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Mosquitoes not only transmit human and veterinary pathogens called arboviruses
(arthropod-borne viruses) but also harbor mosquito-associated insect-specific viruses
(mosquito viruses) that cannot infect vertebrates. In the past, studies investigating
mosquito viruses mainly focused on highly pathogenic interactions that were easier to
detect than those without visible symptoms. However, the recent advances in viral
metagenomics have highlighted the abundance and diversity of viruses which do not
generate mass mortality in host populations. Over the last decade, this has facilitated the
rapid growth of virus discovery in mosquitoes. The circumstances around the discovery of
mosquito viruses greatly affected how they have been studied so far. While earlier
research mainly focused on the pathogenesis caused by DNA and some double-
stranded RNA viruses during larval stages, more recently discovered single-stranded
RNA mosquito viruses were heavily studied for their putative interference with arboviruses
in female adults. Thus, many aspects of mosquito virus interactions with their hosts and
host-microbiota are still unknown. In this context, considering mosquito viruses as
endosymbionts can help to identify novel research areas, in particular in relation to their
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INTRODUCTION

The term symbiosis, first used by a German botanist, Heinrich
Anton de Bary, to describe the living together of fungi and algae
as lichens, is today used to describe countless forms of long-term
intimate relationships between two species (Relman, 2008;
Combes et al., 2018). Such intimate symbiotic associations
have since been described in more than half of the animal
phyla (McFall-Ngai, 2015). As the appreciation of symbiotic
interactions grew, symbionts’ effect on their hosts became
increasingly difficult to restrict to beneficial versus antagonistic
(McFall-Ngai, 2015). Although some mutually beneficial
symbiotic interactions exist, the nature of most symbiont-host
relationships are not straightforward. Furthermore, even when
symbiotic interactions are accepted as mutualistic, they are
context-dependent, and the virulence of a symbiont can
change, either immediately (i.e. plastically) or over time
through evolutionary processes (i.e. selection, genetic drift),
due to variations in abiotic and biotic factors (Alizon et al.,
2009; Keeling and McCutcheon, 2017).

While research into symbiosis grew rapidly and included a
wide range of interactions, it mainly focused on bacteria. Until
recently, viruses were often seen solely as causative agents of
disease and were left out of the symbiosis conceptual framework
(Roossinck and Bazán, 2017). One of the main reasons for this is
the inherent bias caused by the available discovery methods for
viruses. For bacteria the sequencing of the ribosomal genes
permitted less biased detection early on. In contrast, viruses,
lacking a shared phylogenetic marker, were much easier to detect
and study when they resulted in visible pathogenicity. In the last
decades, the number of metaviromic studies has grown
significantly, and with this, so has our understanding of the
diversity of viruses, their ecology and the wide range of
environmental conditions they exist in (Breitbart et al., 2002;
Breitbart and Rohwer, 2005; Edwards and Rohwer, 2005; Rosario
and Breitbart, 2011).

Similarly, due to the limitations of detection tools, earlier
studies on mosquito-associated insect-specific viruses (mosquito
viruses) were highly inclined towards viruses with easily
observable pathology. For instance, DNA viruses from
Baculoviridae and Iridoviridae families were discovered due to the
visible symptoms they cause in mosquito larvae; such as
hypertrophied nuclei in midguts or iridescence, respectively
(Becnel and White, 2007). Following the advances in viral
metagenomics, there has been an increase in the number of
viruses discovered in natural mosquito populations and
mosquito-derived cell lines (Atoni et al., 2019). In particular, the
number of mosquito RNA viruses that are phylogenetically related
to arthropod-borne viruses (arboviruses) of medical and veterinary
importance has grown significantly (Junglen and Drosten, 2013;
Blitvich and Firth, 2015; Bolling et al., 2015; Vasilakis and Tesh,
2015; Hall et al., 2016; Halbach et al., 2017; Öhlund et al., 2019).
Notably, these circumstances around their discovery led to different
approaches to study the DNA and RNA mosquito viruses. DNA
viruses have been mainly studied for their pathogenesis during
larval stages, while RNA viruses were studied mainly for their

interactions with arboviruses during adult stages. The latter have 228
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often been called “Insect-specific viruses” to differentiate them from
related arboviruses, although ISV literature often excludes mosquito
DNA viruses. Nevertheless, both mosquito DNA and RNA viruses
can be present in all mosquito life stages (Sang et al., 2003;
Saiyasombat et al., 2011; Bolling et al., 2012; Haddow et al., 2013;
Kawakami et al., 2016; Ajamma et al., 2018) and are highly
prevalent in natural populations (Farfan-Ale et al., 2009; Goenaga
et al., 2014; Parry and Asgari, 2018a; Altinli et al., 2019a), suggesting
their long-term symbiotic interactions with their hosts (Figure 1).
These interactions can directly affect the ecology and evolution of
the mosquito host or the rest of the mosquito microbiota.
Throughout this review, we use the term “mosquito viruses” to
refer to all DNA and RNA viruses that are found inmosquitoes, and
that cannot infect vertebrates. The term “arboviruses” refers to
human and veterinary pathogens transmitted by mosquitoes and
infecting both; vertebrates and mosquitoes.

