 34.30 28.10
Percentile 99% 29.00 25.00 6.00 212.60 45.60 28.50
Max. 34.00 33.00 9.00 293.70 72.50 29.10

Notes: The first three column represents the statistics relative to the distribution of the total number of cyclonic exposures in the cross-section
of clusters. Other columns report the statistics relating to the distribution of wind speed exposure, rainfall, and temperature in the panel of
cluster-year pairs. For the wind speed column, summary statistics are computed only for non-zero cluster-year pairs as in Elliott et al. (2015).
Wind speed corresponds to the maximum wind speed experienced and is expressed in km/h. Rainfall corresponds to the cumulative precipitation
over a year and is expressed in hundreds of millimeters. Temperature is the annual average temperature expressed in Celsius degrees.
istance 𝑟 from the center of a given cyclonic system is defined as
ollows:

=
(

𝑏𝑠
𝜌𝑒

𝛥𝑝
(

𝑟
𝑟𝑚

))0.5
, (6)

where 𝜌 is the surface air density in kg m−3, 𝑒 the base of natural
logarithms, and 𝛥𝑝 the pressure drop at the cyclone center in ℎ𝑃𝑎
as a function of 𝑟 and 𝑟𝑚 (radius of maximum winds). Parameter 𝑏𝑠
depends on 𝛥𝑝, the temporal intensity change in pressure, the absolute
value of the latitude, and the tropical cyclone’s translational speed.
Further details on the development of the parametric equation of 𝑏𝑠
can be found in Holland (2008). In addition to the wind field model
in Eq. (6), Geiger et al. (2018) calculate a translational component
multiplied by an attenuation factor (ratio between the tropical cyclone’s
center and the radius of maximum wind). The translational wind speed
decreases with the distance from the cyclonic system’s center, which
is taken into account to provide more realistic estimates of wind
speed on the ground. To our knowledge, no other publicly available
dataset is available from a ground weather station or remote sensing
measurement that covers the whole territory of Madagascar with a
spatial resolution higher than 0.1◦ × 0.1◦. This is the main reason why
we decided to use the wind speed estimate calculated by Geiger et al.
(2018).25

25 The dataset is referenced as Geiger et al. (2017) and is available at
ttps://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:2387904.
6 
Table 2 and the bar plot of Fig. 1 provide the summary statistics for
the cyclonic exposure of the clusters investigated in this paper. The first
three columns of the table report the characteristics of the distribution
of the number of exposures to cyclonic systems in the cross-section
of DHS clusters, while the other columns include the characteristics
of the distribution of wind speed, rainfall, and temperature in the
panel of cluster-year observations. In the panel, 21.0% of our pairs
of cluster-year observations experienced at least one cyclonic exposure
during the 1981–2015 sample period. The mean number of exposures
to cyclonic systems by cluster was 7.4. Exposure to wind speed falling in
the [60, 118[ interval is more frequent as its mean number of exposure
is of 6.2. Given that the standard deviation of exposure frequency is
approximately equal to its mean, the number of exposures by clusters
is quite heterogeneous. Thus, 11% of clusters were never exposed to
cyclones during the period under consideration, whereas the top 10% of
clusters were exposed at least 19 times over the 1985–2015 sample pe-
riod. Given the nature of our empirical approach, such heterogeneity in
the exposure of clusters is worth investigating because it creates within
variations that may be explored by our panel-fixed effect regressions.
Let us now explore the profile of wind speed exposure generated on
the ground. To do so, we focus on the DHS clusters when exposure is
non-zero.26 The average wind speed exposure during the 1985–2015
period is 93.5 km/h with a standard deviation of 32.2. The minimum
exposure to wind speed is 61.2 km/h in the data. As expected, this
value is close to 60 km/h, which is the minimum threshold above

26 In doing so, we follow (Elliott et al., 2015).

https://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:2387904
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Fig. 1. Distribution of cyclonic exposure experienced by DHS clusters (1981–2015).
Notes: Cyclonic exposure is measured by the total number of exposures to cyclones by clusters during the 1981–2015 sample period. This distribution is computed from the
cross-section of clusters.
Source: DHS, TCE-DAT (Geiger et al., 2018), and authors’ own calculations.
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f

𝑦

hich (Geiger et al., 2018) record cyclonic exposure. Again, there
s substantial heterogeneity in our sample insofar as 10% of clusters
ere exposed to tropical cyclones with wind speeds above 138.4 km/h.
he maximum wind speed recorded during our sample period was
93.7 km/h, with this extreme wind speed being due to Haiyan, one
f the most severe phenomena ever observed in the Philippines. For
llustrative purposes, Fig. 2 plots the spatial distribution of the mean of
nnual maximum wind speeds for the six countries of our sample during
he 1985–2015 period. It emerges that the Philippines has the highest
xposure to cyclonic wind speed, especially in the north of the country.
adagascar has the second highest exposure, particularly its north-east

oast, which is regularly threatened by tropical cyclones. Among the
ountries studied here, Bangladesh, Haiti, and the Dominican Republic
ave a wind speed exposure that falls in the middle of distribution.
inally, north-east Cambodia has a similar exposure to the three afore-
entioned countries, although some parts of the country appear to be

ess prone to this natural phenomenon.

.2.2. Other weather data
Although we mainly focus on the impact of tropical cyclone expo-

ure on motherhood, we include two other weather variables in our
nalysis, namely annual rainfall and mean temperature. Their inclusion
s intended to avoid noises due to the shared secular changes that might
e correlated with tropical cyclone exposure. Our rainfall variable
omes from the Climate Hazards group InfraRed Precipitation with
tations (CHIRPS) dataset constructed by Funk et al. (2015). When con-
tructing this dataset, Funk et al. (2015) combine ground station and
atellite information to obtain high-resolution (0.05◦ × 0.05◦) gridded

data. Concerning temperature, we use the updated worldwide gridded
climate dataset of the Climate Research Unit (CRU) of the University
of East Anglia (Harris et al., 2014). This dataset nevertheless has a
lower resolution than that of CHIRPS, since it is available at 0.5◦

atitude/longitude grid cells. The last two columns of Table 2 report

he univariate statistics of rainfall and mean temperature.

7 
. Empirical framework

.1. Estimated equation

Our empirical strategy involves estimating different versions of the
ollowing baseline model:

𝑖𝑡𝑎𝑐 = 𝛽𝑊
1
×𝑊 1

𝑖,𝑡−1+𝛽
𝑊 2

×𝑊 2
𝑖,𝑡−1+𝛽

𝑅×𝑅𝑖,𝑡−1+𝛽𝑇 ×𝑇𝑖,𝑡−1+𝜇𝑖+𝜂𝑡+𝛼𝑎+𝑢𝑖𝑡𝑎𝑐

(7)

The outcome of interest, namely 𝑦𝑖𝑡𝑎𝑐 , is a binary variable equal to
one if mother 𝑖 of age 𝑎 living in cluster 𝑐 gives birth in year 𝑡 and
zero otherwise. Given that 𝑦𝑖𝑡𝑎𝑐 is dichotomous, we rely on a linear
probability model.27 In Eq. (7), 𝛽𝑘 with 𝑘 ∈ [𝑊 𝑚, 𝑅, 𝑇 ] with 𝑚 ∈
[1, 2] are coefficients to be estimated. Our main weather variable of
interest corresponds to the tropical cyclone wind speed exposure 𝑊
of woman 𝑖 in year 𝑡 − 1. The latter is measured by two dummies. The
first one, 𝑊 1

𝑖,𝑡−1, is equal to one when maximum wind speed is higher
than 60 km/h and lower than 118 km/h. The second one, 𝑊 2

𝑖,𝑡−1, is
set to one when maximum wind speed is at least of 118 km/h.28 We
also include as controls two other weather variables: annual rainfall
𝑅 expressed in hundreds of millimeters and annual land surface mean
temperature 𝑇 measured in Celsius degrees in 𝑡 − 1. We justify the
inclusion of these two variables as an attempt to lessen the issues
arising from the omitted variables. In the event of correlations or shared
secular changes among the weather variables, studying the impact of a
specific weather variable in isolation could be problematic (Dell et al.,

27 This practice is standard in the empirical literature dealing with depen-
dent dichotomous variables in a panel setup (Anttila-Hughes and Hsiang, 2013;
Kudamatsu, 2012; Kudamatsu et al., 2012). In particular, it is well known that
the incidental parameter problem complicates the estimation of panel models
with fixed effects. In contrast to linear models, it is not possible to remove
fixed effects with the traditional within transformation. Moreover, estimating
them directly leads to biased estimates of all parameters (see also (Wooldridge,
2010) or (Croissant and Millo, 2018) for more details).

