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Caroline Hillairet† Anthony Réveillac‡

Abstract

We introduce and study an alternative form of the chaotic expansion for Poisson
functionals, using a very specific (non-equivalent) Girsanov transformation; we name
this alternative form pseudo-chaotic expansion. This pseudo-chaotic expansion is
derived on a general phase space and we analyze the link between this expansion and
the classical chaotic decomposition available for random Poisson measures. When
combined with the Poisson imbedding representation for point processes this expan-
sion provides a new decomposition for this process and in the specific case of a linear
Hawkes process, the coefficients of the pseudo-chaotic expansion are derived in closed
form whereas those of the classical chaotic decomposition are defined through the
distribution function of the marginal laws of the Hawkes process or of its intensity
that cannot be obtained explicitly. Finally, this expansion enables us to study further
the structure of linear Hawkes processes by constructing an example of a process
in a pseudo-chaotic form that satisfies the stochastic self-exciting intensity equation
which determines a Hawkes process (in particular its expectation equals the one of a
Hawkes process) but which fails to be a counting process.
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1 Introduction

A large literature dealing with Gaussian and Poisson functionals has investigated
the so-called chaotic expansion (also called Wiener-Itô expansion) which refers to an
infinite dimensional version of the use of orthonormal polynomials associated to a given
probability distribution. This notion finds many relations with the Malliavin calculus
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On the chaotic expansion for counting processes

which has been largely developed in the Gaussian framework (see for instance the
dedicated monograph [13]) and in the Poisson framework (see for e.g. [11]) or to more
general frameworks that go beyond the Gaussian and the Poisson framework (see [14]).
This paper contributes to this literature by introducing an alternative chaotic expansion,
in the framework of a Poisson random measure N defined on a complete separable
metric space (X,X) equipped with a non-atomic σ-finite measure denoted ρ.
The standard chaotic expansion of a Poisson functional F in L2(Ω) with respect to N

writes down as (see e.g. Theorem 2 in [10])

F = E[F ] +

+∞∑
n=1

1

n!
In(TnF ) (1.1)

where In(TnF ) is the nth iterated integral of TnF against the compensated Poisson
measure N defined as

In(TnF ) :=
∑

J⊂{1,...,n}

(−1)n−|J|
∫
Xn−|J|

∫
X|J|

TnF (x1, . . . ,xn) N(|J|)(dxJ)ρn−|J|(dxJc),

with Jc := {1, . . . , n} \ J and dxJ := (dxj)j∈J . Furthermore, for any n, the symmetric
coefficient (TnF ) in L2(Xn) is given as the expectation of the nth-Malliavin derivative of
F :

TnF = E[Dn
(x1,...,xn)F ].

This expression requires some details on its definition that will be given in Section 2
below; but roughly speaking it allows one to expand the random variable F into iterated
integrals with respect to the compensated Poisson measure N(dxj) − ρ(dxj). Such
decomposition is proved to be useful (for example in the context of Brownian SPDEs)
provided that the coefficients TnF can be computed or can be characterized by an equa-
tion. Unfortunately these coefficients are often far from being explicit, as for example in
the case of a linear Hawkes process as discussed in Section 4.

In this paper we prove as Theorem 3.6 that any Poisson functional F in L2(Ω) (assuming
ρ(X) < +∞ such that F is also in L1(Ω)) satisfies an alternative representation of the
chaotic expansion that we name pseudo-chaotic representation. This pseudo-chaotic
expansion takes the form of

F = E[LF ] +

N(X)∑
n=1

1

n!
In(TnF ), (1.2)

where In(TnF ) is the nth iterated integral of TnF against the Poisson measure N only
(and not its compensated version) defined as

In(TnF ) :=

∫
Xn

TnF (x1, . . . ,xn) N(n)(dx1, . . . , dxn),

Furthermore, for any n, the symmetric coefficient TnF in L1(Xn) is given as the ex-
pectation of the nth-Malliavin derivative of F but under a (non-equivalent) Girsanov
transformation

TnF := E[LDnF ], with L := exp(ρ(X))1{N(X)=0}.

The link between the coefficients TnF appearing in the chaotic expansion (1.1) with
coefficients TnF in the pseudo-chaotic one (1.2) is studied in Proposition 3.14.
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On the chaotic expansion for counting processes

The pseudo-chaotic expansion can be coupled with the Poisson imbedding (see [9,
Chapter 4] or [3]) to provide a representation of general counting processes. This paper
investigates in detail the particular case of the linear Hawkes process. The so-called
linear Hawkes process is a counting process H with intensity process λ satisfying :

λt = µ+

∫
(0,t)

Φ(t− s)dHs, t ≥ 0, (1.3)

where the constant µ > 0 is the baseline intensity and Φ : R+ → R+ is modeling the
self-exciting feature of the process. Naturally conditions on Φ are required for a well-
posed formulation (typically ‖Φ‖1 < 1). Well-posedness here is accurate as, thanks to
the Poisson imbedding, the linear Hawkes processes can be seen as a system of weakly
coupled SDEs with respect to N

Ht =
∫

(0,t]×R+
1{θ≤λs}N(ds, dθ)

t ≥ 0,

λt = µ+
∫

(0,t)
Φ(t− s)1{θ≤λs}N(ds, dθ).

Under mild condition on Φ the second equation (and so the system) can be proved
to be well-posed (see e.g. [3, 4, 8]). Theorem 4.6 gives the coefficients TnHT of the
pseudo-chaotic expansion (1.2) of the linear Hawkes process H, which are explicit, in
contradistinction to the coefficients TnHT in the classical chaotic expansion (1.1) which
can not be computed (see Discussion 4.9). This provides then a closed-form expression
to linear Hawkes processes. Finally, we study further in Section 5 the structure of linear
Hawkes processes by constructing an example of a process in a pseudo-chaotic form that
satisfies the stochastic intensity equation (1.3) but which fails to be a counting process
(see Theorem 5.3 and Discussion 5.4).

The paper is organized as follows. Notations and the description of the Poisson space
and elements of Malliavin’s calculus are presented in Section 2, as well as the operators
and iterated integrals we will make use in the derivation of the expansions. The pseudo-
chaotic expansion is derived in Section 3, and is then coupled with the Poisson imbedding
to detail the case of counting processes. As an application, Section 4 is dedicated to
linear Hawkes processes for which we give their explicit pseudo-chaotic representation.
Finally, Section 5 investigates the construction, in a pseudo-chaotic form, of a process
which is not a counting process while satisfying the same stochastic intensity equation
than the Hawkes.

2 Elements of Malliavin calculus on the Poisson space

We introduce notions of stochastic analysis on general Poisson space. All the elements
presented in this section are taken from [10, 12].

We set N∗ := N \ {0} the set of positive integers. For a, b ∈ Z with a > b, and for any
map ρ : Z→ R,

∏b
i=a ρ(i) := 1;

∑b
i=a ρ(i) := 0. Finally, for any finite set S, we set |S| its

cardinal.

In this section we fix (X,X) a complete separable metric space. Let ρ a non-atomic
σ-finite measure on (X,X). As a consequence, there exists an increasing (with re-
spect to the inclusion) sequence of subsets (Rk)k≥1 of X such that ∪k∈NRk = X and
ρ(Rk) < +∞. For n ≥ 1, ρn denotes the product measure on (Xn,X⊗n).
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On the chaotic expansion for counting processes

We define Ω the space of configurations on X as

Ω :=

ω =

n∑
j=1

δxj
, xj ∈ X, j = 1, . . . , n, n ∈ N ∪ {+∞}

 . (2.1)

Let F be the σ-field associated to the vague topology on Ω. Let P the Poisson measure
on Ω under which the canonical evaluation N defines a Poisson random measure with
intensity measure ρ. To be more precise given any element A in X with ρ(A) > 0, the
random variable

(N(ω))(A) := ω(A)

is a Poisson random variable with intensity ρ(A). We denote by FN := σ{N(A);A ∈ X}
the σ-field generated by N.

Add-points operators and the Malliavin derivative

We introduce some elements of Malliavin calculus on Poisson processes. We set

L0(Ω) :=
{
F : Ω→ R, FN − measurable

}
,

L2(Ω) :=
{
F ∈ L0(Ω), E[|F |2] < +∞

}
and

L∞(Ω) :=
{
F ∈ L0(Ω), ∃C > 0, |F | ≤ C, P− a.s.

}
.

Similarly

L0(Xj) :=
{
f : Xj → R, X⊗j −measurable

}
and for p ∈ {1, 2}, for j ∈ N∗

Lp(Xj) :=

{
f ∈ L0(Xj),

∫
Xj

|f(x1, · · · ,xj)|pρj(dx1 · · · dxj) < +∞
}
. (2.2)

Besides,

Lps(X
j) :=

{
f ∈ Lp(Xj) and f is symmetric

}
, (2.3)

is the space of square-integrable symmetric mappings where we recall that f : Xj → R is
said to be symmetric if for any element σ in Sj (the set of all permutations of {1, · · · , j}),

f(x1, . . . ,xj) = f(xσ(1), . . . ,xσ(j)), ∀(x1, . . . ,xj) ∈ Xj .

For f in L0(Xj), we set f̃ the symmetrization of f that is the map f̃ : Xj → R, with

f̃(x1, · · · ,xj) :=
1

j!

∑
σ∈Sj

f(xσ(1), · · · ,xσ(j)). (2.4)

For h ∈ L0(X) and j ≥ 1 we set the symmetric function h⊗j ∈ L0
s(X

j) defined as

h⊗j(x1, . . . ,xj) :=

j∏
i=1

h(xi), (x1, . . . ,xj) ∈ Xj . (2.5)

The main ingredient we will make use of are the add-points operators on the Poisson
space Ω.
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On the chaotic expansion for counting processes

Definition 2.1. [Add-points operators] Given n ∈ N∗, and J := {x1, . . . ,xn} ⊂ X a subset
of X with |J | = n, we set the measurable mapping :

ε+,n
J : Ω −→ Ω

ω 7−→ ω +
∑
x∈J

δx1{ω({x})=0}.

Note that by definition

ω +
∑
x∈J

δx1{ω({x})=0} = ω +

n∑
j=1

δxj
1{ω({xj})=0}

that is we add the atoms xj to the path ω unless they already were part of it (which is the
meaning of the term 1{ω({xj})=0}). Note that since ρ is assumed to be atomless, given a
set J as above, P[N(J) = 0] = 1 hence in what follows we will simply write ω +

∑n
j=1 δxj

for ε+,n
x (ω).

We now recall the Malliavin derivative operator.

Definition 2.2. For F in L0(Ω), n ∈ N∗, (x1, . . . ,xn) ∈ Xn, we set

Dn
(x1,...,xn)F :=

∑
J⊂{x1,...,xn}

(−1)n−|J|F ◦ ε+,|J|
J , (2.6)

where we recall that ∅ ⊂ X.

For instance when n = 1, we write DxF := D1
xF = F (· + δx) − F (·) which is the

difference operator (also called add-one cost operator1). Relation (2.2) rewrites as

Dn
(x1,...,xn)F (ω) =

∑
J⊂{1,...,n}

(−1)n−|J|F

ω +
∑
j∈J

δxj

 , for a.e. ω ∈ Ω.

Note that with this definition, for any ω in Ω, the mapping

(x1, . . . ,xn) 7→ Dn
(x1,...,xn)F (ω)

belongs to L0
s(X

j) defined as (2.3) and in addition the mapping

TnF : (x1, . . . ,xn) 7→ E[Dn
(x1,...,xn)F ] (2.7)

is well-defined and belongs to L2
s(X

j) for any F in L2(Ω) (see [10, 12]).

