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Abstract 8 

Pipelines are crucial elements in various engineering applications. However, unexpected 9 

vibrations from different sources can jeopardize the operational performance and potentially 10 

damage the piping structures and other connected units. This study explores flexural wave 11 

propagation and attenuation characteristics of the pipes supported periodically on a rack. Also, a 12 

specific case of a rack with infinite stiffness (simple support) is investigated. The dispersion 13 

relations pertinent to pipe rack scenario is obtained through transfer matrix method (TMM) in 14 

conjunction with Floquet-Bloch’s theorem, and the accuracy of ensuing band gaps (BGs) are 15 

confirmed through finite element (FE) models. Following this, the modal analysis is performed to 16 

ascertain the minimum number of unit-cells necessary for the FE model to accurately mimic the 17 

attenuation and propagation characteristics of the corresponding infinite structure. The findings 18 

indicate that a pipe supported on rack displays resonance and Bragg-type BGs, arising from local 19 

resonance and spatial periodicity, respectively, while the pipe on simple support exhibits only 20 

Bragg-type BGs. To control low-frequency vibrations in dual pipelines placed on the rack, a novel 21 

configuration using interconnected dynamic vibration absorbers (DVAs) is proposed. The DVA 22 

consisting of two spring-damper units along with a mass is connected across the center of each 23 



2 
 

span of the two pipelines. The proposed DVA is designed via genetic algorithm-based 1 

optimization. It was found that the designed DVA significantly reduces the vibration of the two 2 

pipelines. The performance of DVAs improves with an increase in the mass ratio. Additionally, 3 

the performance of pipes connected with conventional tuned mass damper (TMD) is evaluated and 4 

compared with the proposed DVA. The effectiveness of DVAs is also verified by employing a 5 

white Gaussian noise as input. The proposed DVAs are efficient in scenarios involving multiple 6 

pipes within a rack, leveraging other pipe’s mass, stiffness, and damping properties to mitigate 7 

vibrations in the considered pipes. 8 

Keywords 9 

Periodic rack structure, Flexural wave, Dispersion diagram, Dynamic vibration absorbers, 10 
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1. Introduction 1 

1.1. Background and motivation 2 

Pipes are crucial components in various industries including aerospace, liquified natural gas plants, 3 

nuclear plants, chemical plants, water treatment plants, and petroleum industries. They serve as 4 

conduits for transferring fluids between processing units and storage tanks. In instances where long 5 

pipelines exist, rack structures or columns/piers are used at regular intervals to support them. Such 6 

pipelines may encounter vibrations from different factors including machinery, base excitation, 7 

explosions, wind, flow-induced turbulence, etc. Over time, these vibrations can lead to instability, 8 

fatigue failure, loosening of joints, etc. [1]. Additionally, these vibrations can generate excessive 9 

noise, impacting health of workers operating in the vicinity. Therefore, attaining higher stability 10 

and vibration control standards in pipes is essential [2]. 11 

In recent years, phononic crystals (PnCs) gained significant attention from the research 12 

community. PnCs are composite structures made up of a periodic array of scatterers embedded in 13 

a host medium. Due to impedance mismatch of scatterers, these structures can block waves within 14 

specific frequency ranges, resulting in band gaps (BGs). Waves of other frequencies can freely 15 

pass through, and are referred to as pass bands (PBs) [3]. This unique characteristic enables PnCs 16 

to work as efficient wave filters, facilitating their application in controlling sound and vibrations. 17 

BGs in periodic structures occur either from Bragg scattering (BS) [4] or local resonance (LR) [5]. 18 

In the former, BGs arise from multiple scattering of the periodic inclusions, and occur when the 19 

unit-cell length 𝐿 and the wavelength	𝜆 are comparable in a periodic structure. The position of nth 20 

order BG is determined by the Bragg condition 𝐿 = 𝑛 &!
"
' (𝑛 = 1,2,3, … ). Conversely, LR BGs 21 

originate from the interaction between elastic waves and localized scattering units, and they are 22 

independent of the structural periodicity. Frequency range of LR BG is approximately two orders 23 
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of magnitude lower than that from Bragg scattering [6]. By optimally tuning the system properties, 1 

LR BGs can be used to effectively control vibration and noise within the targeted frequency range 2 

[7–9].  3 

There are several studies that discuss the BGs in structures due to BS [10–14]. Recently, Pelat et 4 

al. [15] investigated Bragg-type BG in periodically corrugated beams and concluded that their 5 

central frequency and width depend solely on the beam thickness. Ding et al. [16] used the transfer 6 

matrix method (TMM) to analyze the BGs behavior in periodic jointed tunnels under the influence 7 

of moving load. Zhao et al. [17] introduced PnC beam featuring flexural BGs to control vibrations 8 

in the low-frequency range. Sorokin et al. [18] studied BG properties in homogeneous and periodic 9 

waveguide via finite element method.  Carta et al. [19] considered a bridge as an infinite periodic 10 

structure and analyzed the BG characteristics. Shen et al. [4] examined the impact of moving loads 11 

and flowing fluid on BGs in fluid-conveying shells placed on elastic foundations using TMM. Guo 12 

et al. [20] examined the flexural wave propagation characteristics in periodically orthogonal 13 

stiffened plates with holes of varying sizes. 14 

Unlike Bragg BGs, LR BGs arise due to locally resonant units in the systems [21]. This concept 15 

has been used to control low-frequency vibrations in various structures like pipes [3,6,22], beams 16 

[23–25], plates [26,27], shafts [28,29], and railway tracks [30,31]. Recently, Li et.al [32] designed 17 

a system consisting of a double beam with periodically attached resonators to control flexural wave 18 

propagation in the low-frequency range. Zhao et al. [33] investigated one-dimensional wave 19 

propagation characteristics of metamaterials with double resonators. Lee et al. [34] proposed a 20 

metamaterial configuration of a periodic duct for reducing longitudinal vibrations at low 21 

frequencies. Xiao et al. [35] studied new metamaterial designs to achieve wide BGs at low 22 

frequencies. These systems encompass both monatomic and diatomic configurations using a 23 



5 
 

combination of negative stiffness absorbers and the rotation of flexural beams amplified by 1 

outriggers. Li and Sheng [36] conducted analytical and numerical studies on the BGs in an LR 2 

plate featuring a periodic array of single and multi degree-of-freedom (DoF) resonators.  3 