28 We also consider an alternative specification in which exposure to tropical

cyclones is continuous and measured in kilometers per hour (km/h).
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Fig. 2. Mean of wind speed exposure (1980–2015).
Notes: The dots of each panel correspond to cluster coordinates of the last DHS wave used for each country. From the top left to the bottom right, there is Bangladesh, the
Dominican Republic, Haiti, Cambodia, Madagascar, and Philippines.
Source: DHS, TCE-DAT (Geiger et al., 2018), and authors’ own calculations.
014).29 We include woman fixed effects 𝜇𝑖 to control for unobserved
and time-invariant characteristics that could potentially affect women’s
likelihood of childbearing.30 In a flexible manner, we also account
or year-specific components shared by all women using year fixed
ffects 𝜂𝑡. Their inclusion ensures that the relationship of interest can be
dentified from idiosyncratic shocks. We also include woman’s age fixed
ffects 𝛼𝑎 controlling for the fact the women’s decisions to have babies
ould differ at different ages. Finally, 𝑢𝑖𝑡𝑎𝑐 is the error term. Given the
ampling design of the DHS surveys, we follow (Abadie et al., 2017),
hile standard errors are clustered at the first-level sample selection to
llow for any correlation of the error term over time and space within
ach DHS cluster.

Our estimation of women’s likelihood of giving birth mainly con-
rols for weather-related variables. Two main arguments support this
hoice. First, control variables themselves should not be outcomes of
eather-related variables (Dell et al., 2014). As an example, let us take
ousehold income as an additional control variable.31 In this case, we
annot exclude the fact that it is also an outcome of cyclonic wind
peed. Consequently, if a model includes income, then the estimated

29 In particular, it is arguable that the tropical cyclone exposure of a given
patial unit may be correlated with its surface temperature or rainfall level.
n this respect, Hsiang (2010) finds that each additional Celsius degree in a
ountry’s local surface temperature is associated with a 9.36 km/h increase in
ocal wind speed in the Caribbean basin countries.
30 These unobserved factors may be the (time-invariant) preference of
omen to have a large family. Their preference may also be rationalized by

mphasizing the opportunity cost of taking care of children. Women’s more
imited options in the labor market probably increase the opportunity cost
f spending time in labor market activities, thus leading them to have more
hildren and devote more time to childrearing.
31 Note that the construction of our panel data does not allow us to retrieve
n income variable, because we mainly rely on the mothers’ fertility history.
uch information is thus not available.
8 
coefficient on wind speed would not capture its total net effect on fertil-
ity, because income can be written as a function of wind speed. Second,
when adding control variables such as income, we may encounter an
endogeneity problem. Specifically, we could argue that income has an
effect on fertility, but we could also conjecture that fertility explains,
at least in part, women’s income.32 This is the well-known reverse
causation problem, which leads to the introduction of a selection bias
in the estimation of the income-related coefficient as well as the other
estimated coefficients in the model. Given these two arguments, we
believe that the parsimonious model of Eq. (7) remains a relevant
departure point. In doing so, our empirical model can unveil the true
net effect of cyclonic wind speed (or the total effect) on women’s
likelihood of giving birth.

4.2. Identifying assumption

Insofar as fixed effects are included in Eq. (7), variables are ex-
pressed as deviations from the individual and temporal sample means
(Croissant and Millo, 2018). Our identification emphasizes year-to-year
variations in levels from the observed means. As a consequence, the
fixed effect coefficients associated with wind speed exposure may be
interpreted as the impact of tropical shocks on women’s probability of
giving birth.

The main assumption used to identify the causal effect of tropical
cyclones on fertility is randomness in an individual’s exposure. Being
exposed to cyclonic systems can be viewed as (quasi-)random insofar
as the formation of cyclonic systems in addition to their precise tra-
jectories and magnitude are stochastic and thus difficult to predict.
When they occur, tropical cyclones generate recognizable wind speeds
of high magnitude that impact large spatial units (quasi-)randomly so
that inhabitants living in these areas are exposed to them, while those

32 Similar problems could arise for variables such as education level, years
of education, school dropout, labor market participation, and so on.
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Table 3
Main regression results.
Source: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of Harris et al. (2014), and authors’ own
calculations.

(1) (2) (3) (4)

Max. wind ∈ [60, 118[ in 𝑡 − 1 −7.6185∗∗∗ −7.7960∗∗∗ −8.2838∗∗∗ −8.4298∗∗∗

(0.1317) (0.1335) (0.1602) (0.1626)
Max. wind ≥ 118 in 𝑡 − 1 −6.7236∗∗∗ −6.9664∗∗∗ −7.1503∗∗∗ −7.4140∗∗∗

(0.2147) (0.2129) (0.2976) (0.3019)
Max. wind ∈ [60, 118[ in 𝑡 − 1 × Prone – – 1.9229∗∗∗ 1.8329∗∗∗

– – (0.2557) (0.2553)
Max. wind ≥ 118 × Prone – – 1.3882∗∗∗ 1.4043∗∗∗

– – (0.4136) (0.4147)
Rainfall in 𝑡 − 1 – 0.2142∗∗∗ – 0.2130∗∗∗

– (0.0150) – (0.0150)
Temperature in 𝑡 − 1 – 0.7365∗∗∗ – 0.7866∗∗∗

– (0.2452) – (0.2468)

Observations 1,025,443 1,025,443 1,025,443 1,025,443

Notes: Significance levels: * 10%, ** 5%, *** 1%. Robust standard errors are in parentheses and adjusted for clustering at the DHS cluster
level. All regressions include woman fixed effects, annual and woman’s age fixed effects. The term ‘‘Prone’’ refers to a dummy equal to one
when the mother lives in a village exposed to cyclones at least 10 times during the 1985–2015 period. Rainfall in hundreds of millimeters,
and temperature in Celsius degrees.
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living in non-affected areas are not. We nevertheless acknowledge that
some areas are more likely to be exposed to tropical cyclones, and as
a result, the total effect on fertility may vary depending on the level
of risk. We also consider this possibility by introducing a heterogeneity
dimension into our empirical analysis (see also Section 5).

Two issues potentially relate to the randomness of tropical cyclones,
both of which are linked to the ability of meteorologists to forecast their
occurrence. Indeed, meteorologists have made substantial progress in
forecasting the seasonal frequency of tropical systems (Klotzbach et al.,
2019). Furthermore, it is now possible to forecast a tropical cyclone a
few days before landfall. From our point of view, this forecasting has
almost no incidence on our identification strategy, because our focus
is on year-to-year variations. In particular, although seasonal forecasts
have a higher predictive power, the year-to-year variations in tropical
cyclone wind speed at a given spatial unit are largely unpredictable for
scientists and thus for the inhabitants potentially affected by tropical
cyclones. Regarding short-run forecasting, it implicitly assumes that all
inhabitants living in areas threatened by a cyclonic system have perfect
access to information (by means of a radio, television, or newspaper).
However, this is certainly not the case in developing countries. Never-
theless, it is probable that important information about the occurrence
of tropical cyclones circulates through other channels such as social
networks, so we cannot totally exclude the fact that individuals would
engage in actions to protect their homes and livelihoods or evacuate.
These issues have several repercussions on the interpretation of our
results. More specifically, the estimated effect could be viewed as the
effect of tropical cyclone shocks after households engage in adaptive
behaviors (if any). However, despite such behaviors, inhabitants cannot
overcome all the negative effects of tropical cyclones, meaning that a
perceptible degradation in their living environment may affect their
decision to have children. Insofar as year-to-year variations in the
exposure to tropical cyclone shocks are (quasi-)random, our reduced-
form panel framework imposes relatively few identifying assumptions
while ensuring a causative interpretation.

5. Results

This section presents the results obtained by estimating the econo-
metric model detailed in the previous section. All estimations were
made with the R software (R Core Team, 2019) using tools provided
by the ‘‘fixest’’ package.33

33 Details about the fixest package can be found via the fol-
owing link: https://cran.r-project.org/web/packages/fixest/vignettes/fixest_
alkthrough.html.
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5.1. Main results

5.1.1. Fertility response to cyclone shocks
Table 3 reports the regression results of the alternative estimations

of Eq. (7). To see how the inclusion of controls for temperature and
rainfall alter the results, we sequentially add both of them to columns
(2) and (4).