We recall the following property (see e.g. [10, Relation (15)]) : for F in L2(Ω), n ∈ N∗,
and (x1, . . . ,xn) ∈ Xn, the nth iterated Malliavin derivative operator Dn satisfies

DnF = D(Dn−1F ), n ≥ 1; D0F := F. (2.8)

Remark 2.3. If F is deterministic, then by definition DnF = 0 for any n ≥ 1.

Evaluation points operator and the pathwise derivative

Here we introduce a purely deterministic operator that appears in our analysis and that
will be at the core of the representation under interest.

1see [10, p. 5]
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On the chaotic expansion for counting processes

Definition 2.4. For F ∈ L0(Ω), we define the deterministic operators:

T0F := F (∅),

and for n ∈ N∗, (x1, · · · ,xn) ∈ Xn,

TnF (x1, · · · ,xn) :=
∑

J⊂{x1,··· ,xn}

(−1)n−|J|F ($J),

where if J = {y1, . . . ,yk}, ${y1,...,yk} :=
∑k
i=1 δyi ∈ Ω.

In particular, even though F is a random variable, TnF (x1, · · · ,xn) is a real number as
each term F ($J) is the evaluation of F at the outcome $J . Besides, given the event
{N(X) = 0}, TnF (x1, · · · ,xn) coincides with Dn

(x1,...,xn)F and T0F coincides with F .

Factorial measures and iterated integrals

Proposition 2.5. (Factorial measures; See e.g. [10, Proposition 1]). There exists a
unique sequence of counting random measures (N(m))m∈N∗ where for any m, N(m) is a
counting random measure on (Xm,X⊗m) with

N(1) := N and for A ∈ Xm+1,

N(m+1)(A)

:=

∫
Xm

∫
X

1{(x1,...,xm+1)∈A}N(dxm+1)−
m∑
j=1

1{(x1,...,xm,xj)∈A}

N(m)(dx1, . . . , dxm);

With this definition at hand we introduce the notion of iterated integrals. In particular
for A ∈ X,

N(n)(A⊗n) = N(A)(N(A)− 1)× · · · × (N(A)− n+ 1).

Note that by definition N(n)(A)1{N(A)<n} = 0. We now turn to the definition of two types
of iterated integrals.

Definition 2.6. Let n ∈ N∗ and fn ∈ L1(Xn).

• In(fn) the nth iterated integral of fn against the Poisson measure N defined as

In(fn) :=

∫
Xn

fn(x1, . . . ,xn) N(n)(dx1, . . . , dxn),

where each of the integrals above is well-defined pathwise for P-a.e. ω ∈ Ω.

• In(fn) the nth iterated integral of fn against the compensated Poisson measure N

defined as

In(fn) :=
∑

J⊂{1,...,n}

(−1)n−|J|
∫
Xn−|J|

∫
X|J|

fn(x1, . . . ,xn) N(|J|)(dxJ)ρn−|J|(dxJc),

where Jc := {1, . . . , n} \ J and dxJ := (dxj)j∈J and where each of the integrals
above is well-defined pathwise for P-a.e. ω ∈ Ω. We adopt the convention for
J = ∅ that

∫
...N(0) := 1. As explained in Remark 2.7 below, the operator In can be

extended to any function f ∈ L2(Xn) (chaotic expansion).

Note that for any fn : In(fn) = In(f̃n) and In(fn) = In(f̃n), P-a.s. where we recall that
f̃n denotes the symmetrisation of fn as defined in (2.4).
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On the chaotic expansion for counting processes

Remark 2.7. It might be of interest to discuss on the use of compensated Poisson
integrals that are operators In rather than the non-compensated ones In. By definition
we defined these two types of integrals as pathwise integrals under an L1 integrability
condition. However, the compensated integrals benefit from an additional probabilistic
structure. Indeed for f ∈ L1(Xn) ∩ L2(Xn) and g ∈ L1(Xp) ∩ L2(Xp) and n, p ∈ N∗ it
is classical to get that E[In(f)Ip(g)] = 1{n=p}

∫
f̃ g̃dρn, where f̃ stands again for the

symmetrization of f . In other words operators In can be defined as orthogonal operators
in L2(Ω). This orthogonality opens the way to extend the random variables In(f) for f
an element of L2(Xn) only. It will coincide with its pathwise definition as above only on
the additional condition of belonging to L1(Xn) ∩ L2(Xn). Naturally, L1(Xn) ∩ L2(Xn)

reduces to L2(Xn) only when ρ(X) < +∞. Since our approach will consist in giving an
alternative expression to the chaotic expansion which is by essence a L2-decomposition
our main results regarding these decompositions will take their specific form in case of
spaces X for which ρ(X) < +∞.

We end this section by recalling some classical results between the Malliavin derivatives
and the iterated integrals that can be found for example in [10, 14].

Proposition 2.8. (i) For any n, p ≥ 1, fn ∈ L1
s(X

n)∩L2
s(X

n) and gp ∈ L1
s(X

p)∩L2
s(X

p)

E[In(fn)] = 0,

E[In(fn)Ip(gp)] = n!1{n=p}

∫
Xn

fn(x1, . . . ,xn)gp(x1, . . . ,xn)ρn(dx1, . . . , dxn).

(ii) Let j ∈ N∗, k ∈ N∗, with k ≤ j and h ∈ L2
s(X

j). Then :

Dk
(x1,··· ,xk)Ij(h) =

j!

(j − k)!
Ij−k(h(·,x1, · · · ,xk)), ∀(x1, · · · ,xk) ∈ Xk.

In particular if h = g⊗j with g ∈ L2(X) then

Dk
(x1,··· ,xk)Ij(g

⊗j) =
j!

(j − k)!
Ij−k(g⊗(j−k))

k∏
i=1

g(xi), ∀(x1, · · · ,xk) ∈ Xk.

(iii) Under the assumptions of (ii), for k > j,

Dk
(x1,··· ,xk)Ij(h) = 0, ∀(x1, · · · ,xk) ∈ Xk.

We conclude with a particular case of Mecke’s formula (see e.g. [10, Relation (11)])
and the so-called integration by parts formula2.

Lemma 2.9 (A particular case of Mecke’s formula). Let F ∈ L0(Ω), k ∈ N and h ∈ L0(Xk)

such that ∫
Xk

|h(x1, . . . ,xk)|E
[
|F ◦ ε+,k

x1,...,xk
|
]
ρk(dx1, . . . , dxk) < +∞.

Then

E

[
F

∫
Xk

hdN(k)

]
=

∫
Xk

h(x1, . . . ,xk)E
[
F ◦ ε+,k

x1,...,xk

]
ρk(dx1, . . . , dxk),

If in addition F belongs to L2(Ω) and h in L2
s(X

k) then the so-called integration by parts
formula holds :

E [F Ik(h)] =

∫
Xk

h(x1, . . . ,xk)E
[
Dk

(x1,...,xk)F
]
ρk(dx1, . . . , dxk). (2.9)

2as we did not find an exact correspondance of the integration by parts formula we make use of in the
literature we provide a statement with ad hoc restrictive assumptions that fit with our application of it in the
proof of Theorem 3.12 and in the proof of Proposition 3.14.
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On the chaotic expansion for counting processes

Proof. We only make the proof of the integration by parts formula (2.9). The proof relies
on the chaotic expansion recalled in Theorem 3.1 below. Indeed, by Proposition 2.8
Relation (2.9) if F is deterministic or if F = Ip(gp) for p ≥ 1 and gp ∈ L2

s(X
p). Theorem

3.1 gives that for any F in L2(Ω), F = E[F ] +
∑+∞
n=1

1
n!In(TnF ) where the limit holds in

L2 and each TnF belongs to in L2
s(X

n) which gives the result.

3 Pseudo-chaotic expansion

According to Remark 2.7, we carry out our analysis mostly under the assumption that
ρ(X) < +∞ and provide some extension to the infinite case.

3.1 Main result

The first main ingredient in our analysis is the so-called chaotic expansion on the Poisson
space that we recall below.

Theorem 3.1 (See e.g. Theorem 2 in [10]). Let F in L2(Ω). Then there exists a unique
sequence (fFn )n≥1 with fFn ∈ L2

s(X
n) such that

F = E[F ] +

+∞∑
n=1

1

n!
In(fFn ),

where the convergence of the series holds in L2(Ω). In addition coefficients (fFn )n are
given as

fFn = TnF, n ≥ 1

where TnF is defined by (2.7) and where the equality is understood in L2(Xn). In
addition Theorem 1 in [10] provides the convergence of the series

+∞∑
n=1

∫
Xn

|TnF (x1, . . . ,xn)|2 ρn(dx1, . . . , dxn).

This representation involves the operators In, we aim in re-writting such a representation
with the pathwise and non-compensated integrals In. Before going into our analysis
we would like to mention the related result given in [11, Proposition 12.11] where the
authors performed the reverse version of the one we aim at. Indeed they provided the
chaotic expansion of random variables (named U-statistics) of the form U := In(h) for
some symmetric element h ∈ L1(Xn) by computing the operators TkU involved in the
decomposition. We are interested in transforming compensated iterated integrals In
into their non-compensated counterpart In but mostly by determining these coefficients
(that will coincide with Tn) and by giving their form in terms of the Malliavin derivative
and a Girsanov transform (see Theorem 3.6).

The second main ingredient is the combination of Malliavin operators with a very specific
Girsanov transformation.

Proposition 3.2. Assume ρ(X) < +∞ and set

L := exp(ρ(X))1{N(X)=0}. (3.1)

L defined as above admits the following chaotic expansion :

L = 1 +

+∞∑
n=1

1

n!
In((−1{X})⊗n),

where (−1{X})⊗n stands for the constant map equal to (−1)n. In particular for any n ≥ 1,
TnL = (−1{X})⊗n.
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Proof. Note first that as ρ(X) < +∞, P[N(X) = 0] = e−ρ(X) > 0 and so E[L] = 1. Let
n ≥ 1, x1, . . . ,xn ∈ X. By definition

L ◦ ε+,n
{x1,...,xn} = e−ρ(X)1{N◦ε+,n

{x1,...,xn}
(X)=0}

= e−ρ(X)1{N(X)=−n}

= 0,

where the above equalities hold P-a.s. as the elements x1, . . . ,xn are fixed and thus
P[N({x1, . . . ,xn}) > 0] = 0. Hence by definition of the Malliavin operator Dn, the sum in
its definition reduces to the term where J = ∅, that is

Dn
(x1,...,xn)L

= e−ρ(X)
∑

J⊂{x1,...,xn}

(−1)n−|J|1{N(X)=0} ◦ ε
+,|J|
J = e−ρ(X)(−1)n1{N(X)=0} = (−1)nL,

leading to TnL = (−1)nE[L] = (−1)n and to the result by Theorem 3.1.

Remark 3.3. L is exactly the (non-equivalent) Girsanov transformation under which the
Poisson measure N (with intensity 1 on X) becomes a Poisson measure with intensity
0 on X by the integrable and constant shift x 7→ −1 on X which belongs to L1(X) as
once again ρ(X) < +∞. This corresponds here to a conditioning with respect to the
set N(X) = 0 of positive probability. The role of this (quite surprising) conditioning will
appear in our main result Theorem 3.6.

Proposition 3.4. Assume ρ(X) < +∞. For F ∈ L2(Ω) and n ∈ N∗, the symmetric
deterministic operator on L1

s(X
n) defined in Definition 2.4 can be re-expressed as :

TnF (x1, . . . ,xn) = E[LDn
(x1,...,xn)F ], ∀(x1, . . . ,xn) ∈ Xn.

In addition

T0F = E[LF ].

Proof. This is a simple consequence of Definitions 2.4 and 2.2 of Tn and Dn and of the
fact that L has support {N(X) = 0}. For n = 0 we simply have that

T0F = F (∅) = E[eρ(X)1{N(X)=0}F ].

