
HAL Id: hal-04717465
https://hal.science/hal-04717465v1

Submitted on 1 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Provable randomness over lightweight permutations
Juan Di Mauro, Hamid Boukkerou, Gilles Millerioux, Marine Minier, Thomas

Stoll

To cite this version:
Juan Di Mauro, Hamid Boukkerou, Gilles Millerioux, Marine Minier, Thomas Stoll. Provable ran-
domness over lightweight permutations. Cryptography and Communications - Discrete Structures,
Boolean Functions and Sequences , 2024, �10.1007/s12095-024-00743-w�. �hal-04717465�

https://hal.science/hal-04717465v1
https://hal.archives-ouvertes.fr

Provable randomness over lightweight

permutations

Juan Di Mauro3, Hamid Boukkerou1, Gilles Millerioux1,
Marine Minier2*, Thomas Stoll3

1Université de Lorraine, CNRS, CRAN, Nancy, France.
2Université de Lorraine, CNRS, Inria, LORIA, Nancy, France.
3Université de Lorraine, CNRS, Inria, IECL, Nancy, France.

*Corresponding author(s). E-mail(s): marine.minier@loria.fr;

Abstract

Permutations mostly in the form of sboxes are very efficient components largely
present in cryptographic artifacts either hardware or software. They have been
well studied as an individual component and have a large body of knowledge.
Here we look at the properties of tiny transformations employing permutations
and a few field operations. That gives functions with few components, which can
be safely used either as PRG building blocks or as a component in lightweight
ciphers. At the end, we propose a PRG implementation with those components.
Lastly, we formalize a key assumption over the system functions and give a
theorem for the equivalence of some system instances.

Keywords: randomness, provable, permutations

1 Introduction

Randomness is a key component of any relevant cryptographic device. True random-
ness is very expensive and usually out of reach, so in most cases, an algorithm is used
to derive elements that look random. These procedures usually take a starting value
which is required to be not biased and they produce a sequence of samples that looks
like drawing from a uniform distribution.

Computational indistinguishability of two distributions X, Y is the negligible suc-
cess of any probabilistic polynomial time (ppt) algorithm to distinguish between both
(given only samples) and is the security model for randomness devices (typically the

1

samples for X are the output of the procedure and Y is the uniform distribution).
Intuitively, if the algorithm is good, it will be hard to tell the difference between a set
of truly random samples and the output of the procedure.

Indistinguishability in its formal definition implies the non-existence of any ppt
distinguisher. Such a property can only be proven by formal means and when that
is hard to achieve, the impossibility of a large set of distinguishers (such as [1], [2])
to tell apart the output of a (pseudo)random generator from the uniform distribu-
tion is taken as evidence that supports the hypothesis that the sequence produced is
indistinguishable from a random distribution.

Recently, the use of machine learning techniques seems to improve at least in a
practical way the construction of distinguishers [3],[4]. So, from the point of view of a
cryptoanalyst, is becoming more feasible to find good distinguishers and enlarge the
set of tools for the analysis.

That means that, unless a completeness proof of some statistical test can be given,
the support evidence given by a set of statistical tests, no matter how large, is becoming
a weaker argument, so a formal proof of the no-existence of distinguishers were and
are very important in cryptographic design.

But, good random quality is not only important for random generators. From a
theoretical point of view, several equivalences between primitives (see Sections 4.5
and 4.6 in [5]) are the main argument for relating biases with weakness. From a
practical side, a bias can be exploited to build a distinguisher [6] and distinguishers
are frequently used to build active and harmful attacks over ciphers [7].

Despite the design of random generators with good statistical properties is far from
trivial, they need to be fast as well. That is quite clear because the final destination
is to be used as a part of a real-life system. In recent years, that is more important
given the need to incorporate security into devices with a modest computing power
(such as the ones found in IoT). The area of lightweight cryptography is devoted to
finding designs that meet security standards with very low complexity and energy
consumption. Constructions that use few, affordable, and fast operations are increasing
in importance.

This work was motivated by the self-synchronizing stream cipher (for short, SSSC)
presented in [8]. There, the authors present an SSSC that consists mainly of a dynami-
cal system that starts from an initial state and evolves with a keyed function transition
(so that the next state is a keyed transition from the actual state and some public but
time-dependent parameter).

Good distribution in the sequence of states of the system is a requirement. However,
it is unclear from the previous work if that is true and under which conditions.

The state transition proposed there can be generalized become important on its
own. Our first contribution here is to show that the general form of that equation
preserves the randomness of its arguments. Since they are very modest in terms of the
number of operations and complexity, that gives a suitable generic component that
can be reused in other systems.