Columns (1) and (2) report the results of a model with exposure to
wind speed captured by the two dummies previously described. These
models show the negative impact of cyclonic system wind speed on
women’s likelihood of giving birth. The estimated relationship is con-
sistently negative regardless of the inclusion of controls for temperature
and rainfall. In the model of column (2), being exposed to cyclonic
wind speed between 62 and 118 km/h induces a fall of about 7.8
points in women’s likelihood of giving birth in 𝑡 + 1. An exposure to
cyclonic wind speed of at least 118 km/h decrease the probability of
giving birth by 7.0 points. The alternative specification of the baseline
empirical model consisting in employing the wind speed as a numerical
variable measured in km/h in place of the two dummies confirms
the negative incidence of cyclones on motherhood.34 Finally, others
sensitivity checks which consist of changing our sample restriction by
including mothers who have migrated, by splitting the sample into
two sub-periods or by excluding never-exposed clusters, do not change
the qualitative or quantitative pattern of our baseline results. As a
result, our empirical evidence provides an affirmative answer to our
first working assumption.

Empirical evidence for working assumption 1:
Exposure to tropical cyclones reduces the likelihood of motherhood.

.1.2. Degree of exposure and fertility response to cyclone shocks
To further investigate the nature of the relationship between wind

peed exposure and motherhood, in Appendix B, we present the
ountry-by-country regressions. These regressions show that the six
nvestigated countries have the same qualitative pattern: exposure to
yclones reduces the probability of giving birth. However, depending
n the country, the quantitative patterns differ substantially. Thus,
ountries such as Madagascar or the Philippines show the smallest
ffect. For instance, being exposed to wind speed falling in the [60, 118[
nterval reduces the probability of motherhood in 𝑡+1 by 6.0 points in
he Philippines and by 3.9 points in Madagascar. By contrast, countries

34 In particular, Table 10 of Appendix C shows that a wind speed exposure
in 𝑡 equivalent to one standard deviation, namely 38.8 km/h, induces a fall of
.6 points (38.8 × −0.0668) in women’s likelihood of giving birth in 𝑡 + 1.

https://cran.r-project.org/web/packages/fixest/vignettes/fixest_walkthrough.html
https://cran.r-project.org/web/packages/fixest/vignettes/fixest_walkthrough.html
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such as Haiti, Cambodia, or the Dominican Republic experience the
greatest effects in terms of post-cyclone reduction in fertility. In Haiti,
an exposure to cyclonic wind speed higher than 118 km/h in 𝑡 translates
to a 18.8 points fall in the likelihood of having giving birth. In
comparison to Madagascar, the fertility response in Haiti is seven times
greater. An interesting feature that emerges from the comparison of the
country-by-country regressions is that the effect seems higher in the
countries least frequently exposed to tropical cyclones.3536

In columns (3) and (4) of Table 3, we further explore the link
between the degree of exposure associated with tropical cyclones and
fertility. As Fig. 2 shows, the clusters are exposed to tropical cyclones
in a heterogeneous manner. Summary statistics in Table 2 reveal that
during our sample period, 10% of villages were exposed more than 19
times, while 25% were exposed less than twice. Even after controlling
for fixed effects, it is possible that the effect of cyclonic wind speed on
motherhood depends on the degree of exposure and the preparedness of
people living in the most exposed villages. We may imagine that women
living in the most frequently exposed areas anticipate the higher prob-
ability of exposure when making decisions about childbearing. Thus,
their response to a cyclone shock could differ from mothers living
in non-prone areas. To investigate this issue, we interact wind speed
exposure with a dummy equal to one if the village is exposed more
than nine times to cyclonic systems during the sample period of our
study.37 We refer to these clusters as cyclone-prone areas. Coefficients
associated with this model specification can be found in the last two
columns of Table 3. Again, the inclusion of controls for temperature
and rainfall does not alter the qualitative and quantitative causal effect
of wind speed exposure on motherhood. However, in these models, the
coefficients 𝛽𝑊 1 and 𝛽𝑊 2 capture the effect of wind speed exposure for
mothers living in non-prone areas. Compared with models of columns
(1) and (2), the coefficient is higher in columns (3) and (4). All else
being equal, exposure to cyclonic wind speeds below (resp. above) 118
km/h decreases the probability of having children by 8.4 points (resp.
7.4 points). The interaction term of the two dummies for wind speed
with the dummy for cyclone-prone areas confirms what was previously
suggested. Overall, the decrease in the probability of giving birth after
a cyclonic exposure is lower. For mothers living in the most exposed
areas, the likelihood of giving birth decreases respectively by 6.6 and
6.0 points for exposure below and above 118 km/h.38 This result shows
that the fertility response to a cyclone shock is sensitive to the degree
of exposure associated with the mother’s place of residence and may
be seen as a first piece of evidence that people adapt their behavior
to their living environment.39 In this sense, our empirical results are in
line with our second working assumption.

35 According to the TCE-DAT of Geiger et al. (2018), during the 1985–2015
ample period, Haiti was exposed to cyclones 23 times, Dominican Republic
4 times, and Cambodia 29 times. By contrast, Madagascar and the Philippines
ere exposed 84 and 284 times, respectively. Consequently, Bangladesh, with
total of 50 exposures, falls in the middle of this distribution.
36 Another interesting feature emerging from Table 9 relates to the mag-
itude of the effect for the two countries located on Hispaniola island,
amely Haiti and the Dominican Republic. Haiti is much less developed
han the Dominican Republic (see Table 8). In the theoretical section above,
e highlighted that the post-disaster fertility responses could be related to

he country’s level of development. For Haiti and the Dominican Republic,
his does not seem to be the case. Despite their two very different levels
f development, the fall in the probability of motherhood is of the same
agnitude for cyclonic exposure below 118 km/h. Given that the two countries
ave a similar level of exposure to cyclones, we may conjecture in this special
ase that the degree of exposure shapes the post-cyclone fertility response more
han the level of development.
37 The number nine corresponds to the 75% percentile of the corresponding
istribution (see also Table 2).
38 Each time, the estimated effect in cyclone-prone areas significantly differs

rom the effect in non-prone areas at the 1% level.
39 Results from columns (3) and (4) of Table 10 further confirm this results.
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Table 4
Regression results depending on the number of children ever born.
Source: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015),
CRU dataset of Harris et al. (2014), and authors’ own calculations.

(1) (2)

Max. wind ∈ [60, 118[ in 𝑡 − 1 −3.2871∗∗∗ −3.4531∗∗∗

(0.1932) (0.1939)
Max. wind ≥ 118 in 𝑡 − 1 −2.9180∗∗∗ −3.1103∗∗∗

(0.3188) (0.3191)
Max. wind ∈ [60, 118[ in 𝑡 − 1 × Having 1 child −0.0620 −0.1217

(0.2639) (0.2637)
Max. wind ∈ [60, 118[ in 𝑡 − 1 × Having 2 children −4.9263∗∗∗ −4.9788∗∗∗

(0.2681) (0.2677)
Max. wind ∈ [60, 118[ in 𝑡 − 1 × Having 3 children −10.9403∗∗∗ −10.9900∗∗∗

(0.2403) (0.2401)
Max. wind ≥ 118 in 𝑡 − 1 × Having 1 child 0.5008 0.4058

(0.4947) (0.4938)
Max. wind ≥ 118 in 𝑡 − 1 × Having 2 children −4.2787∗∗∗ −4.4069∗∗∗

(0.4966) (0.4968)
Max. wind ≥ 118 in 𝑡 − 1 × Having 3 children −10.5315∗∗∗ −10.6470∗∗∗

(0.4233) (0.4234)
Rainfall in 𝑡 − 1 – 0.2238∗∗∗

– (0.0151)
Temperature in 𝑡 − 1 – 0.0765

– (0.2462)

Observations 1,025,443 1,025,443

Notes: Significance levels: * 10%, ** 5%, *** 1%. Robust standard errors are in
parentheses and adjusted for clustering at the DHS cluster level. All regressions include
woman fixed effects, annual and woman’s age fixed effects. The term ‘‘Prone’’ refers
to a dummy equal to one when the mother lives in a village exposed to cyclones at
least 10 times during the 1985–2015 period. Rainfall in hundreds of millimeters, and
temperature in Celsius degrees.

Empirical evidence for working assumption 2:
The fertility response to cyclone shocks depends on the degree of

exposure associated with the mother’s living environment: in
cyclone-prone areas, the likelihood of giving birth decreases to a

lesser extent.