Given their intimate and long-term associations with their
hosts, we argue that both RNA and DNA mosquito viruses
should be studied as mosquito endosymbionts. To date,
mosquito virus studies have mostly been focused on i) virus
discovery, ii) larval biocontrol or iii) interactions with
arboviruses. As the viruses are too often seen as pathogens
transiently introduced into a symbiotic system (the mosquitoes
and their microbiota), mosquito viruses’ long-term association
with their hosts and range of their interactions (i.e. beneficial to
antagonistic) are understudied. Thus, investigating mosquito
viruses as endosymbionts can improve our understanding of
their long-term associations, as well as the wide range of
interactions with their hosts and hosts’ microbiota. For
instance, several mosquito viruses persistently infect mosquitoes
through larval and adult life stages, although whether the
infection is actively maintained or merely tolerated by the host
immune system is unknown. Similarly, several mosquito viruses
can be transmitted vertically, although whether they are fixed in
populations or stable on evolutionary timescales is not well
investigated. Like other endosymbionts, the interactions
between mosquito viruses and their hosts can be diverse, and
the outcomes of these interactions may be context-dependent, as
shown for a plant virus that confers drought tolerance to its hosts
when evolved in drought conditions (González et al., 2021).

Here, we review current knowledge of the interactions
between mosquito viruses and their hosts and other symbionts
sharing the same cellular arena. The factors (transmission routes,
host range-host shifts and host immune response) that influence
the outcome of these interactions are presented (Figure 1).
Finally, to highlight the unknown ecological and evolutionary
aspects of mosquito virus interactions, we examine examples of
viruses and bacteria found in insects as potential guidance for
future research that can improve our understanding of mosquito
viruses. A deeper understanding of endosymbiotic interactions
between mosquito viruses and their hosts can increase our
knowledge of virus ecology and evolution, and inform future
vector control strategies.
Month 2021 | Volume 11 | Article 694020
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INTERACTIONS BETWEEN MOSQUITO
VIRUSES AND THEIR HOSTS

Similar to bacterial endosymbionts, mosquito viruses could, in
principle, harbor both beneficial and antagonistic traits (Zug and
Hammerstein, 2015). As mentioned above, many DNA viruses
have been discovered due to mass mortality events or visible
pathologies during larval stages. Hence, DNA mosquito viruses
are often considered highly pathogenic and are studied primarily
during larval stages. However, the pathogenicity of viruses can
have a wide range even within the same virus family. For
instance, densoviruses (Parvoviridae) known for their high
pathogenicity (Gosselin Grenet et al., 2015) include highly fatal

FIGURE 1 | Endosymbiotic interactions of mosquito viruses. Arboviruses are ma
arthropod and vertebrate hosts. Therefore, they primarily infect adult female mosq
contrast, mosquito viruses can be transmitted horizontally (between mosquitoes o
abundance in males or aquatic life stages of mosquitoes. They can sometimes be
the interactions between mosquito viruses and their hosts, the host microbiota, a
interactions can be context-dependent and influenced by several factors such as trans
between symbionts and symbiont communities can be observed between mosquito v
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Aedes albopictus densovirus-2 (AalDV2), leading to up to 95%
mortality (Perrin et al., 2020), as well as Anopheles gambiae
densovirus or Culex pipiens densovirus (CpDV) that cause very
lowmortality to mosquitoes (Ren et al., 2014; Altinli et al., 2019b).

Many mosquito RNA viruses [with the exception of some
dsRNA viruses responsible for apparent pathology (Shapiro
et al., 2005; Becnel and White, 2007)] infect their hosts
persistently without causing any visible pathology and are
often considered commensal. Although these viruses do not
seem to cause mass mortality, possible fitness costs are not yet
thoroughly investigated. The virulence of mosquito viruses could
be manifested in other forms that are much more difficult to
detect, such as behavioral changes. For instance, Culex flavivirus

ined primarily in nature through horizontal transmission and replication cycles in
es (arboviruses can also be transmitted vertically, but at very low rates). In
om the environment) or vertically (from parents to offspring); and are therefore in
quired and transmitted with other symbionts. This review discusses
heir place in the host holobiont. The outcome of mosquito virus-mosquito
sion routes, host range-host shifts and host immune responses. Interactions
es and bacteria or other mosquito viruses and also have an impact on the host.
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(CxFV, Flaviviridae) decreased naturally infected Cx pipiens
mosquitoes’ flight behavior (Newman et al., 2016). However, it
is unknown whether this was an indirect consequence of viral
replication, leading to a reduction in energy or depletion of flight
muscles, or more specific nerve damage that directly affects
behavior. Interestingly CxFV has been found in the heads of
infected mosquitoes, making the latter hypothesis plausible
(Kent et al., 2010; Saiyasombat et al., 2011). This alteration of
flight behavior can interfere with the host-seeking behavior of the
mosquito, resulting in a decrease in fitness.

Despite the abundance of mosquito virus infections without
mass mortality, no beneficial virus infections have been
documented so far in mosquitoes, in contrast to other groups
of insects. For example, parasitoid wasps harbor a beneficial
vertically transmitted entomopoxvirus that ensures the development
of the wasp larvae within the wasp’s insect host (Coffman et al., 2020).
Insect viruses with beneficial traits have also been shown in
lepidopteran species where a vertically transmitted Helicoverpa
armigera densovirus increases developmental rates, lifespan, female
fecundity, and more importantly resistance against pathogenic
Bacillus thuringiensis and a baculovirus in laboratory conditions
(Xu et al., 2014; Xiao et al., 2021). Hence, this densovirus can be
beneficial to its host, specifically in the areas where B. thuringiensis or
baculovirus based population control tools are commonly deployed
(Xiao et al., 2021). Another conditional beneficial interaction has been
reported between the rosy apple aphid and Dysaphis plantaginea
densovirus (DplDV) (Ryabov et al., 2009) which causes the
appearance of wings in a proportion of genetically identical clonal
aphids in poor diet conditions (Ryabov et al., 2009). These winged
aphids are smaller and have lower fecundity than their wingless
counterparts, but can be necessary for the survival of the clonal
population when the host plant is not viable, as DplDV free aphids
cannot disperse to new plants (Ryabov et al., 2009).