Secondly, we instantiate a pseudo-random generator using those elements and give
formal proof of its security. This accomplishes the former missing goal in [8] showing
that the state transitions are sufficiently random.

2

Lastly, we revisit the theory of some PRG based on one-way functions to give
bounds for the output of our generator. The clear analogy between the last topic
and the maximality results given in [9] is remarkable since results from the latter are
usually theoretical.

The paper is organized as follows: Section 2 recalls the security notions relevant to
our analysis and additional preliminaries. In section 3 we present the general update
equation and state its random-preservation property. Section 4 presents a generator
with those components and shows its security. Finally, section 5 deals with the output
bounds and the relations with one-wayness assumptions.

2 Preliminaries and models of security

We recall here some usual notation for security proofs.

Probabilistic polynomial time (ppt) adversaries:

A probabilistic polynomial time (ppt) adversary A is a ppt interactive Turing machine.
We will model the interaction between adversary A and the system with a sequence

of steps. In the end, A will output a bit that is the result of its computations, with
the given information provided by the system. The sequence of steps prior to giving
the information to A is written as S1;S2; So,

Pr[S1;S2; . . . ;Sn;A(x̄) = 1]

is the probability that A outputs 1 after the steps S1, . . . , Sn with the input x̄ that
(usually) depends on the previous n steps.

Distinguishers advantage:

For a random variable X, we write x ← X to say that x is a value taken from X
according to its distribution. We also write x

r←− R to say that x is extracted from
some set R according to the uniform distribution.

Let A be a ppt adversary. The advantage of A in distinguishing two random
distributions X,Y is given by

Distadv(A, X, Y) = |Pr[x← X;A(x) = 1]− Pr[y ← Y ;A(y) = 1]|

We will omit Y if Y is a uniform random variable with the same range as X and
simply write Distadv(A, X) .

Pseudo-random generators advantage:

A PRG can be defined in an abstract way as a mapping G : {0, 1}l → {0, 1}L with
l < L, which can be efficiently computed. The argument of G is called the seed.

For any ppt algorithm A the advantage of A over the PRG G is the probability
that A succeeds in distinguishing G(s) from a random sample over {0, 1}L, provided
that s is chosen randomly:

3

PRGadv(A, G) =

∣∣∣∣∣Pr

[
s

r←− {0, 1}l;
y ← G(s);
A(y) = 1

]
− Pr

[
y

r←− {0, 1}L;
A(y) = 1

]∣∣∣∣∣ (1)

We will call Experiment 0 the one where the output of the PRG is given to the
adversary, and Experiment 1 the one where the output of the PRG is replaced by a
random string.

In detail, in Experiment 0 the adversary is given as input a value y computed as
follows

1. s
r←− {0, 1}l

2. y ← G(s)

On the other hand, in Experiment 1 the adversary is given as input a value y
r←−

{0, 1}L. The advantage of A is, therefore, the difference between the probability of
output 1 in Experiment 0 and the probability of output 1 in Experiment 1.

Negligible functions:

A function f : N → R is negligible if for every polynomial p there exists an N such
that for all n > N we have f(n) < 1

p(n) .

We will denote a negligle (unspecified) function as negl.

3 General form of the transformations

This section describes our main artifact. The construction is taken mostly from the
work in [8]. There the authors present a self-synchronizing stream cipher with a matrix
transformation that updates the system and an output function that serves at the
same time as feedback for the next iteration. The matrix itself is changed on every
iteration using the feedback on the output function.

From a highlevel perspective, the system is composed of an internal state, a matrix
transformation and an output function. All the operations are performed in a finite
field F = GF (2q) (choice of q is not important for our analysis and we leave it as an
unspecified parameter for the moment). The internal state is a vector x of n elements
in the field F. The matrix transformation is a n×n matrix A with elements in F. The
output function is a function O : Fn → Fp that takes the internal state and produces
the output as a vector with p ≤ n elements in the field (the dimension p will not be
relevant until Section 5). Below we describe the components of the system in more
detail.

State transitions:

The transition matrix A is updated on every iteration and after that, used to obtain a
new internal state x. We will denote those transitions using the subscript t to indicate

4

the iteration, so that At is the matrix transformation at iteration t and the internal
state at iteration t is xt. At iteration t the product Atxt gives a new state xt+1 ∈ Fn.

Output function O:
The output function takes the internal state xt+1 after the transition and produces
the output O(xt+1) = yt+1 ∈ Fp. To keep the procedure consistent, we will take as
first output y0 = O(x0).

