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Abstract

A permutation is said to be cycle-alternating if it has no cycle double rises,
cycle double falls or fixed points; thus each index i is either a cycle valley
(σ−1(i) > i < σ(i)) or a cycle peak (σ−1(i) < i > σ(i)). We find Stieltjes-type
continued fractions for some multivariate polynomials that enumerate cycle-
alternating permutations with respect to a large (sometimes infinite) number
of simultaneous statistics that measure cycle status, record status, crossings
and nestings along with the parity of the indices. Our continued fractions
are specializations of more general continued fractions of Sokal and Zeng. We
then introduce alternating Laguerre digraphs, which are generalization of cycle-
alternating permutations, and find exponential generating functions for some
polynomials enumerating them. We interpret the Stieltjes–Rogers and Jacobi–
Rogers matrices associated to some of our continued fractions in terms of al-
ternating Laguerre digraphs.

Key Words: Permutation, cycle-alternating permutation, alternating cycle, La-
guerre digraph, alternating Laguerre digraph, secant numbers, tangent numbers, con-
tinued fraction, S-fraction, Dyck path.
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1 Introduction

A permutation σ is called cycle-alternating if it has no cycle double rises, cycle
double falls, or fixed points; thus, each cycle of σ is of even length (call it 2m) and
consists of m cycle valleys and m cycle peaks in alternation.1 Deutsch and Elizalde [5,
Proposition 2.2] showed that the number of cycle-alternating permutations of [2n] is
the secant number E2n (see also Dumont [11, pp. 37, 40] and Biane [1, section 6]).
In this paper we would like to present some new continued fractions for multivariate
polynomials that enumerate cycle-alternating permutations with respect to a large
set of statistics (8 or 16 variables).

But first it may be appropriate to place this project in a wider context. In a
recent article [31], Zeng and one of us presented Stieltjes-type and Jacobi-type con-
tinued fractions for some “master polynomials” that enumerate permutations, set
partitions or perfect matchings with respect to a large (sometimes infinite) number of
independent statistics. These polynomials systematize what we think of as the “lin-
ear family”: namely, sequences in which the Stieltjes continued-fraction coefficients
(αn)n≥1 grow linearly in n. For instance, Euler [13, section 21] showed in 1746 that

∞∑
n=0

n! tn =
1

1−
1t

1−
1t

1−
2t

1−
2t

1− · · ·

. (1.1)

In other words, the ordinary generating function (ogf) of the sequence an = n! has a
Stieltjes-type continued fraction with coefficients α2k−1 = α2k = k. This inspired us
to introduce the polynomials Pn(x, y, u, v) defined by the continued fraction

∞∑
n=0

Pn(x, y, u, v) t
n =

1

1−
xt

1−
yt

1−
(x+ u)t

1−
(y + v)t

1−
(x+ 2u)t

1−
(y + 2v)t

1− · · ·

(1.2)

with coefficients

α2k−1 = x+ (k − 1)u (1.3a)

α2k = y + (k − 1)v (1.3b)

1Warning: The phrase “cycle-alternating permutations” has previously been used by
Josuat-Vergès in [19] to describe a different class of objects. We think that his objects should
instead be called cycle-alternating signed permutations.
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Clearly Pn(x, y, u, v) is a homogeneous polynomial of degree n, with nonnegative
integer coefficients; and since Pn(1, 1, 1, 1) = n!, which enumerates permutations of an
n-element set, it was plausible to expect that Pn(x, y, u, v) enumerates permutations
of [n] according to some natural fourfold classification of indices in [n]. Our first
theorem [31, Theorem 2.1] provided two alternative versions of that classification.

But there are other sequences of integers, and hence other combinatorial models,
that also belong to the “linear family”. For instance, in that same paper Euler
also showed [13, section 29] (see also [14]) that the generating function of the odd
semifactorials can be represented as a Stieltjes-type continued fraction

∞∑
n=0

(2n− 1)!! tn =
1

1−
1t

1−
2t

1−
3t

1− · · ·

(1.4)

with coefficients αn = n. Inspired by (1.4), we introduced the polynomialsMn(x, y, u, v)
defined by the continued fraction

∞∑
n=0

Mn(x, y, u, v) t
n =

1

1−
xt

1−
(y + v)t

1−
(x+ 2u)t

1−
(y + 3v)t

1−
(x+ 4u)t

1−
(y + 5v)t

1− · · ·

(1.5)

with coefficients

α2k−1 = x+ (2k − 2)u (1.6a)

α2k = y + (2k − 1)v (1.6b)

Clearly Mn(x, y, u, v) is a homogeneous polynomial of degree n, with nonnegative
integer coefficients; and since Mn(1, 1, 1, 1) = (2n − 1)!!, which enumerates perfect
matchings of a 2n-element set, it was plausible to expect that Mn(x, y, u, v) enumer-
ates perfect matchings of [2n] (or equivalently, fixed-point-free involutions of [2n])
according to some natural fourfold classification associated to half of the indices in
[2n]. In [31, Theorem 4.1] we identified such a classification, involving even and odd
cycle peaks and their antirecord status.

In a very recent paper [3], the two present authors took one step up in complexity,
to consider the “quadratic family”, in which the (αn)n≥1 grow quadratically in n. For
instance, we could consider

α2k−1 = [x1 + (k − 1)u1] [x2 + (k − 1)u2] (1.7a)

α2k = [y1 + (k − 1)v1] [y2 + (k − 1)v2] (1.7b)
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which can be thought of as the product of two independent sets of coefficients (1.3).
With all parameters set to 1, these coefficients α2k−1 = α2k = k2 correspond to
the continued fraction [35, eq. (9.7)] [36, p. V-15] for the median Genocchi num-
bers [23, A005439]; so it was natural to seek a combinatorial model that is enumer-
ated by the median Genocchi numbers. In [3] we considered D-permutations [20, 21]
and various subclasses thereof (D-semiderangements and D-derangements), and found
Stieltjes-type and Thron-type continued fractions for some multivariate polynomials
enumerating these objects with respect to a large set of statistics (12 or 22 variables).

But just as with the “linear family”, there are other sequences of integers, and
hence other combinatorial models, that also belong to the “quadratic family”. For
instance, the secant numbers E2n [23, A000364] can be represented by the continued
fraction [34, p. H9] [26, p. 77] [15, Theorem 3B(iii)]

∞∑
n=0

E2nt
n =

1

1−
12t

1−
22t

1−
32t

1− · · ·

(1.8)

with coefficients αn = n2. In [31, Section 2.15] this was generalized by introducing
the polynomials Qn(x, y, u, v) whose ogf has an S-fraction with coefficients αn =
[x+(n−1)u] [y+(n−1)v], and they were interpreted as enumerating cycle-alternating
permutations of [2n] according to the antirecord status of cycle peaks and the record
status of cycle valleys.

In the present paper we shall go farther, and introduce polynomials Qn(x
′, y′, u′, v′,

x′′, y′′, u′′, v′′) whose ogf has an S-fraction with coefficients

α2k−1 = [x′ + (2k − 2)u′] [y′ + (2k − 2)v′] (1.9a)

α2k = [x′′ + (2k − 1)u′′] [y′′ + (2k − 1)v′′] (1.9b)

which can be thought of as the product of two independent sets of coefficients (1.6).
When x′ = x′′, y′ = y′′, u′ = u′′, v′ = v′′ this reduces to the previous polynomials. We
will interpret these 8-variable polynomials as enumerating cycle-alternating permuta-
tions of [2n] according to the antirecord status of cycle peaks and the record status of
cycle valleys, separately for even and odd indices (Theorem 4.1).2 We will also obtain
a generalization of this result to 16-variable polynomials that include four pairs of
variables (p, q) that count crossings and nestings (Theorem 4.4). The proofs will in
fact be easy applications of the “master” S-fraction for cycle-alternating permuta-
tions [31, Theorem 2.20]. Finally, we will obtain variants that include the counting
of cycles, at the expense of renouncing taking account of the record status of cycle
valleys (Theorems 5.1 and 5.2).

This leaves us with the following analogy between the linear and quadratic families:

2This answers the question posed in [31, last sentence of Section 2.15].
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“Linear family”: Permutations Perfect matchings
α2k−1 = α2k = k αn = n

Generalized to (1.3) Generalized to (1.6)

↓ ↓
“Quadratic family”: D-permutations Cycle-alternating permutations

α2k−1 = α2k = k2 αn = n2

Generalized to (1.7) Generalized to (1.9)

The only slight flaw in the analogy is that the permutations are on [n], while the
other three models are on [2n].

This suggests to pursue the analogy one step further: the third combinatorial
model in the “linear family” is set partitions, with an = Bn (Bell number) and
α2k−1 = 1, α2k = k. The corresponding member of the “quadratic family” would
have α2k−1 = 1, α2k = k2, which leads to the sequence

(an)n≥0 = 1, 1, 2, 5, 17, 78, 461, 3417, 31134, 340217, 4365673, . . . . (1.10)

Alas, this sequence is not at present in the OEIS [23], and we have no idea what
combinatorial model it might represent.

We can, in fact, place our results on cycle-alternating permutations in a wider
context: namely, that of Laguerre digraphs. A Laguerre digraph [2, 17, 29] is a
digraph in which each vertex has out-degree 0 or 1 and in-degree 0 or 1. Therefore,
each weakly connected component of a Laguerre digraph is either a directed path of
some length ℓ ≥ 0 (where a path of length 0 is an isolated vertex) or else a directed
cycle of some length ℓ ≥ 1 (where a cycle of length 1 is a loop). A Laguerre digraph
with no paths is simply a collection of directed cycles, i.e. the digraph associated to
a permutation; so Laguerre digraphs generalize permutations. We shall then define a
subclass of Laguerre digraphs, called alternating Laguerre digraphs, that simi-
larly generalizes cycle-alternating permutations. We shall show that the generalized
Stieltjes–Rogers polynomials associated to the cycle-counting variant of the S-fraction
(1.9), as well as its generalizations, can be interpreted as enumerating alternating La-
guerre digraphs with suitable weights.

The plan of this paper is as follows: In Sections 2 and 3 we review some needed
definitions and facts concerning continued fractions and permutation statistics, re-
spectively. In Section 4 we state and prove our “first” S-fractions for cycle-alternating
permutations (namely, the ones not including the counting of cycles); and in Section 5
we do the same for our “second” S-fractions (namely, those including the counting
of cycles). In Section 6 we put cycle-alternating permutations into the wider con-
text of alternating Laguerre digraphs, and then use this to interpret the generalized
Stieltjes–Rogers polynomials associated to some of our continued fractions.

2 Preliminaries: Continued fractions

In this section we define the objects associated to continued fractions that will be
used in the remainder of the paper, and review some of their properties.
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2.1 Motzkin and Dyck paths

A Motzkin path is a path in the upper half-plane Z × N, starting and ending
on the horizontal axis, using the steps (1, 1) [“rise”], (1, 0) [“level step”] and (1,−1)
[“fall”]. More generally, a partial Motzkin path is a path in the upper half-plane
Z × N, starting on the horizontal axis but ending anywhere, using the steps (1, 1),
(1, 0) and (1,−1).

A Dyck path is a path in the upper half-plane Z × N, starting and ending on
the horizontal axis, using the steps (1, 1) [“rise”] and (1,−1) [“fall”]; that is, it is a
Motzkin path that has no level steps. Obviously a Dyck path must have even length.
More generally, a partial Dyck path is a path in the upper half-plane Z×N, starting
on the horizontal axis but ending anywhere, using the steps (1, 1) and (1,−1).

We shall usually take all these paths to start at the origin (0, 0). Then any partial
Dyck path must stay on the even sublattice {(n, k) : n+ k is even}.

2.2 J-fractions and Jacobi–Rogers polynomials

Let β = (βi)i≥1 and γ = (γi)i≥0 be indeterminates. Following Flajolet [15], we
define the Jacobi–Rogers polynomials Jn(β,γ) to be the Taylor coefficients of
the generic J-fraction:

∞∑
n=0

Jn(β,γ) t
n =

1

1− γ0t−
β1t

2

1− γ1t−
β2t

2

1− · · ·

. (2.1)

Clearly Jn(β,γ) is a polynomial in β and γ, with nonnegative integer coefficients.
Flajolet [15] showed that the Jacobi–Rogers polynomial Jn(β,γ) is the generating
polynomial for Motzkin paths of length n, in which each rise gets weight 1, each fall
from height i gets weight βi, and each level step at height i gets weight γi.