Abiotic factors (e.g. temperature or water pH) can influence
the outcome of host-virus interactions through their effect on the
individual host (e.g. host immunity) or host populations
(e.g. population density), or alternatively by altering the
infectivity of the virus. The effect of abiotic factors on
mosquito virus infections has been mostly studied for dsRNA
and DNA viruses of mosquitoes during larval stages, but little to
no information is available for RNA viruses. Infectivity of
mosquito baculoviruses and reoviruses can depend on ion
composition in the rearing water (Becnel et al., 2001; Shapiro
et al., 2004; Shapiro et al., 2005; Green et al., 2006; Becnel and
White, 2007). Temperature can also play an essential role in
infection, as seen for Aedes albopictus densovirus, where the
mosquito larvae infection rate decreased at both lower or higher
temperatures than the optimal temperature of 28°C (Li et al.,
2019). Abiotic factors can also affect host-virus interactions
indirectly through changes in the host population. For
instance, AeDV (Thai strain) prevalence in An. minimus larvae
correlates positively with rainfall (two months prior to larval
collection), but negatively with AeDV prevalence in adults, in the
following month (Rwegoshora et al., 2000). Thus, it can be
hypothesized that rainfall-related changes in the larval
population can affect infection dynamics, possibly leading to a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
higher mortality for infected larvae which may eventually cause a
lower prevalence in adult mosquitoes.

Overall, the nature of mosquito virus interactions with their
hosts may be context-dependent and could be influenced by
various biological and ecological factors such as transmission
routes, host range, and host antiviral immunity (Figure 1). These
factors are often interconnected and can change the immediate
outcomes of the host-virus interactions or possibly drive
virulence evolution over time (Table 1).

Transmission Routes of Mosquito Viruses
The Importance of Transmission Routes in Symbioses
Symbionts can be transmitted to new hosts by horizontal or
vertical transmission routes (Bright and Bulgheresi, 2010). These
transmission routes play a defining role in the ecology of
symbionts (i.e. their spread and their maintenance in nature),
as well as in the evolution of their virulence (Cressler et al., 2016).
Vertical transmission occurs from parents to offspring. For most
endosymbionts, maternal vertical transmission is commonly
observed and expected to lower their virulence (except for
reproductive parasites) as the fitness of the endosymbiont is
related to female fitness. Maternal vertical transmission can
occur through the oocytes (transovarial transmission) or on
the egg’s surface (transovum transmission) (Fine, 1975). For
viruses, vertical transmission can also be paternal (e.g. through
sperm) or bi-parental as observed for drosophila sigma- and
partitiviruses (Longdon and Jiggins, 2012; Cross et al., 2020).
Contrary to single parent vertical transmission, bi-parental
vertical transmission does not necessarily lead to reduced
virulence as the virus could still spread through the host
population despite causing a fitness cost. For instance,
although mainly bi-parentally vertically transmitted, Drosophila
melanogaster sigmavirus reduces female fertility and slows down
host development (Fleuriet, 1981; Longdon et al., 2012).
Horizontal transmission routes include venereal transmission,
environmental transmission, contact transmission and vector
transmission. In contrast to vertically transmitted symbionts,
horizontally transmitted symbionts are more likely to evolve
towards antagonism as their fitness is not directly linked to the
host fitness (Cressler et al., 2016).

Mosquito Viruses With an RNA Genome
Arboviruses are mainly maintained in nature by horizontal
transmission cycles between vertebrate and arthropod hosts.
Many mosquito viruses with RNA genomes are phylogenetically
related to arboviruses, although they lack a vertebrate host. In the
absence of this obvious horizontal transmission cycle, these
mosquito viruses were generally assumed to be transmitted
vertically. However, experimental evidence for such vertical
transmission is rare (Bolling et al., 2011; Saiyasombat et al., 2011;
Bolling et al., 2012;McLean et al., 2020; Ye et al., 2020). For instance,
Cx. pipiens transmit the CxFV efficiently to their offspring when the
mosquitoes were infected naturally but not when the virus was
injected experimentally. These results demonstrated that vertical
transmission is possible, although dependent on the infection
methods for CxFV (Bolling et al., 2011; Saiyasombat et al., 2011;
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Altinli et al. Symbiotic Interactions of Mosquito Viruses
transmission is true transovum or transovarial maternal vertical
transmission or happens by contact between parents and offspring
has not yet been studied. For CxFV, the role of paternal
transmission is not clear either, although for a partitivirus
(dsRNA virus) efficient bi-parental transmission has been shown
in Ae. aegypti mosquitoes (Cross et al., 2020).