Parameter function M:

Since part of our analysis will be focused on output dimensions, we will need an addi-
tional component that can map the output of O to a field element. This requirement is
not present in the original stream cipher in [8] because the output function is instan-
tiated with p = 1, but we need to be more general in our analysis so we can study
the relation between the output dimension p and the security of the system. We will
denote this additional component asM : Fp → F and we will take the output of the
system afterM as ct =M(yt).

Keyed update function Uk:
The procedure to generate the transition matrix at each step is a key part of the
system. The matrix at step t is a linear mapping At : Fn → Fn that depends on the
output yt and a secret key k ∈ Fl (we will leave l undetermined by now). A natural
way of formalize this is to define a keyed update function Uk : Fn×F→ Fn that takes
the previous internal state xt, the output value ct and outputs a new internal state
xt+1. The linear mapping that performs the internal state transition xt 7→ xt+1 at
time t, represented by the matrix At can be naturally expressed by Uk(·, ct) such that

Uk(xt, ct) = Atxt.

Figure 1 shows a schematic diagram of the state transitions.

Fig. 1 Schematic picture of the iteration procedure. Dotted arrows denote state transition, solid
arrows with function symbols shows results of applying the corresponding function. The arrows
between ct and At for t = 0, 1 denote the effect of ct in the construction of At as indicated by the
update function Uk(·, ct).

x0 99K 99K x1 99K
A0 A1

O
y x y x
y0

M−−→ c0 y1
M−−→ c1

We will turn our attention now to individual components of the state vector xt and
the way they are updated. Without diving into the details of how the transition matrix
is constructed, the component j of the state vector xt+1 is the result of applying some
linear function to the previous state xt. Since our matrix At depends on ct and the key

5

k, we will add those dependencies to the notation and we will denote as fj(xt; k, ct)
the function that updates the component j of the state vector where fj is a linear
function in the first argument, that depends on the output ct and the secret key k.

In general, the form of the update function fj can be written as

fj(xt; k, ct) =

n∑
i=1

aji(k, ct)xt,i

where aji(k, ct) are field elements that depend on the key and the output. The
element j, i of the matrix At at iteration t is therefore aji(k, ct) and xt,i denotes the
component i of the state vector xt (at time t).

To introduce non-linearity in the system we will use a function S : F→ F to define
some of the entries of the matrices At. We will require S to be a permutation.

Regarding the key elements, we will assume that k has enough elements to cover
all the entries of the matrix At. That is, we will take k as an vector in Fn2

and sorted
as k11, k12, . . . , k1n, k21, . . . , knn. We will like to remark that the size of the key space
is larger than we actually need, but we will not use this fact in our analysis. Moreover,
specifying the exact number of key bits needed would only introduce cumbersome
notation in our proofs.

The matrix elements aji(k, ct) are defined as follows: for every j we choose an index
j0 ∈ {1, . . . , n} and a subset Ij ⊂ {1, . . . , n} of size |Ij | = n− 1 such that j0 /∈ Ij .

aji(k, ct) =

 1 if i = j0
S(ct + kji) if i ∈ Ij
0 otherwise

Where kji is the ji component of the key k. This leads to the expression

fj(xt, k, ct) = xt,j0 +
∑
i∈Ij

xt,iS(ct + kji) (2)

A toy example

Let n = 3 and I1 = {2, 3}, I2 = {1, 3}, I3 = {1, 2}. Take j0 = j for j = 1, 2, 3. The
update function for the first component of the state vector is

f1(xt, k, ct) = xt,1 + xt,2S(ct + k1,2) + xt,3S(ct + k1,3)

For the second component we have

f2(xt, k, ct) = xt,2 + xt,1S(ct + k2,1) + xt,3S(ct + k2,3)

And for the third component

f3(xt, k, ct) = xt,3 + xt,1S(ct + k3,1) + xt,2S(ct + k3,2)

6

The matrix At at iteration t is given by

At =

 1 S(ct + k1,2) S(ct + k1,3)
S(ct + k2,1) 1 S(ct + k2,3)
S(ct + k3,1) S(ct + k3,2) 1

 .

A simpler example of an output function is O : F3 → F given by the mapping
xt 7→ xt,3 and the functionM : F→ F given by the identity.

According to this, matrix At can be rewritten as

At =

 1 S(xt,3 + k1,2) S(xt,3 + k1,3)
S(xt,3 + k2,1) 1 S(xt,3 + k2,3)
S(xt,3 + k3,1) S(xt,3 + k3,2) 1

 .

Lastly, the output of the system at time t+ 1 is given by

O(Uk(xt, ct)) = O(Atxt) = xt+1,3 = xt,3 + xt,1S(xt,3 + k3,1) + xt,2S(xt,3 + k3,2).