Now define the generalized Jacobi–Rogers polynomial Jn,k(β,γ) to be the
generating polynomial for partial Motzkin paths from (0, 0) to (n, k), in which each
rise gets weight 1, each fall from height i gets weight βi, and each level step at
height i gets weight γi. Obviously Jn,k is nonvanishing only for 0 ≤ k ≤ n, so we have
an infinite lower-triangular array J =

(
Jn,k(β,γ)

)
n,k≥0

in which the zeroth column

displays the ordinary Jacobi–Rogers polynomials Jn,0 = Jn. On the diagonal we have
Jn,n = 1, and on the first subdiagonal we have Jn,n−1 =

∑n−1
i=0 γi. By considering the

last step of the path, we see that the polynomials Jn,k(β,γ) satisfy the recurrence

Jn+1,k = Jn,k−1 + γkJn,k + βk+1Jn,k+1 (2.2)

with the initial condition J0,k = δk0 (where of course we set Jn,−1 = 0).
A redundant generalization of these polynomials, in which we also weight rises in

the Motzkin path, will be useful later. Let a = (ai)i≥0,b = (bi)i≥1 and c = (ci)i≥0

be indeterminates. Define Jn,k(a,b, c) to be the generating polynomial for partial
Motzkin paths from (0, 0) to (n, k), in which each rise from height i gets weight ai,
each fall from height i gets weight bi, and each level step at height i gets weight ci.
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By considering the last step of the path, we see that these polynomials satisfy the
recurrence

Jn+1,k = ak−1Jn,k−1 + ckJn,k + bk+1Jn,k+1 . (2.3)

The recurrences (2.2) and (2.3) then easily imply the following proposition:

Proposition 2.1. The polynomials Jn,k(a,b, c) are related to the polynomials Jn,k(β,γ)
with weights

βn = an−1bn (2.4a)

γn = cn (2.4b)

by

Jn,k(a,b, c) =

(
k−1∏
i=0

ai

)
Jn,k(β,γ) . (2.5)

We remark that since Jn,k(β,γ) is by definition a polynomial, it follows that

the polynomial Jn,k(a,b, c) necessarily has a factor
k−1∏
i=0

ai, and that Jn,k(β,γ) =

Jn,k(a,b, c)
/ k−1∏

i=0

ai.

Proof. Let us use the shorthands Jn,k = Jn,k(β,γ) and J ′
n,k = Jn,k(a,b, c); and

define pk =
k−1∏
i=0

ai. The recurrence (2.2), with weights (2.4), is

Jn+1,k = Jn,k−1 + ckJn,k + akbk+1Jn,k+1 . (2.6)

Multiplying both sides of (2.6) with pk yields

Jn+1,k pk = pk (Jn,k−1 + ckJn,k + akbk+1Jn,k+1) (2.7a)

= ak−1 (Jn,k−1 pk−1) + ck (Jn,k pk) + bk+1 (Jn,k+1 pk+1) (2.7b)

Comparing the coefficients in (2.7b) and (2.3), we notice that the recurrences for the
polynomials Jn,k pk and J ′

n,k are exactly the same; and of course the initial conditions
are the same as well. This shows that J ′

n,k = Jn,k pk, as claimed in (2.5). □

One important algebraic tool for studying J-fractions is Rogers’ addition for-
mula [26] [37, Theorem 53.1], which we state in the form given in [30, Theorem 9.9]:

Theorem 2.2 (Rogers’ addition formula). The column exponential generating func-
tions of the matrix of generalized Jacobi–Rogers polynomials,

Jk(t;β,γ)
def
=

∞∑
n=k

Jn,k(β,γ)
tn

n!
, (2.8)

satisfy

J0(t+ u;β,γ) =
∞∑
k=0

β1 · · · βk Jk(t;β,γ)Jk(u;β,γ) . (2.9)
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And conversely, if A(t) and F0(t), F1(t), . . . are formal power series (with elements
in a commutative ring R containing the rationals) satisfying

A(t) = 1 +O(t) , Fk(t) =
tk

k!
+ µk

tk+1

(k + 1)!
+ O(tk+2) (2.10)

and

A(t+ u) =
∞∑
k=0

β1 · · · βk Fk(t)Fk(u) (2.11)

for some regular elements β = (βk)k≥1, then A(t) = F0(t) and Fk(t) = Jk(t;β,γ)

with the given β and with γk = µk − µk−1 (where µ−1
def
= 0).

Here an element of a commutative ring R is called regular if it is neither zero nor a
divisor of zero.

2.3 S-fractions and Stieltjes–Rogers polynomials

Let α = (αi)i≥1 be indeterminates. Again following Flajolet [15], we define the
Stieltjes–Rogers polynomials Sn(α) to be the Taylor coefficients of the generic
S-fraction:

∞∑
n=0

Sn(α) tn =
1

1−
α1t

1−
α2t

1− · · ·

. (2.12)

Clearly Sn(α) is a homogeneous polynomial of degree n in α, with nonnegative integer
coefficients. Flajolet [15] showed that the Stieltjes–Rogers polynomial Sn(α) is the
generating polynomial for Dyck paths of length 2n, in which each rise gets weight 1
and each fall from height i gets weight αi.

Now define the generalized Stieltjes–Rogers polynomial of the first kind
Sn,k(α) to be the generating polynomial for Dyck paths starting at (0, 0) and ending
at (2n, 2k), in which each rise gets weight 1 and each fall from height i gets weight
αi. Obviously Sn,k is nonvanishing only for 0 ≤ k ≤ n, so we have an infinite lower-
triangular array S = (Sn,k(α))n,k≥0 in which the zeroth column displays the ordinary
Stieltjes–Rogers polynomials Sn,0 = Sn. We have Sn,n = 1 and Sn,n−1 =

∑2n−1
i=1 αi.

Likewise, let us define the generalized Stieltjes–Rogers polynomial of the
second kind S ′

n,k(α) to be the generating polynomial for Dyck paths starting at
(0, 0) and ending at (2n+ 1, 2k + 1), in which again each rise gets weight 1 and each
fall from height i gets weight αi. Since S ′

n,k is nonvanishing only for 0 ≤ k ≤ n, we
obtain a second infinite lower-triangular array S′ = (S ′

n,k(α))n,k≥0. We have S ′
n,n = 1

and S ′
n,n−1 =

∑2n
i=1 αi.

The polynomials Sn,k(α) and S ′
n,k(α) manifestly satisfy the joint recurrence

S ′
n,k = Sn,k + α2k+2 Sn,k+1 (2.13a)

Sn+1,k = S ′
n,k−1 + α2k+1 S

′
n,k (2.13b)

for n, k ≥ 0, with the initial conditions S0,k = δk0 and S ′
n,−1 = 0. It follows that the

Sn,k satisfy the recurrence

Sn+1,k = Sn,k−1 + (α2k + α2k+1)Sn,k + α2k+1α2k+2 Sn,k+1 (2.14)

9



(where Sn,−1 = 0 and α0 = 0), while the S ′
n,k satisfy the recurrence

S ′
n+1,k = S ′

n,k−1 + (α2k+1 + α2k+2)S
′
n,k + α2k+2α2k+3 S

′
n,k+1 . (2.15)

Note that (2.14) and (2.15) have the same form as (2.2), when β and γ are defined
suitably in terms of the α: these correspondences are examples of contraction
formulae [37, p. 21] [36, p. V-31] that express an S-fraction as an equivalent J-
fraction. In particular we have Sn,k(α) = Jn,k(β,γ) where

γ0 = α1 (2.16a)

γn = α2n + α2n+1 for n ≥ 1 (2.16b)

βn = α2n−1α2n (2.16c)

and S ′
n,k(α) = Jn,k(β

′,γ ′) where

γ′
n = α2n+1 + α2n+2 (2.17a)

β′
n = α2nα2n+1 (2.17b)

The recurrences (2.2)/(2.14)/(2.15) define implicitly the (tridiagonal) production
matrices for J, S and S′: see [6, 7, 24]. Some workers call the arrays J, S and/or S′

the Stieltjes table .
More trivially, a partial Dyck path is simply a partial Motzkin path with no level

steps. Therefore, the generalized Stieltjes–Rogers polynomials with weights α can be
related to the generalized Jacobi–Rogers polynomials with weights (β,γ) = (α,0) by

Sn,k(α) = J2n,2k(α,0) (2.18a)

S ′
n,k(α) = J2n+1,2k+1(α,0) (2.18b)

and
Jn,k(α,0) = 0 if n+ k is odd . (2.19)

3 Preliminaries: Permutation statistics

In this section we define the permutation statistics that will be used in the re-
mainder of the paper.

3.1 The record-and-cycle classification

Given a permutation σ ∈ SN , an index i ∈ [N ] is called an

• excedance (exc) if i < σ(i);

• anti-excedance (aexc) if i > σ(i);

• fixed point (fix) if i = σ(i).

Clearly every index i belongs to exactly one of these three types; we call this the
excedance classification . We also say that i is a weak excedance if i ≤ σ(i), and
a weak anti-excedance if i ≥ σ(i).

A more refined classification is as follows: an index i ∈ [N ] is called a

10



• cycle peak (cpeak) if σ−1(i) < i > σ(i);

• cycle valley (cval) if σ−1(i) > i < σ(i);

• cycle double rise (cdrise) if σ−1(i) < i < σ(i);

• cycle double fall (cdfall) if σ−1(i) > i > σ(i);

• fixed point (fix) if σ−1(i) = i = σ(i).

Clearly every index i belongs to exactly one of these five types; we refer to this
classification as the cycle classification . Obviously, excedance = cycle valley or
cycle double rise, and anti-excedance = cycle peak or cycle double fall. We write

Cpeak(σ) = {i : σ−1(i) < i > σ(i)} (3.1)

for the set of cycle peaks and

cpeak(σ) = |Cpeak(σ)| (3.2)

for its cardinality, and likewise for the others.
On the other hand, an index i ∈ [N ] is called a

• record (rec) (or left-to-right maximum) if σ(j) < σ(i) for all j < i [note in
particular that the indices 1 and σ−1(N) are always records];

• antirecord (arec) (or right-to-left minimum) if σ(j) > σ(i) for all j > i [note in
particular that the indices N and σ−1(1) are always antirecords];

• exclusive record (erec) if it is a record and not also an antirecord;

• exclusive antirecord (earec) if it is an antirecord and not also a record;

• record-antirecord (rar) (or pivot) if it is both a record and an antirecord;

• neither-record-antirecord (nrar) if it is neither a record nor an antirecord.

Every index i thus belongs to exactly one of the latter four types; we refer to this
classification as the record classification . We write

Rec(σ) = {i : σ(j) < σ(i) for all j < i} (3.3)

for the set of record indices and

rec(σ) = |Rec(σ)| (3.4)

for its cardinality, and likewise for antirecords.
The record and cycle classifications of indices are related as follows:

(a) Every record is a weak excedance, and every exclusive record is an
excedance.

(b) Every antirecord is a weak anti-excedance, and every exclusive an-
tirecord is an anti-excedance.

11
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Figure 1: Pictorial representation of the permutation σ = 93 7 4 6 11 2 8 10 1 5 =
(1, 9, 10) (2, 3, 7) (4) (5, 6, 11) (8) ∈ S11.

(c) Every record-antirecord is a fixed point.

Therefore, by applying the record and cycle classifications simultaneously, we obtain
10 (not 20) disjoint categories [31]:

cpeak cval cdrise cdfall fix
erec ereccval ereccdrise
earec eareccpeak eareccdfall
rar rar
nrar nrcpeak nrcval nrcdrise nrcdfall nrfix

Clearly every index i belongs to exactly one of these 10 types; we call this the record-
and-cycle classification . The corresponding sets are Ereccval = Rec ∩ Cval, etc.

3.2 Crossings and nestings

We now define (following [31]) some permutation statistics that count crossings
and nestings .

First we associate to each permutation σ ∈ SN a pictorial representation (Fig-
ure 1) by placing vertices 1, 2, . . . , N along a horizontal axis and then drawing an arc
from i to σ(i) above (resp. below) the horizontal axis in case σ(i) > i [resp. σ(i) < i];
if σ(i) = i we do not draw any arc. Each vertex thus has either out-degree = in-degree
= 1 (if it is not a fixed point) or out-degree = in-degree = 0 (if it is a fixed point).
Of course, the arrows on the arcs are redundant, because the arrow on an arc above
(resp. below) the axis always points to the right (resp. left); we therefore omit the
arrows for simplicity.

We then say that a quadruplet i < j < k < l forms an

• upper crossing (ucross) if k = σ(i) and l = σ(j);

• lower crossing (lcross) if i = σ(k) and j = σ(l);

• upper nesting (unest) if l = σ(i) and k = σ(j);

• lower nesting (lnest) if i = σ(l) and j = σ(k).

12



We also consider some “degenerate” cases with j = k, by saying that a triplet i < j < l
forms an

• upper joining (ujoin) if j = σ(i) and l = σ(j) [i.e. the index j is a cycle double
rise];

• lower joining (ljoin) if i = σ(j) and j = σ(l) [i.e. the index j is a cycle double
fall];

• upper pseudo-nesting (upsnest) if l = σ(i) and j = σ(j);

• lower pseudo-nesting (lpsnest) if i = σ(l) and j = σ(j).

These are clearly degenerate cases of crossings and nestings, respectively. See Figure 2.
Note that upsnest(σ) = lpsnest(σ) for all σ, since for each fixed point j, the number
of pairs (i, l) with i < j < l such that l = σ(i) has to equal the number of such pairs
with i = σ(l); we therefore write these two statistics simply as

psnest(σ)
def
= upsnest(σ) = lpsnest(σ) . (3.5)

And of course ujoin = cdrise and ljoin = cdfall.
We can further refine the four crossing/nesting categories by examining more

closely the status of the inner index (j or k) whose outgoing arc belongs to the
crossing or nesting: that is, j for an upper crossing or nesting, and k for a lower
crossing or nesting:

ucross unest lcross lnest
j ∈ Cval ucrosscval unestcval
j ∈ Cdrise ucrosscdrise unestcdrise
k ∈ Cpeak lcrosscpeak lnestcpeak
k ∈ Cdfall lcrosscdfall lnestcdfall

See Figure 3. Please note that for the “upper” quantities the distinguished index (i.e.
the one for which we examine both σ and σ−1) is in second position (j), while for the
“lower” quantities the distinguished index is in third position (k).