In some cases, mosquito virus presence in male mosquitoes
was interpreted as evidence of vertical transmission, as it proves
that the virus was not only transmitted horizontally to adult
females through blood-feeding (Hoshino et al., 2007; Farfan-Ale
et al., 2010). However, caution must be taken when interpreting
these results, as horizontal transmission from the environment
or other mosquitoes during different life stages can also be
responsible for mosquito virus presence in males, larvae or
eggs. Horizontal transmission can occur either during
adulthood (through food, environment, or venereal transfer
between adults) or through larval stages (Figure 1). To date,
horizontal transmission via food sources in adult mosquitoes has
only been tested through blood-feeding for a handful of viruses
belonging to the flavivirus, negevirus, alphavirus and
mesonivirus genera. Transmission through infected blood
meals was not successful for the tested flaviviruses (CxFV,
Palm Creek virus) (Kent et al., 2010; Hall-Mendelin et al.,
2016) but was possible for an alphavirus (Eilat virus) and a
mesonivirus (Yichang virus), in case of high virus titres
(Vasilakis et al., 2013; Nasar et al., 2014; Ye et al., 2020).
Mosquitoes can also be horizontally infected during larval

TABLE 1 | Summary and open questions.

What is known

Biology The gradient of the interactions: costly, neutral or beneficial. Mostly cos
interactions were studied for mosquito viruses, although there are exam
beneficial features for insect viruses. The cost of ‘persistent’ infections
known.
Endosymbionts can be tolerated or actively controlled by the host imm
Endosymbionts can also impact the host immune system (maturation o
and cell responses (apoptosis), gene expression change). Intimate inter
between mosquito viruses and host innate immunity interactions have
demonstrated with the host RNA interference response.

Ecology Endosymbionts can be highly prevalent, sometimes fixed in host popul
case of mutualistic symbionts or reproductive parasites. Mosquito virus
but can be high in nature.

Symbiont-symbiont interactions can shape the host microbiota compo
Mosquito viruses can interact with the host microbiota.

With the exception of primary symbionts that are exclusively vertically t
endosymbionts may exhibit mixed transmission routes and influence th
evolution. The transmission routes of mosquito viruses are not well stu
although mixed transmission seems possible.
Bottlenecks can occur during transmission or colonization of a given tis

Evolution The holobiont concept: important for vertically transmitted symbionts. F
characterization of the core virome in mosquitoes suggests that viruses
considered part of the host holobiont.

Endosymbionts often exhibit insertion of partial or complete genomes i
genomes. Endogenous viral elements related to mosquito viruses are f
inserted in mosquito genomes.
stages, although only a few studies have been performed for 570
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RNA viruses. For instance, Kamiti River virus (KRV,
Flaviviridae) and the Yichang virus can infect larvae when
added to rearing water; although this was not the case for
CxFV (Lutomiah et al., 2007; Bolling et al., 2012; Ye et al.,
2020). However, the same strain of CxFV has been found in Cx.
pipiens and Cx. tritaeniorhyncus that do not hybridise but share
the same habitat, suggesting the occurrence of horizontal
transmission between these species in natural populations
(Obara-Nagoya et al., 2013).

Mosquito Viruses That Were Mainly Studied
in Larval Stages
Studies into DNA (iridoviruses, baculoviruses and densoviruses)
and dsRNA (reoviruses) mosquito viruses have focused
primarily on horizontal transmission during the larval stages
(Figure 1) due to their potential use as biological mosquito
control tools in larval habitats (Carlson et al., 2006; Becnel and
White, 2007; Johnson and Rasgon, 2018). Indeed, several
baculoviruses and reoviruses can infect Aedes, Culex or
Uratoaenia larvae when added to their habitats (Shapiro et al.,
2005; Green et al., 2006). A vector can also enhance mosquito
virus horizontal transmission. For instance, the Mosquito
Iridescent virus is transmitted by Strelkovimermis spiculatus, a
nematode parasitizing Cx. pipiens larvae (Muttis et al., 2013;
Muttis et al., 2015). On the other hand, mosquito DNA viruses
can be vertically transmitted if mosquitoes survive the initial
infection. For instance, following Aedes albopictus densovirus
infection, surviving infected Aedes aegypti larvae can emerge and

Open questions

s of
ot

Can mosquito viruses confer benefits on their hosts? Do ‘persistent’
infections have a fitness cost? Does virulence change with different
conditions and developmental stages?

system.
moral
ions
n

Does the host tolerate or actively control mosquito viruses? What host
immune responses do mosquito viruses trigger in addition to RNA
interference? Can mosquito viruses modulate host immunity? Are there
other immune pathways that play a role in mosquito-mosquito virus
interactions in addition to RNA interference?

ns in
ariable

What is the prevalence of a given mosquito virus in nature, and can it
be related to the nature of their interactions with their hosts? What is
the host range of a given mosquito virus? Do they exhibit similar
phylogenies to their hosts?

n. How do mosquito viruses interact with each other and the rest of the
microbiota? What are the mechanisms of putative interference and
facilitation?

mitted,
irulence
,

Can mosquito viruses switch plastically from vertical to horizontal
transmission? What are the outcomes of the transmission routes in
their virulence? How can abiotic factors or interactions with the rest of
the microbiota affect the transmission of mosquito viruses?

. How is the evolution of the mosquito viruses shaped by different
transmission routes or by tissue tropism?

uld be
What are the factors shaping this core virome? How stable is the core
virome? How does the core virome of different species affect their
hosts and host vector competence? Is phylosymbiosis a common
pattern in mosquito viruses and their hosts?

st
d

How common are the functional endogenous viral elements? What
could be their function?
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Altinli et al. Symbiotic Interactions of Mosquito Viruses
Togaviridae and Bunyavirales), host range studies have focused
solely on their inability to infect vertebrates (Nasar et al., 2012;
Junglen et al., 2017; Elrefaey et al., 2020). Even this inability to
infect vertebrate cells has only been determined for a handful of
mosquito viruses, while the majority of them have been
categorized as such, only based on their phylogenetic proximity to
other mosquito viruses.