Functions like the one in Equation (2) are frequently used as tiny components to
build larger systems. We remark that the overall complexity of (2) is very affordable.
The function S can be an S-box, and this in turn can be implemented as a table either
in software or hardware. Multiplications and additions in the extension fields of F2

are also, very efficient (via logarithmic and Zech logarithmic tables).
Having said that, our main concern is about the randomness of the sequence of

outputs yt produced at each iteration. First of all, it is not clear if the sequence has
good statistical quality. Secondly, assuming that the output function O and function
M do not play any cryptographic role, it is unclear how large should be the output
of the system to remain indistinguishable from a random sequence.

In the original design of the stream cipher, the authors propose to use as output
function the mapping xt 7→ xt,3 so, in that case p = 1 and the function M can
be the identity. However, each iteration involves several operations, so it will be an
improvement if p can be larger than 1 and at the same time, security is preserved.

To address the question about statistical quality, we will prove something stronger.
We will prove that if the initial state x0 is computationally indistinguishable from
a random vector in Fn and the parameters ct are computationally indistinguishable
from a random element in F, then the sequence of states xt is computationally indis-
tinguishable from a sequence of random vectors in Fn. In other words, our system
preserves the randomness of its arguments.

The following two lemmas and its corollary are devoted to prove that mappings
in the form of Equation (2) preserve the randomness of the input state. This is done
with increasing complexity, starting with the simplest case and then generalizing to
the case of several components.

The simplest form of Equation (2) is the one given by

fj(xt, k, c) = xt,j0 + xt,j1S(ct + kj,j1). (3)

7

For convenience in the notation, let Xl be the random variable for the component
xt,l of the state in the current iteration t. For example, Equation (3) involves the
random variables Xj0 and Xj1 .

Lemma 1. Assume that the component function fj has the form given in Equation
3 and that kj,j1 is chosen uniformly at random from F. If S is a permutation then
for every adversary A that can distinguish the output of fj there exist two adversaries
B′,B such that

Distadv(A, fj(xt, k, c)) ≤ Distadv(B′, Xj0) + Distadv(B, Xj1).

Proof. The outline of the proof is as follows: we will use a sequence of experiments
to build a hybrid argument. In the first experiment, the output of fj is replaced
by r0 + r1r2 for three random values r0, r1, r2. In the next experiments, we replace
in turn each one of these with the real values used in the computation of fj . Any
noticeable difference between the experiments leads to a distinguisher for the element
that changes.

Let E0 be the experiment given by the following steps

1. u
r←− F

2. v
r←− F

3. w
r←− F

4. Compute z ← u+ wv and send it to A

The next four experiments are listed below

E1 :

1. u
r←− F

2. v
r←− F

3. w ← S(kj,j1 + ct)
4. Compute z ← u+ wv and send it to A

E2 :

1. u
r←− F

2. v ← xt,j1

3. w ← S(kj,j1 + ct)
4. Compute z ← u+ wv and send it to A

E3 :

1. u← xt,j0

2. v
r←− F

3. w ← S(kj,j1 + ct)
4. Compute z ← u+ wv and send it to A

E4 :

1. u← xt,j0

8

2. v ← xt,j1

3. w ← S(kj,j1 + ct)
4. Compute z ← u+ wv and send it to A

Let Wb be the event that A outputs 1 in experiment Eb for b = 0, 1, 2, 3, 4. Clearly,

Distadv(A, fj(xt, k, ct)) = |Pr[W0]− Pr[W4]| (4)

We can write |Pr[W0]− Pr[W4]| as the following sum of differences

|Pr[W0]− Pr[W4]| = |Pr[W0]− Pr[W1]

+ Pr[W1]− Pr[W2]

+ Pr[W2]− Pr[W4]

≤ |Pr[W0]− Pr[W1]|
+ |Pr[W1]− Pr[W2]|
+ |Pr[W2]− Pr[W4]|.

(5)

We point out that

• |Pr[W0]− Pr[W1]| = 0 because u, v are chosen uniformly at random from F.
• |Pr[W1]− Pr[W2]| = 0 since both experiments are statistically identical because u
is chosen uniformly at random.

Then, last inequality in Equation (5) gives us

|Pr[W0]− Pr[W4]| ≤ |Pr[W2]− Pr[W4]|. (6)

In an almost identical way, we can write |Pr[W0] − Pr[W4]| as the following sum
of differences

|Pr[W0]− Pr[W4]| = |Pr[W0]− Pr[W1]

+ Pr[W1]− Pr[W3]

+ Pr[W3]− Pr[W4]

≤ |Pr[W0]− Pr[W1]|
+ |Pr[W1]− Pr[W3]|
+ |Pr[W3]− Pr[W4]|.