In fact, a central role in our work will be played (just as in [3,31]) by a refinement of
these statistics: rather than counting the total numbers of quadruplets i < j < k < l
that form upper (resp. lower) crossings or nestings, we will count the number of upper
(resp. lower) crossings or nestings that use a particular vertex j (resp. k) in second
(resp. third) position. More precisely, we define the index-refined crossing and
nesting statistics

ucross(j, σ) = #{i < j < k < l : k = σ(i) and l = σ(j)} (3.6a)

unest(j, σ) = #{i < j < k < l : k = σ(j) and l = σ(i)} (3.6b)

lcross(k, σ) = #{i < j < k < l : i = σ(k) and j = σ(l)} (3.6c)

lnest(k, σ) = #{i < j < k < l : i = σ(l) and j = σ(k)} (3.6d)
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Note that ucross(j, σ) and unest(j, σ) can be nonzero only when j is an excedance
(that is, a cycle valley or a cycle double rise), while lcross(k, σ) and lnest(k, σ) can
be nonzero only when k is an anti-excedance (that is, a cycle peak or a cycle double
fall).

When j is a fixed point, we also define the analogous quantity for pseudo-nestings:

psnest(j, σ)
def
= #{i < j : σ(i) > j} = #{i > j : σ(i) < j} . (3.7)

(Here the two expressions are equal because σ is a bijection from [1, j) ∪ (j, n] to
itself.) In [31, eq. (2.20)] this quantity was called the level of the fixed point j and
was denoted lev(j, σ).

4 First S-fraction for cycle-alternating permuta-

tions

We recall that a permutation σ is called cycle-alternating if it has no cycle double
rises, cycle double falls, or fixed points; thus, each cycle of σ is of even length (call
it 2m) and consists of m cycle valleys and m cycle peaks in alternation. We write
Sca

2n for the set of cycle-alternating permutations of [2n].

4.1 First S-fraction (8 variables)

In [31, Section 2.15] the following 4-variable polynomials were introduced:

Qn(x, y, u, v) =
∑

σ∈Sca
2n

xeareccpeak(σ)yereccval(σ)unrcpeak(σ)vnrcval(σ) , (4.1)

where
eareccpeak(σ) = |Eareccpeak(σ)| = |Arec(σ) ∩ Cpeak(σ)| (4.2)

and likewise for the others. It was then shown [31, Theorem 2.18] that the ordinary
generating function of the polynomials Qn has the S-type continued fraction

∞∑
n=0

Qn(x, y, u, v) t
n =

1

1−
xyt

1−
(x+u)(y+v)t

1−
(x+2u)(y+2v)t

1− · · ·

(4.3)

with coefficients
αn = [x+ (n− 1)u] [y + (n− 1)v] . (4.4)

We now generalize this by treating even and odd indices separately. That is, we
define the polynomials

Qn(xe, ye, ue, ve, xo, yo, uo, vo) =∑
σ∈Sca

2n

xeareccpeakeven(σ)
e yereccvaleven(σ)e unrcpeakeven(σ)

e vnrcvaleven(σ)e ×

xeareccpeakodd(σ)
o yereccvalodd(σ)o unrcpeakodd(σ)

o vnrcvalodd(σ)o , (4.5)
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where

eareccpeakeven(σ) = |Eareccpeakeven(σ)| = |Arec(σ) ∩ Cpeak(σ) ∩ Even| (4.6)

and likewise for the others. We then have:

Theorem 4.1 (First S-fraction for cycle-alternating permutations). The ordinary
generating function of the polynomials Qn(xe, ye, ue, ve, xo, yo, uo, vo) has the S-type
continued fraction

∞∑
n=0

Qn(xe, ye, ue, ve, xo, yo, uo, vo) t
n =

1

1−
xeyot

1−
(xo+uo)(ye+ve)t

1−
(xe+2ue)(yo+2vo)t

1− · · ·

(4.7)

with coefficients

α2k−1 = [xe + (2k − 2)ue] [yo + (2k − 2)vo] (4.8a)

α2k = [xo + (2k − 1)uo] [ye + (2k − 1)ve] (4.8b)

The proof of this theorem is based on the “master” S-fraction for cycle-alternating
permutations [31, Theorem 2.20] together with the following lemma:

Lemma 4.2 (Key lemma). If σ is a cycle-alternating permutation of [2n], then

cycle valleys: ucross(i, σ) + unest(i, σ) ≡ i− 1 (mod 2) (4.9a)

cycle peaks: lcross(i, σ) + lnest(i, σ) ≡ i (mod 2) (4.9b)

for all i ∈ [2n].

Proof. In the Foata–Zeilberger bijection for permutations as presented in [31, Sec-
tion 6.1], permutations σ ∈ SN are mapped bijectively onto pairs (ω, ξ), where
ω = (ω0, . . . , ωN) is a Motzkin path of length N , and ξ is a suitably defined set
of integer labels (ξ1, . . . , ξN). We write hi for the height of the Motzkin path after
step i, i.e. ωi = (i, hi). From [31, eqns. (6.6)–(6.9)] and the definition of the steps
si = hi − hi−1, we get

cval: ucross(i, σ) + unest(i, σ) = hi−1 = hi − 1 (4.10a)

cdrise: ucross(i, σ) + unest(i, σ) = hi−1 − 1 = hi − 1 (4.10b)

cpeak: lcross(i, σ) + lnest(i, σ) = hi−1 − 1 = hi (4.10c)

cdfall: lcross(i, σ) + lnest(i, σ) = hi−1 − 1 = hi − 1 (4.10d)

On the other hand, for a cycle-alternating permutation, the path ω is a Dyck path
(i.e. there are no level steps), so that hi ≡ i (mod 2). □

We now apply the first master S-fraction for cycle-alternating permutations [31,
Theorem 2.20], which states that the polynomials

Qn(a,b) =
∑

σ∈Sca
2n

∏
i∈Cval

aucross(i,σ), unest(i,σ)
∏

i∈Cpeak

blcross(i,σ), lnest(i,σ) (4.11)
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in indeterminates a = (aℓ,ℓ′)ℓ,ℓ′≥0 and b = (bℓ,ℓ′)ℓ,ℓ′≥0 have the S-type continued frac-
tion

∞∑
n=0

Qn(a,b) t
n =

1

1−
a00b00t

1−
(a01 + a10)(b01 + b10)t

1−
(a02 + a11 + a20)(b02 + b11 + b20)t

1− · · ·

(4.12)

with coefficients

αn =

(n−1∑
ℓ=0

aℓ,n−1−ℓ

)(n−1∑
ℓ=0

bℓ,n−1−ℓ

)
. (4.13)

We also use the following general fact about permutations

Lemma 4.3. [31, Lemma 2.10] Let σ be a permutation.
(a) If i is a cycle valley or cycle double rise, then i is a record if and only if

unest(i, σ) = 0; and in this case it is an exclusive record.

(b) If i is a cycle peak or cycle double fall, then i is an antirecord if and only if
lnest(i, σ) = 0; and in this case it is an exclusive antirecord.

Applying Lemma 4.3 to cycle valleys and peaks in a cycle-alternating permuta-
tion, it follows that the polynomials Qn(xe, ye, ue, ve, xo, yo, uo, vo) are obtained by
specializing Qn(a,b) to

aℓ,ℓ′ =


yo if ℓ′ = 0 and ℓ+ ℓ′ is even

vo if ℓ′ ≥ 1 and ℓ+ ℓ′ is even

ye if ℓ′ = 0 and ℓ+ ℓ′ is odd

ve if ℓ′ ≥ 1 and ℓ+ ℓ′ is odd

(4.14a)

bℓ,ℓ′ =


xe if ℓ′ = 0 and ℓ+ ℓ′ is even

ue if ℓ′ ≥ 1 and ℓ+ ℓ′ is even

xo if ℓ′ = 0 and ℓ+ ℓ′ is odd

uo if ℓ′ ≥ 1 and ℓ+ ℓ′ is odd

(4.14b)

Inserting these into (4.13) yields (4.8). This completes the proof of Theorem 4.1.

Remarks. 1. If we specialize Theorem 4.1 to ue = xe, uo = xo, ye = ve =
yo = vo = 1, we obtain an S-fraction with coefficients α2k−1 = (2k − 1)2xe, α2k =
(2k)2xo. This is the S-fraction for the polynomials E2n(xe, xo), which generalize the
secant numbers E2n as follows: Start from the Jacobian elliptic functions sn, cn,
dn in Dumont’s [10] symmetric parametrization, which are defined by the system of
differential equations

d

du
sn(u; a, b) = cn(u; a, b) dn(u; a, b) (4.15a)

d

du
cn(u; a, b) = a2 dn(u; a, b) sn(u; a, b) (4.15b)

d

du
dn(u; a, b) = b2 sn(u; a, b) cn(u; a, b) (4.15c)
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with the initial conditions sn(0; a, b) = 0, cn(0; a, b) = 1, dn(0; a, b) = 1. Note the
special cases

sn(u; a, 0) =
sinh au

a
(4.16a)

cn(u; a, 0) = cosh au (4.16b)

dn(u; a, 0) = 1 (4.16c)

and

sn(u; a, a) =
tan au

a
(4.17a)

cn(u; a, a) = sec au (4.17b)

dn(u; a, a) = sec au (4.17c)

Thus, sn is a simultaneous generalization of tangent and hyperbolic sine, while cn is a
simultaneous generalization of secant and hyperbolic cosine. The Taylor expansions
around u = 0 have the form

cn(u; a, b) =
∞∑
n=0

E2n(a2, b2)
u2n

(2n)!
(4.18)

sn(u; a, b) =
∞∑
n=0

E2n+1(a
2, b2)

u2n+1

(2n+ 1)!
(4.19)

where E2n(α, β) and E2n+1(α, β) are homogeneous polynomials of degree n in the
indeterminates α and β, with nonnegative integer coefficients. Then the ordinary
generating function of the polynomials E2n can be expressed as an S-fraction

∞∑
n=0

tn E2n(α, β) =
1

1−
12α t

1−
22β t

1−
32α t

1− · · ·

(4.20)

with coefficients

α2k−1 = (2k − 1)2 α (4.21a)

α2k = (2k)2 β (4.21b)

This S-fraction goes back to Stieltjes [34, p. H17] and Rogers [26, p. 77]; modern
presentations of Rogers’ elegant proof can be found in Flajolet and Françon [16,
Theorem 1] and Milne [22, Theorems 3.2 and 3.11]. The polynomials E2n(α, β) are
also specializations of the three-variable Schett polynomials [9–11,27,28] X2n(x, y, z),
for which Dumont [9–11] has provided a combinatorial interpretation in terms of even
and odd cycle peaks in permutations of [2n]. When specialized to z = 0, one obtains
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cycle-alternating permutations, and Dumont’s interpretation agrees with ours. The
continued fraction (4.20) can be found on [11, p. 38].

2. The continued fraction of Theorem 4.1, specialized to xe = ue = ve =
xo = uo = v0 = 1, enumerates cycle-alternating permutations of [2n] with re-
spect to odd and even records, and has coefficients α2k−1 = (2k − 1)(2k − 2 + yo),
α2k = (2k)(2k− 1+ ye). This same continued fraction was found by Randrianarivony
and Zeng [25, Théorème 3] as enumerating even and odd record values in alternating
(not cycle-alternating) permutations. This is a “linear statistics” analogue of our
“cyclic statistics” results.

4.2 p, q-generalization of first S-fraction (16 variables)

We can further extend Theorem 4.1 by introducing a p, q-generalization. The
statistics on permutations corresponding to the variables p and q will be crossings
and nestings, as defined in Section 3.2.

