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Abstract

Radiofrequency (RF) switches are pervasive in modern communication 
and connectivity systems such as cellular networks, satellite 
communications and radar systems. Contemporary systems typically 
use transistor RF switches; however, owing to the growing demand for 
devices with high speeds, reliability and energy efficiency, research 
into alternative materials and devices, particularly those based on 
non-volatile switching physics, is expanding. In this Review, we discuss 
recent advances in RF switches based on emerging and two-dimensional 
(2D) materials. Following an overview of RF switches based on emerging 
memory technology, such as random-access memory, conductive-bridge 
random-access memory and phase-change memory, we describe 2D 
non-volatile RF switch technologies, including device fabrication, 
high-frequency performance, switching time, power handling, 
electromagnetic and thermal studies. We then highlight integration 
of silicon complementary metal–oxide–semiconductors with various 
switch applications in connectivity circuits. Finally, we outline possible 
directions for future research such as sixth-generation (6G) networks 
with low latency and high bandwidth for augmented reality and 
virtual reality.
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(MEMS) have been investigated as a possible approach to reduce the 
leakage current13,58. However, MEMS devices are challenging to inte-
grate with silicon CMOS technology because they are complicated 
and costly to manufacture and package, and they have high switching 
voltages (10–100 V)12–14,59–70.

Non-volatile memory-based RF switches have zero static energy 
consumption; therefore, they have been intensively explored as a 
possible approach to develop devices with high energy efficiency, 
and high-frequency operations, which is particularly important for 
mobile systems. RF switches based on emerging non-volatile memory 
technologies, such as resistive random-access memory (ReRAM), 
conductive-bridge RAM (CBRAM), phase-change memory (PCM) and 
2D memristors have been proposed. These proposed switches achieve a 
high cutoff frequency, small footprint, and fast and low-energy switch-
ing, and they are compatible with the standard CMOS back-end-of-line 
process14–18,71–79 (Fig. 2a–d).

In this Review, we introduce emerging non-volatile RF switch 
technologies and compare them with mature transistor switches. 
We discuss the properties and mechanisms of non-volatile resistive 
switching (NVRS) devices based on 2D materials. Then, comprehen-
sive RF switches based on monolayer 2D materials are described in 
detail, including device fabrication, high-frequency performance, 
switching time, power handling, and electromagnetic and thermal 
simulations. We also highlight the potential applications of 2D RF 
switches in data communication systems. Finally, we outline current 
challenges and future research directions including Si CMOS integra-
tion, switched filter banks, and switched antennas for phased arrays in 
the development of RF circuits based on monolayer 2D materials and 
front-end modules for the next generation of communication systems 
and ubiquitous mobile applications.

Non-2D non-volatile RF switches
Non-volatile memory devices such as ReRAM, CBRAM and PCM have 
attracted attention as emerging RF switching components for future 
mobile and wireless communications. The non-volatility of these 
devices leads to RF switches with zero static energy consumption 
during the idle period, thus improving the energy efficiency, which 
is particularly important for mobile systems. The insertion loss of 
2D RF switches decreases as frequency increases, which is close to 
the ideal dispersionless characteristic, unlike traditional dispersive RF 
switches, in which the insertion loss increases with frequency owing to 
parasitic inductive effects14,18,73,76,78 (Fig. 2e). The parallel-plate ON-state 
capacitance (Con) of 2D RF switches is parallel to the quasi-static Ron 
of the nanoscale metal–insulator–metal (MIM) device, which reduces 
the insertion loss. RF switches based on bulk materials have a large 
device size, and therefore the capacitance is negligible compared with 
the inductance. The detailed characteristics of emerging non-volatile 
RF switching technologies such as ReRAM, CBRAM and PCM are dis-
cussed below, as well as the structure, performance and recent advances 
of each RF switch. Comparisons of their performance with those of 
conventional transistors and diodes and MEMS switches are also shown 
(Supplementary Table 1).