In the context of pipes, Liang et al. [37] explored the flexural-torsional vibration BG characteristics 4 

of an eccentric fluid-conveying pipe made of alternating materials along its length. Wu et al. [38] 5 

investigated the BG properties of a composite pipeline filled with liquid. The pipeline was 6 

composed of alternate materials, and the study analyzed the effects of fluid-structure interaction 7 

and material properties on the BG characteristics.  Liang and Yang [39] examined the BG behavior 8 

of a fluid-conveying pipe and analyzed its dependence on the flow velocity. Yu et al. [40] 9 

investigated the attenuation properties of a periodically changing cross-section pipe using TMM. 10 

Surface wave attenuation in a shallow buried pipe was studied using both analytical and numerical 11 

approach in the frequency domain by Ni et al. [41]. Liang et al. [42] examined the flexural vibration 12 

properties of a fluid-conveying PnC pipe using TMM. The study also demonstrated the effects of 13 

spinning motion of the pipe on the BGs. Wu et al. [43] analyzed the behavior of torsional vibration 14 

in a fluid-filled pipe using the TMM and further studied the effects of pipe wall material and 15 

support parameters on BGs. Liang et al. [44] designed a laminated fiber-reinforced composite pipe 16 

with piezoelectric actuators periodically attached along its length to excite the phononic BG. A 17 

control strategy has been proposed to suppress vibrations in fluid-conveying pipes using periodic 18 

acoustic black hole wedges by Bu et al. [45]. Geng et al. [46] explored the flexural BGs in a sleeved 19 

PnC pipe in thermal environment and also showed the effects of thermal stresses on the BG 20 

properties. Plisson et al. [47] employed numerical and experimental approaches to obtain vibration 21 

BG in a bi-material pipe comprising of alternating cross sections.  22 
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Another common strategy to control vibration involves incorporating resonators in the host 1 

structures. For example, Fernandes et al. [48] studied the influence of resonator mass and fluid 2 

flow velocity on the bounding frequencies of BGs in a metamaterial pipe. Lei et al. [6] improved 3 

the BG properties of a meta-pipe using negative stiffness SDoF resonators. Liang et al. [49] 4 

developed a two-dimensional hybrid BS-LR metamaterial pipe, and demonstrated the influence of 5 

flow properties on the BGs. Cai et al. [22] proposed quasi-zero stiffness resonator to control low 6 

frequency vibrations in a pipe. Matos et al. [50] explored the flexural BGs in a periodic pipe 7 

conveying two-phase intermittent flow. Attenuation characteristics of a pipe attached with local 8 

resonators were examined by Borgi et al. [51]. Iqbal et al. [52] analyzed the BGs in a pipe with 9 

two DoF resonators under different boundary conditions. The vibration attenuation strength of a 10 

uniform pipe equipped with piezoelectric patches was enhanced through the synergistic effects of 11 

Bragg scattering and electro-elastic resonance by Lyu et al. [53]. Liu et al. [54] examined the 12 

attenuation properties of a metamaterial pipe and found that the effect of axial load on BGs was 13 

more significant than that of the fluid pressure. Yu et al. [55] studied the BS and LR BG properties 14 

in a periodically supported fluid-conveying pipe under external moving load using TMM. The 15 

vibration attenuation properties of a fluid-conveying pipe resting on periodic inerter-based 16 

resonant supports were investigated by Sciutteri et al. [56]. Wu et al. [57] analyzed wave 17 

propagation in a composite fluid-filled pipe with periodic axial support and dynamic vibration 18 

absorbers.  19 

PBs in periodic structures refer to frequency ranges where waves transport energy, leading to noise 20 

and vibration. It is essential to control vibrations when they fall in frequency of interest. To address 21 

this, various passive control techniques are available. Tuned mass damper (TMD) [58] is a 22 

commonly employed control technique in which a secondary mass characterized by a specific 23 
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mass ratio 𝜇, is connected to the primary structure via spring-damper elements. TMD absorbs 1 

energy from the primary structure, which is subsequently dissipated by its intrinsic damping 2 

properties [59]. To achieve optimal control for any specified 𝜇, the stiffness and damping 3 

properties of the TMD must be designed appropriately [60]. For this, a significant response of the 4 

primary system, usually acceleration or displacement is minimized. Closed-form analytical 5 

expressions are available for determining the optimal spring-damper properties of TMDs for 6 

simple structures subjected to typical standard excitations [61–63]. Many of these expressions are 7 

derived using certain assumptions, limiting their applicability to simple structures [64]. Therefore, 8 

in situations involving complex structures or unconventional loading conditions, numerical 9 

optimization schemes are employed for designing TMDs [ 65–67]. 10 

Various forms of TMDs are available for controlling vibrations in pipeline systems [65]. Each of 11 

these systems includes an external mass along with spring-damper elements with specified 12 

properties attached to the pipe for control. Stiffness in such cases is either due to shear or bending 13 

strength of the employed elastomer materials [68,69], while damping may arise from various 14 

sources such as the impact of the TMD mass against surfaces [66], material damping of elastomers 15 

[70], fluid damping of the mass [71], etc. Although conventional TMD systems are efficient, they 16 

have a drawback of employing an additional mass with the primary structure, leading to an increase 17 

in total mass of the system. It is feasible to utilize any existing mass within the system to serve as 18 

an energy dissipation and control mechanisms. Although, the performance of these systems is 19 

debatable, they offer a promising, cost-effective and simple method for controlling structure. 20 

1.2. Novelty and core contribution  21 

A theoretical and numerical study of propagation characteristics of flexural waves in a periodic 22 

pipe 𝑃# placed on a rack structure is conducted. The corresponding dispersion relation is derived 23 
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employing the TMM in conjunction with Floquet-Bloch’s theorem. The resulting BG 1 

characteristics are confirmed through a finite element (FE) model. Subsequently, a modal analysis 2 

is performed to determine the optimal number of unit-cells needed for the FE model to accurately 3 

replicate the BG and PB ranges of the corresponding infinite structure. The study presents a novel 4 

approach to control low-frequency vibrations in dual periodic pipeline systems. To control 5 

vibrations in a PB, a single-degree-of-freedom (SDoF) dynamic vibration absorber (DVA) is 6 

initially attached at the midpoint of each span of the two identical pipes 𝑃# and 𝑃", as shown in 7 

Fig. 1. The equivalent model is illustrated in Fig. 2(b). Subsequently, to compare the performance 8 

of DVA with a conventional SDoF TMD, the latter is installed in each span of both the pipes as 9 

shown in Fig. 2(c). Unlike conventional TMD, the proposed DVA has the advantage that only a 10 

minimal mass needs to be added to control both pipelines. Detailed optimization studies were 11 

conducted to design these systems. The efficiency of the proposed DVAs is verified under a white 12 

Gaussian noise input. The proposed concept of DVA is efficient for simultaneously controlling 13 

vibrations of multiple pipelines, and can be easily executed in power and process industries. This 14 

unique idea of DVA can also be applied in scenarios involving parallel beam type flexural systems 15 

such as periodic railway tracks, closely spaced bridges, underwater tunnels, etc. 16 