.1.3. Children ever born and fertility response to cyclone shocks
As indicated above, the model of Section 2.3 does not provide a

lear message about the post-disaster fertility response with respect to
amily size. Instead, the model suggests that the post-cyclone fertility
esponse is independent of the number of children ever born. We may
evertheless imagine that the post-cyclone response in terms of fertility
ould differ depending on the presence of children in the household.
he association between children ever born and future fertility is
hus worth investigating empirically. Here, we question whether the
ertility response to an adverse shock depends on past fertility. To
onsider this possibility, we run an alternative empirical model in
hich the two exposure variables interact with dummies indicating

he number of children ever born. More specifically, we consider three
ummies for mothers who have one, two, or more than two children
t the time of the exposure.40 The corresponding results are reported
n Table 4. It is noteworthy that as observed above, the inclusion
f rainfall and temperature does not alter the coefficient associated
ith cyclonic exposure. The first two rows of the corresponding table

an be interpreted as the effect of cyclonic exposure on fertility for
omen without children at the time of the exposure. The corresponding

oefficient is negative for both specifications of the empirical model.
e consistently observe negative marginal effects for each interaction

erm, suggesting that the fall in the likelihood of giving birth after
xposure to a cyclonic system is a robust pattern. However, it should
e noted that even if it remains negative, the estimated impact of
yclonic exposure is significantly lower for mothers with two children

40 In our final sample, 19.4% of women already have one child at the time
of the exposure, 16.5% two children, and 30.6% at least three children.
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at the time of exposure. Thus, for a wind speed exposure falling in
the [60, 118[ interval in 𝑡, the likelihood of having a child in 𝑡 + 1
decreases by 8.4 points for mothers with two children versus 3.4 points
for those without children.41 For mothers with three children or more
the corresponding fall in their likelihood of giving birth in 𝑡+1 is equal
to 14.4 and 13.8 points for an exposure below and above 118 km/h
respectively.42 As anticipated, the marginal effect of cyclonic exposure
on fertility depends on the number of children ever born, and mothers
with a large number of children ever born generally tend to reduce their
fertility to a greater extent. However, one of the particularities of our
results relates to mothers with only one child for whom the likelihood
of motherhood is not different from the one of women without children.
This quite puzzling feature could reflect mothers’ preference for having
at least two children among those who already have one child.

Empirical evidence for working assumption 3:
The fertility response to cyclone shocks depends on the number of
children ever born: mothers with at least two children reduce their

fertility more after a cyclone shock.

5.2. Further results

In this subsection, we undertake an in-depth analysis to investigate
three potential features of the causal effect. First, we examine whether
the negative causal effect depends on womens’ past exposure to cy-
clones. Second, we estimate a specification to test if non-linearities exist
in the effect. The results of these alternative estimations are reported
in Tables 5 and 6. The study of other heterogeneity dimensions along
with robustness checks, which consist of changing the sample or the
wind speed variable, are respectively reported in Appendices D and E.

5.2.1. Intensification mechanism
Let us now test the hypothesis that the effect of cyclonic systems

on female motherhood increases over time. Indeed, it is possible that
the impact of a tropical cyclone shock in a given year 𝑡, as revealed
by our panel estimate of Eq. (7), is magnified if the same woman
was also exposed to another tropical cyclone in the past few years
(e.g., in 𝑡 − 1). Similar to Dell et al. (2014), we label this mechanism
the intensification effect. We consider this possibility by interacting
the two dummies for wind speed exposure in a given period 𝑡 with
another dummy variable, which indicates that a given woman 𝑖 was
also exposed to one, two, or more than two tropical cyclones in the
last 5 years before the exposure. We note the corresponding dummy 𝑧𝑖𝑗𝑡
where 𝑗 indicates the woman’s situation regarding her own exposure to
cyclones during the last 5 years. Our set of interacted variables is thus
�̃� 𝑚

𝑖𝑗,𝑡−1 = 𝑊 𝑚
𝑖,𝑡−1×𝑧𝑖𝑗,𝑡−1 with 𝑚 ∈ [1, 2]. The estimated equation now has

the following form:

𝑦𝑖𝑡𝑎𝑐 = 𝛽𝑊
1
×𝑊 1

𝑖,𝑡−1 + 𝛽𝑊
2
×𝑊 2

𝑖,𝑡−1 + 𝛽𝑅 × 𝑅𝑖,𝑡−1 + 𝛽𝑇 × 𝑇𝑖,𝑡−1

+
𝐽=3
∑

𝑗=1

𝑀=2
∑

𝑚=1

(

𝜔𝑊 𝑚

𝑗,𝑡−1 × �̃� 𝑚
𝑖𝑗,𝑡−1

)

+ 𝜇𝑖 + 𝜂𝑡 + 𝛼𝑎 + 𝑢𝑖𝑡𝑎𝑐 , (8)

where 𝜔𝑊 𝑚

𝑗,𝑡−1 are the parameters to be estimated. Their interpretation
differs from that of 𝛽𝑊 𝑚 . The latter corresponds to the effect of cyclonic
exposure in period 𝑡 − 1 on the current likelihood of motherhood.
However, the second coefficient 𝜔𝑊

1 captures a different effect, namely
the incremental effect of exposure to cyclones on motherhood in period

41 Table 11 presents the results when wind speed is measured as a numerical
ariable and in km/h. We find that for mothers with two children (resp. more
han two children) the corresponding fall in their likelihood of giving birth in
+ 1 after a wind speed shock of a standard deviation magnitude is equal to
.8 points (resp. 5.0 points).
42 Every time, the estimated effect associated with the interaction term
ignificantly differs from the effect for women without children at the 1%

evel.
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𝑡−1 if the woman was exposed to only one additional tropical cyclone
in the 5 years preceding the exposure. Consequently, the intensification
parameters, namely 𝜔𝑊

𝑗,𝑡−1, explore whether the effect of a tropical
cyclone shock depends on the pattern of previous shocks.

The last four columns of Table 5 explores the possibility of intensi-
fication effects by adding �̃� 𝑚

𝑖,𝑡−1 to the model.43 This corresponds to the
regression results of Eq. (8) and includes all interaction terms. Overall,
there is no evidence for the existence of intensification mechanisms
in the case of exposure to wind speed between 60 and 118 km/h.
The three 𝜔𝑊 1

𝑗,𝑡−1 are estimated to be significantly positive. This finding
suggests that the impact of wind speed exposure in 𝑡 − 1 is dampened
if between 𝑡 − 2 and 𝑡 − 6, the mother was also exposed to tropical
cyclones. Let us consider that before the exposure in 𝑡 − 1, the mother
was exposed to two tropical cyclones. In this case, the total effect of
wind speed exposure is a fall of 6.7 points (namely, 𝛽𝑊 1 +𝜔𝑊 1

2 ) in the
likelihood of motherhood.4445 Overall, the decrease in the probability
of motherhood is lower for mothers exposed in a recent past, which
reflects the empirical evidence for working assumption 2: regularly
exposed mothers appear to be less sensitive to cyclone shocks.

5.2.2. Non-linearities
The literature exploring the effect of weather shocks on economic

variables often indicates that the effects are likely non-linear. In par-
ticular, Emanuel (2011) and Nordhaus (2010) suggest that tropical
cyclone damage exponentially increases with the level of wind speed
experienced on the ground. Nevertheless, this is not straightforward, as
other socioeconomic variables also respond non-linearly to wind speed
exposure, especially when household micro-data is used. To further
investigate a possible non-linear relationship, we add another dummy
for wind speed in our econometric model. This approach has two main
advantages. First, it is simple to implement, and second, it is flexible
without imposing any functional forms on our wind speed explanatory
variable. Hence, we construct an additional dummy by splitting 𝑊 2 in
two bins. The first one 𝑊 2′ is equal to one when wind speed falls within
the [118, 153[ interval. The second one 𝑊 3 is one when cyclonic wind
speed is at least of 153 km/h.46 We report the related results with all
the aforementioned dummies in the estimated equation in Table 6.

Given the standard errors associated with point estimates, we can-
not conclude that the post-fertility effect of the tropical cyclone shock
is non-linear with maximum wind speeds. In particular, coefficients
associated with the highest wind speed, namely 𝛽𝑊 3 , is not significantly
different from 𝛽𝑊 2′ . It should also be observed that standard errors
of coefficients increase with the level of wind speed. This probably
indicates a loss of statistical power due to the low frequency of se-
vere cyclones.47 Overall, we do not find evidence that for the most
extreme phenomenon, the estimated effect between cyclonic exposure
and fertility is magnified.48

43 Table 12 of Appendix C explores the existence of intensification mechaism
with a model using wind speed in place of dummies for exposure.

44 For each coefficient, we verify whether the total effect significantly differs
from 𝛽𝑊 1 .

45 Regarding an exposure to cyclonic wind at least equal to 118 km/h, it
seems that the opposite is observed as coefficients associated to the 𝜔𝑊 2

𝑗 is
negative. However, two out of three coefficients are not significant and for the
only significant coefficient the total effect (𝛽𝑊 2+𝜔𝑊 2

1 ) is of the same magnitude
than the one of the baseline, namely 𝛽𝑊 2 .