Remark that since DnF belongs to L2
s(X

n), TnF belongs to L1(Xn) by Cauchy Schwarz’s
inequality.

We now adapt an approximation lemma from [12, Lemma 2.3], which in our framework
is valid in L1 and not only in L2.

Lemma 3.5. Assume ρ(X) < +∞ and let F ∈ L1(Ω). Assume there exists (Gp)p ⊂ L1(Ω)

converging in L1(Ω) to F . Then for any k ≥ 1,

lim
p→+∞

∫
Xk

|TkGp(x1, . . . ,xk)− TkF (x1, . . . ,xk)|ρk(dx1, . . . , dxk) = 0.

Proof. We adapt the proof of [12, Lemma 2.3] and give only the main arguments. By
definition of the Malliavin derivative (see Definition 2.2) it is enough to prove that (after
simplifying the expression by eρ(X) which is a finite constant):

lim
p→+∞

∫
Xm

E[|F ◦ ε+,m
{x1,...,xm} −Gp ◦ ε

+,m
{x1,...,xm}|1{N(X)=0}]ρ

m(dx1, . . . , dxm) = 0,
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for everym ∈ {1, . . . , k} and (x1, . . . ,xm) ∈ Xm. Note first that for any (x1, . . . ,xm) ∈ Xm,
P[N({x1, . . . ,xm}) > 0] = 0 since ρ is atomless. Hence

1{N(X)=0} = 1{N◦ε+,m
{x1,...,xm}

(X)=m}, P− a.s..

Hence using Mecke’s formula (see Lemma 2.9)∫
Xm

E
[
|F ◦ ε+,m

{x1,...,xm} −Gp ◦ ε
+,m
{x1,...,xm}|1{N(X)=0}

]
ρm(dx1, . . . , dxm)

=

∫
Xm

E
[
|F ◦ ε+,m

{x1,...,xm} −Gp ◦ ε
+,m
{x1,...,xm}|1{N◦ε+,m

{x1,...,xm}
(X)=m}

]
ρm(dx1, . . . , dxm)

= E
[
|F −Gp|1{N(X)=m} Im(1⊗mX )

]
≤ m! E [|F −Gp|]

which concludes the proof.

We are now in position to state and prove the main result of this section.

Theorem 3.6. Assume ρ(X) < +∞ and F in L2(Ω). Then

F = E[LF ] +

N(X)∑
k=1

1

k!
Ik(TkF ); P− a.s. (3.2)

with TkF = E[LDkF ] belongs to L1
s(X

k). We name Representation (3.2) the pseudo-
chaotic expansion of F .

Proof. The proof is performed in several steps. We set

G := Span{e−I1(f); f : X→ R+}.

Step 1: We prove that for any M ∈ N and F ∈ G,

FM := F1{N(X)=M} = 1{N(X)=M}

(
E[LF ] +

M∑
k=1

1

k!
Ik(TkF ))

)
, P− a.s.. (3.3)

By linearity of G it is enough to consider F = e−I1(f) ∈ G. It holds that E[F ] =

e−
∫
X

(1−e−f )dρ = 1 +
∑+∞
n=1

(
∫
X

(e−f−1)dρ)
n

n! and by induction DnF = F (e−f − 1)⊗n so that
TnF = E[F ](e−f − 1)⊗n and TnF = E[LF ](e−f − 1)⊗n. Hence for any n ≥ 1,

In(TnF ) = E[F ]
∑

J⊂{1,...,n}

(−1)n−|J|
∫
Xn−|J|

∫
X|J|

n∏
i=1

(e−f(xi) − 1)N(|J|)(dxJ)ρn−|J|(dxJc)

= E[F ]
∑

J⊂{1,...,n}

(−1)n−|J|
∫
X|J|

(∫
X

(e−f(y) − 1)ρ(dy)

)n−|J|∏
i∈J

(e−f(xi) − 1)N(|J|)(dxJ)

= E[F ]

n∑
k=0

n!
(
−
∫
X

(e−f(y) − 1)ρ(dy)
)n−k

k!(n− k)!

∫
Xk

k∏
i=1

(e−f(xi) − 1)N(k)(dx1, . . . , dxk).

Hence for any M ∈ N∗, using Ik((e−f − 1)⊗k) = 0 on {N(X) = M} for k > M

1{N(X)=M}In(TnF )

= 1{N(X)=M}E[F ]

(
−
∫
X

(e−f(y) − 1)ρ(dy)

)n
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+ 1{N(X)=M}E[F ]

n∧M∑
k=1

n!
(
−
∫
X

(e−f(y) − 1)ρ(dy)
)n−k

k!(n− k)!
Ik((e−f − 1)⊗k).

Recall that
∑+∞
n=0

1
n!

(
−
∫
X

(e−f(y) − 1)ρ(dy)
)n

= 1/E(F ), therefore

FM := F1{N(X)=M}

= 1{N(X)=M}

(
E[F ] +

+∞∑
n=1

1

n!
In(TnF )

)

= 1{N(X)=M}E[F ]

(
1 +

+∞∑
n=1

1

n!

(
−
∫
X

(e−f(y) − 1)ρ(dy)

)n)

+ 1{N(X)=M}

(
E[F ]

+∞∑
n=1

1

n!

n∧M∑
k=1

n!
(
−
∫
X

(e−f(y) − 1)ρ(dy)
)n−k

k!(n− k)!
Ik((e−f − 1)⊗k)

)

= 1{N(X)=M}

(
1 + E[F ]

+∞∑
n=1

1

n!

n∧M∑
k=1

n!
(
−
∫
X

(e−f(y) − 1)ρ(dy)
)n−k

k!(n− k)!
Ik((e−f − 1)⊗k)

)

= 1{N(X)=M}

(
1 + E[F ]

M∑
k=1

1

k!
Ik((e−f − 1)⊗k)

+∞∑
n=k

(
−
∫
X

(e−f(y) − 1)ρ(dy)
)n−k

(n− k)!

)

= 1{N(X)=M}

(
1 +

M∑
k=1

1

k!
Ik((e−f − 1)⊗k)

)
.

Thus by linearity, Relation (3.3) is in force for any F in G and any M ≥ 0.

Step 2: We extend Relation (3.3) to any F in L2(Ω) and any M ≥ 0.

Fix M ≥ 1 and let F in L2(Ω) and let FM := F1{N(X)=M}. As G is dense in L2(Ω)

(see e.g. [10, Lemma 2]) there exists a sequence (Gp)p ⊂ G such that (Gp)p converges
in L2(Ω) to F . Let also GMp := Gp1{N(X)=M}. By the previous step we have that

GMp = 1{N(X)=M}

(
E[LGp] +

M∑
k=1

1

k!
Ik(TkGp)

)
.

In addition by Lemma 3.5, for any k ∈ {1, . . . ,M}, TkF is well-defined in L1
s(X

k) and is
the L1-limit of (TkGp)p. Hence

E

[∣∣∣∣∣FM − 1{N(X)=M}

(
E[LF ] +

M∑
k=1

1

k!
Ik(TkF )

)∣∣∣∣∣
]

≤ lim
p→+∞

E[|FM −GMp |] + E

[
1{N(X)=M}

∣∣∣∣∣E[L(Gp − F )] +

M∑
k=1

1

k!
Ik(TkGp − TkF )

∣∣∣∣∣
]

≤ lim
p→+∞

M∑
k=1

1

k!
E
[
1{N(X)=M} |Ik(TkGp − TkF )|

]
≤ lim
p→+∞

M∑
k=1

1

k!
E [Ik (|TkGp − TkF |)]

≤
M∑
k=1

1

k!
lim

p→+∞

∫
Xk

|TkGp − TkF | dρk = 0.
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Thus

FM = 1{N(X)=M}

(
E[LF ] +

M∑
k=1

1

k!
Ik(TkF )

)
; P− a.s..

Step 3: Consider F in L2(Ω). As N(X) < +∞ P-a.s. we have that from the step before
(by noting that the coefficients in the decomposition of each FM only depend on F ) that

F =

+∞∑
M=0

FM = E[LF ] +

N(X)∑
k=1

1

k!
Ik(TkF ); P− a.s.

and so E
[∣∣∣∑N(X)

k=1
1
k!Ik(TkF )

∣∣∣] < +∞.

3.2 Discussion and properties of the pseudo-chaotic representation

Remark 3.7 (Case when ρ(X) < +∞). Note that since N(X) < +∞ P-a.s. and the fact
that N(n)(1{N(X)<n}) = 0, Representation (3.2) naturally re-writes as

F = E[LF ] +

+∞∑
k=1

1

k!
Ik(TkF ); P− a.s..

Remark 3.8 (Case when ρ(X) = +∞). We have performed our analysis on the case
where ρ(X) < +∞. The reason for this restriction lies in the strong use in our proof of
the chaotic expansion which involves a convergence in L2(Ω) of the series in Theorem
3.1. The isometry of the operators In calls for kernels TnF in L2(Xn). However the
pseudo-chaotic expansion given as Representation (3.2) is an equality P-a.s. involving
a sum with a finite number of terms P-a.s. and for which any term Ik(TkF ) is defined
as a L1(Ω) random variable with TkF ∈ L1(Xk). As we mentioned in Remark 2.7 only
the case ρ(X) < +∞ allows one to unify the L1 and L2-integrability conditions on X (or
spaces Xk) as a L2-condition. This opens the way to investigate a pure L1(Ω) theory not
relying on the chaotic expansion. In other words :

In the case ρ(X) = +∞, is it possible to find necessary and sufficient conditions on F so
that for any n ≥ 1, TnF ∈ L1(Xn) and

F = F (∅) +

N(X)∑
k=1

1

k!
Ik(TkF )

where the convergence holds in L1(Ω) (and where the term E[LF ] needs to be defined
properly) ? We leave this question for future research.

In the previous remark we alluded to a possible extension of our result to the case where
ρ(X) = +∞ however we naturally wrote the expansion using the operators Tn and the
change of measure L (that needs to be made precise). We give some insights of both
accounts.

Proposition 3.9. Let F ∈ L2(Ω) such that there exists c ∈ R and (gn)n≥1 with gn ∈
L1
s(X

n) for any n and such that

F = c+

+∞∑
n=1

1

n!
In(gn),

where the series converges in L1(Ω). Then

c = F (∅); gn = TnF in L1(Xn), ∀n ≥ 1.
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Proof. We deal separately the cases ρ(X) < +∞ and ρ(X) = +∞.

Case 1: ρ(X) < +∞
In this case it is first worth mentioning that P[N(X) = 0] > 0. Hence by definition

c = F (∅) = E[LF ], where as in (3.1) L = eρ(X)1{N(X)=0}.

The other identifications follow the same lines. Fix p, n ≥ 1. Definition 2.4 entails for any
(x1, . . . ,xp) ∈ Xp

TpIn(gn)(x1, . . . ,xp)

=
∑

J⊂{x1,··· ,xp}

(−1)p−|J|In(gn)

∑
y∈J

δy


=

∑
J⊂{x1,··· ,xp};|J|≥n

(−1)p−|J|In(gn)

∑
y∈J

δy

 ,

hence TpIn(gn) = 0 if p < n. In case p = n

TpIp(gp)(x1, . . . ,xp) = Ip(gp)
(

p∑
i=1

δxi

)
= p!gp(x1, . . . ,xp).

We now deal with the case p > n. To simplify the notations, note that any subset
U ⊂ {x1, · · · ,xp} of cardinal n writes as U = {y1, . . . ,yn} with yi ∈ {x1, · · · ,xp}. We
thus write gn(U) := gn(y1, . . . ,yn). From the previous computations we have that

TpIn(gn)(x1, . . . ,xp) =
∑

J⊂{x1,··· ,xp};|J|≥n

(−1)p−|J|In(gn)

∑
y∈J

δy


=

∑
J⊂{x1,··· ,xp};|J|≥n

(−1)p−|J|
∑

U⊂J; |U |=n

gn(U)

=
∑

U⊂{x1,··· ,xp}; |U |=n

gn(U)
∑

J⊂{x1,··· ,xp};U⊂J

(−1)p−|J|

=
∑

U⊂{x1,··· ,xp}; |U |=n

gn(U)

p∑
k=n

(p− n)!