ReRAM-based RF switches
ReRAM is a type of non-volatile resistive memory device fabricated 
as a MIM sandwiched structure that consists of an amorphous transi-
tion metal oxide layer such as titanium oxide (TiOx)80, hafnium oxide 
(HfOx)81, aluminium oxide (AlxOy)82 and tantalum oxide (TaxOy)83 between 
two metal electrodes (Fig. 2a). The resistive switching mechanism 

Key points

 • An RF switch is a device that controls radiofrequency signals, 
allowing multiple signals to be selected or connecting or 
disconnecting a signal from a circuit.

 • High-performance RF switches can provide reconfigurability 
in RF front-end systems, which increases design flexibility and 
reduces costs.

 • Unlike conventional RF switches, non-volatile RF switches can 
operate without an external static power supply because of their 
non-volatile resistive switching (NVRS) effect.

 • NVRS 2D RF switches are promising candidates that can play a 
key role in next-generation data communication technologies such 
as 6G and satellite communications, which are expected to offer 
considerably higher speeds, lower latency and energy efficiency.

Introduction
The increasing complexity of radiofrequency (RF) standards for mobile 
communication systems, such as 5G and 6G, is driving the demand 
for high-performance RF front-end solutions that meet the following 
criteria: wide bandwidth, low power consumption, high power trans-
mission and linearity1–4. The RF front end is the part of a radio receiver or 
transmitter that receives and transmits radio signals. It consists of many 
components, including antennas, low-noise amplifiers (LNA), power 
amplifiers, mixers, filters and RF switches (Fig. 1a). RF switches are used 
to route signals between different blocks, such as amplifiers, mixers and 
filters, and to enable the use of multiple frequencies5–18, making them 
essential components in mobile communication and reconfigurable 
radio systems, Internet of Things, and phased-array networks. In the 
simplest model of an RF switch (Fig. 1b), it can be represented as a par-
allel resistance–capacitance (RC) circuit model involving a capacitor 
and a variable resistor. The OFF-state capacitance (Coff) determines 
the undesirable signal leakage, which is often known as ‘isolation’ in the 
OFF-state, whereas the ON-resistance (Ron) determines the signal loss 
in the ON-state, also known as the ‘insertion loss.’

Traditional RF switches are made with volatile solid-state electron-
ics such as positive–intrinsic–negative (PIN) diodes8 or field-effect 
transistors (FETs)9–11 such as III–V metal–oxide–semiconductors19,20, 
III–nitride metal–oxide–semiconductors21–23, high-electron-mobility  
transistors23–25, silicon-on-insulator transistors26,27, silicon-on-sapphire 
transistors28–30, SiGe-based transistors31–34 and bipolar complementary 
metal–oxide–semiconductors (BiCMOS)32,35. Furthermore, volatile 
switches based on materials such as graphene, carbon nanotubes 
and two-dimensional (2D) transition metal dichalcogenides (TMDs) 
have received a lot of attention owing to their high switching speeds, 
low power consumption, scalability and compatibility with existing 
CMOS technology36–55. Volatile switches consume dynamic energy 
during switching events as well as static energy from the standby direct 
current (DC) bias in the ON and OFF states. Vanadium dioxide (VO2), a 
thermochromic material, also exhibits volatile switching with insula-
tor–metal transition (IMT) at a critical temperature. Therefore, VO2 
switches have high static power consumption because they must be 
kept above the threshold temperature (68 °C) to maintain the conduct-
ing state17,56,57. RF switches based on micro-electromechanical systems 
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of ReRAM is based on the intrinsic formation and recombination of 
oxygen vacancies across the amorphous oxide material. Therefore, a 
high electroforming (or soft breakdown) voltage of about 1.2–3.5 V is 
required to generate a conductive path composed of oxygen vacan-
cies and initiate switching between the high-resistance state (HRS) 
and low-resistance state (LRS). These devices have been studied as 
energy-efficient memory and neuromorphic computing components 
owing to the low ON/OFF-state current of less than 100 nA and fast 
switching speed of a few tens of nanoseconds82,84.