This paper is organized as follows: Section 2 describes the analytical and numerical model of pipes 17 

with rack structure. The analytical dispersion relation is first derived and a FE model is built to 18 

validate the former. Subsequently, the vibration control scheme along with their optimal design is 19 

discussed. Section 3 presents the results for both uncontrolled and controlled pipe. The main 20 

findings of the work including future prospects are summarized in Section 4. 21 
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 1 

Fig. 1.  Pipes 𝑃# and 𝑃" of identical properties supported on the rack structure. 2 

2. Analytical and numerical modelling  3 

This section discusses the modelling techniques used for the pipe supported periodically on a rack 4 

structure followed by the design of DVA. For this, the pipe-rack structure illustrated in Fig. 1 is 5 

utilized. It comprises of two levels, first situated at 5.3	m and the second at 7.3	m from the ground. 6 

The distance between two successive columns along the pipe is 6	m, whereas the width of the rack 7 

is 6.5	m. More details about this rack can be found in Bursi et al. [72]. The coordinate 𝑥, 𝑦 and 𝑧 8 

in Fig. 1 respectively represent the longitudinal (along the pipe), lateral and vertical directions.  9 

A 3D FE model of the rack, comprising forty unit-cells, was initially developed. The first 10 

predominant mode (along 𝑧-axis) was identified at a frequency of 4.5	Hz. An equivalent model of 11 

the rack, representing its behavior in the lateral direction, was created as shown in Fig. 2(a). Here, 12 
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the lumped mass 𝑀$% and stiffness 𝐾$% were calculated to replicate the behavior of 3D model for 1 

this mode. This resulted in values of 𝑀$% = 	2.3E4 kg and 𝐾$% = 	1.8E6	N/m. The pipe has an 2 

inner diameter of 390.56	mm and an outer diameter of 406.40	mm, with a Young’s modulus of 3 

2E11	N/m" and a density of 7800	kg/m&. A material damping ratio (𝜉) of 2% is taken into 4 

account for both pipe and the rack. The rack is modelled as a SDoF spring-mass system, and the 5 

pipe is modelled using Euler-Bernoulli beam theory. For simplicity, any effects of the fluid flowing 6 

through the pipes such as its mass and velocity are neglected in the analysis. The mass of the 7 

secondary pipe 𝑃" that is already present in the rack is not considered in the formulation of 8 

dispersion relation of 𝑃#. 9 
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1 

Fig. 2. Equivalent numerical model of Fig. 1: (a) 𝑃# supported on rack; (b) rack containing two 2 

pipes 𝑃# and 𝑃" interconnected by dynamic vibration absorbers, and (c) Conventional tuned mass 3 

dampers connected to 𝑃# and 𝑃".  4 
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For controlling specific PB in the pipe, DVA and TMDs are respectively employed as shown in 1 

Figs. 2(b) and (c). The DVA consists of an external mass 𝑚' of mass ratio 𝜇 connected to pipe 𝑃# 2 

and 𝑃" in each span using two sets of spring-damper units (𝑘#,', 𝑐#,' and 𝑘",', 𝑐",'). Similarly, 3 

spring–damper properties 𝑘' and 𝑐'and mass 𝑚' is adopted for the conventional TMDs connected 4 

to both the pipes. When a particular pipe (say 𝑃#) is subjected to undesirable vibration, the DVA 5 

along with other pipe 𝑃" gets mobilized in controlling vibrations. Since 𝑃" is connected to 𝑃#, it 6 

may sometimes produce undesirable vibration in the former and it has to ensured that this is within 7 

the permissible limits. The proposed DVA works identically for both the pipes. However, in case 8 

of conventional TMDs, only the TMD associated with the vibrating pipe is activated. 9 

For given pipe dimensions and mass 𝑚', optimal properties of spring-damper units of the DVA 10 

can be determined. In practice, the DVA can be realized by connecting the pipes to a mass 𝑚'  11 

using spring–damper elements (e.g., steel springs, hydraulic dampers, etc.) with required stiffness 12 

and damping properties. The derivation of dispersion relation for the pipes coupled with DVA is 13 

not straightforward, therefore numerical model is used in these situations. The optimal stiffness-14 

damping values of DVA are calculated by genetic algorithm (GA) optimization given in Section 15 

2.3. 16 

2.1. Dispersion equation  17 

For the analysis of flexural wave propagation in the pipe system shown in Fig. 1, a typical unit-18 

cell of pipe with span 𝐿 shown in Fig. 3 is used. The transfer matrix method (TMM) and Floquet–19 

Bloch periodic condition is employed to formulate the dispersion equation. The Floquet–Bloch 20 

theorem relates the displacements at the boundary DoFs of adjacent unit-cells. The left and right 21 

ends of the pipe are represented by 𝑥% and 𝑥%)#, respectively. 22 
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 1 

Fig. 3. Schematics of a unit-cell shown in Fig. 1: (a) Representation of 𝑟*+ span; and (b) Simplified 2 

model showing a single span of pipe 𝑃#. 3 

The pipe is assumed to be undamped and modelled as a Euler-Bernoulli beam. The transverse 4 

displacement 𝑧(𝑥, 𝑡) of the pipe at position 𝑥 and time 𝑡 is given by the following differential 5 

equation: 6 

𝜕"

𝜕𝑥" M𝐸𝐼
𝜕"𝑧(𝑥, 𝑡)
𝜕𝑥" P + 𝜌𝐴

𝜕"𝑧(𝑥, 𝑡)
𝜕𝑡" = 0			 	(1) 

where 𝐸, 𝐼, 𝜌, and 𝐴 denote the Young’s modulus, moment of inertia, density and cross-sectional 7 

area, respectively. A harmonic solution of Eq. (1) can be assumed as,  8 

𝑧(𝑥, 𝑡) = 𝑍(𝑥, 𝜔)𝑒і-* 	(2) 

where 𝑍(𝑥, 𝜔) and 𝜔	 = 2𝜋𝑓 represent the frequency dependent amplitude, and frequency of the 9 

wave, respectively, and	і = √−1 . Substitution of Eq. (2) in Eq. (1) gives,  10 
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𝐸𝐼
𝜕.𝑍(𝑥, 𝜔)
𝜕𝑥. − 𝜌𝐴𝜔"𝑍(𝑥, 𝜔) = 0 

	(3) 

 The solution of (3) in frequency domain is expressed as, 1 

𝑍(𝑥, 𝜔) = 𝐴#𝑒/0 + 𝐴"𝑒1/0 + 𝐴&𝑒2/0 + 𝐴.𝑒12/0 (4) 

where 𝐴#,	𝐴", 𝐴& and 𝐴. are the wave mode coefficients that depend on 𝜔, and 𝛽 = &34-
!