(7)

And as before, we have that |Pr[W1]− Pr[W3]| = 0 because v is randomly chosen
with uniform probability over F. Then, we have

|Pr[W0]− Pr[W4]| ≤ |Pr[W3]− Pr[W4]|. (8)

9

Equations (6) and (8) give us that

|Pr[W0]− Pr[W4]| ≤ |Pr[W2]− Pr[W4]|+ |Pr[W3]− Pr[W4]|. (9)

To finish the proof, we need to show that |Pr[W3] − Pr[W4]| ≤ Distadv(B, Xj1)
and |Pr[W2]− Pr[W4]| ≤ Distadv(B′, Xj0).

In fact, is straightforward to build from A an adversary B′ that can distinguish Xj0

from the uniform distribution from experiments E2 and E4, so |Pr[W2]− Pr[W4]| =
Distadv(B′, Xj0).

Adversary B′ acts in turn as a challenger for A in the experiment E2 and E4,
following this steps

1. Receives u from its own challenger.
2. Pick v uniformly at random from F.
3. Compute w ← S(kj,j1 + ct).
4. Compute z ← u+ wv and send z to A.
5. Output the same as A.

When u is sampled from the uniform distribution, the output of B′ is the output of A
in E2. Conversely, when u is sampled from the distribution of Xj0 , the output of B′ is
the output of A in E4. Then, it holds that

|Pr[W2]− Pr[W4]| = Distadv(B′, Xj0). (10)

In a very similar way we can build a procedure B using A, that can distinguish
Xj1 from the uniform distribution from experiments E3 and E4, such that

|Pr[W3]− Pr[W4]| = Distadv(B, Xj1). (11)

Finally Lemma follows from inequality in Equation (9) and Equations (4), (10)
and (11).

The argument of the above Lemma can be extended to the general case

fj(xt, k, ct) = xt,j0 +
∑
i∈Ij

xt,iS(ct + kj,i). (12)

Lemma 2. Assume that the component function fj has the form given in Equation
(12) and that for every i ∈ Ij, kj,i is chosen uniformly at random and independently
from F. Let S be a permutation. For each i ∈ Ij, let

ϵi = sup
B
{Distadv(B, Xi)}

where the supremum is taken over all the ppt distinguisher adversaries for Xi. Let also,

ϵ = max{ϵi | i ∈ Ij}.

10

Then for every distinguisher adversary A for the output of fj we have

Distadv(A, fj(xt, k, ct)) ≤ |Ij |ϵ.

Since outputs of functions fj will be the components of the new state x(t+1), we

will use the same notation regarding random variables and we will call X̂j the random
variable for the output of fj .

The following Corollary is derived easily from the previous Lemma.
Corollary 1. With the same notations of Lemma 2, if every component xt,i with
i ∈ Ij is computationally indistinguishable of sample from the uniform distribution

over F, then the distribution for the updated component X̂j is also computationally
indistinguishable from a uniform distribution over the same range.

Proof of Lemma 2. By induction on |Ij |. The case |Ij | = 1 is Lemma 1. For |Ij | > 1,
take any j1 ∈ Ij and let us write I ′j = Ij \ {j1}. Then

xt+1,j = xt,j0 +
∑
i∈Ij

xt,iS(ct + kji) = xt,j0 +
∑
i∈I′

j

xt,iS(ct + kji) + xt,j1S(ct + kj,j1 + c)

Let f ′
j be the same as fj but summing over I ′j instead of Ij , that is

f ′
j(xt; k, ct) = xt,j0 +

∑
i∈I′

j

xt,iS(ct + kji).

Let A be any distinguisher adversary for the output of fj . Since

fj(xt; k, ct) = f ′
j(xt; k, ct) + xt,j1S(ct + kj,j1 + c)

one application of Lemma 1 gives us two distinguisher adversaries B and B′ such that

Distadv(A, fj(xt; k, ct)) ≤ Distadv(B′, f ′
j(xt; k, ct)) + Distadv(B, Xj1) (13)

By the induction hypothesis over f ′
j , for any distinguisher adversary A′ it follows

that

Distadv(A′, f ′
j(xt; k, ct)) ≤ |I ′j |ϵ′ , for ϵ′ = max{ϵi | i ∈ I ′j}. (14)

That holds for B′ in Equation (??) in particular. Then, we have

Distadv(A, fj(xt; k, ct)) ≤ |I ′j |ϵ′ +Distadv(B, Xj1). (15)

Finally, the Lemma follows by the fact that

max(ϵ′,Distadv(B, Xj1)) ≤ ϵ

11

Remark about key size

Analysis in this section was done considering a key with same amount of elements
as the matrix At. That was done to simplify the notation, specially in the proofs.
However, it should be noted that such key size is far larger than needed. The set of
equations given by Equation ?? with j = 1, . . . , n needs |I1| + |I2| + . . . + |In| key
elements. But sets Ij are at most of size n − 1 and usually much smaller. Original
work in [8] establish a proper key size for the system. In our case, we are mainly
interested in the randomness of the system and the relation between the number of
outputs components and the key size. From now on, we will take as Fl the key space.