Recall first that for an integer n ≥ 0 we define

[n]p,q =
pn − qn

p− q
=

n−1∑
j=0

pjqn−1−j (4.22)

where p and q are indeterminates; it is a homogeneous polynomial of degree n− 1 in
p and q, which is symmetric in p and q. In particular, [0]p,q = 0 and [1]p,q = 1; and
for n ≥ 1 we have the recurrence

[n]p,q = p [n− 1]p,q + qn−1 = q [n− 1]p,q + pn−1 . (4.23)

If p = 1, then [n]1,q is the well-known q-integer

[n]q = [n]1,q =
1− qn

1− q
=

{
0 if n = 0

1 + q + q2 + . . .+ qn−1 if n ≥ 1
(4.24)

If p = 0, then

[n]0,q =

{
0 if n = 0

qn−1 if n ≥ 1
(4.25)

In [31, Section 2.15] the following 8-variable polynomials were introduced:

Qn(x, y, u, v, p+, p−, q+, q−) =∑
σ∈Sca

2n

xeareccpeak(σ)yereccval(σ)unrcpeak(σ)vnrcval(σ) ×

p
lcrosscpeak(σ)
− p

ucrosscval(σ)
+ q

lnestcpeak(σ)
− q

unestcval(σ)
+ (4.26)

It was then shown [31, Theorem 2.19] that the ordinary generating function of the
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polynomials Qn has the S-type continued fraction

∞∑
n=0

Qn(x, y, u, v, p+, p−, q+, q−) t
n =

1

1−
xyt

1−
(p−x+q−u)(p+y+q+v)t

1−
(p2−x+q−[2]p−,q−u)(p

2
+y+q+[2]p+,q+v)t

1− · · ·

(4.27)

with coefficients

αn = (pn−1
− x+ q− [n− 1]p−,q−u) (p

n−1
+ y + q+ [n− 1]p+,q+v) . (4.28)

We now generalize this by treating even and odd indices separately. That is, we
define the polynomials

Qn(xe, ye, ue, ve, xo, yo, uo, vo, p−1, p−2, p+1, p+2, q−1, q−2, q+1, q+2) =∑
σ∈Sca

2n

xeareccpeakeven(σ)
e yereccvaleven(σ)e unrcpeakeven(σ)

e vnrcvaleven(σ)e ×

xeareccpeakodd(σ)
o yereccvalodd(σ)o unrcpeakodd(σ)

o vnrcvalodd(σ)o ×

p
lcrosscpeakeven(σ)
−1 p

lcrosscpeakodd(σ)
−2 p

ucrosscvalodd(σ)
+1 p

ucrosscvaleven(σ)
+2 ×

q
lnestcpeakeven(σ)
−1 q

lnestcpeakodd(σ)
−2 q

unestcvalodd(σ)
+1 q

unestcvaleven(σ)
+2 , (4.29)

where
lcrosscpeakeven(σ) =

∑
j∈Cpeak(σ)∩Even

lcross(j, σ) (4.30)

and likewise for the others. We then have:

Theorem 4.4 (First S-fraction for cycle-alternating permutations, p, q-generalization).
The ordinary generating function of the polynomials (4.29) has the S-type continued
fraction

∞∑
n=0

Qn(xe, ye, ue, ve, xo, yo, uo, vo, p−1, p−2, p+1, p+2, q−1, q−2, q+1, q+2) t
n

=
1

1−
xeyot

1−
(p−2xo+q−2uo)(p+2ye+q+2ve)t

1−
(p2−1xe+q−1[2]p−1,q−1ue)(p

2
+1yo+q+1[2]p+1,q+1vo)t

1− · · ·

(4.31a)

with coefficients

α2k−1 = (p2k−2
−1 xe + q−1[2k − 2]p−1,q−1ue) (p

2k−2
+1 yo + q+1[2k − 2]p+1,q+1vo)

(4.32a)

α2k = (p2k−1
−2 xo + q−2[2k − 1]p−2,q−2uo) (p

2k−1
+2 ye + q+2[2k − 1]p+2,q+2ve)

(4.32b)
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Proof. Notice that we obtain the polynomials (4.29) by specializing the polynomials
Qn(a,b) defined in (4.11) to

aℓ,ℓ′ =


pℓ+1yo if ℓ′ = 0 and ℓ+ ℓ′ is even

pℓ+1q
ℓ′
+1vo if ℓ′ ≥ 1 and ℓ+ ℓ′ is even

pℓ+2ye if ℓ′ = 0 and ℓ+ ℓ′ is odd

pℓ+2q
ℓ′
+2ve if ℓ′ ≥ 1 and ℓ+ ℓ′ is odd

(4.33a)

bℓ,ℓ′ =


pℓ−1xe if ℓ′ = 0 and ℓ+ ℓ′ is even

pℓ−1q
ℓ′
−1ue if ℓ′ ≥ 1 and ℓ+ ℓ′ is even

pℓ−2xo if ℓ′ = 0 and ℓ+ ℓ′ is odd

pℓ−2q
ℓ′
−2uo if ℓ′ ≥ 1 and ℓ+ ℓ′ is odd

(4.33b)

Inserting these into (4.13) yields (4.32). This along with Lemma 4.2 completes the
proof of Theorem 4.4. □

Remark. We can also obtain Biane’s [1, section 6] S-fraction for the q-secant
numbers E2n(q), defined as counting cycle-alternating permutations by number of
inversions. We recall [31, Proposition 2.24] that the number of inversions in a per-
mutation σ satisfies

inv = cval + cdrise + cdfall + ucross + lcross + 2(unest + lnest + psnest) . (4.34)

For a cycle-alternating permutation we have cdrise = cdfall = psnest = 0. Evaluating
(4.26) with x = u = 1, y = v = q, p− = p+ = q and q− = q+ = q2 and using
(4.27)/(4.28), we obtain after a bit of algebra αn = q2n−1[n]2q, which agrees with
Biane’s formula. ■

5 Second S-fraction for cycle-alternating permuta-

tions

5.1 Second S-fraction (counting of cycles)

It is now natural to want to generalize the foregoing polynomials by introducing
also the counting of cycles. That is, we define the polynomials

Q̂n(xe, ye, ue, ve, xo, yo, uo, vo, λ) =∑
σ∈Sca

2n

xeareccpeakeven(σ)
e yereccvaleven(σ)e unrcpeakeven(σ)

e vnrcvaleven(σ)e ×

xeareccpeakodd(σ)
o yereccvalodd(σ)o unrcpeakodd(σ)

o vnrcvalodd(σ)o λcyc(σ) , (5.1)

which generalize the polynomials (4.5) by including a factor λcyc(σ).
Unfortunately, it is not possible to obtain an S-fraction (or even a J-fraction) with

polynomial coefficients for (5.1). Indeed, it is not possible to obtain a J-fraction with
polynomial coefficients even for the 3-variable specialization

Pn(x, y, λ) =
∑

σ∈Sca
2n

xeareccpeak(σ)yereccval(σ)λcyc(σ) . (5.2)
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We show this in the Appendix.
However, it is possible to obtain a nice S-fraction for the polynomials (5.1) if we

make the specializations ye = ve and yo = vo:

Theorem 5.1 (Second S-fraction for cycle-alternating permutations). The ordinary

generating function of the polynomials Q̂n(xe, ye, ue, ve, xo, yo, uo, vo, λ) with the spe-
cializations ye = ve and yo = vo has the S-type continued fraction

∞∑
n=0

Q̂n(xe, ye, ue, ye, xo, yo, uo, yo, λ) t
n =

1

1−
λxeyot

1−
(λ+1)(xo+uo)yet

1−
(λ+2)(xe+2ue)yot

1− · · ·

(5.3)

with coefficients

α2k−1 = (λ+ 2k − 2) [xe + (2k − 2)ue] yo (5.4a)

α2k = (λ+ 2k − 1) [xo + (2k − 1)uo] ye (5.4b)

This generalizes [31, Theorem 2.21] by treating even and odd indices separately.
The proof of Theorem 5.1 will be obtained as a specialization of Theorem 5.2.

When xe = ye = ue = ve = xo = yo = uo = vo = 1, the polynomials Q̂n reduce to
the secant power polynomials E2n(λ), as will be shown in Section 6.3.

5.2 p, q-generalization of second S-fraction

We now introduce a p, q-generalization of (5.1):

Q̂n(xe, ye, ue, ve, xo, yo, uo, vo, p−1, p−2, p+1, p+2, q−1, q−2, q+1, q+2, λ) =∑
σ∈Sca

2n

xeareccpeakeven(σ)
e yereccvaleven(σ)e unrcpeakeven(σ)

e vnrcvaleven(σ)e ×

xeareccpeakodd(σ)
o yereccvalodd(σ)o unrcpeakodd(σ)

o vnrcvalodd(σ)o ×

p
lcrosscpeakeven(σ)
−1 p

lcrosscpeakodd(σ)
−2 p

ucrosscvalodd(σ)
+1 p

ucrosscvaleven(σ)
+2 ×

q
lnestcpeakeven(σ)
−1 q

lnestcpeakodd(σ)
−2 q

unestcvalodd(σ)
+1 q

unestcvaleven(σ)
+2 λcyc(σ) . (5.5)

We then have:

Theorem 5.2 (Second S-fraction for cycle-alternating permutations, p, q-generalization).
The ordinary generating function of the polynomials (5.5) with the specializations
ye = ve, yo = vo, p+1 = q+1 and p+2 = q+2 has the S-type continued fraction

∞∑
n=0

Q̂n(xe, ye, ue, ye, xo, yo, uo, yo, p−1, p−2, p+1, p+2, q−1, q−2, p+1, p+2, λ) t
n

=
1

1−
λxeyot

1−
(λ+ 1)(p−2xo+q−2uo)p+2yet

1−
(λ+ 2)(p2−1xe+q−1[2]p−1,q−1ue)p

2
+1yot

1− · · ·

(5.6)
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with coefficients

α2k−1 = (λ+ 2k − 2) (p2k−2
−1 xe + q−1[2k − 2]p−1,q−1ue) p

2k−2
+1 yo

(5.7a)

α2k = (λ+ 2k − 1) (p2k−1
−2 xo + q−2[2k − 1]p−2,q−2uo) p

2k−1
+2 ye

(5.7b)

This generalizes [31, Theorem 2.22] by treating even and odd indices separately.
The proof of this theorem (and thus also of Theorem 5.1) will be based on the

“second master” S-fraction for cycle-alternating permutations [31, Theorem 2.23] to-
gether with Lemma 4.2. We first recall that second master S-fraction: it states that
the polynomials

Q̂n(a,b, λ) =
∑

σ∈Sca
2n

λcyc(σ)
∏

i∈Cval

aucross(i,σ)+unest(i,σ)

∏
i∈Cpeak

blcross(i,σ), lnest(i,σ) (5.8)

in indeterminates a = (aℓ)ℓ≥0 and b = (bℓ,ℓ′)ℓ,ℓ′≥0 have the S-type continued fraction

∞∑
n=0

Q̂n(a,b, λ) t
n =

1

1−
λa0b00t

1−
(λ+ 1)a1(b01 + b10)t

1−
(λ+ 2)a2(b02 + b11 + b20)t

1− · · ·

(5.9)

with coefficients

αn = (λ+ n− 1)an−1

(n−1∑
ℓ=0

bℓ,n−1−ℓ

)
. (5.10)

Notice that, in contrast to (4.11), the indeterminates a now have only one index: we
are unable to count ucross and unest separately, but can only count their sum. This
is the price we pay for being able to count cycles.

Proof of Theorem 5.2. Notice that we obtain the polynomials (5.5) by special-

izing the polynomials Q̂n(a,b, λ) defined in (5.8) to

aℓ =

{
pℓ+1yo if ℓ is even

pℓ+2ye if ℓ is odd
(5.11a)

bℓ,ℓ′ =


pℓ−1xe if ℓ′ = 0 and ℓ+ ℓ′ is even

pℓ−1q
ℓ′
−1ue if ℓ′ ≥ 1 and ℓ+ ℓ′ is even

pℓ−2xo if ℓ′ = 0 and ℓ+ ℓ′ is odd

pℓ−2q
ℓ′
−2uo if ℓ′ ≥ 1 and ℓ+ ℓ′ is odd

(5.11b)

Inserting these into (5.10) yields (5.7). This along with Lemma 4.2 completes the
proof of Theorem 5.2. □

Proof of Theorem 5.1. Specialize Theorem 5.2 to p+1 = p+2 = p−1 = p−2 =
q−1 = q−2 = 1. □
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5.3 Alternating cycles

Let CN ⊆ SN denote the set of permutations of [N ] consisting of exactly one
cycle. Then let AC2n = C2n ∩Sca

2n denote the set of cycle-alternating permutations of
[2n] consisting of exactly one cycle, or alternating cycles for short. Dumont [11,
section 3 and p. 40] showed that alternating cycles are enumerated by the down-
shifted tangent numbers, i.e. |AC2n| = E2n−1. Here we will recover this result, and
extend it to a more refined S-fraction.

We can enumerate alternating cycles by extracting the coefficient of λ1 in the
preceding results (namely, Theorems 5.1 and 5.2 and eq. (5.9)). We begin by defining
the polynomials analogous to (4.5), (4.29) and (5.8) but restricted to alternating
cycles:

QAC
n (xe, ye, ue, ve, xo, yo, uo, vo) =∑

σ∈AC2n

xeareccpeakeven(σ)
e yereccvaleven(σ)e unrcpeakeven(σ)

e vnrcvaleven(σ)e ×

xeareccpeakodd(σ)
o yereccvalodd(σ)o unrcpeakodd(σ)

o vnrcvalodd(σ)o (5.12)

QAC
n (xe, ye, ue, ve, xo, yo, uo, vo, p−1, p−2, p+1, p+2, q−1, q−2, q+1, q+2) =∑

σ∈AC2n

xeareccpeakeven(σ)
e yereccvaleven(σ)e unrcpeakeven(σ)

e vnrcvaleven(σ)e ×

xeareccpeakodd(σ)
o yereccvalodd(σ)o unrcpeakodd(σ)

o vnrcvalodd(σ)o ×

p
lcrosscpeakeven(σ)
−1 p

lcrosscpeakodd(σ)
−2 p

ucrosscvalodd(σ)
+1 p

ucrosscvaleven(σ)
+2 ×

q
lnestcpeakeven(σ)
−1 q

lnestcpeakodd(σ)
−2 q

unestcvalodd(σ)
+1 q

unestcvaleven(σ)
+2 (5.13)

QAC
n (a,b) =

∑
σ∈AC2n

∏
i∈Cval

aucross(i,σ)+unest(i,σ)

∏
i∈Cpeak

blcross(i,σ), lnest(i,σ) (5.14)

Since the results for alternating cycles will arise by specialization of the results
that include counting of cycles, the same specializations are needed to obtain nice
continued fractions. Extracting the coefficient of λ1 in Theorem 5.1, we deduce the
following:

Corollary 5.3 (S-fraction for alternating cycles). The ordinary generating function
of the polynomials (5.12) with the specializations ye = ve and yo = vo has the S-type
continued fraction

∞∑
n=0

QAC
n+1(xe, ye, ue, ye, xo, yo, uo, yo) t

n =
xeyo

1−
(xo+uo)yet

1−
2(xe+2ue)yot

1− · · ·

(5.15)

with coefficients

α2k−1 = (2k − 1) [xo + (2k − 1)uo] ye (5.16a)

α2k = 2k [xe + 2kue] yo (5.16b)
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Specializing to xe = ye = ue = xo = yo = uo = 1, we see that |AC2n+2| has an
S-fraction with coefficients αn = n(n + 1), which is well known to be the S-fraction
for the tangent numbers E2n+1 [23, A000182]. In other words, |AC2n| = E2n−1.