(k − n)!(p− n− (k − n))!
(−1)p−k

=
∑

U⊂{x1,··· ,xp}; |U |=n

gn(U)(−1)n
p−n∑
k′=0

(p− n)!

k′!(p− n− k′)!
(−1)p−k

′
= 0.

To conclude we just remark that by definition the series F = c+
∑+∞
n=1

1
n!In(gn) reduces

to a finite sum F = c+
∑N(X)
n=1

1
n!In(gn). Hence we get that for any p ≥ 1,

TpF = Tp

(
c+

p−1∑
n=1

1

n!
In(gn)

)
+

1

p!
TpIp(gp) + Tp

 N(X)∑
n=p+1

1

n!
In(gn)

 =
1

p!
TpIp(gp) = gp.

Case 2: ρ(X) = +∞
Recall that as ρ is assumed to be σ-finite there exists an increasing (with respect to the
inclusion) sequence of subsets (Rk)k≥1 of X such that ∪k∈NRk = X and ρ(Rk) < +∞.
For any k ≥ 1 we let

Ωk :=

ω =

n∑
j=1

δxj
, xj ∈ Rk, j = 1, . . . , n, n ∈ N ∪ {+∞}
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and F k the restriction of F to Ωk. In addition, limk→+∞ Ωk = Ω. In other words for any
k ≥ 1, F k is a random variable in the situation of case 1 where the space X is replaced
with Rk with ρ(Rk) < +∞. Hence reproducing the analysis performed in Case 1, we get
using the definition of operators Tp (see Definition 2.4) and Proposition 3.4,

TpF (x1, . . . ,xp) = TpF k(x1, . . . ,xp) = gp(x1, . . . ,xp), ∀(x1, . . . ,xp) ∈ (Rk)p.

Letting k go to +∞ gives that TpF = gp for any p ≥ 1. The identification of c follows the

same lines as above. Indeed using the notation Lk := eρ(Rk)1{N(Rk)=0} and the fact that
F k1{N(Rk)} = c we get that E[LkF k] = c for any k ≥ 1 leading to c = limk→+∞E[LkF k] =

F1{N(X)=0}. Note this is an example of a conditioning with respect to an event of
probability 0 that can be defined through this approximation.

Remark 3.10. This result is related to Remark 3.8 as here we proved that if the ex-
pansion is valid in L1 then there is some sort of uniqueness of the kernels and of the
constant c. As for the classical chaotic expansion, the uniqueness is true only under the
symmetric assumption on the kernels.

Remark 3.11. As mentioned in the proof, the representation of the constant term FN(X)

in case ρ(X) = +∞ is an example of successful conditioning with respect to an event of
probability 0. Indeed, probability theory is rich in situations where it is not possible to
give sense to conditioning with respect to a set of probability 0 and on the contrary to
other situations where it can be properly defined. The derivation of the constant c falls
into the second category.

We aim in giving a better taste of the actual link between the coefficients TnF appearing
in the chaotic expansion with coefficients TnF in the pseudo-chaotic one. Since we
work on this specific connexion we assume that ρ(X) < +∞ and to avoid additional
technicalities we assume that F is bounded.

Theorem 3.12. Assume that ρ(X) < +∞. Let F in L∞(Ω). Then

+∞∑
j=1

(−1)j

j!

∫
Xj

TjF (x1, . . . ,xj)ρ
j(dx1, . . . , dxj) = E[LF ]− E [F ] .

Proof. Let G := 1 +
∑+∞
n=1

1
n!In(1⊗n{X}) which is well defined as the constant mappings

(1{X})
⊗n(x1, . . . ,xn) := 1 belong to L2(X). Hence as F is an element of L2(Ω), the series

+∞∑
n=1

∫
Xj

1

j!
|TjF |dρj =

+∞∑
n=1

∫
Xj

1

j!
|TjF TjG|dρj

converges absolutely (see e.g. [10, Theorem 1]). We have

+∞∑
j=1

(−1)j

j!

∫
Xj

TjF (x1, . . . ,xj)ρ
j(dx1, . . . , dxj)

=

+∞∑
j=1

(−1)j

j!

∫
Xj

E
[
Dj

(x1,··· ,xj)F
]
ρj(dx1, . . . , dxj)

=

+∞∑
j=1

1

j!
E

[∫
Xj

j∏
i=1

(−1{X}(xi))D
j
(x1,··· ,xj)Fρ

j(dx1, . . . , dxj)

]
.

The integration by parts formula recalled in (2.9) enables us to deduce that

+∞∑
j=1

(−1)j

j!

∫
Xj

TjF (x1, . . . ,xj)ρ
j(dx1, . . . , dxj)
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=

+∞∑
j=1

1

j!
E
[
F Ij

(
(−1{X})

⊗j)]
= E [F (L− 1)] ,

where we identify the chaotic expansion of L according to Proposition 3.2 and where the
exchange between expectation and the series is justified as follows

lim
p→+∞

E

∣∣∣∣∣∣F (L− 1−
p∑
j=1

1

j!
Ij
(
(−1{X})

⊗j)∣∣∣∣∣∣


= lim
p→+∞

E

∣∣∣∣∣∣F
+∞∑
j=p+1

1

j!
Ij
(
(−1{X})

⊗j)∣∣∣∣∣∣


≤ E[|F |2]1/2 lim
p→+∞

 +∞∑
j=p+1

1

j!
E
[∣∣Ij ((−1{X})

⊗j)∣∣2]1/2

= E[|F |2]1/2 lim
p→+∞

 +∞∑
j=p+1

1

j!
ρ(X)j

1/2

= 0.

Corollary 3.13. Assume that ρ(X) < +∞. Let F in L2(Ω) such that F1{N(X)=0} = 0

then
+∞∑
j=1

(−1)j

j!

∫
Xj

TjF (x1, . . . ,xj)ρ
j(dx1, . . . , dxj) = −E [F ] .

In other words the chaotic expansion of F simplifies to involve only iterated integrals in
which at least one integrand is the Poisson measure N (all the terms involving only dρj

cancel out with the expectation of F ).

This observation calls then for a re-writing of the terms TnF in the chaotic expansion in
view of an identification of the terms TnF in the pseudo-chaotic expansion.

Proposition 3.14. Assume that ρ(X) < +∞. Let F in L∞(Ω) and fix k ≥ 1. If∫
Xk E[|DkF |2]dρk < +∞ then for ρk-a.e. (x1, . . . ,xk) in Xk

TkF (x1, . . . ,xk) = TkF (x1, . . . ,xk)

+

+∞∑
j=k+1

(−1)j−k

(j − k)!

∫
Xj−k

TjF (x1, . . . ,xk,xk+1, . . . ,xj) ρ
j−k(dxj , . . . dxk+1).

Proof. Recall property Dj = Dj−kDk and the integration by parts formula (2.9). Fix
p ≥ k. We have

E
[
Dk

(x1,...,xk)F
]

+

p∑
j=k+1

(−1)j−k

(j − k)!

∫
Xj−k

E
[
Dj

(x1,...,xk,xk+1,...,xj)F
]
ρj−k(dxj , . . . , dxk+1)

= E
[
Dk

(x1,...,xk)F
]

+

p∑
j=k+1

(−1)j−k

j!

j!

(j − k)!

∫
Xj−k

E
[
Dj−k

(xk+1,...,xj)D
k
(x1,...,xk)F

]
dxj .

= E
[
Dk

(x1,...,xk)F
]

+

p∑
j=k+1

1

j!

j!

(j − k)!
E
[
Ij−k

(
(−1{X})

⊗(j−k)
)
Dk

(x1,...,xk)F
]
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= E
[
Dk

(x1,...,xk)F
]

+ E

[
Dk

(x1,...,xk)F

p−k∑
`=1

1

`!
I`
(
(−1{X})

⊗`)]

= E

[
Dk

(x1,...,xk)F

p−k∑
`=0

1

`!
I`
(
(−1{X})

⊗`)] .
Letting p go to +∞ and using the fact that we assumed E

[
|Dk

(x1,...,xk)F |
2
]
< +∞ as F

is supposed to be bounded, the last term converges to E
[
LDk

(x1,...,xk)F
]

and the result

follows.

Remark 3.15. In the proposition we see the somehow artificial additional assumption∫
Xk E[|DkF |2]dρk < +∞ even though we know that TkF belongs to L1(Xk). It would be

of interest to get rid of this condition.

3.3 Pseudo-chaotic expansion for counting processes

The pseudo-chaotic expansion can be coupled with the Poisson imbedding to provide
a representation of general counting processes. We first recall a particular case of the
Poisson imbedding representation and refer to [9, Chapter 4] and [3] for additional
material on this topic. Hereafter, X := R2

+ and a generic element x in R2
+ is denoted

x := (t, θ), with t and θ in R+. We denote by F := (FN
t )t≥0 the natural history of N with

FN
t := σ(N([0, s]×B), s ≤ t, B ∈ B(R+)), where B(R+) denotes the Borel σ-field on R+.

Theorem 3.16 (Poisson imbedding). Let X := R2
+ and X := B(R2

+). Consider H a point
process on R+ with stochastic intensity a F-predictable stochastic process λ. These pair
of processes can be represented on a probability space (Ω,F ,P) supporting a random
Poisson measure N on X and the following representation holds true :

HT =

∫
(0,T ]×R+

1{θ≤λt}N(dt, dθ); ∀T > 0.

We now combine this result with our expansion for counting processes with bounded
intensity processes.

Notation 3.17. For k ≥ 1 and any (x1, . . . ,xk) ∈ (R2
+)k we denote by (x(1), . . . ,x(k)) the

ordering with respect to the t-coordinate of (x1, . . . ,xk) so that 0 < t(1) < · · · < t(k).

Theorem 3.18. Let T > 0, H a counting process with intensity λ bounded by M > 0.
Let ζ : R+ → R+ such that F ∈ L2(Ω) with

F :=

∫
(0,T ]×[0,M ]

ζ(T − t)1{θ≤λs}N(ds, dθ).

Then F admits a pseudo-chaotic expansion with respect to N with

F =

N(X)∑
k=1

1

k!
Ik(TkF ); P− a.s. (3.4)

and for all (x1, . . . ,xk) ∈ ([0, T ]× [0,M ])k

TkF (x1, . . . ,xk) := E
[
Lζ(T − t(k))D

k−1
(x(1),...,x(k−1))

1{θ(k)≤λ(tk)}

]
, (3.5)

where we make use of Notation 3.17. In particular HT admits the previous pseudo-
chaotic expansion by choosing ζ ≡ 1.
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Proof. First note that using the Poisson imbedding given in Theorem 3.16 for any T > 0,
HT can be represented as :

HT =

∫
(0,T ]×R+

1{θ≤λs}N(ds, dθ),

that coincides with F by choosing ζ ≡ 1 as λ is supposed to be uniformly bounded by M
leading to

HT =

∫
(0,T ]×[0,M ]

1{θ≤λs}N(ds, dθ).