4 PRG instance

Informally, each instance of Equation (12) gives a PRG that stretches the seed xt by
many bits as the size of elements in F. Given two parameters k ∈ Fl and c ∈ F, we
will name as Gj the PRG given by the mapping xt 7→ fj(xt, k, c). In what follows, we
will drop the subscript t that indicates the iteration and we will only keep a subscript
for the index of the elements in the vectors.

By Lemma 2, each Gj is a secure PRG (taking x as the seed element). Let G be
the mapping given by x 7→ (G1(x), G2(x), . . . , Gn(x)). The complete state update

x 7→ G(x) = (G1(x), G2(x), . . . , Gn(x)) = (f1(x, k, c), f2(x, k, c), . . . , fn(x, k, c))

resembles a parallel composition of PRGs. Although due to the lack of uniformity of
the family {Gj}nj=1, Theorem 3.2 in [5] for the parallel composition of PRGs no longer
holds (at least not directly since the PRGs Gj could be different). However, minor
changes in the proof lead to the same results.

The Theorem 3.2 in [5] establishes a bound for the security of a parallel composition
of PRGs by the sum over individual advantages for every component. The intuition
behind that is to distinguish the sequence produced by G an adversary only needs to
distinguish one component. The next Theorem deals with the non-uniformity of the
family {Gj}nj=1 to state the same.
Theorem 1. Let G : Fn → Fn be the mapping given by

x 7→ (G1(x), G2(x), . . . , Gn(x)) (16)

Then, for every distinguishing adversary A over G there exists a distinguishing
adversary B for Gj, for every j ∈ {1, . . . , n} such that

PRGadv(A, G) = n · PRGadv(B, Gj) (17)

Proof. Take any j ∈ {1, . . . , n}. Let A be any adversary that interacts with the PRG
G and try to differentiate samples from G from samples from the uniform distribution.
We will build from A an adversary B that can distinguish the output of Gj . Briefly,
this new adversary will pick a random value σ in {1, . . . , n} that plays the role of a

12

random coin. Then it will interact with A as a regular PRG challenger, passing back
and forth the messages between A and the Challenger that uses G. At the end, B will
output the answer of A only when the index of the component is j. If the index is
different from j, it will output a random bit.

In detail, we define B with the following procedure:

1. Let σ
r←− {1, . . . , n}.

2. Query to the PRG challenger that uses G. Let y be the answer.
3. Forward y to A. Let b be the answer of A
4. If σ = j, answer b. Else answer a random bit.

Following usual conventions, let Experiment 0 be the above procedure when the
answer y is choosen uniformly at random from Fn. Let Experiment 1 be the same
procedure but with the answer y choosen from the output of G (as introduced in
Section 2).

In the same way, Experiment 0 for the PRG Gj is the interaction with a Challenger
using the PRG Gj that upon an adversaryt query, return a random element in F.
Experiment 1 for Gj on the other hand is the interaction with a Challenger using Gj

that upon an adversary query, return the output of Gj .
If WA

b is the event that A outputs 1 in Experiment b of the PRG G and Wb is the
event that B outputs 1 in Experiment b of Gj , then provided σ = j, Wb happens if
and only if WA

b happens. That means

Pr[Wb | σ = j] = Pr[WA
b] (18)

On the other hand, if σ ̸= j then B output 1 with probability 1/2, so

Pr[W1 | σ ̸= j] = Pr[W0 | σ ̸= j] = 1/2. (19)

From that, it follows easily

PRGadv(B, Gj) = |Pr[W1]− Pr[W0]|
= |Pr[W1 | σ ̸= j]Pr[σ ̸= j]− Pr[W0 | σ ̸= j]Pr[σ ̸= j]

+ Pr[W1 | σ = j]Pr[σ = j]− Pr[W0 | σ = j]Pr[σ = j]|
= |Pr[W1 | σ = j]Pr[σ = j]− Pr[W0 | σ = j]Pr[σ = j]|
= Pr[σ = j]|Pr[W1 | σ = j]− Pr[W0 | σ = j]|

=
1

n
|Pr[W1 | σ = j]− Pr[W0 | σ = j]|

=
1

n
PRGadv(A, G)

As the last step in this section, we will show a sequential PRG that uses state
transitions. The procedure is a Blum-Micali iterative generator with the previous PRG
G.