56
'
"
# is 2 

the wavenumber. 3 

Rotational angle (𝜃) is obtained by differentiating 𝑍(𝑥, 𝜔) with respect to the spatial coordinate 𝑥 4 

as, 5 

𝜃(𝑥, 𝜔) =
𝜕𝑍
𝜕𝑥 = 𝛽^𝐴#𝑒/0 − 𝐴"𝑒1/0 + i𝐴&𝑒2/0 − i𝐴.𝑒12/0` 

(5) 

Bending moment (𝑀) and shear force (𝑉) can be obtained by, 6 

𝑀(𝑥,𝜔) = −𝐸𝐼
𝜕"𝑍
𝜕𝑥" 																																																																															 

(6) 

𝑉(𝑥, 𝜔) = −𝐸𝐼
𝜕&𝑍
𝜕𝑥& 																																																																															 

(7) 

State vector 𝛙(𝐱,𝛚) of the beam consisting of displacement states (transverse displacement 7 

𝑍(𝑥, 𝜔) and rotation 𝜃(𝑥, 𝜔)) and force states (bending moment 𝑀(𝑥,𝜔) and shear force 𝑉(𝑥, 𝜔)) 8 

is defined as,  9 

𝛙(𝐱,𝛚) = {𝑍(𝑥, 𝜔), 𝜃(𝑥, 𝜔),𝑀(𝑥, 𝜔), 𝑉(𝑥, 𝜔)}7 10 
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The state vector at the left support 𝑥% is,   1 

	𝛙(𝐱𝐫) =

⎩
⎨

⎧
𝑍(𝑥%)
𝜃(𝑥%)
𝑀(𝑥%)
𝑉(𝑥%)⎭

⎬

⎫
= 	𝐓𝐛(𝐱𝐫)𝐀 (8) 

where 𝐓𝐛(𝐱𝐫) =

⎣
⎢
⎢
⎢
⎡ 𝑒/0$ 𝑒1/0$ 𝑒2/0$ 																𝑒12/0$

	𝛽𝑒/0$ −𝛽𝑒1/0$ 		i𝛽𝑒2/0$ 							−i𝛽𝑒12/0$
−𝐸𝐼𝛽"𝑒/0$
−𝐸𝐼𝛽&𝑒/0$

		−𝐸𝐼𝛽
"𝑒1/0$

𝐸𝐼𝛽&𝑒1/0$
				𝐸𝐼𝛽

"𝑒2/0$
i𝐸𝐼	𝛽&𝑒/0$

			𝐸𝐼	𝛽"𝑒12/0$
−i𝐸𝐼	𝛽&𝑒1/0$⎦

⎥
⎥
⎥
⎤
, and	 𝐀 =2 

{𝐀𝟏, 𝐀𝟐, 𝐀𝟑, 𝐀𝟒}𝐓. 3 

The state vector at the right support is obtained by replacing 𝑥% with 𝑥%)# in Eq. (8), resulting in,  4 

𝚿(𝐱𝐫)𝟏) = 𝐓𝐛(𝐱𝐫)𝟏)𝐀 	(9) 

Eq. (9) can be rewritten as,  5 

𝚿(𝐱𝐫)𝟏) = 	𝐓𝐭𝐛𝛙(𝐱𝐫) 		(10) 

where 𝐓𝐭𝐛 = 𝐓𝐛(𝐱𝐫)𝟏)	𝐓𝐛1𝟏(𝐱𝐫) represents transfer matrix of beam, and can be expressed as, 6 

𝐓𝐭𝐛 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ (𝛷# + 𝛷") 		

(𝛷& + 𝛷.)
	𝛽

		
(𝛷# − 𝛷")
	𝛽"𝐸𝐼

	 					
(𝛷& − 𝛷.)
	𝛽&𝐸𝐼

−𝛽(𝛷& − 𝛷.) 		(𝛷# + 𝛷") 		−
(𝛷& + 𝛷.)
	𝛽𝐸𝐼

	 				
(𝛷# − 𝛷")
	𝛽"𝐸𝐼

	𝛽"𝐸𝐼(𝛷# − 𝛷") 			𝛽𝐸𝐼(𝛷& − 𝛷.) 			(𝛷# + 𝛷") 				
(𝛷& + 𝛷.)

	𝛽
−𝛽&𝐸𝐼(𝛷& + 𝛷.) 				𝛽"𝐸𝐼(𝛷# − 𝛷") 		−𝛽(𝛷& − 𝛷.) 				(𝛷# + 𝛷")⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (11) 

where 𝛷# = cos(𝛽𝐿)/2, 𝛷" = cosh(𝛽𝐿)/2, 𝛷& = sin(𝛽𝐿)/2 and 	𝛷. = sinh(𝛽𝐿)/2. 7 
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Similarly, transfer matrix characterizing wave propagation through the rack which is idealized as 1 

a SDoF system with a lumped mass 𝑀$% and stiffness 𝐾$% is denoted as 𝐓𝐩𝐫, and is given by, 2 

𝐓𝐩𝐫 = |

1 0 0 0
0 1 0 0
0 0 1 0

𝐾$% −𝑀$%𝜔" 0 0 1
} 	(12) 

Incorporating 𝐓𝐩𝐫 in Eq. (10), cumulative transfer matrix 𝐓 of coupled pipe-rack structure will be, 3 

𝚿(𝐱𝐫)𝟏) = 𝐓𝐩𝐫𝐓𝐭𝐛𝚿(𝐱𝐫) = 𝐓𝚿(𝐱𝐫) 	(13) 

Owing to the periodicity in 𝑥 direction, the state vectors at the ends 𝑟 and 𝑟 + 1 are related using 4 

the Floquet-Bloch’s theorem [73,74] as,   5 

𝚿(𝐱𝐫)𝟏) = 𝑒1ABC𝚿(𝐱𝐫) 	(14) 

Here, 𝜅 is wavenumber of the flexural wave propagating in the coupled pipe-rack structure. 6 

Substituting Eq. (14) in (13) yields a standard eigenvalue problem as, 7 

�𝐓 − 𝑒1ABC𝐈𝟒�𝚿(𝐱𝐫) = 𝟎 		(15) 

where 𝐈𝟒 is 4 × 4 identity matrix. For existence of a non-trivial solution for (15), the determinant 8 

of �𝐓 − 𝑒12BC𝐈𝟒� should be zero. Thus, 9 

�𝐓 − 𝑒12BC𝐈𝟒� = 𝟎 			(16) 
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The solution of (16) represents the relation between 𝜅 and 𝜔, and indicates the dispersion equation 1 

for the coupled pipe-rack system shown in Fig. 2 (a). It is given as,  2 

[{𝛷" − 𝛷#}" − {𝛷." − 𝛷&"}]cos"(𝜅𝐿)