Mosquito viruses are usually named after the mosquito
species in which they were discovered. However, it has to be
kept in mind that this mosquito species is not necessarily the
original or the only host species of the virus. In vivo studies are
often restricted to species where the virus strain was first
reported and their close relatives, although some viruses can
have wider host ranges (i.e. other insects or mosquito genera).
For instance, Aedes aegypti densovirus (AeDV) and Aedes
albopictus densovirus (AalDV), isolated from Ae. aegypti and
Ae. albopictus, respectively, can infect Aedes, Culex and Culiseta
species but not Anopheles species or other insects tested (Carlson
et al., 2006). Other mosquito viruses have a narrower host range,
such as Parramatta River virus, which infects several Aedes cells
lines but not those derived from Anopheles or Culex. Similarly,
An. gambiae densovirus (AgDV) infects only An. gambiae but
not An. stephensi (McLean et al., 2015; Suzuki et al., 2015).

The virulence of mosquito viruses may vary between different
mosquito species, particularly between “original” and “naïve”
hosts, perhaps due to maladaptation as commonly observed for

emerging diseases (Weiss, 2002). For instance, Negev virus can

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
One of the most important factors defining the outcome of
mosquito virus-host interactions is the host immune response.
The mosquito antiviral immune response has been extensively
studied in the context of arboviruses with an emphasis on the
RNA interference (RNAi) pathway as it acts antiviral against all
investigated arboviruses, to date (Donald et al., 2012). RNAi is a
sequence-specific silencing mechanism that works through the
production of virus-derived RNAs resulting from the cleavage of
viral replication intermediates. Depending on the size of the
RNA molecules and the host proteins involved in their
production, these small RNA molecules are called: siRNAs
(21 nts) or piRNA (24-30 nts) (Leggewie and Schnettler, 2018).
Viral (v)siRNA or (v)piRNAs are taken up by a protein complex
and used as a guide to find complementary viral RNA sequences,
to initiate their degradation.

All studies, to date, have shown that mosquito virus-derived
small RNAs are produced, proving an interaction between the
mosquito RNAi response and mosquito viruses (for both DNA
and RNA viruses) (Agboli et al., 2019). It is not yet known
whether RNAi is antiviral against mosquito viruses, but it is
hypothesized that a delicate balance between the RNAi defense
and the virus counter defense is responsible for the persistent
infection state observed for many RNAmosquito viruses. Several
mosquito and other insect-specific viruses have indeed been
shown to produce proteins or other molecules that interfere
with the antiviral RNAi response as a counter defense, called
transmit densovirus to their offspring with varying efficiency
(28%-55%) depending on the virus titre in females (Barreau
et al., 1997). Another densovirus, Cx. pipiens densovirus
(CpDV), can also be transmitted transovarially at a low rate in
naturally infected laboratory colonies (Altinli et al., 2019b). In
addition, the titre of virus in the ovaries and the rate of vertical
transmission is reduced following antibiotic treatments
suggesting an effect of the microbiota on CpDV transmission
(Altinli et al., 2019b).

Although exclusive vertical or horizontal transmission cannot
be excluded, to date, studies suggest that mixed-route
transmission, including both horizontal and vertical
transmission routes, is likely key to mosquito virus persistence
and dispersal in nature. Each transmission route’s role for a given
host-virus combination may change depending on the ecological
context. Although not explicitly studied for mosquito viruses,
abiotic conditions that affect the host population density could
also cause a switch between transmission routes, as horizontal
transmissionmay play a greater role in high population density than
low population density (Ebert, 2013). Furthermore, biotic factors,
such as the microbiota of the mosquito or the abundance of the
virus in the larval habitat, can influence virus transmission.
However, the exact role of different transmission routes and
conditions that can cause a switch from one modality to another
are not well understood (Table 1).

Host Range and Host Shifts
The host range of mosquito viruses is not well studied, and for
many, it is difficult to define an original host. Particularly for
mosquito RNA viruses related to arboviruses (e.g. Flaviviridae,

infect and replicate in cell lines derived from Ae. albopictus, An.
albimanus, An. gambiae, Cx. tarsalis but not P. papatasi, and D.
melanogaster. Interestingly, this virus only caused a cytopathic
effect (CPE) in Ae. albopictus and Cx. tarsalis cell lines. However,
CPE was not observed in An. albimanus, where the virus
replicates successfully (Vasilakis et al., 2013). In this case,
higher virulence could be the result of an introduction to a
new host and, therefore, suggests that An. albimanus is the
original host. In this context, studying the epidemiology and
phylogeny of mosquito viruses in nature, combined with
laboratory experiments, would be helpful to understand viral
host range and the effect of host shifts on the virulence and
transmission route evolution.

Mosquito viruses could shape host distribution in nature
through host specific virulence. A good example of this, is a
study conducted in Thailand where Ae. aegypti adults showed a
high (44.3%) Aedes densovirus (AeDV, Thai strain) prevalence
while all tested Ae. albopictus adults were negative (Kittayapong
et al., 1999). In contrast, experimental larval infections showed
that AeDV could infect both species of mosquitoes and was more
lethal to Ae. albopictus than to Ae. aegypti larvae. One hypothesis
is that the high virulence of AeDV prevented Ae. albopictus
larvae development into adults in natural populations, resulting
in a lower prevalence in adults of this species. If so, this suggests
that AeDV infection may relax competitive pressure for Ae.
aegypti larvae, thus contributing to Ae. albopictus and Ae. aegypti
population distribution in nature (Kittayapong et al., 1999).