13

We will like to remind here the basic behaviour of the system described in Section
??. Given a key k fixed for all the iterations, the system is started with a random
initial state x0 which is updated to x1 with one application of Uk with the iteration
parameter c0 =M(O(x0)). So, the output of the system at t = 1 is O(Uk(x0, c0)).

It is important to note that the design of Uk and O in the specific implementation
must be carefully chosen to avoid O ◦ Uk being an easy-to-invert function.

Far from being a special requirement, this must be satisfied as well in the original
stream cipher. The implication of not fulfilling that in the stream cipher is the exposure
of subkeys while the implication in the PRG case is the predictability of the output
sequence.

Algorithm 1 describes the generator.

Algorithm 1 Pseudo-random generator G∗ :

Require: A seed x0 ∈ Fn (the initial state), a key k ∈ Fl, an integer s > 0 (the
number of random words to output)

1: x← x0 ▷ The current state
2: r0 ← O(x) ▷ The first output
3: for i = 0, . . . , s− 1 do
4: c←M(ri) ▷ The iteration parameter
5: x← Uk(x, c) ▷ The state transition
6: ri ← O(x) ▷ The output at iteration i
7: end for
8: return r0, . . . , rs−1

Note Uk(x, c) = (f1(x, k, c), . . . , fn(x, k, c)) so, line 5 in Algorithm 1 is an applica-
tion of G with the key k and c as the iteration parameter. The security of the above
PRG follows directly from that of G by sequential composition (see Theorem 3.3 in
[5]). In particular, we have
Theorem 2. For every adversary A for G∗ there is an adversary B for G such that

PRGadv(A, G∗) = s · PRGadv(B, G)

The amount of bits produced per round is a very important point. We address that
in the next section.

5 Hardness of the update and output functions
composition

One of the key assumptions over the systems in [8] is the hardness of performing the
inverse transition of a state, by only looking at the output ciphertext. Informally,
any probabilistic polynomial time adversary A taking as its input the output y =
O(Uk(x, c)), will only succeed in getting the original state x with negligible probability.

That will be called the UO assumption and can be formalized as follows:

14

Assumption 1 (UO assumption over the pair Uk,O). For a family of update functions
{Uk : Fn × F → Fn}k∈Fl and output functions O : Fn → Fp, with F a finite field of λ
elements, and any key k ∈ Fl it holds that:

For any probabilistic polynomial time adversary A we have

Pr

 x
r←− Fn; c←M(O(x));

y← O(Uk(x, c));x′ ← A(y) :
x = x′

 = negl(λn)

The UO assumption is preserved under permutations in the state vector x. That
is, if P is a n×n permutation matrix, then getting x from y such that y = O(Uk(x, c))
is as hard as getting x from y′ such that y′ = O(Uk(Px, c)).

Proposition 1. Let P be a permutation matrix of size n×n. Let k ∈ Fl be an arbitrary
key, Uk : Fn × F → Fn an update function, and O : Fn → Fp the output function.
Let also, U ′

k be an update function defined as U ′
k(x, c) = Uk(Px, c). Then, for every

adversary A inverting the composition O◦Uk there exists an adversary A′ that inverts
the composition O ◦ U ′

k and both succeed with the same probability.
Formally, we have that

Pr

 x
r←− Fn; c←M(O(x));

y← O(Uk(x, c));x′ ← A(y) :
x = x′

 = Pr

 x
r←− Fn; c←M(O(x));

y← O(U ′
k(x, c));x

′ ← A′(y) :
x = x′

Proof. The proof is a straightforward calculation. Let y = O(Uk(x, c))) for some x
and c =M(O(x)). Then, we have that y is the output of the related system that uses
update function Uk for the input argument P−1x. In detail:

O(U ′
k(P

−1x, c)) = O(Uk(P (P−1x, c))) = O(Uk(x, c))) = y.

So, given A, to build A’ we only need to apply P−1 to the output of A. Note
that A′ succeeds inverting y if and only if A succeeds inverting y. That proves the
proposition.

Upper bound for the output

A fact easy to observe regarding the output function O is that it should be hard to
invert. In particular, if O outputs p components of the state vector x, that is

O(x) = (xi1 , . . . ,xip)

then the number of components that are not output should be greater or equal the
number of elements of the key k (considered as a vector over F).

As we pointed out before, knowing the initial state x and the update result x′ =
Uk(x, c) allows an adversary to recover the key k by solving a system of equations
since x′ = Ax for some matrix A ∈ Fn×n.