+ 2 M{𝛷. − 𝛷&}{𝛷"	𝛷& + 𝛷#𝛷.} − {𝛷"	𝛷& − 𝛷#𝛷.}{𝛷& + 𝛷.}

+
{𝛷. − 𝛷&}{1 − 𝛷#𝛷"}�𝐾$% −𝑀$%𝜔"�

8𝐸𝐼𝛽& P cos(𝜅𝐿)

+ M4{𝛷&"𝛷"" − 𝛷#"𝛷."} − {𝛷" − 𝛷#}"

+
{	𝛷"𝛷& − 𝛷#𝛷.}{1 − 𝛷#𝛷"}{𝐾$% −𝑀$%𝜔"}

2𝐸𝐼𝛽& P = 0 

(17) 

Coefficients 𝛷#, 𝛷", 𝛷& and 𝛷. in Eq. (17) are function of 𝛽, the solution of which yields two 3 

pairs of wave number ±𝜅# and ±𝜅" for each 𝜔. Here, each pair represents identical waves traveling 4 

in opposite direction. In general, κ may be real, purely imaginary, or complex. If κ is real, the wave 5 

passes through each unit-cell without any attenuation, but with a phase change at each unit-cell. 6 

Conversely, if κ is purely imaginary, the wave attenuates across each unit-cell vibrating in phase 7 

or out of phase, and is referred to as attenuating or evanescent wave. For a complex κ, waves of 8 

certain frequency propagate while others get attenuated, resulting in the presence of both PBs and 9 

BGs in the dispersion diagram [75]. 10 

2.2. Numerical Modelling 11 

To validate the analytical dispersion relations calculated using Eq. (17), a FE model of 𝑃# coupled 12 

to rack as shown in Fig. 2(a) is built for forty spans using ANSYS APDL [76]. The pipe is modelled 13 

using BEAM4 element which is a 2-node Euler-Bernoulli beam, while for the spring and lumped 14 

mass, COMBIN14 and MASS21 elements are respectively used.  15 
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Let 𝐌 ∈ ℝ𝒏	𝒙	𝒏, 𝐊 ∈ ℝG	0	G and 𝐂 ∈ ℝG	0	G respectively be the mass, stiffness and damping 1 

matrices of the coupled pipe-rack system which has 𝑛 DoFs. If {𝒒̈} ∈ ℝG	0	#, {𝒒̇} ∈ ℝG	0	# and 2 

{𝒒} ∈ ℝG	0	# respectively denote the acceleration, velocity, and displacement at time 𝑡, the system's 3 

equation of motion without any external excitation is given by, 4 

𝐌{𝐪̈} + 𝐂{𝐪̇} + 𝐊{𝐪} = {𝟎} (18) 

If the displacement	is given at 𝑔 DoFs, Eq. (18) can be rewritten as, 5 

�
𝐌𝐡𝐡 𝐌𝐡𝐠
𝐌𝐠𝐡 𝐌𝐠𝐠

� �
𝐪̈𝐡
𝐪̈𝐠
� + �

𝐂𝐡𝐡 𝐂𝐡𝐠
𝐂𝐠𝐡 𝐂𝐠𝐠

� �
𝐪̇𝐡
𝐪̇𝐠
� + �

𝐊𝐡𝐡 𝐊𝐡𝐠
𝐊𝐠𝐡 𝐊𝐠𝐠

� �
𝐪𝐡
𝐪𝐠� = �

𝟎𝐡
𝟎𝐠
�	 (19) 

where, ℎ refers the DoFs other than the 𝑔 DoFs (𝑔 + ℎ = 𝑛). First row in (19) gives, 6 

𝐌𝐡𝐡{𝐪̈𝐡} + 𝐂𝐡𝐡{𝐪̇𝐡} + 𝐊𝐡𝐡{𝐪𝐡} = −^𝐌𝐡𝐠�𝐪̈𝐠� + 𝐂𝐡𝐠�𝐪̇𝐠� + 𝐊𝐡𝐠�𝐪𝐠�` (20) 

To determine the steady state response at ℎ DoFs under a given displacement �𝐪𝐠� = �𝛀𝐠�𝑒2-*, a 7 

solution to {𝐪𝐡} of the form {𝐪𝐡} = {𝛀𝐡}𝑒2-* is assumed, substitution of which in (20) leads to,  8 

{𝛀𝐡} = −[−𝜔"𝐌𝐡𝐡 + і𝜔𝐂𝐡𝐡 + 𝐊𝐡𝐡]1𝟏�−𝜔"𝐌𝐡𝐠 + і𝜔𝐂𝐡𝐠 + 𝐊𝐡𝐠��𝛀𝐠� (21) 

The pipe-rack system considered in this study is periodic along the length of pipe. Various 9 

techniques can be employed to induce flexural vibration in the piping system. Here, to mobilize 10 

the periodicity and replicate the flexural vibration in 𝑃#, a harmonic rotation 𝛺J𝑒і"KL* with unit 11 

amplitude is imposed at the left end of the pipe. The resulting steady-state output rotation 𝛺+(𝑓) 12 

is then computed at the right end. The vibration transmission 𝑇% (dB) behavior in the piping system 13 

can be described by,   14 

𝑇%(𝑓) = 20	𝑙𝑜𝑔#M �
𝛺+(𝑓)		
𝛺J(𝑓)	

� (22) 
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The frequency ranges where 𝑇% falls below zero denote BGs. To ensure their accuracy, the 1 

variation of 𝑇% is compared with the dispersion relations obtained from Eq. (17).  2 

2.3. Vibration control method 3 

DVA is employed for controlling vibrations in a particular PB in the pipelines. For an efficient 4 

control with a given mass ratio 𝜇 (𝜇 = 𝑚' (𝜌𝐴𝑙)N"⁄ , where 𝑚' is mass of the DVA), optimal 5 

values of springs (𝑘#,' 	 and 𝑘",') and dampers (𝑐#,' and 𝑐",') have to be employed. Let 6 

‖𝐻OGPQG*%QR‖S and ‖𝐻PQG*%QR‖S represent the peak value of 𝑇% calculated over the frequencies of 7 

interest without and with DVAs, respectively. The efficiency of DVA is quantified using a 8 

performance metric 𝛱 as, 9 

𝛱 =	‖𝐻TQG*%QR‖S	 ‖𝐻OGPQG*%QR‖S	⁄  (23) 