To achieve the representation for F , Theorem 3.6 can be applied with X := [0, T ]× [0,M ]

and ρ(dx) := dx = dtdθ and we get that

F = E[LF ] +

N(X)∑
k=1

1

k!
Ik(TkF ); P− a.s.

with L = exp(TM)1{N([0,T ]×[0,M ])=0} and TkF = E[LDkF ]. Thus E[LF ] = 0. Recall also
that Dk is a symmetric operator so that Dk

(x1,...,xk)F = Dk
(x(1),...,x(k))

F . Since by definition

F =

∫
(0,T ]×[0,M ]

ζ(T − t)1{θ≤λt}N(dt, dθ)

and λ is F-predictable, we deduce that for any k ≥ 1 and any (x(1), . . . ,x(k)) ∈ (R2
+)k

with

Dk
(x(1),...,x(k))

F = ζ(T − t(k))D
k−1
(x(1),...,x(k−1))

1{θ(k)≤λt(k)
}

+

∫
[0,T ]×R+

ζ(T − t)Dk
(x(1),...,x(k))

1{θ≤λt}N(dt, dθ). (3.6)

As L is supported on 1{N([0,T ]×[0,M ])=0}

TkF (x(1), . . . ,x(k)) = E
[
Lζ(T − t(k))D

k−1
(x(1),...,x(k−1))

1{θ(k)≤λt(k)
}

]
.

4 Application to linear Hawkes processes

Throughout this section Φ : R+ → R+ denotes a map in L1(R+; dt).

4.1 Generalities on linear Hawkes processes

Assumption 4.1. The mapping Φ : R+ → R+ belongs to L1(R+; dt) with

‖Φ‖1 :=

∫
R+

Φ(t)dt < 1.

For f, g in L1(R+; dt) we define the convolution of f and g by

(f ∗ g)(t) :=

∫ t

0

f(t− u)g(u)du, t ≥ 0.

Proposition 4.2 (See e.g. [1]). Assume Φ enjoys Assumption 4.1. Let

Φ1 := Φ, Φn(t) :=

∫ t

0

Φ(t− s)Φn−1(s)ds, t ∈ R+, n ∈ N∗. (4.1)

For every n ≥ 1, ‖Φn‖1 = ‖Φ‖n1 and the mapping Ψ :=
∑+∞
n=1 Φn is well-defined as a limit

in L1(R+; dt) and ‖Ψ‖1 = ‖Φ‖1
1−‖Φ‖1 .
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Definition 4.3 (Linear Hawkes process, [5]). Let (Ω,F ,P,F := (Ft)t≥0) be a filtered
probability space, µ > 0 and Φ : R+ → R+ satisfying Assumption 4.1. A linear Hawkes
process H := (Ht)t≥0 with parameters µ and Φ is a counting process such that

(i) H0 = 0, P− a.s.,
(ii) its (F-predictable) intensity process is given by

λt := µ+

∫
(0,t)

Φ(t− s)dHs, t ≥ 0,

that is for any 0 ≤ s ≤ t and A ∈ Fs,

E
[
1{A}(Ht −Hs)

]
= E

[∫
(s,t]

1{A}λrdr

]
.

4.2 Pseudo-chaotic expansion of linear Hawkes processes and explicit repre-
sentation

We aim at providing the coefficients in the pseudo-chaotic expansion of a linear
Hawkes process. We start with some general facts regarding a linear Hawkes process.
We consider the probability structure presented in Section 2 with a Poisson random
measure N on X = R2

+ and with intensity 1 with respect to ρ(dx) := dx := dtdθ where
we once again make use of the notation x := (t, θ) ∈ R2

+. With this setting the Hawkes
process with parameters µ and Φ can be represented as follows.

Proposition 4.4. Let Φ as in Assumption 4.1 and µ > 0 and (H,λ) the Hawkes process
defined as the unique solution to the SDE

Ht =
∫

(0,t]×R+
1{θ≤λs}N(ds, dθ),

λt = µ+
∫

(0,t)×R+
Φ(t− s)dHs, t ≥ 0.

Let n ∈ N∗ and {y1, . . . ,yn} = {(s1, θ1), . . . , (sn, θn)} ⊂ X with 0 < s1 ≤ · · · < sn ≤ t.
We set (a

{y1,...,yn}
1 , · · · , a{y1,...,yn}

n ) the solution to the system
a
{y1,...,yn}
1 = µ+ 1{θ1≤µ},

a
{y1,...,yn}
j = µ+

j−1∑
i=1

Φ(sj − si)1{θi≤a{y1,...,yn}
i }, j ∈ {2, . . . , k}.

(4.2)

which is the triangular system

a
{y1,...,yn}
1 = µ+ 1{θ1≤µ},

a
{y1,...,yn}
2 = µ+ Φ(s2 − s1)1{θ2≤a{y1,...,yn}

1 },

...

a
{y1,...,yn}
n = µ+

n−1∑
i=1

Φ(sn − si)1{θi≤a{y1,...,yn}
i }.

(4.3)

Let ${y1,...,yn} :=
∑n
i=1 δyi ∈ Ω. Then the values of the deterministic path λ(${y1,...,yn})

(resulting from the evaluation of λ at the specific ω = ${y1,...,yn}) at times s1, . . . , sn is
given by

(λs1(${y1,...,yn}), . . . , λsn(${y1,...,yn})) = (a
{y1,...,yn}
1 , . . . , a{y1,...,yn}

n ).
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In addition

λt(${y1,...,yn}) = µ+

n∑
i=1

Φ(t− si)1{θi≤a{y1,...,yn}
i }1{si<t}, ∀t ≥ sn. (4.4)

Proof. Let t ≥ 0. By definition of λ,

λt(${y1,...,yn})

:= µ+

(∫
(0,t)

Φ(t− u)dHu

)
(${y1,...,yn})

= µ+

(∫
(0,t)

Φ(t− u)1{θ≤λu}N(du, dθ)

)
(${y1,...,yn})

= µ+

∫
(0,t)

Φ(t− u)1{θ≤λu(${y1,...,yn})}(N(du, dθ)(${y1,...,yn}))

= µ+

∫
(0,t)

Φ(t− u)1{θ≤λu(${y1,...,yn})}(${y1,...,yn})(du, dθ)

= µ+

∫
(0,s1)

Φ(t− u)1{θ≤λu(${y1,...,yn})}1{u<t}(${y1,...,yn})(du, dθ)

+

n−1∑
i=1

∫
[si,si+1)

Φ(t− u)1{θ≤λu(${y1,...,yn})}1{u<t}(${y1,...,yn})(du, dθ)

= µ+

n−1∑
i=1

∫
[si,si+1)

Φ(t− u)1{θ≤λu(${y1,...,yn})}1{u<t}(${y1,...,yn})(du, dθ)

= µ+

n∑
i=1

Φ(t− si)1{θi≤λsi
(${y1,...,yn})}1{si<t}.

In addition, by definition, of λ, for any i, λsi(${y1,...,yn}) = λsi($(y1,...,yi−1)). Hence,
the evaluation of λ at the specific path ${y1,...,yn} is the deterministic path completely
determined by its value at the dates s1, . . . , sn. Indeed,

λt(${y1,...,yn}) = µ, ∀t ∈ [0, s1],

in particular a1 := λs1(${y1,...,yn}) = µ. From this we deduce that for t ∈ (s1, s2],

λt(${y1,...,yn}) = µ+ Φ(t− s1)1{θ1≤λs1 (${y1,...,yn})} = µ+ Φ(t− s1)1{θ1≤µ}.

In particular a2 := λs2(${y1,...,yn}) = µ+ Φ(s2 − s1)1{θ1≤µ} = µ+ Φ(s2 − s1)1{θ1≤a2}. By
induction we get that for t ∈ (sj , sj+1] (j ∈ {1, · · · , n− 1}),

λt(${y1,...,yn}) = µ+

j∑
i=1

Φ(t− si)1{θi≤ai}1{si<t},

with ai := λsi(${y1,...,yn}). In other words, (a1, . . . , an) solves the triangular system of
the statement.

The expansion will be performed on windows [0, T ]×[0,M ]. Such approach is coherent
since the decomposition is consistent as the windows enlarge (T →∞ and M →∞). To
state the result rigorously let us introduce the following notation.

Definition 4.5. Let T > 0 and M ≥ µ. We set
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(i) the measurable map ε−,T,M on Ω to itself :

ε−,T,M : Ω −→ Ω

ω 7−→ ωT,M ,

where for any element ω =
∑n
j=1 δxj

of Ω (xj ∈ X, j = 1, . . . , n, n ∈ N ∪ {+∞}),
ωT,M is defined as :

ωT,M =

n∑
j=1

δxj
1{xj∈[0,T ]×[0,M ]}.

In other words ε−,T,M removes all the atoms outside [0, T ]× [0,M ] or put it differ-
ently provides the restriction of N on [0, T ]× [0,M ].

(ii) For any F ∈ L0(Ω) we set FT,M := F ◦ ε−,T,M .

(iii) NT,M := N ◦ ε−,T,M the restriction of N on [0, T ]× [0,M ].

(iv) ΩT,M := ε−,T,M (Ω) that is

ΩT,M :=

ω =

n∑
j=1

δxj , xj ∈ [0, T ]× [0,M ], j = 1, . . . , n, n ∈ N ∪ {+∞}

 ⊂ Ω.

From these definitions, it follows that limT,M→+∞ ε−,T,M = IdΩ (the identity map) and
that limT,M→+∞ ΩT,M = Ω as a non-decreasing limit with respect to the inclusion. If F
is a linear functional of the Poisson-measure N, that is

F = c+

∫
R2

+

ζ(s, θ)N(ds, dθ),

for some c ∈ R and ζ a FN-measurable process with E
[∫
R2

+
|ζ(s, θ)|dsdθ

]
< +∞, then

FT,M = c+

∫
[0,T ]×[0,M ]

ζ ◦ ε−,T,M (s, θ)N(ds, dθ) = c+

∫
[0,T ]×[0,M ]

ζ(s, θ)N(ds, dθ)

and limT,M→+∞ FT,M = F , P−a.s..

Theorem 4.6. [Pseudo-chaotic expansion for linear Hawkes processes]

Let Φ as in Assumption 4.1 and µ > 0. Let (H,λ) be the unique solution of
Ht =

∫
(0,t]×R+

1{θ≤λs}N(ds, dθ),

λt = µ+
∫

(0,t)×R+
Φ(t− s)dHs, t ≥ 0

(4.5)

Then H is a linear Hawkes process with intensity λ in the sense of Definition 4.3. Fix
T > 0. Consider ζ : R+ → R+ be ζ ≡ Φ or ζ ≡ 1 we set

F :=

∫
(0,T ]×R+

ζ(T − s)1{θ≤λs}N(ds, dθ).

We make use of the notations of Definition 4.5. For any M ≥ µ, it holds that

FT,M = F ◦ ε−,T,M =

N([0,T ]×[0,M ])∑
k=1

1

k!
Ik(TkF 1{([0,T ]×[0,M ])k}), (4.6)
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with

T1F (x1) = 1{θ1≤µ}ζ(T − t(1)), and for k ≥ 2

TkF (x1, . . . ,xk)

= ζ(T − t(k))
(

(−1)k−11{θk≤µ} +

k−1∑
n=1

∑
{y1,...,yn}

⊂{x(1),...,x(k−1)}

(−1)k−1−n1{θk≤λtk
(${y1,...,yn})}

)
,

(4.7)
and limT,M→+∞ FT,M = F, P− a.s.. We recall for the previous expression

- Notation 3.17 for (x(1), . . . ,x(k))

- Notation
∑
{y1,...,yn}⊂{x1,...,xk−1} stands for the sum over all subsets {y1, . . . ,yn} of

cardinal n of {x1, . . . ,xk−1}
- λt(${y1,...,yn}) is given by (4.4) in Proposition 4.4.