15

Leaving aside the complexity of solving the equations or the possibility that the
adversary does not known the set of indexes i1, . . . , ip such that yj = xij , increasing
the amount p of components output by O in such a way that n − p is lower than
the number of elements in the key k should be avoided as it can represent a serious
security risk.

Having the key and the initial state, an adversary can completely run the system
which implies predictability of the output. The point we want to make here is that
the remaining bits in the internal state that are not used as output must be at least
the same number of bits used to represent the key.

To put in a concrete way, let us denote l = |I1|+ . . .+ |In| the number of elements
in the key k. Then, the output size p should be such that n− p ≥ l.

Unpredictability of hidden components

Proposition 1 shows that there are no special indexes in the state vector (as long we
assume that the system is no easy to invert). Following that and the discussion on
in the previous paragraph, we can expect that hidden exact l components (the same
number of elements that the key has) will keep the generator secure. Although a formal
proof of this should be conducted in future work, is important to note that this leads
to a much more efficient generator. In fact, according to this observation output size
could be increased from 1 to n− l elements of the field. Since key size l is usually much
smaller than n (leaving aside the toy example in Section 3), this means a significant
enhancement in the output size.

6 Conclusions

We have shown here a family of functions suitable for implementing cryptographic
primitives with provable randomness preservation. In addition, the functions in this
family are built with only sboxes, multiplications, and additions in a finite field. The
instance of functions in the family, either in hardware or software have low complexity
and can be run fast, which makes all the family adequate for lightweight devices. That
allows us to construct a novel PRG as iterative composition of the state update and
output functions.

The entire design borrows components and ideas from the stream cipher given by
[8], so in addition the work done here contributes to improve that family of stream
ciphers.

Lastly, in Section ??, we formalize the needed notions to increase the throughput
of the PRG and their implications.

Statements and Declarations

Data availability. Data sharing not applicable to this article as no datasets were
generated or analysed during the current study.

References

[1] L’Ecuyer, P., Simard, R.: Testu01: A c library for empirical testing of random

16

number generators. ACM Trans. Math. Softw. 33(4) (2007) https://doi.org/10.
1145/1268776.1268777

[2] Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M.,
Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for the
validation of random number generators and pseudo random number generators
for cryptographic applications. Technical report, NIST (April 2010). http://csrc.
nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf

[3] Baksi, A., Breier, J., Chen, Y., Dong, X.: Machine learning assisted differential dis-
tinguishers for lightweight ciphers. In: 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 176–181 (2021). https://doi.org/10.23919/
DATE51398.2021.9474092

[4] Brunetta, C., Picazo-Sanchez, P.: Modelling cryptographic distinguishers using
machine learning. Journal of Cryptographic Engineering 12, 123–135 (2022) https:
//doi.org/10.1007/s13389-021-00262-x

[5] Boneh, D., Shoup, V.: A graduate course in applied cryptography. Springer (2023).
http://toc.cryptobook.us/

[6] Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) Advances in Cryptology
— EUROCRYPT ’99, pp. 12–23. Springer, Berlin, Heidelberg (1999)

[7] Joux, A., Muller, F.: Loosening the knot. In: Johansson, T. (ed.) Fast Software
Encryption, pp. 87–99. Springer, Berlin, Heidelberg (2003)

[8] Francq, J., Besson, L., Huynh, P., Guillot, P., Millerioux, G., Minier, M.: Non-
triangular self-synchronizing stream ciphers. IEEE Transactions on Computers
71(1), 134–145 (2022) https://doi.org/10.1109/TC.2020.3043714

[9] Patel, S., Sundaram, G.S.: An efficient discrete log pseudo random generator. In:
Annual International Cryptology Conference (1998)

17

https://doi.org/10.1145/1268776.1268777
https://doi.org/10.1145/1268776.1268777
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
https://doi.org/10.23919/DATE51398.2021.9474092
https://doi.org/10.23919/DATE51398.2021.9474092
https://doi.org/10.1007/s13389-021-00262-x
https://doi.org/10.1007/s13389-021-00262-x
http://toc.cryptobook.us/
https://doi.org/10.1109/TC.2020.3043714

	Introduction
	Preliminaries and models of security
	Probabilistic polynomial time (ppt) adversaries:
	Distinguishers advantage:
	Pseudo-random generators advantage:
	Negligible functions:

	General form of the transformations
	State transitions:
	Output function O:
	Parameter function M:
	Keyed update function Uk:
	A toy example
	Remark about key size

	PRG instance
	Hardness of the update and output functions composition
	Upper bound for the output
	Unpredictability of hidden components

	Conclusions