Similarly, extracting the coefficient of λ1 in Theorem 5.2, we deduce:

Corollary 5.4 (S-fraction for alternating cycles, p, q-generalization). The ordinary
generating function of the polynomials (5.13) with the specializations ye = ve, yo = vo,
p+1 = q+1 and p+2 = q+2 has the S-type continued fraction

∞∑
n=0

QAC
n+1(xe, ye, ue, ye, xo, yo, uo, yo, p−1, p−2, p+1, p+2, q−1, q−2, p+1, p+2) t

n

=
xeyo

1−
(p−2xo+q−2uo)p+2yet

1−
2(p2−1xe+q−1[2]p−1,q−1ue)p

2
+1yot

1− · · ·

(5.17)

with coefficients

α2k−1 = (2k − 1) (p2k−1
−2 xo + q−2[2k − 1]p−2,q−2uo) p

2k−1
+2 ye (5.18a)

α2k = 2k (p2k−1xe + q−1[2k]p−1,q−1ue) p
2k
+1yo (5.18b)

Finally, extracting the coefficient of λ1 in (5.9)/(5.10), we obtain:

Corollary 5.5 (Master S-fraction for alternating cycles). The ordinary generating
function of the polynomials (5.14) has the S-type continued fraction

∞∑
n=0

QAC
n+1(a,b) t

n =
a0b00

1−
a1(b01 + b10)t

1−
2a2(b02 + b11 + b20)t

1− · · ·

(5.19)

with coefficients

αn = n an

( n∑
ℓ=0

bℓ,n−ℓ

)
. (5.20)

5.4 Open problem: Combinatorial model for the tangent
numbers

Let us start by noting the inequalities

E2n−1 ≤ E2n ≤ E2n+1 ≤ (2n)! . (5.21)

We have just seen that the down-shifted tangent numbers E2n−1 enumerate the set
AC2n of alternating cycles on [2n], while the secant numbers E2n enumerate the
set Sca

2n of cycle-alternating permutations of [2n]. The inequality E2n ≤ E2n+1 ≤
(2n)! suggests that also the tangent numbers E2n+1 should enumerate some class
of permutations of [2n] that contains Sca

2n. What class? We pose this as an open
problem:
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Open Problem 5.6.

(a) Find a natural class C satisfying Sca
2n ⊆ C ⊆ S2n and |C| = E2n+1.

(b) Find statistics on C whose generating polynomials have a nice S-fraction that
generalizes the coefficients αn = n(n+1) for the tangent numbers. Ideally these
statistics would also be such that, by specializing some variables to zero, we
reobtain some or all of the continued fractions of the present paper for cycle-
alternating permutations.

We remark that an analogous situation occurs for the Genocchi numbers gn and
the median Genocchi numbers hn (in the notation of [3]), which satisfy

gn−1 ≤ hn ≤ gn ≤ hn+1 ≤ (2n)! . (5.22)

In this case the relevant objects are a class of permutations of [2n] calledD-permutations
[20, 21] and their subsets

D-cycles ⊆ D-derangements ⊆ D-semiderangements ⊆ D-permutations , (5.23)

and we have [3, 8, 12,20,21]

|D-cycles| = gn−1 (5.24a)

|D-derangements| = hn (5.24b)

|D-semiderangements| = gn (5.24c)

|D-permutations| = hn+1 (5.24d)

Furthermore, in [3] we obtained continued fractions for multivariate polynomials enu-
merating D-permutations, which by specializing some variables to zero gave contin-
ued fractions enumerating D-semiderangements and D-derangements; furthermore,
by extracting the coefficient of λ1 in a cycle-counting result, we obtained continued
fractions enumerating D-cycles. It would be nice to have analogous results in the
present context.

6 Alternating Laguerre digraphs

We now place permutations in a more general context: that of Laguerre digraphs.
Recall from the Introduction that a Laguerre digraph [2, 17, 29] is a digraph in
which each vertex has out-degree 0 or 1 and in-degree 0 or 1. For each integer n ≥ 0,

let us write LDn for the set of Laguerre digraphs on the vertex set [n]
def
= {1, . . . , n};

and for n ≥ k ≥ 0, let us write LDn,k for the set of Laguerre digraphs on the vertex
set [n] with k paths. A Laguerre digraph with no paths is simply a collection of
directed cycles, i.e. the digraph associated to a permutation σ ∈ Sn [33, pp. 22–23].
There is thus a natural bijection LDn,0 ≃ Sn.

The study of Laguerre digraphs LDn,k thus generalizes the study of permutations
LDn,0 ≃ Sn. In a similar way, we will define a class of alternating Laguerre digraphs
LDalt

n,k so as to generalize the study of cycle-alternating permutations LDalt
n,0 ≃ Sca

n .

Just as Sca
n ̸= ∅ only for n even, we will see that LDalt

n,k ̸= ∅ only for n+ k even.
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We begin (Section 6.1) by deriving an exponential generating function for La-
guerre digraphs with a very general set of weights [2]. Then (Section 6.2) we define
alternating Laguerre digraphs and specialize to obtain their exponential generating
function. Next (Section 6.3) we obtain the generalized Jacobi–Rogers and Stieltjes–
Rogers polynomials associated to the secant power polynomials, using exponential
generating functions. Then (Section 6.4) we obtain the generalized Stieltjes–Rogers
polynomials associated to the second master S-fraction for cycle-alternating permu-
tations [eqns. (5.9)/(5.10)], using combinatorial methods. Finally (Section 6.5) we
specialize this latter result to obtain the generalized Stieltjes-Rogers polynomials cor-
responding to the S-fractions of Theorems 5.1 and 5.2.

6.1 Exponential generating function for Laguerre digraphs

Before defining our statistics on Laguerre digraphs, we first need to make a con-
vention about boundary conditions at the two ends of a path. We will here use 0–0
boundary conditions: that is, we extend the Laguerre digraph G on the vertex set
[n] to a digraph Ĝ on the vertex set [n] ∪ {0} by decreeing that any vertex i ∈ [n]
that has in-degree (resp. out-degree) 0 in G will receive an incoming (resp. outgoing)
edge from (resp. to) the vertex 0. In this way each vertex i ∈ [n] will have a unique
predecessor p(i) ∈ [n]∪{0} and a unique successor s(i) ∈ [n]∪{0}. We then say that
a vertex i ∈ [n] is a

• peak (p) if p(i) < i > s(i);

• valley (v) if p(i) > i < s(i);

• double ascent (da) if p(i) < i < s(i);

• double descent (dd) if p(i) > i > s(i);

• fixed point (fp) if p(i) = i = s(i).

(Note that “fixed point” is a synonym of “loop”.) When these concepts are applied to
the cycles of a Laguerre digraph, we obtain the usual cycle classification of indices
in a permutation as cycle peaks, cycle valleys, cycle double rises, cycle double falls
and fixed points [31,38]. When applied to the paths of a Laguerre digraph, we obtain
the usual linear classification of indices in a permutation (written in word form)
as peaks, valleys, double ascents or double descents [33, p. 45]. Note that, because of
the 0–0 boundary conditions, an isolated vertex is always a peak, the initial vertex
of a path is always a peak or double ascent, and the final vertex of a path is always
a peak or double descent; moreover, each path contains at least one peak.

We write p(G), v(G), da(G), dd(G), fp(G) for the number of vertices i ∈ [n] that
are, respectively, peaks, valleys, double ascents, double descents or fixed points. We
then introduce the multivariate Laguerre coefficient matrix

L̂(α)(yp, yv, yda, ydd, yfp)n,k
def
=

∑
G∈LDn,k

yp(G)
p yv(G)

v y
da(G)
da y

dd(G)
dd y

fp(G)
fp (1 + α)cyc(G) . (6.1)

This polynomial is homogeneous of degree n in yp, yv, yda, ydd, yfp. (The weight per
cycle is here written as 1 + α instead of λ because these polynomials generalize the
Laguerre polynomials with parameter α.)
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Indeed, we can go farther, by assigning different weights for the vertices belonging
to a cycle or to a path. For a Laguerre digraph G, let us write pcyc(G), vcyc(G),
dacyc(G), ddcyc(G), fp(G) for the number of peaks, valleys, double ascents, double
descents and fixed points that belong to a cycle of G, and ppa(G), vpa(G), dapa(G),
ddpa(G) for the number of peaks, valleys, double ascents and double descents that
belong to a path of G (of course fixed points can only belong to a cycle). We then
assign weights yp, yv, yda, ydd, yfp to the vertices belonging to a cycle, and weights
zp, zv, zda, zdd to the vertices belonging to a path. We therefore define the generalized
multivariate Laguerre coefficient matrix

L̃(α)(yp, yv, yda, ydd, yfp, zp, zv, zda, zdd)n,k

def
=

∑
G∈LDn,k

ypcyc(G)
p yvcyc(G)

v y
dacyc(G)
da y

ddcyc(G)
dd y

fp(G)
fp zppa(G)

p zvpa(G)
v z

dapa(G)
da z

ddpa(G)
dd ×

(1 + α)cyc(G) . (6.2)

This polynomial is homogeneous of degree n in yp, yv, yda, ydd, yfp, zp, zv, zda, zdd.
We now proceed to compute the exponential generating functions for the matri-

ces (6.2). We do this by combining the known exponential generating functions for
permutations with cyclic statistics [38, Théorème 1] and permutations with linear
statistics [38, Proposition 4]. These formulae are as follows:

1) Permutations with cyclic statistics are enumerated by the polynomials

P cyc
n (yp, yv, yda, ydd, yfp, λ)

def
=

∑
σ∈Sn

ypcyc(σ)p yvcyc(σ)v y
dacyc(σ)
da y

ddcyc(σ)
dd y

fp(σ)
fp λcyc(σ) (6.3)

where pcyc(σ), vcyc(σ), dacyc(σ), ddcyc(σ), fp(σ) denote the number of cycle peaks,
cycle valleys, cycle double rises, cycle double falls and fixed points in σ, and cyc(σ)
denotes the number of cycles in σ. By convention we set P cyc

0 = 1. The polynomial
P cyc
n is homogeneous of degree n in yp, yv, yda, ydd, yfp. We write

F (t; yp, yv, yda, ydd, yfp, λ)
def
=

∞∑
n=0

P cyc
n (yp, yv, yda, ydd, yfp, λ)

tn

n!
(6.4)

for the corresponding exponential generating function.

Lemma 6.1. [38, Théorème 1] We have

F (t; yp, yv, yda, ydd, yfp, λ) = eλyfpt
(

r1 − r2
r1er2t − r2er1t

)λ

(6.5a)

= F (t; yp, yv, yda, ydd, yfp, 1)
λ (6.5b)

where r1r2 = ypyv and r1 + r2 = yda + ydd. Otherwise put, r1 and r2 are the roots
(in either order) of the quadratic equation ρ2 − (yda + ydd)ρ+ ypyv = 0. Concretely,

r1,2 =
yda + ydd ±

√
(yda + ydd)2 − 4ypyv
2

. (6.6)
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2) Permutations with linear statistics and 0–0 boundary conditions are enumerated
by the polynomials

P lin(00)
n (zp, zv, zda, zdd)

def
=

∑
σ∈Sn

zppa(σ)p zvpa(σ)v z
dapa(σ)
da z

ddpa(σ)
dd (6.7)

where ppa(σ), vpa(σ), dapa(σ), ddpa(σ) denote the number of peaks, valleys, double
ascents and double descents in the permutation σ written as a word σ1 · · ·σn, where we
impose the boundary conditions σ0 = σn+1 = 0. By convention we restrict attention

to n ≥ 1. The polynomial P
lin(00)
n is homogeneous of degree n in zp, zv, zda, zdd. We

write

G(t; zp, zv, zda, zdd)
def
=

∞∑
n=1

P lin(00)
n (zp, zv, zda, zdd)

tn

n!
(6.8)

for the corresponding exponential generating function (note that the sum starts at
n = 1).