Proof. First by [3, 4, 8] the system of SDEs (4.5) admits a unique solution which is a
Hawkes process (we refer to [8] for more details on the construction with pathwise
uniqueness). Hence by uniqueness (HT,M = H ◦ ε−,T,M , λT,M = λ ◦ ε−,T,M ) is solution
to 

HT,M
t =

∫
(0,t]×[0,M ]

1{θ≤λT,M
s }N(ds, dθ),

λT,Mt = µ+
∫

(0,t)×R+
Φ(t− s)dHT,M

s , t ∈ [0, T ],

(4.8)

and converges to the solution of the system (4.5), that is limT,M→+∞HT,M = H and
limT,M→+∞ λT,M = λ, P− a.s..
By Theorem 3.18, FT,M admits a pseudo-chaotic expansion

FT,M =

+∞∑
k=1

Ik(TkFT,M 1{([0,T ]×[0,M ])k}), (4.9)

where for all (x1, . . . ,xk) ∈ ([0, T ]× [0,M ])k

TkFT,M (x1, . . . ,xk) := E

[
LT,M (ω)ζ(T − t(k))D

k−1
(x(1),...,x(k−1))

1{θ(k)≤λT,M
(tk)
}

]
, (4.10)

with the ordering convention of Notation 3.17 and where3 LT,M := eTM1{N([0,T ]×[0,M ])=0}.
By definition, λT,M = λ on ΩT,M . For such k and (x1, . . . ,xk) we assume for simplicity
that (x(1), . . . ,x(k)) = (x1, . . . ,xk). Using (2.8)

LT,M (ω)(Dk−1
(x1,...,xk−1)1{θk≤λtk

})(ω)

= LT,M (ω)
∑

J⊂{1,··· ,k−1}

(−1)k−1−|J|1{θk≤λtk
(ω+

∑
j∈J δxj

)},

where the sum is over all subsets J of {1, · · · , k − 1} including the empty set which is of
cardinal 0. The previous expression then rewrites as

LT,M (ω)(Dk−1
(x1,...,xk−1)1{θk≤λtk

})(ω)

= exp(MT )1{(N([0,T ]×[0,M ])(ω))=0}
∑

J⊂{1,··· ,k−1}

(−1)k−1−|J|1{θk≤λtk
(ω+

∑
j∈J δxj

)}

3Here we use the subscript notation for LT,M as because of the specific normalisation eTM it is not the
"· ◦ ε−,T,M " transformation of some random variable L.
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= exp(MT )1{ω([0,T ]×[0,M ])=0}
∑

J⊂{1,··· ,k−1}

(−1)k−1−|J|1{θk≤λtk
(ω+

∑
j∈J δxj

)}

= exp(MT )1{ω([0,T ]×[0,M ])=0}
∑

J⊂{1,··· ,k−1}

(−1)k−1−|J|1{θk≤λtk
(
∑

j∈J δxj
)}.

Recall that E[exp(MT )1{ω([0,T ]×[0,M ])=0}] = 1. In other words the effect of LT,M (ω) is to
freeze the evaluation of the intensity process λ on a specific outcome given by the atoms
(x1, . . . ,xk−1). Taking the expectation and reorganizing the sum above we get

TkFT,M (x1, . . . ,xk)

= E
[
LT,M (ω)ζ(T − t(k))D

k−1
(x1,...,xk−1)1{θk≤λtk

}

]
= ζ(T − t(k))

∑
J⊂{1,··· ,k−1}

(−1)k−1−|J|1{θk≤λtk
(
∑

j∈J δxj
)}

= ζ(T − t(k))

(−1)k−11{θk≤µ} +

k−1∑
n=1

∑
{y1,...,yn}⊂{x1,...,xk−1}

(−1)k−1−n1{θk≤λtk
(${y1,...,yn}}


= ζ(T − t(k))

(−1)k−11{θk≤µ} +

k−1∑
n=1

∑
{y1,...,yn}⊂{x1,...,xk−1}

(−1)k−1−n1{θk≤a{y1,...,yn}
k }

 .

Note that in each term 1{θk≤λtk
(
∑

j∈J δxj
)},
∑
j∈J δxj is deterministic and λtk(

∑
j∈J δxj )

is explicitly given by the triangular system in Notation 4.4 and this only dependency on
(T,M) is the definition domain of points xi. More precisely, for (T̃ , M̃) with T̃ ≥ T and

M̃ ≥ M , TkFT,M = TkF T̃ ,M̃ on ([0, T ] × [0,M ])k. This explains why in the statement in
(4.6) we replace the coeffcients TkFT,M by TkF given in system (4.7).
For k = 1, the previous expression just reduces to

T1F (x1) = E
[
LT,M (ω)ζ(T − t(1))1{θ1≤λt1}

]
= 1{θ1≤µ}ζ(T − t(1)).

Remark 4.7. Choosing ζ ≡ 1 and ζ ≡ Φ in Theorem 4.6 gives respectively the pseudo-
chaotic expansion of HT and λT .

Remark 4.8. To the price of cumbersome notations, the previous result can be extended
to non-linear Hawkes processes; that is counting processes H with intensity process of
the form 

Ht =
∫

(0,t]×R+
1{θ≤λs}N(ds, dθ),

λt = h
(
µ+

∫
(0,t)×R+

Φ(t− s)dHs

)
, t ∈ [0, T ].

(4.11)

where h : R → R+, Φ : R+ → R and ‖h‖1‖Φ‖1 < 1. Indeed, when computing the
coefficients in the expansion, the Poisson measureN is cancelled and involves evaluations
of the intensity process at a specific configurations of the form${y1,...,yn}. This evaluation
can be done by a straightforward extension of Proposition 4.4 for a non-linear Hawkes
process; in other words for both linear or non-linear process the intensity process λ is a
deterministic function of the fixed configuration of the form ${y1,...,yn}.

Remark 4.9. We would like to comment on the advantage of the pseudo-chaotic expan-
sion compared to the usual one for the value HT of a linear Hawkes process at any time
T . Recall the two decompositions

HT = E[HT ] +

+∞∑
j=1

1

j!
Ij(f

HT
j ), with fHT

j (x1, · · · ,xj) = E
[
Dj

(x1,··· ,xj)HT

]
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=

+∞∑
k=1

1

k!
Ik(TkHT )

For the chaotic expansion, in order to determine each coefficient fj one has to compute

fHT
j (x1, · · · ,xj) = E

[
Dj

(x1,··· ,xj)HT

]
which turns out to be quite implicit for a general Φ

kernel. Indeed, already for the first coefficient, using Relation (3.6) we have

fHT
j (x1) = E [Dx1HT ]

= E
[
1{θ1≤λt1

}

]
+

∫
(t1,T ]×R+

E
[
Dx1

1{θ≤λs}
]
dθds

= P [θ1 ≤ λt1 ] +

∫
(t1,T ]

E [Dx1
λs] ds.

The quantity
∫

(t1,T ]
E [Dx1

λs] ds has been computed in [7] however a closed form expres-

sion for P [θ1 ≤ λt1 ] for any kernel Φ satisfying Assumption 4.1 is unknown to the authors.

In contradistinction, Theorem 4.6 gives an explicit expression for the coefficients TkHT .
In that sense, the pseudo-chaotic expansion (4.6) is an exact representation and an
explicit solution to the Hawkes equation formulation as given in Definition 4.3.

5 The pseudo-chaotic expansion and the Hawkes equation

The aim of this section is to investigate further the link between a decomposition of the
form (4.9) that we named pseudo-chaotic expansion and the characterization of a Hawkes
process as in Definition 4.3. First, let us emphasize that both the standard chaotic
expansion and the pseudo-chaotic expansion characterize a given random variable and
not a stochastic process. For instance in Theorem 4.6, the coefficients TkHT for the
expansion of HT depend on the time T . In this section, we consider once again the
linear Hawkes process, which is essentially described as a counting process with a
specific stochastic intensity like in (1.3), and we adopt a different point of view based
on population dynamics and branching representation as in [6] or [2]. Inspired by
this branching representation, we build in Theorem 5.3 below a stochastic process via
its pseudo-chaotic expansion which is an integer-valued piecewise-constant and non-
decreasing process with the specific intensity form of a Hawkes process. Nevertheless,
although this stochastic process satisfies the stochastic self-exciting intensity equation
which determines a Hawkes process, it fails to be a counting process as it may exhibit
jumps larger than one. This leaves open further developments for studying the pseudo-
chaotic expansion of processes; we refer to Discussion 5.4.

5.1 A pseudo-chaotic expansion and branching representation

Throughout this section we will make use of classical stochastic analysis tools we still
describe elements of X as x = (t, θ). The branching representation viewpoint consists in
counting the number of individuals in generation n, where generation 1 corresponds of
the migrants. We therefore define a series of counting processes X(n)

t (where n stands
for the generation) as follows. To this end we introduce some notations.

Definition 5.1. For a fixed t > 0 we define a family of non-negative maps (bn)n≥1,
bn : Xn → R+ symmetric with

bt1(x1) := 1{θ1≤µ}1{t1≤t}

btn(x1, . . . ,xn) :=

n∏
i=2

1{θi≤Φ(ti−ti−1)}1{tn≤t}; n ≥ 1

EJP 0 (2020), paper 0.
Page 23/33

https://www.imstat.org/ejp

https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On the chaotic expansion for counting processes

where as bn are symmetric it is understood that bn(x1, . . . ,xn) = bn(x(1), . . . ,x(n)) ac-
cording to Notation 3.17.

Proposition 5.2. (i) Let for any t ≥ 0

X
(1)
t :=

∫
(0,t]×R+

1{θ1≤µ}N(dt1, dθ1) = I1(bt1), (5.1)

and for n ≥ 2,

X
(n)
t :=

1

n!
In(btn) (5.2)

We set in addition

Xt :=

+∞∑
n=1

X
(n)
t , (5.3)

where the series converges uniformly (in t) on compact sets; that is for any T > 0,

lim
p→+∞

E

[
sup
t∈[0,T ]

∣∣∣∣∣Xt −
p∑

n=1

X
(n)
t

∣∣∣∣∣
]

= 0.

(ii) We set the FX -predictable process

`t := µ+

∫
(0,t)

Φ(t− r)dXr = µ+

+∞∑
n=1

∫
(0,t)

Φ(t− r)dX(n)
r , t ≥ 0 (5.4)

where FX := (FXt )t≥0, with FXt := σ(Xs, s ≤ t).
The proof of the convergence of the series (5.3) is postponed to Section 5.2. The
resulting process X aims at counting the number of individuals in the population, while
the predictable process ` is the candidate to be the self-exciting intensity of the process
X. This intensity reads as follows

`t

= µ+

∫
(0,t)

Φ(t− r)dXr

= µ+

∫
(0,t)×R+

Φ(t− t1)1{θ1≤µ}N(dx1)

+

+∞∑
n=2

∫
(0,t]×R+

Φ(t− tn)

∫
(0,tn]×R+

· · ·
∫

(0,t2]×R+

1{θ1≤µ}

n∏
i=2

1{θi≤Φ(ti−ti−1)}N
(n)(dx1, . . . dxn)

= µ+

+∞∑
n=1

∫
(0,t]×R+

Φ(t− tn)

∫
(0,tn]×R+

· · ·
∫

(0,t2]×R+

1{θ1≤µ}

n∏
i=2

1{θi≤Φ(ti−ti−1)}N
(n)(dx1, . . . dxn).

The main result of this section is stated below. Its proof based on Lemmata 5.8 and 5.9
is postponed to Section 5.3.