46 Exposure to low wind speed occurs much more frequently than exposure
to high wind speed. For instance, 17.7% of the cluster-year observations are
exposed to wind speeds between 63 and 117 km/h, whereas only 0.7% are
exposed to wind speeds exceeding 177 km/h. Comprehensive statistics about
exposure frequency is available upon request.

47 To further check the existence of a non-linear model, we run another
regression with bins that have the same amplitude. Again, we do not find
any significant difference between coefficients associated with the highest and
lowest wind speeds. Corresponding results are available upon request.

48 The absence of a linear effect of cyclone exposure on the probability
of having children indicates that the effect is probably fully realized at
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Table 5
Alternative specifications: Intensification.
Source: Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of Harris et al. (2014), and authors’
own calculations.

Baseline Model with intensification

𝛽𝑊 𝑚

1 𝛽𝑊 𝑚

1 𝜔𝑊 𝑚

1 𝜔𝑊 𝑚

2 𝜔𝑊 𝑚

3

Max wind ∈ [60, 118[ in 𝑡 − 1 −7.7960∗∗∗ −7.8067∗∗∗ 0.4848∗∗ 1.1033∗∗∗ 1.2567∗∗∗

(0.1335) (0.1740) (0.2322) (0.2675) (0.2687)
Max wind ≥ 118 in 𝑡 − 1 −6.9667∗∗∗ −5.2426∗∗∗ −1.6707∗∗∗ −0.6872 −0.8683

(0.2129) (0.3734) (0.4952) (0.6085) (0.5208)

Notes: Significance levels: * 10%, ** 5%, *** 1%. Robust standard errors are in parentheses and adjusted for clustering at the DHS cluster level.
All regressions include woman fixed effects, annual woman’s age fixed effects and controls for rainfall and precipitation in 𝑡−1. Maximum wind
speed is measured in km/h, rainfall in hundreds of millimeters, and temperature in Celsius degrees.
For the baseline row, we report the value of 𝛽𝑊1 .
able 6
lternative specifications: dummies for non-linearities.
ource: Sources: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al.
2015), CRU dataset of Harris et al. (2014), and authors’ own calculations.

𝛽𝑊 1 𝛽𝑊 2′ 𝛽𝑊 3

Non-linearities −7.2473*** −6.2145*** −6.5293***
(0.1212) (0.2415) (0.3157)

Notes: Significance levels: * 10%, ** 5%, *** 1%. Robust standard errors are in
parentheses and adjusted for clustering at the DHS cluster level. All regressions include
woman fixed effects, annual fixed effects, woman’s age fixed effects and controls for
rainfall and precipitation in 𝑡− 1. Maximum wind speed is measured in km/h, rainfall
n hundreds of millimeters, and temperature in Celsius degrees.
or the baseline row, we report the value of 𝛽𝑊1 .

6. Concluding remarks

The economic literature is still inconclusive about the direction of
the effect of natural disasters on fertility. Theoretical models based on
the quantity–quality approach of Becker (1960) as well as empirical
estimates observe both a positive and negative association between
the two phenomena. Given this disparity, our paper aimed to tackle
this issue in the context of six developing countries that are regularly
impacted by cyclonic systems. Our empirical strategy significantly im-
proves the body of knowledge, because it exploits spatially geolocated
household micro-data along with weather data that captures true cy-
clonic exposure at a high resolution (Geiger et al., 2018). Combining
these two types of spatial data enables us to construct panel data to
determine whether a given mother gives birth in a specific period and
whether she is exposed to cyclonic wind speeds. Our panel data allow
us to retrieve the causal effect of tropical cyclone wind speed shocks
while using a minimal set of identifying assumptions (Dell et al., 2014).

After presenting a theoretical model from which three working
assumptions about the effect of cyclonic exposure on fertility are de-
rived, we provide empirical evidence about these important issues.
Improving our understanding of the links between cyclones and fertility
is imperative in order to develop appropriate public policy responses,
particularly in poor countries. Our main results indicate that exposure
to tropical cyclone wind speeds decreases the probability of giving
birth, which is in line with (Pörtner, 2014; Davis, 2017), and Norling
(2022) but in contrast with (Cohan and Cole, 2002; Hamilton et al.,
2009; Evans et al., 2010), and Berlemann and Wenzel (2018). Het-
erogeneity analyses further suggest that the magnitude of the effect

moderate wind levels. From our point of view, this is still consistent with our
modeling of cyclonic exposure as a negative income shock (see Section 2.3)
as the sensitivity of agricultural assets is probably higher than other assets.
Consequently, even a moderate exposure to cyclonic systems, says 110 km/h,
could induce important income losses for people working in the agricultural
sectors. In our final micro data, 67% of households live in rural areas and,
given the sample of country considered in this paper, we could imagine that

their income depend for a large part on the agricultural sector.

12 
varies with the degree of exposure to cyclones associated with the
household’s living environment as well as the number of children ever
born. First, in cyclone-prone areas, the likelihood of giving birth falls to
a lesser extent, thus pointing to a process of adaptation among exposed
populations. In this sense, our findings echo previous studies, suggest-
ing that humans can adapt their behaviors to climate change (Casey
et al., 2019; Thiede et al., 2022). Second, mothers with at least two
children reduce their fertility more after a cyclone shock. This result
may help guide the design of public policies in response to shocks by
taking into account the family structure in the affected territory, which
could also impact demographic dynamics. Further refinements of these
main results indicate that past exposure to cyclones leads to a weaker
decline in fertility. Nevertheless, our empirical model does not indicate
non-linearities in the effect.

The panel estimates proposed in this paper are useful to highlight
the fertility response to a tropical cyclone shock. In light of this, our
estimates respond only partially to the question of how mothers adjust
their family size when the risk of cyclones, namely the degree of cy-
clonic exposure, increases. This issue is of particular importance, since
climate change has the potential to alter the frequency, spatial extent,
and characteristics of the most extreme tropical cyclone events (Knut-
son et al., 2010; IPCC, 2019; Knutson et al., 2020). Combined with the
fact that climate change may have an incidence on the opportunity
cost of having children, these constitute an additional challenge for
public policy makers. To deal with this, we believe that policy makers
should promote policies that focus on family planning and influence the
demand for children, for instance, by reducing household poverty and
increasing girls’ education. We believe that such investigations could
improve our understanding of the mechanisms that explain fertility
behavior. This is, however, beyond the scope of this paper, although
it is on our agenda for future research.
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Table 7
Sample mean for a selection of women’s characteristics y DHS wave.
Source: Sources: DHS and authors’ own calculations.

Units Woman at the time of the interview Panel of woman-year observations

Country and DHS wave Year Obs. Age 1st
birth

Age 1st
marriage

No. child. Years
educ.

No educ. Prim. educ Sec. educ. Tert. educ. Age MW MW > 0 No. exp. No. MW
∈ [60, 118[

No. MW
≥ 118

Obs.

Bangladesh-III 2000 1,420 17.64 14.87 2.66 3.07 0.53 0.29 0.15 0.04 26.25 16.68 88.50 3.00 2.71 0.30 20,098
Bangladesh-IV 2004 1,554 17.44 14.81 2.79 2.81 0.48 0.30 0.18 0.04 26.52 12.68 90.04 2.74 2.44 0.31 25,019
Bangladesh-V 2007 1,427 17.72 15.00 2.86 3.16 0.40 0.33 0.23 0.05 26.63 15.74 99.02 3.29 2.65 0.65 25,149
Dominican Republic- V 2007 12,512 19.60 17.83 2.67 4.03 0.05 0.46 0.32 0.16 26.88 24.84 94.03 5.31 4.22 1.10 230,498
Haiti-IV 2000 3,376 20.62 19.42 3.38 3.13 0.44 0.40 0.15 0.00 27.87 11.22 95.94 1.97 1.71 0.28 52,478
Haiti-V 2006 3,005 20.58 19.20 3.60 3.35 0.40 0.40 0.19 0.01 27.42 15.17 84.23 3.54 3.33 0.25 54,213
Haiti-VII 2017 4,230 20.66 20.83 3.21 3.85 0.25 0.41 0.32 0.02 25.78 25.91 85.63 6.43 6.00 0.48 78,051
Cambodia-IV 2000 5,937 20.95 19.10 3.42 3.13 0.38 0.52 0.09 0.01 27.86 5.42 81.34 1.11 1.06 0.05 96,294
Cambodia-V 2005 4,923 20.81 19.10 3.47 3.08 0.31 0.56 0.12 0.01 27.21 5.36 84.75 1.27 1.20 0.08 89,582
Madagascar-III 1997 2,450 18.72 16.29 3.89 2.57 0.35 0.50 0.14 0.01 26.72 25.12 105.80 3.29 2.19 1.11 30,788
Madagascar-V 2009 7,740 18.99 14.81 3.84 2.69 0.42 0.48 0.10 0.01 26.14 25.67 102.62 5.17 3.71 1.48 135,450
Philippines-IV 2003 2,480 21.71 20.46 3.02 3.97 0.04 0.31 0.38 0.27 27.34 48.68 98.85 9.59 7.67 1.93 43,563
Philippines-V 2008 2,651 21.72 20.58 3.14 3.99 0.04 0.29 0.39 0.28 27.10 45.77 97.45 10.62 8.64 2.01 51,572
Philippines-VII 2017 4,948 21.74 20.67 2.95 3.80 0.02 0.22 0.45 0.31 25.82 47.21 97.48 11.02 8.92 2.14 92,688