Insect Immune Response Against
684
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rate and virus load of important arboviruses (Moreira et al., 2009;
Walker et al., 2011; Hussain et al., 2012; van den Hurk et al.,
2012; Johnson, 2015; Pimentel et al., 2021). This success of
Wolbachia to interfere with arboviruses, brought attention to
the rest of the microbiota. The presence of other bacterial
symbionts in addition to Wolbachia, especially in the gut, has
been characterized both during adult and larval stages (Caragata
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Altinli et al. Symbiotic Interactions of Mosquito Viruses
“viral suppressors of RNAi” (Chao et al., 2005; Schuster et al.,
2014; van Cleef et al., 2014). Persistent infection often lacks high
mortality or visible pathology in infected cells and is manifested
by fluctuating viral titres (Franzke et al., 2018; Bishop et al.,
2020). Any disruption of this balance can change the virulence of
the virus. For example, Flock House virus (FHV) infection in
drosophila is normally non-pathogenic; however, its
pathogenicity increases when FHV infected flies lack
Argonaute 2, a key protein of the siRNA pathway (van Rij
et al., 2006).

In addition to encoding RNAi suppressors, mosquito viruses can
modulate mosquito immunity through the integration of viral
genetic material into the host genome. Many endogenous viral
elements (EVEs) related to mosquito viruses have been reported
from mosquito genome sequences (Katzourakis and Gifford, 2010;
Palatini et al., 2017). EVEs originating from RNA viruses, called
non-retroviral integrated RNA elements (NIRV), closely related to
mosquito viruses from Bunyavirales, Reoviridae, Rhabdoviridae and
Flaviviridae have been found in the genome of a variety of mosquito
species. NIRVs in mosquitoes have been linked to the piRNA
pathway, as mosquito virus-derived NIRVs were mostly found in
piRNA clusters in mosquito genomes and the production of NIRV-

specific piRNAs was also shown (Whitfield et al., 2017; Varjak et al.,
2018). Moreover, the antiviral activity of these NIRVs-specific

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
SYMBIONT-SYMBIONT INTERACTIONS

While host-symbiont interactions are often studied in a binary
manner, symbiont-symbiont interactions can also determine
infection outcomes. In mosquitoes, studies on microorganism
interactions have been focused on mosquito endosymbiont
interference with arboviruses (Figure 2), for example
Wolbachia whose interactions could prove useful for arbovirus
control (Flores and O’Neill, 2018). Wolbachia natural infections
are common and sometimes fixed in mosquitoes, including
several arbovirus vectors such as Aedes albopictus and Culex
pipiens (Sicard et al., 2019). Furthermore, it is possible to create
mosquito lines stably transinfected with Wolbachia from other
mosquito species or drosophila (Hughes and Rasgon, 2014). In
these transinfected mosquitoes, Wolbachia reduces the infection
et al., 2019). Although the overall bacterial community depends
on environmental conditions, a core microbiome has been
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piRNAs was recently established in mosquito-derived cells and
mosquitoes (Tassetto et al., 2019; Suzuki et al., 2020). In both cases,
piRNAs derived from a Cell Fusing Agent virus (CFAV)-specific
NIRV were able to (i) inhibit CFAV replication specifically in the
ovaries of Ae. aegypti mosquitoes, (ii) reduce the expression of a
reporter construct harboring CFAV-specific NIRV target sites or
(iii) inhibit the infection of a virus harboring CFAV-specific NIRV
target sites. These data support the hypothesis that the acquisition of
NIRVs, at least in the mosquito genome, acts as an adaptive
immune response. Such integration of mosquito virus sequences
can occur in somatic or germ cells, but only the latter can be
transmitted vertically to the offspring. Therefore, tissue specificity of
mosquito viruses strongly influences vertical NIRV transmission,
hence the acquisition and transmission of this “adaptive immune
response”. Moreover, a comparison of different mosquito genera,
sampled from the same habitats suggests that NIRV integration is
not just a mere result of virus exposure but also depends on specific
virus-host interactions (Palatini et al., 2017). The majority of NIRVs
are found in Aedes mosquitoes, specifically Ae. aegypti (Palatini
et al., 2017). Until now, the reason for this is unknown, but a
possible explanation could include differences in the immune
response, susceptibility to certain viruses that are more prone to
NIRV production, and differences in the presence of
retrotransposons (as these are essential for NIRV production)
and microbiota.

There are still many unanswered questions about how this
would affect a virus infection in nature, the extent to which this
“adaptive” immunity shaped the virus evolution, and the
frequency of the functional EVEs derived from mosquito
viruses (Table 1). In addition, mosquito virus interactions with
other aspects of mosquito immune system are also yet to
be investigated.

defined for some mosquito species (Guégan et al., 2018). Some
of these core bacterial symbionts have been shown to interact
with arboviruses (Huang et al., 2020). For example, Serratia
odorifera enhanced Ae. aegypti’s susceptibility to dengue virus
(DENV, Flaviviridae) through the production of a bacterial
protein called smEnhancin. Indeed, smEnhancin has been
shown to facilitate viral dissemination from the gut by
digesting mucines on the mosquito gut epithelia (Wu
et al., 2019).