Theorem 5.3. Let µ > 0 and Φ satisfying Assumption 4.1. Recall the stochastic process
X and ` defined (in Definition-Proposition 5.2). We define the process M := (Mt)t≥0 by

Mt := Xt −
∫

(0,t)

`udu, t ≥ 0. (5.5)

Then X is a N-valued non-decreasing process piecewise constant with predictable
intensity process `, in the sense that the process M is a FN -martingale (and so a
FH -martingale as M is FH -adapted and FH· ⊂ FN· ).
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Remark 5.4. In other words X would be a Hawkes process if it were a counting process,
unless it has the same expectation of a Hawkes process. Indeed some atoms generates
simultaneous jumps : any atom (t0, θ0) of N with θ0 ≤ µ will generate a jump for X(1)

and for all X(n) who have t0 as an ancestor so Xt0 − Xt0− may be larger than one.
This example leads to a question. More specifically, the more intricate structure of the
coefficients in Theorem 4.6 for the pseudo-chaotic expansion of a Hawkes process as
a sum and differences of indicator functions suggests a necessary algebraic structure
with respect to the time variable on the coefficients of the expansion to guarantee the
counting-feature of the process. We leave this issue for future research.

Finally, we would like to mention that our approach contributes to building a bridge
between the Poisson imbedding representation of a Hawkes process in terms of a Poisson
measure on R2

+ and the Poisson cluster approach (branching approach) initially provided
in [6]. The combination of this two points of view has been studied for instance in [2]
where the concept of age pyramid is introduced and involves a branching approach
together with Poisson SDEs.
Before handling in Section 5.3 the proof of Theorem 5.3, we start with some useful
technical lemmata.

5.2 Technical results and proofs

Lemma 5.5. Let f in L1(R+; dt). For any n ∈ N with n ≥ 3, and for any 0 ≤ s ≤ t,∫ t

s

∫ u

s

Φn−1(t− r)f(r)drdu =

∫ t

s

∫ tn

s

∫ tn−1

s

· · ·
∫ t2

s

n∏
i=2

Φ(ti − ti−1)f(t1)dt1 · · · dtn. (5.6)

Proof. For g a mapping, let F(g) the Fourier transform of g. Fix s ≥ 0 and n ≥ 3. On the
one hand let

F (u) :=

∫ u

s

Φn−1(u− r)f(r)dr, u ≥ s

so that F = Φn−1 ∗ f̃ , with f̃(v) := f(v)1{v≥s}. We have that

F(F ) = F(Φn−1)F(f̃) = F(Φ)n−1F(f̃),

since by definition of mappings Φi (see Relation (4.1)), each Φi is the ith convolution of
Φ with itself; hence F(Φn−1) = (F(Φ))n−1. On the other hand let :

G(u) :=

∫ u

s

Φ(u− tn−1)

∫ tn−1

s

Φ(tn−1 − tn−2) · · ·
∫ t2

s

Φ(t2 − t1)f(t1)dt1 · · · dtn−1,

we immediately get that F(G) = (F(Φ))n−1F(f̃) = F(F ). Using the inverse Fourier
transform (on the left) we get that F (u) = G(u) for a.e. u leading to

∫ t
s
F (u)du =∫ t

s
G(u)du which is Relation (5.6).

Lemma 5.5 allows one to prove Proposition 5.2, namely to prove that the series
Xt =

∑+∞
n=1X

(n)
t converges uniformly (in t) on compact sets; that is for any T > 0,

lim
p→+∞

E

[
sup
t∈[0,T ]

∣∣∣∣∣Xt −
p∑

n=1

X
(n)
t

∣∣∣∣∣
]

= 0.

Proof. (Proposition 5.2) Set T > 0. For p ≥ 2, let Sp :=
∑p
n=1X

(n). As each counting
process X(n) is non-negative and non-decreasing in t we have that :

E

[
sup
t∈[0,T ]

|Xt − Sp(t)|

]
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= E

[
sup
t∈[0,T ]

∣∣∣∣∣
+∞∑

n=p+1

X
(n)
t

∣∣∣∣∣
]

=

+∞∑
n=p+1

E
[
X

(n)
T

]

= µ

+∞∑
n=p+1

∫ T

0

∫ tn

0

· · ·
∫ t2

0

n∏
i=2

Φ(ti − ti−1)dt1 · · · dtn

= µ

+∞∑
n=p+1

∫ T

0

∫ t

0

Φn−1(T − r)drdt, by Lemma 5.5

≤ µT
+∞∑
n=p

‖Φn‖1 = µT
‖Φ‖p1

1− ‖Φ‖1
−→
p→+∞

0, by Proposition 4.2.

For simplicity we denote Es−[·] := E[·|FNs−] and we introduce the following notation.

Notation 5.6. Let s ≥ 0, v ≥ s and n ≥ 1, we set

hsv :=

+∞∑
n=1

hs,(n)
v , with

hs,(n)
v

:=

∫
(0,s)

Φ(v − tn)dX
(n)
tn

=

∫
(0,s)×R+

Φ(v − tn)

∫
(0,tn]×R+

· · ·
∫

(0,t2]×R+

1{θ1≤µ}

n∏
i=2

1{θi≤Φ(ti−ti−1)}N
(n)(dx1, . . . ,xn).

Lemma 5.7. For n ≥ 3, 0 ≤ s ≤ u we set

Q(n, u)

:= Es−

[∫
(0,u]

Φ(u− r)dX(n−1)
r

]

= Es−

[∫
(0,u]×R+

Φ(u− tn−1)

∫
(0,tn−1]×R+

· · ·
∫

(0,t2]×R+

1{θ1≤µ}

n−1∏
i=2

1{θi≤Φ(ti−ti−1)}N
(n−1)(dx1, . . . ,xn−1)

]
.

We have

Q(n, u) = hs,(n−1)
u

+

n−2∑
i=1

∫ u

s

· · ·
∫ t∗n−i+1

s

Φ(u− tn−1)

n−1∏
k=n−i+1

Φ(tk − tk−1)h
s,(n−i−1)
tn−i

dtn−i . . . dtn−1

+ µ

∫ u

s

∫ tn−1

s

· · ·
∫ t2

s

Φ(u− tn−1)

n−1∏
k=2

Φ(tk − tk−1)dt1 . . . dtn−1, (5.7)

where t∗n−i+1 := tn−i+1 for i 6= 1 and t∗n−i+1 := u for i = 1. An explicit computation gives
that Relation (5.7) is valid for n = 2 using the convention that for a, b ∈ Z with a > b, and
for any map f : Z→ R,

∏b
i=a f(i) := 1.

Proof. Using Fubini’s theorem4 we have

Q(n, u)

4Here Fubini’s theorem is used pathwise as the integral against N are finite-a.e.
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=

∫
(0,s]×R+

Φ(u− tn−1)

∫
(0,tn−1]×R+

· · ·
∫

(0,t2]×R+

1{θ1≤µ}

n−1∏
i=2

1{θi≤Φ(ti−ti−1)}N
(n−1)(dx1, . . . ,xn−1)

+

∫
R+

∫ u

s

Φ(u− tn−1)Es−

[∫
(0,tn−1]×R+

· · ·
∫

(0,t2]×R+

1{θ1≤µ}

n−1∏
i=2

1{θi≤Φ(ti−ti−1)}N
(n)(dx1, . . . ,xn−2)

]
dtn−1dθn−1

=

∫
(0,s]×R+

Φ(u− tn−1)

∫
(0,tn−1]×R+

· · ·
∫

(0,t2]×R+

1{θ1≤µ}

n−1∏
i=2

1{θi≤Φ(ti−ti−1)}N
(n−1)(dx1, . . . ,xn−1)

+

∫ u

s

Φ(u− tn−1)Es−

[∫
(0,tn−1]×R+

Φ(tn−1 − tn−2)

∫
(0,tn−2]×R+

· · ·
∫

(0,t2]×R+

1{θ1≤µ}

n−2∏
i=2

1{θi≤Φ(ti−ti−1)}N
(n−2)(dx1, . . . ,xn−2)

]
dtn−1

=

∫
(0,s]×R+

Φ(u− tn−1)

∫
(0,tn−1]×R+

· · ·
∫

(0,t2]×R+

1{θ1≤µ}

n−1∏
i=2

1{θi≤Φ(ti−ti−1)}N
(n−1)(dx1, . . . ,xn−1)

+

∫ u

s

Φ(u− tn−1)Q(n− 1, tn−1)dtn−1

= hs,(n−1)
u +

∫ u

s

Φ(u− tn−1)Q(n− 1, tn−1)dtn−1.

So we have proved that

Q(n, u) = hs,(n−1)
u +

∫ u

s

Φ(u− tn−1)Q(n− 1, tn−1)dtn−1.

We then deduce by induction that

Q(n, u) = hs,(n−1)
u

+

n−2∑
i=1

∫ u

s

· · ·
∫ t∗n−i+1

s

Φ(u− tn−1)

n−1∏
k=n−i+1

Φ(tk − tk−1)h
s,(n−i−1)
tn−i

dtn−i . . . dtn−1

+ µ

∫ u

s

∫ tn−1

s

· · ·
∫ t2

s

Φ(u− tn−1)

n−1∏
k=2

Φ(tk − tk−1)dt1 . . . dtn−1.

Indeed, assuming the previous relation is true for Q(n, u) for a given n ≥ 3 and for any u;
we have

Q(n+ 1, u)

= hs,(n)
u +

∫ u

s

Φ(u− tn)Q(n, tn)dtn

= hs,(n)
u +

∫ u

s

Φ(u− tn)h
s,(n−1)
tn

dtn

+

∫ u

s

Φ(u− tn)

[
n−2∑
i=1

∫ tn

s

· · ·
∫ tn−i+1

s

Φ(tn − tn−1)

n−1∏
k=n−i+1

Φ(tk − tk−1)h
s,(n−i−1)
tn−i

dtn−i . . . dtn−1

]
dtn

+ µ

∫ u

s

Φ(u− tn)

∫ tn

s

· · ·
∫ t2

s

Φ(tn − tn−1)

n−1∏
k=2

Φ(tk − tk−1)dt1 . . . dtn−1dtn

= hs,(n)
u +

∫ u

s

Φ(u− tn)h
s,(n−1)
tn

dtn

+

n−2∑
i=1

∫ u

s

Φ(u− tn)

∫ tn

s

· · ·
∫ tn−i+1

s

n∏
k=n−i+1

Φ(tk − tk−1)h
s,(n−i−1)
tn−i

dtn−i . . . dtn−1dtn
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+ µ

∫ u

s

∫ tn

s

· · ·
∫ t2

s

Φ(u− tn)

n∏
k=2

Φ(tk − tk−1)dt1 . . . dtn−1dtn

= hs,(n)
u

+

n−2∑
i=0

∫ u

s

Φ(u− tn)

∫ tn

s

· · ·
∫ tn−i+1

s

Φ(tn − tn−1)

n∏
k=n−i+1

Φ(tk − tk−1)h
s,(n−i−1)
tn−i

dtn−i . . . dtn−1dtn

+ µ

∫ u

s

∫ tn

s

· · ·
∫ t2

s

Φ(u− tn)

n∏
k=2

Φ(tk − tk−1)dt1 . . . dtn−1dtn,

where for i = 0 we use the same convention as previously. Hence

Q(n+ 1, u)

= hs,(n)
u

+

(n+1)−2∑
j=1

∫ u

s

Φ(u− tn)

∫ tn

s

· · ·
∫ t∗(n+1)−j+1

s

n+1∏
k=(n+1)−j+1

Φ(tk − tk−1)h
s,((n+1)−j−1)
tn+1−j

dt(n+1)−j . . . dtn

+ µ

∫ u

s

∫ tn

s

· · ·
∫ t2

s

Φ(u− tn)

(n+1)−1∏
k=2

Φ(tk − tk−1)dt1 . . . dt(n+1)−1,

which gives the result.

5.3 Proof of Theorem 5.3

The proof consists in showing that the process M defined by (5.5) is a FN -martingale,
that is for any 0 ≤ s ≤ t,

Es− [Xt −Xs] =

∫ t

s

Es−[`r]dr, (5.8)

where we recall that for simplicity Es−[·] := E[·|FNs−]. This result is a direct consequence
of Lemma 5.8 and 5.9 below in which we compute both terms in (5.8) (recall Notation
5.6).
Lemma 5.8 first computes the left-hand side of in (5.8).