A lower value of 𝛱 indicates better performance of DVA and vice-versa. Thus, for a specified 𝜇, 10 

optimal properties of DVA are those that minimize the metric 𝛱. Although multiple techniques 11 

are available for numerically evaluating these optimal properties [77], the widely used GA 12 

technique [66,67] is adopted here, and is explained in the following section. 13 

2.3.1. GA optimization scheme 14 

Optimization for the design of DVA shown in Fig. 2(b) is formulated as,  15 

¤

𝑘#,'
𝑘",'
𝑐#,'
𝑐",'

¥ = argmin(𝛱) (24) 

 subjected to, 16 

{𝐋𝐁} 	≤ 	¤

𝑘#,'
𝑘",'
𝑐#,'
𝑐",'

¥ 	≤ 	 {𝐔𝐁} (25) 
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where {𝐋𝐁} ∈ ℝ.	0	# and {𝐔𝐁} ∈ ℝ.	0	# denote the lower and upper bound for the design variables, 1 

respectively. These bounds are set to ensure that the design variables remain in realistic range, 2 

facilitating faster optimization. Similarly, the optimal parameters (𝑘' and 𝑐') for the conventional 3 

TMD are determined. The value of 𝛱 is computed over a frequency range within the passband to 4 

be controlled. 5 

GA is a stochastic search method based on the principles of natural selection and genetics [78]. 6 

Within the prescribed upper and lower bounds (𝑈𝐵 and 𝐿𝐵), a random initial generation 𝐗𝟎 ∈7 

ℝ$	0	. is created where 𝑝 is the number of children. The fitness function 𝛱 is determined for the 8 

current generation by employing the corresponding FE models. New generations are generated 9 

according to the values of the current fitness function, progressively evolving towards the optimal 10 

solution. From generation 𝑗, 𝑗 + 1 is obtained through a combination of three methods; selection, 11 

crossover and mutation. In selection, 𝑠 set of solutions in 𝐗𝐣 possessing the best 𝛱 values are 12 

chosen and included in the 𝑗 + 1*+ generation as 𝐗𝐣,𝐬 ∈ ℝX	0	.. Crossover produces 𝑐 new solutions 13 

𝐗𝐣,𝐜 ∈ ℝP	0	. by merging two best solutions from 𝐗𝐣, while mutation applies random changes to 14 

solution in 𝐗𝒋 to generate 𝑚 children 𝐗𝐣,𝐦 ∈ ℝ\	0	.. Selection was performed using tournament 15 

technique, while for mutation and crossover a random Gaussian distribution was employed [79]. 16 

The diversity of the subsequent generation 𝑗 + 1 depends on the proportion of children from 17 

selection, crossover, and mutation (𝑠: 𝑐:𝑚). The new generation 𝐗𝐣)𝟏 ∈ ℝ$	0	. comprising 18 

children from selection, crossover and mutation (𝐗𝐣)𝟏 = 𝐗𝐣,𝐬 ∪ 𝐗𝐣,𝐜 ∪ 𝐗𝐣,𝐦 and 𝑝 = 𝑠 + 𝑐 +𝑚), is 19 

now employed to determine 𝛱 as before. This iterative process is continued till the required 20 

convergence criterion is achieved. Fig. 4 demonstrates this algorithm.  21 
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 1 

Fig. 4. Flow-chart for GA optimization process for the design of DVA with mass ratio 𝜇. 2 

3. Results and discussions 3 

The dispersion characteristics of flexural wave are initially explored in the coupled pipe-rack 4 

system, along with an extreme scenario of pipe with simple supports (where the rack stiffness 𝐾$% 5 
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tends to infinity and the lumped mass 𝑀$% approaches zero). FE models are employed to verify 1 

the resulting BG properties obtained from analytical models. Subsequently, DVA with different 2 

mass ratio (𝜇) is designed to control vibrations in a specific PB. Finally, the efficacy of the 3 

designed DVA is estimated by employing a white Gaussian noise as input excitation. 4 

3.1. Dispersion diagram 5 

The dispersion relationship in Eq. (17) is used to obtain the flexural BG properties. Figures 5(a) 6 

and (b) respectively show the frequency-dependent variations of the real and imaginary parts of 7 

both positive and negative wavenumbers (±𝜅#𝐿). It can be noticed that both the waves exhibit 8 

identical attenuation and propagation behaviors, but of opposite nature. The BGs are observed at 9 

0 − 4.50	Hz, 5.50 − 31.10	Hz and 71.10 − 124.40	Hz, and are depicted by shaded areas. Figure 10 

5(c) shows 𝑇% from FE model calculated based on Eq. (22). The similarity in terms of position and 11 

width of BG between analytical and FE results confirms the reliability of the developed models. 12 

A non-zero value of Im(±𝜅#𝐿) indicates the BG regions, where no waves propagate in the piping 13 

system. In contrast, PBs are the frequency ranges where Im(±𝜅#𝐿) is zero, allowing waves to 14 

propagate freely through the system. The first BG in this system stems from the LR of the rack 15 

structure, and its position is governed by the stiffness and mass properties associated with the rack's 16 

geometry. However, the other BGs arise from the BS phenomenon associated with spatial 17 

periodicity, which in this case depends on the distance between two successive columns of the 18 

rack. 19 
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 1 

 Fig. 5. Dispersion diagram and vibration transmission in 𝑃# with rack: (a) Re(±𝜅#𝐿); (b) 2 

Im(±𝜅#𝐿); and (c) 𝑇% (dB). 3 

To better understand the propagation behavior of waves in the coupled pipe-rack system, four 4 

typical frequencies (4.7 Hz, 10 Hz, 31 Hz, and 61 Hz) as indicated in Fig. 5 (c) are selected. The 5 

first and last frequencies fall within the PBs caused by rack and pipe, respectively, while the 6 

remaining two lie in BGs. The resulting steady state displacement profiles in 𝑧 direction (from 7 

�
𝛺+
𝛺J
�) at these frequencies are depicted in Fig. 6. The frequency of 4.7 Hz fall in PB, this wave 8 

passes through the structure with considerable amplitude, which can be seen in Fig. 6(a). 9 

Conversely, the attenuation at 10 Hz is remarkably high, as evidenced by the rapidly diminishing 10 

displacement along the pipe depicted in Fig. 6(b). Similarly, the displacement plot at 31 Hz shown 11 

in Fig. 6(c) indicates the attenuation in the BG. However, its amplitude does not decay as rapidly 12 

as compared to that at 10 Hz. Unlike the displacement profiles at BGs, no attenuation is observed 13 

at 61 Hz. Figure 6(d) confirms this. A comparison of the displacement profile at 4.7 Hz and 61 Hz 14 

shows the difference in the type of PB. The one at 4.7 Hz is from LR of the rack, while first bending 15 

mode of the pipe resulted in the PB around 61 Hz. 16 
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 1 