Because of this promising approach to arbovirus control,
studies on RNA mosquito viruses have focused heavily on their
interactions with arboviruses. Similar to some bacterial
endosymbionts, mosquito viruses can also interfere with
arbovirus replication (Figure 2) [reviewed in (Agboli et al.,
2019; Öhlund et al., 2019)]. Arbovirus interference by
mosquito viruses is mainly observed when both belong to the
same virus family. For example, Palm Creek virus (Flaviviridae)
interferes with West Nile virus (WNV, Flaviviridae) replication
but not with Ross River virus (Togaviridae) replication in Aedes-
derived mosquito cells (C6/36) (Hobson-Peters et al., 2013).
Culex Flavivirus can also reduce the replication of WNV
(Bolling et al., 2012), although it did not affect Rift Valley fever
virus (Phenuiviridae) in Cx. pipiens (Talavera et al., 2018). So far,
only a mesonivirus (Yichang virus) has been shown to interfere
with an arbovirus from a different family (DENV, Flaviviridae)
in vitro and reduce its transmission rate in Ae. albopictus (Ye
et al., 2020). In contrast to mosquito RNA viruses, DNA viruses
have rarely been studied for their interactions with arboviruses.
Only Anopheles gambiae densovirus has been shown to interfere
with Mayaro virus (Togaviridae) infection both in vivo and in
vitro in An. gambiae (Urakova et al., 2020).

Arboviruses mainly infect female adult mosquitoes through
infectious blood meals although they can be transmitted
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Altinli et al. Symbiotic Interactions of Mosquito Viruses
vertically at very low rates (Lequime and Lambrechts, 2014;
Lequime et al., 2016). Unlike arboviruses, mosquito viruses can
be found in both female and male mosquitoes at all life stages
(Figure 1). Since some mosquito viruses can be efficiently
transmitted to offspring along with other mosquito

FIGURE 2 | Mosquito virus interactions with the host microbiota. Most experime
bacterial or viral symbionts in important mosquito vectors (represented as wide ar
viruses were poorly studied (represented as thin arrows). Many possible interactio
and additional studies are needed to understand the outcomes of these interactio
mosquito-virus interactions with each other or the possible mechanisms of these
endosymbionts, they could have an impact on their respective
transmission. The interactions between mosquito endosymbionts

et al., 2016; Zhang et al., 2016; McLean et al., 2019; Bishop et al.,
2020). However, released Ae. aegypti populations transfected with

Wolbachia wPip (Rasgon and Scott, 2003; Dumas et al., 2013;

892

893

894

895

896

897

898

899

900
(bacteria-bacteria, virus-virus or virus-bacteria) can therefore cause
changes in their respective ecology (e.g. increased vertical
transmission in the presence of a given symbiont) and hence their
interactions with their hosts at evolutionary time scales (e.g.
reduction of virulence).

Interactions between different mosquito viruses have not yet
been studied. Furthermore, studies on interactions between

mosquito viruses and mosquitoes’ bacterial microbiota are limited

melanogaster) or wAlbB (from Ae. albopictus), compared to control
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studies of microbiota interactions have focused on arbovirus inhibition by
s). However, the rest of the interactions between microbiota and mosquito
have never been explored experimentally (grey arrows indicate some examples),
on mosquito host and host vector competence. Nothing is known about
ractions.
cells (Parry et al., 2019). No influence of wMelPop nor wMel was
observed against Phasi Chareon-like virus (Bunyavirales)
(Schnettler et al., 2016; McLean et al., 2019). In contrast, CFAV
(Flaviviridae) replication was limited by wMelPop, wMel and
wAlbB in transinfected Ae. aegypti-derived cell lines (Schnettler
wMel demonstrated increased abundance of insect-specific
flaviviruses (Amuzu et al., 2018).

Interactions between Wolbachia and mosquito viruses were
also studied in a natural system, where the nativeWolbachia, the
host and a mosquito virus have potentially evolved together.
Culex pipiens (s.l.) populations that are naturally infected with
Altinli et al., 2018) also harbor CpDV in high prevalence (Altinli 901
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to their interactions with Wolbachia (Figure 2). In general,
Wolbachia appears to facilitate mosquito virus infections, unlike
arbovirus infections. For instance, in Ae. aegypti-derived cells,
wAlbB and wMelPop enhanced the replication of Aedes
albopictus Negev-like virus (Virgaviridae) (Bishop et al., 2020)
and Aedes anphevirus (Parry and Asgari, 2018b), respectively. A
similar positive interaction between Wolbachia and Aedes
albopictus densovirus (Parvoviridae) was observed in Aedes-
derived cell lines transinfected with wMelPop (from Drosophila
et al., 2019a). In the laboratory, CpDV and wPip can be co-
transmitted to the offspring of Cx. pipiens (s.l.) lines vertically.
CpDV levels in ovaries and its vertical transmission decreases
significantly in wPip free mosquitoes compared to wPip infected
females (Altinli et al., 2019b). These results suggest that
Wolbachia can affect the transmission of the mosquito virus
and drive its infection dynamics in natural populations. Indeed, a
specific strain of Wolbachia (wPip-IV) was associated with
higher CpDV loads in ovaries of laboratory colonies (Altinli

et al., 2019b) and a higher prevalence in nature compared to
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another wPip type (i.e. wPip-I) (Altinli et al., 2020). wPip induces
cytoplasmic incompatibility, a conditional sterility in crosses
between females and males infected with incompatible
Wolbachia strains in Cx. pipiens (s.l.). Thus, it is possible that
mosquito viruses associated with the more advantageous wPip
strain could also invade the host population if vertically
co-transmitted.