Lemma 5.8. For any 0 ≤ s ≤ t we have that

Es−

[∫
(s,t]

dXr

]
=

∫ t

s

(µ+ hsu)du+

∫ t

s

∫ u

s

Ψ(u− r)(µ+ hsr)drdu. (5.9)

Proof. We have :

Es−

[∫
(s,t]

dX(1)
r

]
= Es−

[∫
(s,t]×R+

1{θ1≤µ}N(dx1)

]
= µ(t− s). (5.10)

Let n ≥ 2.

Es−

[∫
(s,t]

dX(n)
r

]

= Es−

[∫
(s,t]×R+

∫
(0,tn]×R+

· · ·
∫

(0,t2]×R+

1{θ1≤µ}

n∏
i=2

1{θi≤Φ(ti−ti−1)}N
(n)(dx1, . . . ,xn)

]

=

∫ t

s

Es−

[∫
(0,tn]×R+

Φ(tn − tn−1)

∫
(0,tn−1]×R+

· · ·
∫

(0,t2]×R+

1{θ1≤µ}

n−1∏
i=2

1{θi≤Φ(ti−ti−1)}N
(n−1)(dx1, . . . ,xn−1)

]
dtn

=

∫ t

s

Q(n, tn)dtn.
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Hence, by Lemma 5.7,

Es−

[∫
(s,t]

dX(n)
r

]
=

∫ t

s

h
s,(n−1)
tn dtn

+

n−2∑
i=1

∫ t

s

∫ tn

s

· · ·
∫ tn−i+1

s

n∏
k=n−i+1

Φ(tk − tk−1)h
s,(n−i−1)
tn−i

dtn−i . . . dtn

+ µ

∫ t

s

∫ tn

s

· · ·
∫ t2

s

n∏
k=2

Φ(tk − tk−1)dt1 . . . dtn. (5.11)

Using Lemma 5.5,

n−2∑
i=1

∫ t

s

∫ tn

s

· · ·
∫ tn−i+1

s

n∏
k=n−i+1

Φ(tk − tk−1)h
s,(n−i−1)
tn−i

dtn−i . . . dtn

=

n−2∑
i=1

∫ t

s

∫ u

s

Φi(u− r)hs,(n−i−1)
r drdu,

and

µ

∫ t

s

∫ tn

s

· · ·
∫ t2

s

n∏
k=2

Φ(tk − tk−1)dt1 . . . dtn = µ

∫ t

s

∫ u

s

Φn−1(u− r)drdu.

Plugging back these expressions in (5.11) we get

Es−

[∫
(s,t]

dX(n)
r

]

=

∫ t

s

hs,(n−1)
u du+

n−2∑
i=1

∫ t

s

∫ u

s

Φi(u− r)hs,(n−i−1)
r drdu+ µ

∫ t

s

∫ u

s

Φn−1(u− r)drdu.

(5.12)

We now sum the previous quantity over n ≥ 2. The main term to be treated is the second
one that we treat separately below. Note also that using the convention for n = 2 that∑0
i=1 ... = 0 we get

+∞∑
n=2

n−2∑
i=1

∫ t

s

∫ u

s

Φi(u− r)hs,(n−i−1)
r drdu

=

+∞∑
n=3

n−2∑
i=1

∫ t

s

∫ u

s

Φi(u− r)hs,(n−i−1)
r drdu

=

+∞∑
n=3

n−2∑
j=1

∫ t

s

∫ u

s

Φn−j−1(u− r)hs,(j)r drdu

=

+∞∑
j=1

∫ t

s

∫ u

s

hs,(j)r

(
+∞∑
n=3

1{j≤n−2}Φn−j−1(u− r)

)
drdu

=

∫ t

s

∫ u

s

hs,(1)
r

(
+∞∑
n=3

Φn−2(u− r)

)
drdu+

+∞∑
j=2

∫ t

s

∫ u

s

hs,(j)r

 +∞∑
n=j+2

Φn−j−1(u− r)

 drdu

=

∫ t

s

∫ u

s

hs,(1)
r

(
+∞∑
k=1

Φk(u− r)

)
drdu+

+∞∑
j=2

∫ t

s

∫ u

s

hs,(j)r

(
+∞∑
k=1

Φk(u− r)

)
drdu
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=

∫ t

s

∫ u

s

hs,(1)
r Ψ(u− r)drdu+

+∞∑
j=2

∫ t

s

∫ u

s

hs,(j)r Ψ(u− r)drdu

=

+∞∑
j=1

∫ t

s

∫ u

s

hs,(j)r Ψ(u− r)drdu

=

∫ t

s

∫ u

s

Ψ(u− r)hsrdrdu. (5.13)

With these computations at hand, Relations (5.11) and (5.12) lead to

Es−

[∫
(s,t]

dXr

]

= Es−

[∫
(s,t]

dX(1)
r

]
+

+∞∑
n=2

Es−

[∫
(s,t]

dX(n)
r

]

=

∫ t

s

µdu+

+∞∑
n=2

∫ t

s

hs,(n−1)
u du+

+∞∑
n=2

n−2∑
i=1

∫ t

s

∫ u

s

Φi(u− r)hs,(n−i−1)
r drdu

+ µ

+∞∑
n=2

∫ t

s

∫ u

s

Φn−1(u− r)drdu

=

∫ t

s

(µ+ hsu)du+

∫ t

s

∫ u

s

Ψ(u− r)(µ+ hsr)drdu,

which concludes the proof.

We now compute the right-hand side in (5.8).

Lemma 5.9. For any 0 ≤ s ≤ t we have that :

Es−

[∫ t

s

`rdr

]
=

∫ t

s

(µ+ hsu)du+

∫ t

s

∫ u

s

Ψ(u− r)(µ+ hsr)drdu. (5.14)

Proof. The proof is rather similar to the one of Lemma 5.8, we provide a proof for the
sake of completeness.
Let 0 ≤ s ≤ r ≤ t. Recall Notation 5.6. We have

Es− [`r] = Es−

[
µ+

∫
(0,r)

Φ(r − u)dXu

]

= µ+

+∞∑
n=1

Es−

[∫
(0,r)

Φ(r − u)dX(n)
u

]

= µ+

+∞∑
n=1

∫
(0,s)

Φ(r − u)dX(n)
u +

+∞∑
n=1

Es−

[∫
(s,r)

Φ(r − u)dX(n)
u

]

= µ+ hsr +

+∞∑
n=1

Es−

[∫
(s,r)

Φ(r − u)dX(n)
u

]
. (5.15)

Let n ≥ 2,

Es−

[∫
(s,r)

Φ(r − u)dX(n)
u

]

= Es−

[∫
(s,r)

Φ(r − tn)

∫
(0,tn]×R+

· · ·
∫

(0,t2]×R+

1{θ1≤µ}

n∏
i=2

1{θi≤Φ(ti−ti−1)}N
(n)(dx1, . . . ,xn)

]
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=

∫ r

s

Φ(r − tn)Es−

[∫
(0,tn]×R+

Φ(tn − tn−1)

∫
(0,tn−1]×R+

· · ·
∫

(0,t2]×R+

1{θ1≤µ}

n−1∏
i=2

1{θi≤Φ(ti−ti−1)}N
(n−1)(dx1, . . . ,xn−1)

]
dtn

=

∫ r

s

Φ(r − tn)Q(n, tn)dtn

=

∫ r

s

Φ(r − tn)h
s,(n−1)
tn dtn

+

n−2∑
i=1

∫ r

s

Φ(r − tn)

∫ tn

s

· · ·
∫ t∗n−i+1

s

n∏
k=n−i+1

Φ(tk − tk−1)h
s,(n−i−1)
tn−i

dtn−i . . . dtn−1dtn

+ µ

∫ r

s

Φ(r − tn)

∫ tn

s

∫ tn−1

s

· · ·
∫ t2

s

n∏
k=2

Φ(tk − tk−1)dt1 . . . dtn−1dtn

where the last equality follows from Lemma 5.7. Integrating the previous expression in r
on (s, t] and using Lemma 5.5 one gets∫ t

s

Es−

[∫
(s,r)

Φ(r − u)dX(n)
u

]
dr

=

∫ t

s

∫ tn

s

Φ(tn − tn+1)h
s,(n−1)
tn+1

dtn+1dtn

+

n−2∑
i=1

∫ t

s

∫ tn+1

s

∫ tn

s

· · ·
∫ t∗n−i+1

s

n+1∏
k=n−i+1

Φ(tk − tk−1)h
s,(n−i−1)
tn−i

dtn−i . . . dtn−1dtndtn+1

+ µ

∫ t

s

∫ tn+1

s

∫ tn

s

∫ tn−1

s

· · ·
∫ t2

s

n+1∏
k=2

Φ(tk − tk−1)dt1 . . . dtn−1dtndtn+1

=

∫ t

s

∫ u

s

Φ(u− r)hs,(n−1)
r drdu

+

n−2∑
i=1

∫ t

s

∫ u

s

Φi+1(u− r)hs,(n−i−1)
r drdu

+ µ

∫ t

s

∫ u

s

Φn(u− r)drdu

Using the same computations than (5.13) we deduce that

+∞∑
n=1

∫ t

s

Es−

[∫
(s,r)

Φ(r − u)dX(n)
u

]
dr

=

∫ t

s

Es−

[∫
(s,r)

Φ(r − u)dX(1)
u

]
+

+∞∑
n=2

∫ t

s

Es−

[∫
(s,r)

Φ(r − u)dX(n)
u

]
dr

= µ

∫ t

s

∫ u

s

Φ(r − u)drdu+

+∞∑
n=2

∫ t

s

∫ u

s

Φ(u− r)hs,(n−1)
r drdu

+

+∞∑
n=3

n−2∑
i=1

∫ t

s

∫ u

s

Φi+1(u− r)hs,(n−i−1)
r drdu+

+∞∑
n=2

µ

∫ t

s

∫ u

s

Φn(u− r)drdu

= µ

∫ t

s

∫ u

s

Ψ(u− r)drdu
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+

+∞∑
n=2

∫ t

s

∫ u

s

Φ(u− r)hs,(n−1)
r drdu

+

+∞∑
n=3

(n+1)−2∑
j=2

∫ t

s

∫ u

s

Φj(u− r)hs,(n+1−j−1)
r drdu

= µ

∫ t

s

∫ u

s

Ψ(u− r)drdu+

∫ t

s

∫ u

s

Φ(u− r)hsrdrdu

+

+∞∑
n=2

n∑
j=2

∫ t

s

∫ u

s

Φj(u− r)hs,(n+1−j)
r drdu

= µ

∫ t

s

∫ u

s

Ψ(u− r)drdu+

∫ t

s

∫ u

s

Φ(u− r)hsrdrdu

+

∫ t

s

∫ u

s

+∞∑
j=2

Φj(u− r)
∞∑
n=j

hs,(n+1−j)
r drdu

= µ

∫ t

s

∫ u

s

Ψ(u− r)drdu+

∫ t

s

∫ u

s

Ψ(u− r)hsrdrdu

=

∫ t

s

∫ u

s

Ψ(u− r)(µ+ hsr)drdu

where we have used Relation (5.13). Thus we have proved that∫ t

s

Es−

[∫
(s,r)

Φ(r − u)dXu

]
dr =

+∞∑
n=1

∫ t

s

Es−

[∫
(s,r)

Φ(r − u)dX(n)
u

]
dr

=

∫ t

s

∫ u

s

Ψ(u− r)(µ+ hsr)drdu.

Hence coming back to Relation (5.15) we obtain

Es−

[∫ t

s

`rdr

]
=

∫ t

s

(µ+ hsu)du+

∫ t

s

∫ u

s

Ψ(u− r)(µ+ hsr)drdu.
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