Final sample – 58,653 20.12 18.25 3.21 3.43 0.25 0.42 0.24 0.09 26.80 23.26 93.13 4.97 4.05 0.94 1,025,443

Notes: Statistics are computed on the sample included in our analysis after applying the sample restrictions described in Section 3.1. Wind speed corresponds to the maximum wind speed experienced and is expressed in km/h. ‘‘MW’’ stands for
‘‘maximum wind speed’’.
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Table 8
Macroeconomic indicators.
Source: World Bank, UNDP, and FERDI.

Variables Bangladesh Cambodia DR Haiti Madagascar Philippines

Demographic
Pop. (in thousands) 157 830 15 417 10 405 10 563 24 850 103 031
Population growth 1.2 1.3 1.2 1.4 2.6 1.7
Area (in km2) 147 630 181 040 48 670 27 750 587 295 300 000
Density 1 213 87 215 383 43 346

Economic and poverty
GDP per capita 4217 3412 14 565 2935 1508 7123
Annual GDP growth 6.6 7 6.9 2.6 3.1 6.3
PHR 51.6 – 14.3 58 92.4 34.6

Indicators of development
HDI score 0.579 0.563 0.722 0.493 0.512 0.682
HDI rank 139 143 99 163 158 116
Total fertility rate 2.1 2.6 2.4 3.1 4.2 3
Birth rate 19.2 22.3 20.6 25.6 32.8 23.2
EVI 24.28 35.26 21.27 28.80 35.31 24.59

Notes: DR stands for the Dominican Republic. Density is measured as the number of people per km2, GDP per capita is the purchasing power parity in USD, and
HR corresponds to the poverty headcount ratio in USD per day in % of population for 2012 and 2016.
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ppendix B. Country-by-country analysis

.1. Macroeconomic context

Table 8 presents the macroeconomic statistics for 2015 for the six
ountries comprising our sample.49 We choose this year because the
ample period studied in this paper ends in 2015. These statistics allow
s to better understand the differences in the magnitude of effects in
ur model.

The six countries included in our sample had a total population of
ore than 320 million people in 2015. In the majority, the population
ensity was higher than the global average (57 inhabitants per km2).
angladesh and the Philippines are particularly populous, with 157
illion and 103 million inhabitants, respectively. Given the smaller

rea of Bangladesh (147,630 km2), its population density of 1,213
nhabitants per km2 makes it one of the 10 most densely populated
ountries on the planet. The Philippines and Haiti also have high
opulation densities, with 346 and 383 inhabitants per km2, respec-
ively, although the Philippines has a much larger area (300,000 km2).
he Dominican Republic and Haiti both have a population of about
0 million inhabitants, although the territory of the former is almost
wice that of the latter (48,670 vs. 27,750 km2), thus resulting in its
ower population density (215). Finally, Cambodia and Madagascar
ave lower population densities of 87 and 43 inhabitants per km2,
espectively, due to their large territories, particularly Madagascar with
87,295 km2. In most of these countries, their population growth rates
xceed the global rate of 1.2. Madagascar has the highest population
rowth rate.

Aside from the Dominican Republic, these countries are among the
oorest on the planet. Madagascar is the poorest country included in
he study, with a GDP per capita of USD 1,508. The per capita income
f Haiti, Bangladesh, and Cambodia ranges between USD 2,935 and
,217, while the Philippines has a higher per capita income of USD
,123. By contrast, the per capita income of the Dominican Republic
s much higher than the other countries in the group, standing at

49 These statistics are mainly taken from the World Bank (https://data.
orldbank.org/). Human Development Index (HDI) data are taken from the
nited Nations Development Program (UNDP, 2016), and the Economic
ulnerability Index (EVI) data come from the Foundation for Research and
tudies on International Development (FERDi) (https://ferdi.fr/en/indicators/

-retrospective-economic-vulnerability-index).

14 
USD 14,565 or twice that of the Philippines. A high proportion of the
population in these countries lives below the poverty line. Indeed, as
a percentage of the population, the poverty headcount ratio of USD
3.65 per day is 92.4% for Madagascar, which is the poorest country in
the sample.50 More than half of the population in Bangladesh and Haiti
ive below the poverty line with 59.3% and 58% of the population,
espectively. The poverty headcount ratio in the Philippines is similar
o the world rate (32.7%) with 34.6%. Only the Dominican Republic
xceeds the world rate with 14.3%. Thus, the Dominican Republic
learly stands above the sample in terms of wealth. We may also draw
ttention to the wealth difference between the Dominican Republic and
aiti, which share the same island.

These countries are characterized by high but heterogeneous eco-
omic growth rates. Indeed, the growth rate is much higher than the
orld rate (3.1%) for Cambodia (7%), the Dominican Republic (6.9%),
angladesh (6.6%), and the Philippines (6.3%), while it is equivalent
or Madagascar (3.1%) and lower for Haiti (2.7%). Development indi-
ators lend support to the economic data. Indeed, the HDI places the six
tudied countries between 99th and 163rd place in the global rankings.
ore precisely, Haiti and Madagascar belong to the group of countries
ith low human development (< 0.550), while Cambodia, Bangladesh,
nd the Philippines have medium human development (between 0.550
nd 0.700). Only the Dominican Republic is in the high development
roup (> 0.700).

Focusing on birth, let us explore two indicators: the ‘‘total fertility
ate’’, which represents the number of children born to a woman if she
ere to live to the end of her childbearing years and bear children in
ccordance with age-specific fertility rates of the specified year, and
he ‘‘crude birth rate’’, which indicates the number of live births per
,000 midyear population. These two indicators show the strong birth
ynamics in these territories. Madagascar has the highest rates with 4.2
nd 32.8, respectively. The total fertility rate is higher rate than the
lobal rate (2.5) in Haiti, the Philippines, and Cambodia, whereas it is
ower in the Dominican Republic and Bangladesh. Finally, the birth rate
s higher than the global value (19.1) in all these countries on account
f the young population of reproductive age.

Finally, let us look at the Economic Vulnerability Index (EVI) de-
ined by the United Nations Committee for Development Policy. The
VI aims to measure the structural vulnerability of developing coun-
ries following their exposure to shocks and the magnitude of these

50 For this indicator, we chose 2012, because it has the most complete data,
with the exception of Bangladesh, whose most complete year is 2016, and
Cambodia, for which this indicator is not available.

https://data.worldbank.org/
https://data.worldbank.org/
https://ferdi.fr/en/indicators/a-retrospective-economic-vulnerability-index
https://ferdi.fr/en/indicators/a-retrospective-economic-vulnerability-index
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Table 9
Country-by-country regression results.
Source: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of Harris et al. (2014), and authors’ own calculations.