Lemma 6.2. [38, Proposition 4] We have

G(t; zp, zv, zda, zdd) = zp

(
er1t − er2t

r1er2t − r2er1t

)
(6.9)

where r1r2 = zpzv and r1 + r2 = zda + zdd analogously to Lemma 6.1. This function
satisfies the differential equation

G′(t) = zp + (zda + zdd)G(t) + zvG(t)2 . (6.10)

We can now put these ingredients together to determine the exponential gener-
ating functions for the matrix (6.2). A Laguerre digraph G ∈ LDn,k consists of a
permutation (that is, a collection of disjoint cycles) on some subset S ⊆ [n] together
with k disjoint paths on [n] \ S. Each of these paths can be considered as a permu-
tation written in word form. By the exponential formula, the exponential generating
function for the kth column of the matrix (6.2) is then

∞∑
n=0

L̃(α)(yp, yv, yda, ydd, yfp, zp, zv, zda, zdd)n,k
tn

n!

= F (t; yp, yv, yda, ydd, yfp, 1)
1+α G(t; zp, zv, zda, zdd)

k

k!
, (6.11)

where the 1/k! comes because the paths are indistinguishable. The bivariate expo-
nential generating function is therefore

∞∑
n=0

n∑
k=0

L̃(α)(yp, yv, yda, ydd, yfp, zp, zv, zda, zdd)n,k
tn

n!
uk

= F (t; yp, yv, yda, ydd, yfp, 1)
1+α exp

[
uG(t; zp, zv, zda, zdd)

]
. (6.12)
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6.2 Alternating Laguerre digraphs

We define an alternating Laguerre digraph to be a Laguerre digraph in which
there are no double ascents, double descents or fixed points. It follows that all the
cycles are of even length and consist of cycle peaks and cycle valleys in alternation.
Furthermore, since we are using 0–0 boundary conditions, all the paths are of odd
length and consist of peaks and valleys in alternation, starting and ending with a
peak: 0 < x1 > x2 < x3 > . . . < x2m+1 > 0. That is, the paths are simply alternating
(down-up) permutations [32] of odd length written in word form: x1 > x2 < x3 >
. . . < x2m+1. We write LDalt

n,k for the set of alternating Laguerre digraphs on the
vertex set [n] with k paths. Since each path has odd length and each cycle has even
length, it follows that LDalt

n,k ̸= ∅ only if n+k is even. We have the obvious bijection

LDalt
n,0 ≃ Sca

n . In this way, alternating Laguerre digraphs generalize cycle-alternating
permutations, to which they reduce when k = 0.

We define a generating polynomial for alternating Laguerre digraphs by specializ-
ing the one for Laguerre digraphs to forbid double ascents, double descents and fixed
points:

L̃(α)alt(yp, yv, zp, zv)n,k
def
= L̃(α)(yp, yv, 0, 0, 0, zp, zv, 0, 0)n,k (6.13a)

=
∑

G∈LDalt
n,k

ypcyc(G)
p yvcyc(G)

v zppa(G)
p zvpa(G)

v × (1 + α)cyc(G) .

(6.13b)

This polynomial is homogeneous of degree n in yp, yv, zp, zv.
Specializing Lemma 6.1 to yda = ydd = yfp = 0, we have r1 = +i

√
ypyv and

r2 = −i
√
ypyv, hence

F (t; yp, yv, 0, 0, 0, λ) =
[
sec
(√

ypyv t
)]λ

. (6.14)

Similarly, specializing Lemma 6.2 to zda = zdd = 0, we have

G(t; zp, zv, 0, 0) =
√
zp/zv tan

(√
zpzv t

)
. (6.15)

Therefore, the exponential generating function for the kth column of the matrix (6.13)
is

∞∑
n=0

L̃(α)alt(yp, yv, zp, zv)n,k
tn

n!
=
[
sec
(√

ypyv t
)]1+α

[√
zp/zv tan

(√
zpzv t

)]k
k!

.

In order to make the connection with continued fractions, we will want to give
path vertices and cycle vertices the same weights, i.e. zp = yp and zv = yv. Once we
have made this specialization, there is no loss of generality in taking yp = yv = 1,
since those variables would simply make a trivial rescaling. We therefore have

∞∑
n=0

L̃(α)alt(1, 1, 1, 1)n,k
tn

n!
= (sec t)1+α (tan t)k

k!
. (6.16)
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In particular, the zeroth column L̃(α)alt(1, 1, 1, 1)n,0 has the secant power polyno-
mials at even n and zero entries at odd n, where the secant power polynomials are
defined by

(sec t)λ =
∞∑
n=0

E2n(λ)
t2n

(2n)!
. (6.17)

The first 8 rows and columns of the matrix L̃(α)alt(1, 1, 1, 1) (written for simplicity
in terms of λ = 1 + α) are



1
0 1
λ 0 1
0 2 + 3λ 0 1

2λ+ 3λ2 0 8 + 6λ 0 1
0 16 + 30λ+ 15λ2 0 20 + 10λ 0 1

16λ+ 30λ2 + 15λ3 0 136 + 150λ+ 45λ2 0 40 + 15λ 0 1
0 272 + 588λ+ 420λ2 + 105λ3 0 616 + 490λ+ 105λ2 0 70 + 21λ 0 1


(6.18)

6.3 Continued fraction for secant power polynomials

Following Stieltjes [34] and Rogers [26], we can use Rogers’ addition formula (The-
orem 2.2 above) to obtain the continued fraction for the secant power polynomials.
From the high-school angle-addition formula

cos(t+ u) = (cos t)(cosu) − (sin t)(sinu) (6.19a)

= (cos t)(cosu) [1 − (tan t)(tanu)] (6.19b)

we obtain

[sec(t+ u)]λ = (sec t)λ(secu)λ
∞∑
k=0

(
λ+ k − 1

k

)
(tan t)k (tanu)k , (6.20)

which is of the form (2.10)/(2.11) with

βk = k(λ+ k − 1) , Fk(t) =
(sec t)λ (tan t)k

k!
=

tk

k!
+ O(tk+2) , (6.21)

so that µk = 0 and hence γk = 0. Theorem 2.2 then implies that the ordinary
generating function of the secant power polynomials is given by the J-fraction

∞∑
n=0

E2n(λ) t
2n =

1

1−
1 · λt2

1−
2(λ+ 1)t2

1−
3(λ+ 2)t2

1− · · ·

. (6.22)

After renaming t2 → t, this is actually an S-fraction with coefficients αn = n(λ+n−1).
So far, this is all well known. And comparing (6.22) with Theorem 5.1, we see that
E2n(λ) enumerates cycle-alternating permutations of [2n] with a weight λ for each
cycle.
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But Theorem 2.2 gives more: it tells us that Fk(t) = (sec t)λ (tan t)k/k! is the
exponential generating function for the kth column of the generalized Jacobi–Rogers
matrix J =

(
Jn,k(β,γ)

)
n,k≥0

with βn = n(λ+ n− 1) and γ = 0. On the other hand,

we know from (6.16) that this Fk(t) is precisely the exponential generating function

for alternating Laguerre digraphs with k paths, L̃(α)alt(1, 1, 1, 1)n,k, with λ = 1 + α:

L̃(α)alt(1, 1, 1, 1)n,k =
[ tn
n!

] (sec t)1+α (tan t)k

k!
. (6.23)

We have therefore shown:

Proposition 6.3. The generalized Jacobi–Rogers polynomial Jn,k(β,γ) with βn =
n(n + α) and γ = 0 enumerates alternating Laguerre digraphs on [n] with k paths
with a weight 1 + α for each cycle.

By extracting the submatrices (2n, 2k) and (2n + 1, 2k + 1) using (2.18), we can
equivalently obtain the generalized Stieltjes–Rogers polynomials Sn,k(α) and S ′

n,k(α)
with αn = n(n+ α):

Sn,k(α) =
[ t2n

(2n)!

] (sec t)1+α (tan t)2k

(2k)!
(6.24a)

S ′
n,k(α) =

[ t2n+1

(2n+ 1)!

] (sec t)1+α (tan t)2k+1

(2k + 1)!
(6.24b)

Corollary 6.4. The generalized Stieltjes–Rogers polynomial Sn,k(α) [resp. S ′
n,k(α)]

with αn = n(n + α) enumerates alternating Laguerre digraphs on [2n] with 2k paths
[resp. on [2n+ 1] with 2k + 1 paths] with a weight 1 + α for each cycle.

6.4 Generalized Stieltjes–Rogers polynomials for the second
master S-fraction

We now propose to show how the generalized Stieltjes–Rogers polynomials of the
first and second kinds for the second master S-fraction for cycle-alternating permu-
tations, (5.9)/(5.10), can be understood as generating polynomials for alternating
Laguerre digraphs. This will lead to a far-reaching generalization of Proposition 6.3
and Corollary 6.4, and at the same time of [31, Theorem 2.23].

To do this, it is convenient to use a different convention about the boundary
conditions at the two ends of a path of a Laguerre digraph. Namely, we will here use
∞–∞ (rather than 0–0) boundary conditions: that is, we extend the Laguerre digraph

G on the vertex set [n] to a digraph Ĝ on the vertex set [n] ∪ {∞} by decreeing that
any vertex i ∈ [n] that has in-degree (resp. out-degree) 0 in G will receive an incoming
(resp. outgoing) edge from (resp. to) the vertex ∞. However, our definitions of peak,
valley, double ascent, double descent and fixed point will be the same as before. Note
that, because of the ∞–∞ boundary conditions, an isolated vertex is always a valley,
the initial vertex of a path is always a valley or double descent, and the final vertex
of a path is always a valley or double ascent; moreover, each path contains at least
one valley. We also recall that, for a given vertex i ∈ [n], we use p(i) to denote its
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predecessor in Ĝ, and s(i) to denote its successor. Later we will explain why we have
found it convenient to use ∞–∞ boundary conditions.

With these boundary conditions, an alternating Laguerre digraph will still have
cycles of even length with cycle peaks and cycle valleys in alternation, and paths of
odd length consisting of peaks and valleys in alternation. However, the paths will
start and end with a valley: ∞ > x1 < x2 > x3 < . . . > x2m+1 < ∞. The paths
are now alternating (up-down) permutations of odd length written in word form:
x1 < x2 > x3 < . . . > x2m+1. We write LDalt∞

n,k for the set of alternating Laguerre
digraphs on the vertex set [n] with k paths using ∞–∞ boundary conditions. Of
course, there is a natural bijection between LDalt

n,k and LDalt∞
n,k , by mapping vertices

i 7→ n+ 1− i.
Now we shall define some new statistics on Laguerre digraphs which extend the

crossing and nesting statistics on permutations that were defined in Section 3.2. We
say that a quadruplet 1 ≤ i < j < k < l ≤ ∞ forms a

• lower crossing (lcross) if p(i) = k and p(j) = l;

• lower nesting (lnest) if p(j) = k and p(i) = l.

Notice that in such a quadruplet, the vertex k must be either a peak or a double
descent. When l < ∞, these conditions could equivalently be written in terms of the
successor function: a quadruplet is a lower crossing if i = s(k) and j = s(l), and a
lower nesting if j = s(k) and i = s(l). But we have written them in terms of the
predecessor function in order to handle smoothly the case l = ∞, i.e. the case when
j (resp. i) has in-degree 0 in G. This definition now allows us to define the index-
refined lower crossing and nesting statistics for Laguerre digraphs, as a generalization
of (3.6c,d):

lcross(k,G) = #{1 ≤ i < j < k < l ≤ ∞ : p(i) = k and p(j) = l} (6.25a)

lnest(k,G) = #{1 ≤ i < j < k < l ≤ ∞ : p(j) = k and p(i) = l} (6.25b)

Note that because these statistics are defined in terms of the index in third position
(namely, k), we certainly have k < ∞ (since k ∈ [n]). When the Laguerre digraph
G has no paths and hence arises as the digraph of a permutation σ, this definition
manifestly coincides with the definitions (3.6c,d).

However, things are going to be more subtle for the upper crossings and nestings,
because these statistics will be defined [cf. (3.6a,b)] in terms of the index in second
position (namely, j), and there is then no guarantee that k < ∞. Rather, we need
to reckon with the possibility that i < j < k = l = ∞, and this means that (at least
in this case) we will be unable to distinguish between crossings and nestings. We
therefore define a new statistic ulev that plays the role of ucross+unest. That is, for
j ∈ [n] we define

ulev(j,G) = #{i < j : j < s(i) ≤ ∞ and j < s(j) ≤ ∞} . (6.26)

We shall say that ulev(j, G) is the upper level of the vertex j. Note that ulev(j,G)
can be nonzero only when j is either a valley or a double ascent. When the Laguerre
digraph G has no paths and hence arises as the digraph of a permutation σ, we have

ulev(j, G) = ucross(j, σ) + unest(j, σ) . (6.27)
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We can also define analogously a lower level for the vertex k:

llev(k,G) = #{m < k : k < p(m) ≤ ∞ and s(k) < k} . (6.28)

But this definition is superfluous, because it is concocted to satisfy

llev(k,G) = lcross(k,G) + lnest(k,G) ; (6.29)

to see this it suffices to look at the two cases m = i (nesting) and m = j (crossing).
We now restrict attention to alternating Laguerre digraphs, and define a gen-

erating polynomial in two infinite families of indeterminates a = (aℓ)ℓ≥0 and b =
(bℓ,ℓ′)ℓ,ℓ′≥0 that uses the crossing, nesting and level statistics:

Q̃n,k(a,b, λ) =
∑

G∈LDalt∞
n,k

λcyc(G)
∏

i∈Val(G)

aulev(i,G)

∏
i∈Peak(G)

blcross(i,G), lnest(i,G) (6.30)

where Val(G) denotes the set of valleys of G and Peak(G) denotes the set of peaks
of G. For k = 0, we have LDalt

2n,0 ≃ Sca
2n, i.e. an alternating Laguerre digraph G with

no paths is the digraph of a cycle-alternating permutation σ, and we have

Q̃2n,0 = Q̂n (6.31)

where Q̂n is the second master polynomial for cycle-alternating permutations defined
in (5.8) [31, (2.137)]. We therefore call Q̃n,k(a,b, λ) the second master polynomial
for alternating Laguerre digraphs .