To date, the molecular mechanisms underlying mosquito
virus interactions with the rest of the microbiota, or
arboviruses, have not been studied (Figure 2). Symbionts can
interact with each other in the cellular arena either directly (i.e.
direct protein-protein interactions, metabolism connections,
resource competition or via toxin production) or indirectly
through their extended phenotype (i.e. through modulation of
the host cellular environment or immune system, or through host
reproduction manipulation such as cytoplasmic incompatibility)
(Figure 3) (Douglas, 2016; Almand et al., 2017; Zélé et al., 2018).
The “facilitation” of mosquito viruses by Wolbachia, for example,
could be the result of increased viral binding and shedding due to
direct protein-protein interactions, as demonstrated for poliovirus
and mice gut microbiota (Kuss et al., 2011; Moore and Jaykus, 2018).
Protein-protein interactions can also facilitate the horizontal and

A

B

FIGURE 3 | Possible interactions between mosquito endosymbionts. (A) Gene p
indirect (e.g. through modulation of the host cellular environment or immune resp
symbiont. (B) Direct protein interactions can increase or block other symbionts ho
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
vertical transmission of viruses (Figure 3). Although not yet
investigated in mosquitoes, bacterial symbionts’ facilitation of virus
transmission has been observed in other arthropods. For instance,
Rice dwarf virus (Reoviridae) can be vertically transmitted to their
vector’s offspring by binding to the outer membrane protein of Sulcia
(an obligate vertically transmitted bacterium of leafhoppers) with its
viral capsid protein (Jia et al., 2017). Similarly, horizontal transmission
success of the Tomato Yellow Leaf Curl virus (TYLCV,
Geminiviridae) depends on the presence of Hamiltonella bacteria in
its whitefly vector (Bemicia tabaci), as the GroEL protein of
Hamiltonella binds to the capsid of TYLCV, facilitating the
transmission to host plants (Gottlieb et al., 2010; Su et al., 2013).
Indirect interactions where one of the organisms modulates, for
example, the host’s immune response, may also explain the
observed facilitations.

ucts of a symbiont may affect other symbionts. This effect can either be direct or
es) resulting in an increase or decrease in entry or replication of another
ntal or vertical transmission or cell entry.
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MOSQUITO VIRUSES IN THE
HOLOBIONT CONTEXT

Extended phenotypes do not solely result from host-symbiont or
symbiont-symbiont interactions (e.g. “the” pathogenVibrio cholerae
or “the”mutualist Buchnera aphidicola) like previously thought, but
are driven or influenced by interactions between microbial
communities in an organism (Vayssier-Taussat et al., 2014). This
paradigm shift brought up the “holobiont” (i.e. the host and its
associated microbiota) and hologenome concepts. The latter
describes the genomes of the host and associated microbiota at a
given time, which could act as a unit of natural selection (Zilber-
Rosenberg and Rosenberg, 2008). However, the importance of
holobiont in evolutionary biology is still debated because hosts
and their microorganisms do not always exhibit co-evolution.
Therefore, a first step would be to assess which part of the
symbiotic community belongs to the hologenome with high
heritability from generation to generation (Moran and Sloan,
2015). One way to investigate this is to check the congruence
between the phylogeny of the host and its microbial communities.

The evolutionary history of a host explaining the divergence of
its microbial community is a phenomenon called “phylosymbiosis”
(Lim and Bordenstein, 2020). Previously, studies on phylosymbiosis
focused on bacterial microbes, with the exception of viral
communities of the parasitic wasp, Nasonia (Leigh et al., 2018).
Nasonia bacterial microbiota and virome exhibited a pattern of
phylosymbiosis, primarily driven by bacteriophages hosted by the
bacterial microbiota (Leigh et al., 2018). Recent studies in
mosquitoes have described a distinct core virome in different
species of mosquitoes that were collected in the same region and
share the same larval habitat (Pettersson et al., 2019; Shi et al., 2019;
Konstantinidis et al., 2021). The potential evolutionary significance
of this core virome and whether/how it is maintained by the host is
unknown. Further phylosymbiosis studies including bacteria,
viruses, and other microorganisms can help answer these
questions (Table 1).

CONCLUSIONS

The discovery of mosquito viruses has increased exponentially
over the past decade, and their interactions with arboviruses have
attracted much scientific attention. Nevertheless, many questions
related to mosquito virus interactions remain unanswered
(Table 1). For example, the fitness costs of mosquito viruses
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on their hosts are not well studied. This may be due to difficulties
associated with detecting minor fitness effects in laboratory
experiments. Nevertheless, combining experimental and
natural population studies could help assess the outcomes of
mosquito virus infections. In particular, the study of prevalence,
phylogeny and host associations may be helpful in this context.
Furthermore, our knowledge is partial regarding DNA and RNA
viruses (e.g. DNA viruses have been primarily studied for aquatic
larval stages, while RNA viruses have been studied for adult
stages) which hinders our understanding of the system as
a whole.

Mosquito viruses are often overlooked in studies of the
mosquito microbiota, yet their symbiotic interactions with
their hosts and the rest of the microbiota could define host
fitness and vector competence. As has been observed for other
symbionts, the nature of these interactions could be context-
dependent. They can shape microbial communities and host
populations by influencing infection outcomes and can drive the
evolution of the different partners involved.

Nevertheless, due to their medical importance, mosquitoes
are already well studied for many arbovirus-related aspects.
Current knowledge could be leveraged to achieve a more
holistic understanding of the mosquito and associated
microbiome, including viruses, which will also contribute to
mosquito and arbovirus control. The study of non-model
organisms and their bacterial symbionts has advanced our
knowledge of host-symbiont interactions in previous years.
Mosquito viruses may do the same in the future and change
our understanding of virulence and virus ecology and evolution.
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