Bangladesh Haiti Cambodia Madagascar Philippines Dominican Republic
(1) (2) (3) (4) (5) (6)

Max wind ∈ [60, 118[ in 𝑡 − 1 −7.8711∗∗∗ −20.0555∗∗∗ −16.9176∗∗∗ −3.9462∗∗∗ −6.0487∗∗∗ −18.8681∗∗∗

(0.5243) (0.5029) (0.6412) (0.3543) (0.2877) (0.4542)
Max wind ≥ 118 in 𝑡 − 1 −8.5338∗∗∗ −18.8241∗∗∗ −22.3535∗∗∗ −2.6892∗∗∗ −6.3965∗∗∗ −33.1409∗∗∗

(1.3322) (0.8752) (1.2214) (0.4814) (0.3827) (0.9374)
Rainfall in 𝑡 − 1 −0.0726 0.0951 −0.2199∗∗ 0.0409 0.1100∗∗∗ −0.2507∗∗∗

(0.0744) (0.0739) (0.0908) (0.0568) (0.0293) (0.0662)
Temperature in 𝑡 − 1 2.0355 1.6805 −4.0677 0.8754 4.5630∗∗∗ 1.7959

(2.6323) (4.2202) (2.8561) (1.5790) (1.3234) (2.5171)

Observations 70,266 184,742 185,876 166,238 187,823 230,498

Notes: Significance levels: * 10%, ** 5%, *** 1%. Robust standard errors are in parentheses and adjusted for clustering at the DHS cluster level. All regressions
nclude woman fixed effects, annual fixed effects, woman’s age fixed effects and controls for rainfall and precipitation in 𝑡−1. Maximum wind speed is measured

in km/h, rainfall in hundreds of millimeters, and temperature in Celsius degrees.
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Table 10
Main regression results — Wind speed in km/h.
Source: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015),
CRU dataset of Harris et al. (2014), and authors’ own calculations.

(1) (2) (3) (4)

Max. wind in 𝑡 − 1 −0.0651∗∗∗ −0.0668∗∗∗ −0.0775∗∗∗ −0.0793∗∗∗

(0.0014) (0.0017) (0.0018) (0.0018)
Max. wind in 𝑡 − 1 × Prone – – 0.0305∗∗∗ 0.0304∗∗∗

– – (0.0024) (0.0024)
Rainfall in 𝑡 − 1 – 0.2016∗∗∗ 0.2043∗∗∗

– (0.0150) – (0.0150)
Temperature in 𝑡 − 1 – 0.9622∗∗∗ – 0.7062∗∗∗

– (0.2429) – (0.2453)

Observations 1,025,443 1,025,443 1,025,443 1,025,443

Notes: Significance levels: * 10%, ** 5%, *** 1%. Robust standard errors
re in parentheses and adjusted for clustering at the DHS cluster level. All
egressions include woman fixed effects, annual fixed effects and woman’s age
ixed effects. The term ‘‘Prone’’ refers to a dummy equal to one when the
other lives in a village exposed to cyclones at least 10 times during the
985–2015 period. Maximum wind speed is measured in km/h, rainfall in
undreds of millimeters, and temperature in Celsius degrees.

hocks (Guillaumont, 2009). We see that the two most vulnerable
ountries are Madagascar and Cambodia, with scores of 35.31 and
5.26, respectively. Haiti has a score of 28.80. Although the Philippines
nd Bangladesh have an equivalent score of 24.59 and 24.28, the
ormer has a more advanced level of development in terms of GDP and
DI. The Dominican Republic is also the least vulnerable country in

he sample with a score of 21.27.

.2. Regression results

ppendix C. Alternative specification of the baseline model

See Tables 10–12.
ppendix D. Exploring other heterogeneity dimensions

.1. Differences in urban–rural areas

According to Kochar (1999), Evans et al. (2010), and Pörtner
2014), the occurrence of a cyclone modifies the shadow price of having
n additional child, especially if couples live in areas that are more
rone to negative impacts. In developing countries, a large proportion
f the population lives in rural areas and depends on agricultural activ-
ties. As stressed by Dessy et al. (2019), the characteristics of economic

ife differ drastically in rural and urban areas. In rural areas, women s

15 
Table 11
Regression results depending on the number of children ever born — Wind speed in
km/h.
Source: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015),
CRU dataset of Harris et al. (2014), and authors’ own calculations.

(1) (2)

Max. wind in 𝑡 − 1 −0.0273∗∗∗ −0.0289∗∗∗

(0.0018) (0.0018)
Max. wind in 𝑡 − 1 × Having 1 child 0.0019 0.0013

(0.0024) (0.0024)
Max. wind in 𝑡 − 1 × Having 2 children −0.0428∗∗∗ −0.0434∗∗∗

(0.0024) (0.0024)
Max. wind in 𝑡 − 1 × Having > 2 children −0.1004∗∗∗ −0.1009∗∗∗

(0.0023) (0.0023)
Rainfall in 𝑡 − 1 – 0.2125∗∗∗

– (0.0151)
Temperature in 𝑡 − 1 – 0.3646∗

– (0.2436)

Observations 1,025,443 1,025,443

Notes: Significance levels: * 10%, ** 5%, *** 1%. Robust standard errors are in
parentheses and adjusted for clustering at the DHS cluster level. All regressions
include woman fixed effects, annual fixed effects, woman’s age fixed effects
and controls for rainfall and precipitation in 𝑡 − 1. Maximum wind speed is

easured in km/h, rainfall in hundreds of millimeters, and temperature in
elsius degrees.

able 12
lternative specifications: Intensification.
ource: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015),
RU dataset of Harris et al. (2014), and authors’ own calculations.

𝛽𝑊1 𝜔𝑊
1 𝜔𝑊

2 𝜔𝑊
3

Baseline −0.0676***
(0.0014)

Intensification −0.0679∗∗∗ 0.0052∗∗ 0.0129∗∗∗ 0.0146∗∗∗

(0.0018) (0.0023) (0.0028) (0.0026)

Notes: Significance levels: * 10%, ** 5%, *** 1%. Robust standard errors are in
parentheses and adjusted for clustering at the DHS cluster level. All regressions
include woman fixed effects, annual fixed effects, woman’s age fixed effects
and controls for rainfall and precipitation in 𝑡 − 1. Maximum wind speed is

easured in km/h, rainfall in hundreds of millimeters, and temperature in
elsius degrees.
or the baseline row, we report the value of 𝛽𝑊1 .

ontribute actively to agrarian activities, meaning that their labor sup-
ly makes an important input to this production activity. By contrast,
n urban areas, it is easier for women to diversify their professional
ctivities, as they have greater employment opportunities in the service
ector. Thus, women living in urban areas depend less on activities that
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Table 13
Exposure to tropical cyclone wind speed for models including heterogeneity dimensions
by interaction terms.
Source: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015),
CRU dataset of Harris et al. (2014), and authors’ own calculations.

𝑗 = rural 𝑗 = low educated

Max wind ∈ [60, 118[ in 𝑡 − 1
−7.1107*** −6.2379***
(0.1893) (0.1683)

Max wind ≥ 118 in 𝑡 − 1
−6.5568*** −5.7530***
(0.3166) (0.2690)

Max wind ∈ [60, 118[ in 𝑡 − 1 × (𝑗 = 1)
−1.0361*** −2.6039***
(0.0019) (0.2172)

Max wind ≥ 118 in 𝑡 − 1 × (𝑗 = 1)
−0.6510*** −2.0749***
(0.0023) (0.3776)

Observations 1,025,443 1,025,443

Significance levels: * 10%, ** 5%, *** 1%. Robust standard errors are in
parentheses and adjusted for clustering at the DHS cluster level. All regressions
include woman fixed effects, annual fixed effects, woman’s age fixed effects
and controls for rainfall and precipitation in 𝑡 − 1.

may be negatively impacted by tropical cyclone exposure unlike their
rural counterparts engaged in agricultural activities. Consequently, it
is likely that the opportunity cost of motherhood and childrearing is
less linked to tropical cyclone exposure in urban compared with rural
areas. To test this mechanism, we introduce another heterogeneity
dimension into our econometric framework using interaction terms. We
interact the wind speed variables with a dummy indicating whether the
household lives in a rural area.

The econometric model of column (1) of Table 13 shows the cor-
responding estimates. In rural areas, exposure to tropical cyclone wind
speed is associated with a greater decrease in the probability of giv-
ing birth. The difference between the estimated marginal effects is
significant.

D.2. Differences by education

The last heterogeneity dimension explored here involves interacting
wind speed exposure with a dummy that indicates whether the mother
has a low level of education at the time of the interview. Indeed, we
conjecture that low-educated women have a greater chance of working
in the agricultural sector compared with those with a high level of
education, meaning that the post-cyclone opportunity cost of having
children would be greater for the former. The corresponding regression
results are displayed in the second column of Table 13. As anticipated,
the reduction in the likelihood of giving birth after a cyclone shock is
higher for low-educated mothers. More specifically, the total marginal
effect for an exposure to wind speed below 118 km/h is equal to 8.8
points.

Appendix E. Robustness analysis

The panel estimates presented in the main text reveal that a tropical
cyclone shock leads to a significant fall in women’s likelihood of giving
birth. These findings could be sensitive to the different choices regard-
ing the data, model, and specification when estimating the baseline
model. To ensure that the main message of this paper holds true,
we check the robustness of our results according to five dimensions:
(i) alternative formulations of the tropical cyclone variable, (ii) the
inclusion of migrant mothers in our final sample, (iii) the sample
period, and (iv) the inclusion of never-exposed clusters. The results of

these alternative estimations are reported in Table 14.