Recall that there is a natural bijection between LDalt∞
n,k and LDalt

n,k by mapping
vertices i 7→ n + 1 − i. This bijection sends cycle peaks to cycle valleys, path
peaks to path valleys, and vice-versa. Thus, under the specializations aℓ = yv,
bℓ,ℓ′ = yp and λ = 1 + α, the polynomial Q̃n,k(a,b, λ) is equal to the polynomial

L̃(α)alt(yv, yp, yv, yp)n,k obtained by substituting yp = zp to yv and yv = zv to yp in
(6.13).

The main technical result of this subsection is that the polynomials Q̃n,k(a,b, λ)
satisfy the following recurrence:

Proposition 6.5 (Recurrence for second master polynomial for alternating Laguerre

digraphs). The polynomials Q̃n,k(a,b, λ) defined in (6.30) satisfy the recurrence

Q̃n+1,k = ak−1 Q̃n,k−1 + (λ+ k)

(
k∑

i=0

bi,k−i

)
Q̃n,k+1 . (6.32)

Proof. In order to prove the recurrence (6.32), we first start with an alternating
Laguerre digraph G ∈ LDalt∞

n+1,k. We then look at the status of the vertex n + 1, and
for each possibility we consider the induced subgraph on the vertex set [n], call it
G′. (Clearly G′ is a Laguerre digraph; we will also see that it is alternating, but that
takes a bit more work to prove.) For each situation, we then count the number of
the ways in which n+1 could be inserted into G′, and evaluate what this does to the
weights.
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Let us begin by observing that, for every i ∈ [n],

lcross(i, G) = lcross(i, G′) (6.33a)

lnest(i, G) = lnest(i, G′) (6.33b)

ulev(i, G) = ulev(i, G′) (6.33c)

This is because, if the predecessor (resp. successor) of i in G is n+ 1, then its prede-
cessor (resp. successor) in G′ is ∞; and in the inequalities defining lcross, lnest, ulev,
the values n+1 and ∞ play identical roles. (That is why we have chosen here to use
∞–∞ boundary conditions.) It follows that all vertices i ∈ [n] get the same weight
aℓ or bℓ,ℓ′ in G as they do in G′. Therefore, we only need to worry about the weight
associated to the vertex n+1, as well as the possible change in the number of cycles.

We begin by considering the case when n + 1 is a valley. For this to happen, we
must have p(n + 1) = s(n + 1) = ∞; in other words, n + 1 is an isolated vertex
in G. Removing n + 1, we see that the resulting digraph G′ has k − 1 paths and
is alternating. On the other hand if we begin with an alternating Laguerre digraph
G′ ∈ LDalt∞

n,k−1, there is exactly one way in which the vertex n + 1 can be inserted
into G′ as an isolated vertex. Note that, in G, the vertex n + 1 has upper level
ulev(n + 1, G) = k − 1: this is because, in (6.26) with j = n + 1, we have s(j) = ∞
(because j = n + 1 is a valley), and the contributing vertices i are those that have
s(i) = ∞; this happens when (and only when) i (̸= j) is the end vertex of a path,
and there are k − 1 such paths. Therefore, the vertex n+ 1 gets a weight ak−1 in its
contribution to Q̃n+1,k. Therefore, the cases in which n+ 1 is a valley contribute the

summand ak−1 Q̃n,k−1.
When n + 1 is a peak, its predecessor p(n + 1) and successor s(n + 1) lie in [n];

therefore, it cannot be the initial or final vertex of a path in G. If n + 1 is a peak
belonging to a cycle of G, then removing it turns its component into a path and
increases the number of paths by 1. If n+ 1 is a peak belonging to a path of G (and
hence an internal vertex of that path), removing it causes that path to be divided
into two nonempty paths, and hence again increases the number of paths by 1. In
both cases the resulting Laguerre digraph G′ will be alternating, because the vertices
that had n+1 as predecessor or successor in G will now have ∞ as their predecessor
or successor in G′, maintaining the required inequalities. Hence G′ ∈ LDalt∞

n,k+1.

We now begin with an alternating Laguerre digraph G′ ∈ LDalt∞
n,k+1, and count the

number of ways in which n+1 can be inserted as peak. To do this, we need to count
the various possibilities in which the predecessor and successor of n+1 can be chosen.
The successor of n+1 can be chosen from any of the k+1 initial vertices of the paths.
Let 1 ≤ f0 < f1 < . . . < fk ≤ n be the initial vertices of the paths of G′, ordered
in increasing order. If s(n + 1) = fi, any resulting alternating Laguerre digraph
G will have p(fj) = ∞ for all j ̸= i. In particular, for all j < i, the quadruplets
fj < fi < n+ 1 < ∞ will be lower nestings; and these will be the only lower nestings
with third index n+ 1. Similarly, for all j > i, the quadruplets fi < fj < n+ 1 < ∞
will be lower crossings; and these will be the only lower crossings with third index
n+1. Therefore, we will have lnest(n+1, G) = i and lcross(n+1, G) = k− i. Thus,
whenever s(n+ 1) = fi (0 ≤ i ≤ k), the vertex n+ 1 gets weight bi,k−i in G.

The predecessor of n + 1 can be chosen from any of the k + 1 final vertices of
the paths. However, for each choice of successor fi, there is exactly one choice of
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final vertex that forms a cycle (namely, when the successor and predecessor vertices
of n + 1 are the initial and final vertices of the same path); in this situation we get
an additional weight λ. In the other k cases we get a weight 1. Thus, the case when

n+ 1 is a peak contributes the summand (λ+ k)
(∑k

i=0 bi,k−i

)
Q̃n,k+1. □

The recurrence (6.32) combined with Proposition 2.1 yields:

Theorem 6.6 (Generalized Jacobi-Rogers polynomials). The generalized Jacobi-
Rogers polynomial Jn,k(α,0) with weights

αn = (λ+ n− 1)an−1

(n−1∑
ℓ=0

bℓ,n−1−ℓ

)
(6.34)

[cf. (5.10)] satisfies

Q̃n,k(a,b, λ) =

(
k−1∏
i=0

ai

)
Jn,k(α,0) (6.35)

where Q̃n,k(a,b, λ) is defined in (6.30).

Since the J-fraction in Theorem 6.6 has γ = 0, the even and odd submatri-
ces of J(α,0) can be interpreted by (2.18) as being the generalized Stieltjes–Rogers
polynomials of the first and second kinds for the second master S-fraction for cycle-
alternating permutations, (5.9)/(5.10):

Corollary 6.7 (Generalized Stieltjes-Rogers polynomials). With α given by (6.34),
we have

Q̃2n,2k(a,b, λ) =

(
2k−1∏
i=0

ai

)
Sn,k(α) (6.36a)

Q̃2n+1,2k+1(a,b, λ) =

(
2k∏
i=0

ai

)
S ′
n,k(α) (6.36b)

6.5 Specialization to the case of Theorems 5.1 and 5.2

By specializing Corollary 6.7, we can obtain the generalized Stieltjes-Rogers poly-
nomials corresponding to the S-fractions of Theorems 5.1 and 5.2. To do this, we
will first need to extend the concepts of records and antirecords from permutations
to Laguerre digraphs. This extension will be motivated by [31, Lemma 2.10], which
we have recalled in Lemma 4.3.

We now extend the concepts of record and antirecord from permutations to arbi-
trary words in a totally ordered alphabet:

Definition 6.8. Let w1 . . . wn be a word in a totally ordered alphabet. Then:

(a) i is a record position (and wi is a record value) in case, for all j < i, we have
wj < wi.

(b) i is an antirecord position (and wi is an antirecord value) in case, for all j > i,
we have wj > wi.
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When the word w1 . . . wn is a permutation of [n], these concepts are connected as
follows:

Lemma 6.9. Let σ be a permutation of [n], and let σ−1 be the inverse permutation.
Then:

(a) i is a record position in the word σ(1) . . . σ(n) if and only if i is an antirecord
value in the word σ−1(1) . . . σ−1(n).

(b) i is an antirecord position in the word σ(1) . . . σ(n) if and only if i is a record
value in the word σ−1(1) . . . σ−1(n).

Proof. (a) By definition, i is a record position in the word σ(1) . . . σ(n) in case
the following holds true: whenever j < i, we have σ(j) < σ(i). Similarly, i is
an antirecord value in the word σ−1(1) . . . σ−1(n) in case the following holds true:
whenever k > σ(i), we have σ−1(k) > i. Defining j = σ−1(k), this latter statement
can be rewritten as: whenever σ(j) > σ(i), we have j > i. For each pair i ̸= j, the
third statement is the contrapositive of the first.

(b) The proof is similar. □

Using Lemma 6.9, we can rewrite Lemma 4.3 as follows:

Lemma 6.10. Let σ be a permutation.

(a) If i is a cycle valley or cycle double rise, then i is an antirecord value in the
word σ−1(1) . . . σ−1(n) if and only if unest(i, σ) = 0.

(b) If i is a cycle peak or cycle double fall, then i is a record value in the word
σ−1(1) . . . σ−1(n) if and only if lnest(i, σ) = 0.

We now generalize Lemma 6.10(b) from permutations to Laguerre digraphs. To
do this, we first observe that to any Laguerre digraph G on the vertex set [n], we can
associate a predecessor word p(1) . . . p(n) and a successor word s(1) . . . s(n),
each taking values in the totally ordered alphabet [n] ∪ {∞}. Of course, if G is the
digraph associated to a permutation σ, then the predecessor word is σ−1(1) . . . σ−1(n)
and the successor word is σ(1) . . . σ(n), which of course take values in [n]. We then
have the following generalization of Lemma 6.10(b):

Lemma 6.11. Let G be a Laguerre digraph on the vertex set [n]. If k is a peak or
double descent, then k is a record value in the predecessor word p(1) . . . p(n) if and
only if lnest(k,G) = 0.

Proof. Since k is a peak or double descent, we have s(k) < k < ∞. Therefore, k has
out-degree 1 in G. It follows that the letter k occurs exactly once in the predecessor
word p(1) . . . p(n): namely, k = p(j) if and only if j = s(k).

By definition, k is a record value in the predecessor word p(1) . . . p(n) in case, for
all i < s(k), we have p(i) < k. Equivalently, k is a record value in the predecessor
word p(1) . . . p(n) in case there does not exist i < s(k) such that p(i) > k (equality
p(i) = k is excluded because it would imply i = s(k)). But, by the definition (6.25b)
of lnest, this is precisely the statement that lnest(k,G) = 0. □
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With these preliminaries, we are now able to state the generalized Stieltjes–Rogers
polynomials corresponding to the S-fractions of Theorems 5.1 and 5.2. Let us start
with Theorem 5.1, which concerns the polynomials (5.1) specialized to ye = ve and
yo = vo: this means that for cycle peaks (but not for cycle valleys) we are distin-
guishing between those that are antirecords (i.e. antirecord positions) and those that
are not. By Lemma 6.9(b), i is an antirecord position in σ if and only if i is a record
value in σ−1. We then generalize the latter condition to Laguerre digraphs G on the
vertex set [n] by defining

Arecpeak⋆(G)
def
= {i ∈ [n] : i ∈ Peak(G) and

i is a record value in the predecessor word p(1) . . . p(n)}, (6.37a)

Nrpeak⋆(G)
def
= {i ∈ [n] : i ∈ Peak(G) and

i is not a record value in the predecessor word p(1) . . . p(n)}, (6.37b)

where we recall that we have defined

Peak(G)
def
= {i ∈ [n] : i is a peak in G using ∞–∞ boundary conditions}, (6.38a)

Val(G)
def
= {i ∈ [n] : i is a valley in G using ∞–∞ boundary conditions}. (6.38b)

We then define

eareccpeakeven⋆(G)
def
= |Arecpeak⋆(G) ∩ Even| (6.39a)

nrcpeakeven⋆(G)
def
= |Nrpeak⋆(G) ∩ Even| (6.39b)

cvaleven⋆(G)
def
= |Val(G) ∩ Even| (6.39c)

and likewise for the odd ones. (The names for these quantities are chosen to coincide
with the previous ones when G is the digraph arising from a permutation, even though
the names may seem a bit bizarre when compared with the actual definitions; we have
used a star to stress this change of emphasis.) Having done this, we then extend the
definition (5.1), specialized to ye = ve and yo = vo, from permutations to Laguerre
digraphs:

Q̂n,k(xe, ye, ue, xo, yo, uo, λ) =∑
G∈LDalt∞

n,k

xeareccpeakeven⋆(G)
e ycvaleven

⋆(G)
e unrcpeakeven⋆(G)

e ×

xeareccpeakodd⋆(G)
o ycvalodd

⋆(G)
o unrcpeakodd⋆(G)

o λcyc(G) . (6.40)

We can then state:

Theorem 6.12 (Generalized Stieltjes–Rogers polynomials for Theorem 5.1).
With α given by (5.4), we have

Q̂2n,2k(xe, ye, ue, xo, yo, uo, λ) = yke y
k
o Sn,k(α) (6.41a)

Q̂2n+1,2k+1(xe, ye, ue, xo, yo, uo, λ) = yke y
k+1
o S ′

n,k(α) (6.41b)
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As preparation for this proof, we need a generalization of Lemma 4.2 from cycle-
alternating permutations to alternating Laguerre digraphs:

Lemma 6.13. If G is an alternating Laguerre digraph on the vertex set [N ], then

valleys: ulev(i, G) ≡ i− 1 (mod 2) (6.42a)

peaks: llev(i, G) ≡ i (mod 2) (6.42b)

for all i ∈ [N ]. Here ulev and llev were defined in (6.26) and (6.28), respectively.