Fig. 6. Steady-state displacement profiles of 𝑃# at different excitation frequencies indicated in Fig. 2 

5(c): (a) 4.7 Hz; (b) 10 Hz; (c) 31 Hz; and (d) 61 Hz. 3 
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PBs in a periodic structure align with the cluster of corresponding natural frequencies [80]. The 1 

clustering of natural frequencies in PBs and the attenuation strength within BGs depend on the 2 

number of unit-cells 𝑁]. To illustrate this, the variation of natural frequencies corresponding to 3 

𝑁]= 5, 10, 20, 30 and 40 is shown in Fig. 7. The BGs are depicted by shaded regions. As can be 4 

seen, bounding frequencies of PBs are not same for different values of 𝑁]. As 𝑁] increases, the 5 

bounding frequencies become closer to the analytically predicted PB frequencies. It is noted that 6 

the number of eigenfrequencies within each PB increases with increase in 𝑁]. Let 𝑓X^5 and 𝑓*^5 7 

respectively represent the starting and terminal frequencies of PBs calculated from FE model, and 8 

𝑓X4_ and 𝑓*4_ represent the corresponding values from analytical dispersion relation which is 9 

independent of 𝑁]. The percentage difference in the starting frequencies of PBs from analytical 10 

and FE model for a given 𝑁] is calculated as [19], 11 

∆X=
𝑓X4_−𝑓X^5

𝑓X^5
∗ 100 (26) 

Identical relations can be used to obtain the percentage difference ∆*	in terminal frequencies. The 12 

values of ∆X and ∆* corresponding to various PBs for different values of 𝑁] are reported in Table 13 

1. A small reduction is found in ∆X for first PB as 𝑁] increases from 5 to 10, and become constant 14 

with further increase in 𝑁]. On the other hand, a very small increase in ∆X occurs for the other two 15 

PBs with an increase in 𝑁] until 30. A significant drop in ∆* is noted for all PBs as 𝑁] increases 16 

from 5 to 10, with only a slight reduction noted for other values. However, no change in ∆X and ∆* 17 

is observed for 𝑁]= 30 and 40. Based on Fig. 7 and Table 1, it can be summarized that a finite 18 

structure needs to have an adequate 𝑁] to accurately replicate the attenuation and propagation 19 

behavior of the corresponding infinite periodic structure. 20 
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 1 

Fig. 7. Comparison of eigenfrequencies of 𝑃#on rack	for different values of 𝑁]. 2 

Table 1  

Percentage difference in analytical and numerically determined PB bounding 

frequencies for 𝑃#. 

𝑁! 
  Ist PB         IInd PB            IIIrd PB 

∆"	(%) ∆#	(%)  ∆"	(%) ∆#	(%)  ∆"	(%) ∆#	(%) 

5 0.29 5.32 0.03 8.36 0.89 5.71 

10 0.17 1.45 0.07 2.34 0.91 2.23 

20 0.17 0.28 0.09 0.76 0.91 1.29 

30 0.17 0.02 0.10 0.36 0.91 1.10 

40 0.17 0.02 0.10 0.36 0.91 1.10 

Figure 8(a) shows the variation of 𝑇% at four typical points along the length of pipe; 24 m, 84 m, 3 

144 m, and 240 m from the excitation point. This corresponds to the right end of 4th, 14th, 24th and 4 

40th span of 𝑃#. It is evident that the attenuation level within each BG increases significantly when 5 

moving away from the excitation point, reaching its maximum at 240 m. However, the number of 6 

BGs and their positions is independent of the locations. Figure 8(b) depicts the comparison of 𝑇% 7 
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when 4, 14, 24 and 40 unit-cells are used in the FE model. Within each PB, the transmission peaks 1 

are notably high and they remain consistent even for the smallest distance, while the number of 2 

peaks varies with 𝑁]. 3 

4 

Fig. 8. Comparison of 𝑇% for 𝑃#: (a) At different location from excitation point; and (b) For 5 

different values of 𝑁]. 6 

As the stiffness of the rack become extremely high (𝐾$% → ∞) and the lumped mass become 7 

negligible (𝑀$% = 0), coupled pipe-rack system reduces to a pipe supported on simple supports. 8 

Substituting these conditions in Eq. (17) results in the following dispersion equation, 9 

cos	(𝜅𝐿) = 2 �
	𝛷"𝛷& − 𝛷#𝛷.
𝛷& − 𝛷.

� (27) 

Figures 9(a) and (b) respectively illustrates the Re(±𝜅#𝐿) and Im(±𝜅#𝐿) parts of the dispersion 10 

relation based on Eq. (27), while Fig. 9(c) illustrates the variation of 𝑇% from FE model. The 11 

analytical and FE results exhibit good agreement with each other. The first two BGs are observed 12 

at 0 − 31.10 Hz and 71.30 − 123.30	Hz. The principal difference in the dispersion characteristic 13 

between the case with and without rack lie in the existence of an extra narrow PB located around 14 
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4.50	Hz in case of the former. The pipe supported on rack exhibits both resonance and Bragg-type 1 

BGs, whereas only Bragg BGs appear with simple supports. 2 

 3 

Fig. 9. Dispersion diagram and vibration transmission in pipe 𝑃# with simple supports: (a) 4 

Re(±𝜅#𝐿); (b) Im(±𝜅#𝐿); and (c) 𝑇% (dB). 5 

3.2. Vibration control in dual pipelines  6 

The propagation and attenuation characteristics of uncontrolled 𝑃# coupled with rack discussed in 7 

the previous section shows the presence of wide PBs in the low frequency region. Herein, it is 8 

aimed to control second PB (31.10 − 71.10	Hz). To achieve this, a SDoF DVA is connected with 9 

the pipes 𝑃# and 𝑃" as illustrated in Fig. 2(b). For any value of 𝜇, the optimal stiffness (𝑘#,', 𝑘",') 10 

and damping (𝑐#,', 𝑐",') properties to be employed in the DVA are determined using GA given in 11 

Section 2.3. The optimal parameters for DVA and the corresponding 𝛱 values are obtained for 12 

three mass ratios (𝜇 = 10%, 15% and 20%), and given in Table 2.   13 

Figures 10(a) and (b) compare the 𝑇% from uncontrolled 𝑃# and 𝑃" against controlled cases using 14 

DVA for the three mass ratios. It can be observed from both Table 2 and Fig. 10 that the 15 

performance of DVAs in the considered PB improves with an increase in 𝜇. A small value of 𝛱 16 

indicates high vibration reduction capabilities in the controlled system and vice versa.  17 
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Table 2 

Optimal properties of DVA. 