16 
Tropical cyclone variable. An important robustness check is to establish
whether the results are similar when using alternative formulations of
the measure of tropical cyclone exposure. We address this issue by
considering two other measures of the incidence of tropical cyclones.

Instead of directly using the wind speed experienced by a given
spatial unit, many recent papers construct ad-hoc indices of potential
destruction (also known as a damage function).51 The reasoning be-
hind these indices follows (Emanuel, 2011). More specifically, below
a certain threshold �̄� , wind speed is unlikely to provoke substantial
physical damage, so the level of physical destruction could be assumed
to be zero. However, once the wind speed generated by the cyclonic
system is above �̄� , the level of damage increases in a non-linear fash-
ion. To understand how such alternative measures of tropical cyclone
exposure affect our conclusion, we run two other checks.

In the first check, we follow a similar strategy as (Strobl, 2012) and
construct the following potential destruction index:

𝐷𝑖𝑡 = 𝑊 𝜁
𝑖𝑡 if 𝑊𝑖𝑡 > �̄� and zero otherwise (9)

When constructing 𝐷𝑖𝑡, two parameters are of importance, because
hey shape the functional form: 𝜁 , which corresponds to the parameter
hat links the maximum surface wind speed to the level of damage,
nd �̄� , which is the threshold above which the level of destruction
ecomes perceptible. Different values have been proposed for these
wo parameters, although related empirical evidence is scarce, espe-
ially for developing countries. In the US context, Emanuel (2005)
uggests that the level of damage can be studied by the cubic value
f the maximum wind speed at the surface. By contrast, Nordhaus
2006) suggests that destructiveness increases with the eighth power
f maximum wind speed.52 Concerning �̄� , Strobl (2012) and Bertinelli
nd Strobl (2013) set it to 177 km/h (value above which a cyclonic
ystem becomes category 3 on the Saffir-Simpson scale), while (Mohan
nd Strobl, 2017) select a value of 119 km/h (value above which
cyclonic system becomes category 1 on the Saffir-Simpson scale).
ithout further evidence about these parameters, we choose 𝜆 = 3 as

uggested by Emanuel (2005) and Strobl (2011), and we fix �̄� = 93
m/h as indicated by Emanuel (2011). Column (2) of Table 14 provides
he results of this alternative estimation.

In the second check, we follow (Emanuel, 2011) and construct the
ollowing index 𝑓𝑐𝑡 to capture the proportion of damaged property:

𝑐𝑡 =
𝑣3𝑐𝑡

1 + 𝑣3𝑐𝑡
(10)

with

𝑣𝑐𝑡 =
𝑀𝐴𝑋

(

𝑊𝑐𝑡 − �̄� , 0
)

𝑊 ∗ − �̄�
. (11)

Where 𝑐 denotes a cluster and 𝑊 ∗ corresponds to the threshold at
which half of buildings are damaged. Again, we lack strong empirical
evidence when choosing an appropriate value for 𝑊 ∗. Here, as we fix
�̄� to 93 km/h, we set 𝑊 ∗ to 166 km/h, namely the wind speed thresh-
old at which the Regional Specialized Meteorological Center (RSMC) of
La Réunion labels a tropical system as ‘‘intense’’. Corresponding results
are reported in column (3) of Table 14.

A closer inspection of columns (2)-(3) of Table 14 leads us to
make a few comments. First, the qualitative patterns of our results
are entirely preserved, since the estimated coefficients for the two
different measures of wind speed are all negative. Second, the observed
quantitative patterns are broadly consistent with our baseline estimate,
even if the non-linear nature of the wind speed variable of the models
has some interpretative incidence. Thus, for a level of destruction in

51 Examples include (Strobl, 2011, 2012; Bertinelli and Strobl, 2013),
and Mohan and Strobl (2017).

52 In the context of US coastal counties, Strobl (2011) uses an estimate of
3.17 for 𝜁 .
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Table 14
Alternative specifications: robustness.
Source: DHS, TCE-DAT of Geiger et al. (2018), CHIRPS dataset of Funk et al. (2015), CRU dataset of Harris et al. (2014), and authors’ own calculations.

Baseline Wind speed variable With migrants Sample period Only exposed clusters
(1) (2) (3) (4) (5) (6) (7)

𝛽𝑊 1

1
−7.7960*** −8.19𝑒06 ∗∗∗ −6.6639∗∗∗ −6.9615∗∗∗ −8.0620∗∗∗ −7.4588∗∗∗ −7.8894∗∗∗

(0.1335) (4.78𝑒−07) (0.4940) (0.0810) (0.1818) (0.1420) (0.1072)

𝛽𝑊 2

1
−6.9664∗∗∗ −6.5696∗∗∗ −6.5419∗∗∗ −7.2032∗∗∗ −7.0865∗∗∗

(0.2129) (0.1427) (0.3085) (0.2457) (0.1875)

Obs. 1,025,443 1,025,443 1,025,443 1,785,137 526,822 498,621 925,970

Notes: Significance levels: * 10%, ** 5%, *** 1%. Robust standard errors are in parentheses and adjusted for clustering at the DHS cluster level. All regressions
nclude woman fixed effects, annual fixed effects, woman’s age fixed effects and controls for rainfall and precipitation in 𝑡 − 1.

The model of column (1) corresponds to the baseline model. The model of column (2) uses the potential destruction index from Eq. (9) instead of the baseline
wind speed variable. The model of column (3) uses the index from Eq. (10) instead of the baseline wind speed variable. The model of column (4) corresponds to
the estimation of the baseline estimate for a sample including migrant mothers. The results of columns (5) and (6) correspond to the models for the sample periods
of 1985–1997 and 1997–2015, respectively. The results of column (7) correspond to the estimation of the baseline estimate for a sample without non-exposed
clusters.
𝑡 − 1 equivalent to the standard deviation of the damage function, the
models of column (3) (resp. column (2)) indicate that a mother is 0.5
points (resp. 0.8) less likely to give birth in 𝑡. The negative effects are
substantially higher when considering events with extreme wind speeds
of 250 km/h. In particular, for this level of exposure, the probability
of motherhood falls by 6.1 points (resp. 12.8 points) for the potential
destruction index from Eq. (10) (resp. Eq. (9)).

Overall, other measures of tropical cyclone exposure show that our
main result does not depend on the choice of the wind speed variable.
The two alternative measures used in this section nevertheless have
several limitations as they rely on parameters for which the evidence
is missing for the six countries studied in the paper (models of columns
(2) and (3)). For this reason, our preferred specification directly uses
dummies based on the wind speed variable of Geiger et al. (2018).

Sample restriction regarding migration. In the main text, the results are
based on a sample of mothers declaring that they had always lived in
their current home. We thus restrict our sample to non-migrant mothers
to ensure that when iterating backwards, we retrieve only true exposure
to cyclones. Indeed, the risk of including migrant mothers is that
tropical cyclone exposure may be attributed to a woman who actually
lived in a non-affected area at the time of the event. Furthermore, the
DHS includes a variable indicating the number of years of residence
in the current home. However, as highlighted by Kudamatsu (2012),
this declarative variable could be subject to recall bias. For these two
reasons, we exclude all migrant mothers from our baseline analysis.
One potential pitfall of this sample restriction is that non-migrant and
migrant mothers may differ with respect to the observable character-
istics. In particular, we may suppose that non-migrant mothers are
older than migrant mothers on average. In this robustness exercise, we
consider another sample before re-estimating Eq. (7). In addition to
non-migrant mothers, we include migrant mothers but only keep the
observations since their arrival in their current home. Corresponding
results can be found in column (4) of Table 14 and show no significant
difference from the baseline estimates of the main text.

Sample period. Implicitly, our baseline model assumes that the esti-
mated effect is averaged over the entire sample under scrutiny. How-
ever, it is possible that the decision to have children changes over time.
We address this possibility by separately estimating Eq. (7) for two
sample periods. The first sample spans the 1985–1997 period, whereas
the second begins in 1985 and ends in 2015. Results are respectively
reported in columns (5) and (6) of Table 14.

The main insight provided by these alternative panel estimations is
that there is no significant difference in the causal effect of wind speed
exposure for the two sub-periods.
17 
Excluding non-exposed clusters. As indicated in Fig. 1 some clusters were
never exposed to tropical cyclones during the period under scrutiny.
Here, we check the sensitivity of our baseline results by estimating a
model that excludes these clusters. Corresponding results are reported
in column (7) of Table 14, showing that our results are robust to the
exclusion of never-exposed clusters.
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