We introduce some new notation before providing the proof. Given a Laguerre
digraph G on the vertex set [n] and a set S ⊆ [n], let G|S denote the induced subgraph
on the vertex set S (which is, of course, also a Laguerre digraph). Also, let hS denote
the number of paths in the graph G|S.

Proof of Lemma 6.13. To begin with, let G be any Laguerre digraph, not
necessarily alternating. Let j be a valley in G. Then, in the graph G|[j], j is an
isolated vertex, i.e., s(j) = p(j) = ∞. From the definition (6.26) we have

ulev(j, G|[j]) = #{i < j : s(i) = ∞}
= h[j] − 1 . (6.43)

where the first equality holds because j is the largest-numbered vertex in G|[j], so
that s(i) > j implies s(i) = ∞; and the second equality follows by noticing that the
vertices i with s(i) = ∞ correspond to the final vertices of the paths in G|[j] different
from j.

Similarly, when k is a peak in G, it follows from (6.28) that

llev(k, G|[k]) = #{m < k : p(m) = ∞}
= h[k] , (6.44)

where the vertices m with p(m) = ∞ correspond to the initial vertices of the paths
in G|[k].

Next, observe that

h[i] = h[i−1] + 1 when i is a valley (6.45a)

h[i] = h[i−1] − 1 when i is a peak (6.45b)

The first formula is true because a valley i is an isolated vertex in G|[i], and removing
it decreases the number of paths by 1. On the other hand, if i is a peak, it has both
a predecessor and a successor in G|[i]; so if i is a cycle peak, removing it changes a
cycle to a path, whereas if i is a path peak, removing it splits the path into two paths;
either way the number of paths is increased by 1.

Now let G be an alternating Laguerre digraph on the vertex set [N ], with k paths.
Consider the lattice path ω starting at (0, 0) and ending at (N, k) with steps si = (1, 1)
when i is a valley and si = (1,−1) when i is a peak. By definition, the heights hi

in the path ω satisfy the same recurrence (6.45) satisfied by the h[i]; and of course
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h0 = h[0] = 0 (since [0] = ∅). It follows that hi = h[i] ≥ 0, and hence that ω is a
partial Dyck path. This also implies that

h[i] ≡ i (mod 2). (6.46)

The proof of (6.42) is completed by combining (6.43), (6.44) and (6.46) and noticing
that ulev(i, G|[i]) = ulev(i, G) and llev(i, G|[i]) = llev(i, G). □

Proof of Theorem 6.12. We obtain the polynomials Q̂n,k(xe, ye, ue, xo, yo, uo, λ)
defined in (6.40) by using Lemmas 6.11 and 6.13 and eq. (6.29), and specializing the

polynomials Q̃n,k(a,b, λ) defined in (6.30) to

aℓ =

{
yo if ℓ is even

ye if ℓ is odd
(6.47a)

bℓ,ℓ′ =


xe if ℓ′ = 0 and ℓ+ ℓ′ is even

ue if ℓ′ ≥ 1 and ℓ+ ℓ′ is even

xo if ℓ′ = 0 and ℓ+ ℓ′ is odd

uo if ℓ′ ≥ 1 and ℓ+ ℓ′ is odd

(6.47b)

(This is just (5.11) with all the p, q variables set to 1.) Inserting these into Corol-
lary 6.7 completes the proof of Theorem 6.12. □

Next we show the p, q-generalization of all this. We extend the definition (5.5),
specialized to ye = ve, yo = vo, p+1 = q+1 and p+2 = q+2, from permutations to
Laguerre digraphs:

Q̂n,k(xe, ye, ue, xo, yo, uo, p−1, p−2, p+1, p+2, q−1, q−2, λ) =∑
G∈LDalt∞

n,k

xeareccpeakeven⋆(G)
e ycvaleven

⋆(G)
e unrcpeakeven⋆(G)

e ×

xeareccpeakodd⋆(G)
o ycvalodd

⋆(G)
o unrcpeakodd⋆(G)

o ×

p
lcrosscpeakeven⋆(G)
−1 q

lnestcpeakeven⋆(G)
−1 p

ulevcvaleven⋆(G)
+2 ×

p
lcrosscpeakodd⋆(G)
−2 q

lnestcpeakodd⋆(G)
−2 p

ulevcvalodd⋆(G)
+1 , (6.48)

where
lcrosscpeakeven⋆(G) =

∑
k∈Peak(G)∩Even

lcross(k,G) (6.49)

and likewise for the others. We can then state:

Theorem 6.14 (Generalized Stieltjes–Rogers polynomials for Theorem 5.2).
With α given by (5.7), we have

Q̂2n,2k(xe, ye, ue, xo, yo, uo, p−1, q−1, p+2, p−2, q−2, p+1, λ)

= p
k(k−1)
+1 pk

2

+2 y
k
e y

k
o Sn,k(α) (6.50a)

Q̂2n+1,2k+1(xe, ye, ue, xo, yo, uo, p−1, q−1, p+2, p−2, q−2, p+1, λ)

= p
k(k+1)
+1 pk

2

+2 y
k
e y

k+1
o S ′

n,k(α) (6.50b)
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Proof. The proof of Theorem 6.14 is almost identical to that of Theorem 6.12, but
uses the full specialization (5.11). □

Acknowledgments
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A Nonexistence of J-fractions with polynomial co-

efficients

In this appendix we show that it is not possible to obtain nice J-fractions for
polynomials that take account of the record status of both cycle peaks and cycle
valleys and also count the number of cycles. Nor is it possible to obtain nice J-
fractions for analogous polynomials restricted to alternating cycles. We show these
two facts in the two following subsections.

A.1 J-fraction for the polynomials (5.2)

Consider the polynomials

Pn(x, y, λ) =
∑

σ∈Sca
2n

xeareccpeak(σ)yereccval(σ)λcyc(σ) (A.1)

that were introduced in (5.2). By the reversal map i 7→ 2n + 1 − i, we have the
symmetry x ↔ y: Pn(x, y, λ) = Pn(y, x, λ). The first few polynomials Pn(x, y, λ) are

P0(x, y, λ) = 1 (A.2a)

P1(x, y, λ) = λxy (A.2b)

P2(x, y, λ) = λxy [λ (1 + 2xy) + x+ y] (A.2c)

P3(x, y, λ) = λxy
[
λ2 (3 + 7xy + 5x2y2)

+ λ (2 + 5x+ x2 + 5y + 4xy + 6x2y + y2 + 6xy2)

+ (3x+ 2x2 + 3y + 4xy + x2y + 2y2 + xy2)
]
. (A.2d)

We now give the first few J-fraction coefficients for this polynomial sequence: they
are

γ0 = λxy, β1 = λxy [λ (1 + xy) + x+ y] (A.3)

followed by

γ1 =
λ2(1 + xy)(3 + 2xy) + λ(2 + 5x+ x2 + 5y + 4xy + 4x2y + y2 + 4xy2) + (x+ y)(3 + 2x+ 2y + xy)

λ (1 + xy) + x+ y
.

(A.4)
It can then be shown that
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(a) γ1 is not a polynomial in x (when y and λ are given fixed real values) unless
λ ∈ {−1, 0,+1} or y ∈ {−1,+1}.

(b) γ1 is not a polynomial in y unless λ ∈ {−1, 0,+1} or x ∈ {−1,+1}.

(c) γ1 is not a polynomial in λ unless x ∈ {−1,+1} or y ∈ {−1,+1} or x = −y.

We state the polynomials γ1 obtained from the foregoing specializations:

Specialization γ1
λ = −1 −1 + x+ y − 2xy
λ = 0 3 + 2x+ 2y + xy
λ = +1 5 + 3x+ 3y + 2xy
x = −1 λ (3− 2y) + 1 + y
x = +1 λ (3 + 2y) + 5 + 3y
y = −1 λ (3− 2x) + 1 + x
y = +1 λ (3 + 2x) + 5 + 3x
x = −y λ (3− 2y2) + 2

These give rise to continued fractions as follows:

λ = +1. By [31, Theorem 2.18] specialized to λ = u1 = v1 = 1, x1 = x, y1 = y,
we obtain an S-fraction with αn = (x+ n− 1)(y + n− 1), and hence by contraction
(2.16) a J-fraction with γ0 = xy, γn = (x+2n− 1)(y+2n− 1)+ (x+2n)(y+2n) for
n ≥ 1, βn = (x+ 2n− 2)(x+ 2n− 1)(y + 2n− 2)(y + 2n− 1).

y = +1. By [31, Theorem 2.21] specialized to y1 = u1 = v1 = 1, x1 = x, we
obtain an S-fraction with αn = (λ + n − 1)(x + n − 1). By contraction this yields a
J-fraction with γ0 = λx, γn = (λ+ 2n− 1)(x+ 2n− 1) + (λ+ 2n)(x+ 2n) for n ≥ 1,
βn = (λ+ 2n− 2)(λ+ 2n− 1)(x+ 2n− 2)(x+ 2n− 1).

x = +1. This follows from the case y = +1 by using the symmetry x ↔ y.

λ = 0. For all n ≥ 1 and all σ ∈ Sn, each permutation contains at least one
cycle. Therefore, setting λ = 0 suppresses all permutations for n ≥ 1, and we have
Pn(x, y, 0) = δn0 (Kronecker delta). The value of γ1 stated in the table above is
completely irrelevant, because β1 = 0.

λ = −1. We have found empirically an S-fraction with α2k−1 = −xy, α2k =
−(1− x)(1− y) for k ≥ 1, and have verified it through α6. More generally, we have
found empirically an S-fraction involving the family of polynomials (5.1), which we
recall are

Q̂n(xe, ye, ue, ve, xo, yo, uo, vo, , λ) =∑
σ∈Sca

2n

xeareccpeakeven(σ)
e yereccvaleven(σ)e unrcpeakeven(σ)

e vnrcvaleven(σ)e ×

xeareccpeakodd(σ)
o yereccvalodd(σ)o unrcpeakodd(σ)

o vnrcvalodd(σ)o λcyc(σ) . (A.5)

Namely, after specializing λ = −1 we get an S-fraction with coefficients:

α2k−1 = −xeyo , α2k = −(xo − uo)(ye − ve) for k ≥ 1. (A.6)
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(Note that ue and vo do not appear in this formula.) We have also verified this
through α6. Note added: We have now proven these S-fractions; they will be
published elsewhere [4].

x = −1, y = −1. These are polynomials through γ1 and β2. However γ2 fails to
be a polynomial.

x = −y. These are polynomials through β1 and γ1. However, β2 fails to be a
polynomial.

A.2 J-fraction for the polynomials (5.2) restricted to alter-
nating cycles

We now consider the polynomials

PAC
n (x, y) =

∑
σ∈AC2n

xeareccpeak(σ)yereccval(σ) , (A.7)

which are simply the coefficient of λ1 in the just-studied polynomials (A.1). We again
have the symmetry x ↔ y: PAC

n (x, y) = PAC
n (y, x).

We now give the first few J-fraction coefficients for the polynomial sequence(
PAC
n+1(x, y)/(xy)

)
n≥0

: they are

γ0 = x+ y, β1 = (x+ y)(3 + x+ y + xy) (A.8)

followed by

γ1 =
30(x+ y) + 18(x2 + y2) + 4(x3 + y3) + xy(34 + 29(x+ y) + 5(x2 + y2)) + x2y2(8 + x+ y)

(x+ y)(3 + x+ y + xy)
. (A.9)

It can then be shown that

(a) γ1 is not a polynomial in x (when y is a given fixed complex value) unless
y ∈ {−1,+1}.

(b) γ1 is not a polynomial in y unless x ∈ {−1,+1}.

The specializations x, y ∈ {−1,+1} give rise to polynomials as follows:

x = +1 or y = +1. For the case y = +1, we specialize Corollary 5.3 to ye = yo =
ue = uo = ve = vo = 1, xe = xo = x, to obtain an S-fraction with αn = n(x+ n). By
contraction this yields a J-fraction with γ0 = x+1, γn = 2n(x+2n)+(2n+1)(x+2n+1)
for n ≥ 1, βn = (2n− 1)(2n)(x+ 2n− 1)(x+ 2n).

The case x = +1 follows by using the symmetry x ↔ y.

x = −1 or y = −1. These are polynomials through β2 and γ1. However, γ2 fails
to be a polynomial.
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