Mass ratio (%) 

𝜇  

Stiffness (N/m) Damping (N − s/m) Objective function 

𝛱 𝑘#,' 𝑘",' 𝑐#,' 𝑐",' 

10 2.87E6 6.53E3 4.98E3 3.77E2 6.59E-4 

15 4.23E6 5.31E4 1.38E4 4.38E2 2.49E-4 

20 4.14E6 1.07E6 7.24E3 8.77 E3 4.09E-5 

 1 

 2 

Fig. 10. Comparison of 𝑇% in uncontrolled pipe	against pipe controlled using DVAs with different 3 

𝜇: (a) 𝑃#; (b) 𝑃". 4 

3.3 Efficacy of designed DVA 5 

To assess the effectiveness of the designed DVA, its performance is compared to that of the pipe 6 

endowed with conventional TMD of the same mass ratio. The optimal values of 𝑘' and 𝑐' in case 7 

of TMD with 𝜇 = 10% are obtained using optimization as 1.16 E6 N/m and 7.40E3 N − s/m, 8 

respectively. The corresponding 𝛱 is 4.98E-5. Figure 11 compares the 𝑇% of uncontrolled 𝑃# 9 

against 𝑃# with DVAs and TMDs. As evident from Fig. 11 and the value of 𝛱, the performance of 10 
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TMD is slightly better than the DVA. However, the principal advantage of the DVA is that a single 1 

mass can simultaneously control the two pipes, while a conventional TMD with a single mass can 2 

control only that pipe to which it is attached. 3 

 4 

Fig. 11. Comparison of 𝑇% in uncontrolled 𝑃# against 𝑃# controlled using DVAs and conventional 5 

TMDs for  𝜇 = 10%. 6 

Further, to test the effectiveness of the designed DVAs, a random white Gaussian noise (with zero-7 

mean and unit standard deviation) rotation 𝑅𝑌A/$ is imposed at the left end of 𝑃#, and the resulting 8 

output 𝑅𝑌Q/$ is computed at the right end. 𝑅𝑌A/$ is generated over a duration of 3	s with a step of 9 

2E − 3 s. This results in flexural waves to propagate through the pipe, thereby showcasing its band 10 

gap characteristics. Similar flexural wave propagation at different frequencies happens when units 11 

such as compressors and pumps are connected to either end of the pipe or from impacts. This is 12 

different from seismic or wind loads which follow a different mechanism. A specific realization 13 

of 𝑅𝑌A/$ employed here is shown in Fig. 12(a), and its Fast Fourier Transform (FFT) is depicted 14 

in Fig. 12(b). 15 



31 
 

 1 

Fig.12. 𝑅𝑌A/$ imposed at 𝑃#: (a) Time history; and (b) FFT. 2 

A dynamic time history analysis was performed using Newmark-β method with integration 3 

parameters γ = 1 2⁄  and 𝜂 = 1 6⁄  [81]. Rayleigh damping was applied only to the pipe-rack 4 

system and not for DVA. A damping ratio of 𝜉 = 2% was considered, and the damping 5 

coefficients (𝐂 = 	𝛼𝐌 + 𝛿𝐊) for both stiffness and mass were calculated based on a frequency 6 

range of 0 − 71.10	Hz. The analysis is reported only for the case of 𝜇 = 10%, as other cases 7 

showed similar patterns.  8 

The time history response 𝑅𝑌Q/$ of uncontrolled and controlled pipes are depicted in Figs. 13(a-9 

c), and Fig. 13(d) compares their FFTs. It is evident from the time history plots that the designed 10 

DVA can significantly reduce the vibration response of both pipes. The FFTs in Fig. 13(d) also 11 

confirm this. It is also clear from the FFT plots that the DVA is efficient only in the designed 12 

frequency range, and may not show the intended performance outside this range. Similar time 13 

history and FFT responses are observed for pipes with TMDs; hence, they are not reported.  14 
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 1 

Fig. 13. Response time histories and FFT: (a) Uncontrolled 𝑃# and 𝑃"; (b) Controlled 𝑃#; (c) 2 

Controlled 𝑃"; and (d) Comparison of uncontrolled and controlled pipes FFTs. 3 

4. Conclusions  4 

The study explored the behavior of flexural waves in pipes for two different scenarios; one with a 5 

rack structure and the other featuring simple supports. The dispersion relations for both cases were 6 

formulated using the transfer matrix method in combination with the Floquet-Bloch’s theorem. 7 

The resulting band gaps (BGs) and pass bands (PBs) in the considered frequency range were 8 

validated using finite element models. Within the analyzed frequency range, pipe supported on 9 

rack-structure displayed resonance and Bragg-type BGs, whereas only Bragg BGs were observed 10 

in the pipe with simple supports. The modal analysis revealed that a finite structure requires an 11 
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adequate number of unit-cells to accurately replicate the behavior of an infinite periodic structure. 1 

It was observed that for a given number of spans, attenuation level within each BG increases with 2 

distance along the pipe. A similar enhancement in attenuation level was noted as the number of 3 

unit-cells increased. 4 

Further, a novel method to control vibration in dual periodic pipelines was proposed, which 5 

involves connecting them with a dynamic vibration absorber (DVA) unit in each span. The optimal 6 

properties of DVA for different mass ratios were determined using GA based optimization. The 7 

performance of DVA increases with an increase in mass ratio. The proposed DVA effectively 8 

control vibration in the targeted PB. The performance of the DVA was also compared with the 9 

conventional tuned mass damper (TMD) of identical mass ratio. Although the performance of the 10 

TMD was slightly higher than the proposed DVA, the former can control only the pipe to which it 11 

is attached. In contrast, the DVA can control both pipes simultaneously. Furthermore, a time 12 

history analysis was conducted utilizing a white Gaussian noise on both uncontrolled and 13 

controlled cases, which confirmed the effectiveness of the designed DVA within the targeted 14 

frequency range. 15 

The dispersion relation of flexural elements studied in the context of pipelines can be extended to 16 

other similar periodic structures. The innovative concept of interconnected DVA proposed in this 17 

study offers a promising and cost-effective solution applicable in scenarios involving secondary 18 

flexural systems parallel to the main flexural structure such as periodic railway tracks, closely 19 

spaced bridges, underwater tunnels, etc. Although significant efficiency was noted in controlling 20 

a particular PB using such mechanisms, the possibility of simultaneous control of multiple PBs, 21 

impact of fluid-structure interaction on BG properties, and the effectiveness of proposed technique 22 

under other realistic loading scenarios deserve further attention. 23 
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