However, there are challenges associated with using ReRAM 
devices as RF switching components, owing to the high electroforming 
voltage and ON-state resistance. The oxide-based RF switch was initially 
built with a 30-nm-thick TiO2−x active layer and platinum (Pt) metal 
electrodes85. The mesa-structured switch was fabricated as a coplanar 
waveguide (CPW) and achieved 10-GHz RF switching. The insertion loss 
and isolation at 10 GHz were 2.1 dB and 32 dB, respectively; therefore, 
the minimum ON-state resistance and maximum OFF-state resistance 
were estimated to be 28 Ω and 35 kΩ, respectively. Because of the thick 
(30-nm) oxide layer, the ON-state resistance is high, but the OFF-state 
capacitance is small (~2.5 fF). It is generally difficult to deposit uniform, 
pinhole-free and defect-free metal oxide films with nanometre thick-
ness using RF sputtering and atomic layer deposition; therefore, these 
devices often have high leakage currents and low stability. The endur-
ance of ReRAM-based RF switches is limited to tens of cycles, but this 
can be improved through material and structural optimization, such  
as optimizing oxide sputtering conditions, studying the metal 
electrodes, and varying device active area sizes85. Through these 
approaches, several TaOx-based ReRAMs have been developed with 
endurances of over 1011 cycles86,87.

CBRAM-based RF switches
CBRAM is an electrochemical metallization memory device that has the 
same MIM structure as ReRAM and consists of an air gap or insulator 
between two electrochemically asymmetric metal electrodes (Fig. 2b). 

The electrochemically active metal electrodes, such as Ag, Cu and Ni, 
require a diffusion barrier to prevent oxidation and contamination 
in conventional CMOS technologies. Diffusion barriers, such as TiN 
or TaN, are thin films that are inserted between two other materials 
to prevent them from interdiffusing. The inert metal electrodes are 
usually based on metals such as W, Pt and Au, among which, W is the 
most commonly used one because of its prevalence in the CMOS inter-
connect. An applied electric field is used to induce the formation of a 
metallic filament from the active metal electrodes to the inert metal 
to set the device to the LRS. The application of an electric field in the 
opposite direction can rupture the filament through joule heating to 
return to the HRS. CBRAM-based devices have high ON/OFF ratios, low 
switching voltages, fast switching speeds and long retention times88.

The resistance of these devices strongly depends on cur-
rent compliance, the maximum current that can be delivered by a 
current source89. The ON-state resistance can be reduced by increas-
ing the current compliance, acting as an optimal RF switch to mini-
mize the insertion loss. The SET and RESET voltages are the voltages 
required to switch the device from its LRS to its HRS and vice versa, 
respectively. A laterally structured CBRAM-based RF switch on a sili-
con dioxide (SiO2)-covered high-resistivity silicon (HRSi) substrate 
with a 35-nm-thick air gap and asymmetric Ag/Au metal electrodes 
demonstrated SET and RESET voltages of 3.0 V and –0.4 V, with an 
ON/OFF ratio of around 1012 (ref. 18). The insertion loss and isolation 
of this switch were 0.33 dB and 30 dB, respectively, at 40 GHz, and the 
ON-state resistance and OFF-state capacitance were 3.6 Ω and 1.4 fF, 
respectively, with a calculated cutoff frequency (FCO = 1/2πRonCoff) of 
35 THz. Despite advantageous switching performances, the insta-
bility of the filament and risk of electrode oxidation present severe 
reliability issues, which can lead to high device-to-device and cycle-to-
cycle variations. Generally, the design of CBRAM devices involves a 
tradeoff between ON-resistance and OFF-capacitance. Reducing the 
gap between the metal plates can shorten the filament length, result-
ing in lower ON-resistance. However, a smaller gap also increases the 
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OFF-state capacitance because the distance between the metal plates 
is reduced. Therefore, another design strategy, such as reducing the 
overlap area of the metal electrode, is required to reduce OFF-state 
capacitance. This approach also has obstacles, for instance the finite 
scalability of the top electrode due to fabrication limitations such as 
the resolution of lithography and lift-off processes.

PCM-based RF switches
PCM is a family of non-volatile memories based on chalcogenide com-
pounds of the ternary germanium antimony telluride (GexSbyTez)90.  
These materials have a high resistance ratio between the amorphous 

and crystalline phases, spanning four orders of magnitude91. The revers-
ible phase transition between the amorphous phase (HRS) and the 
crystalline phase (LRS) can be thermally activated through electrical 
actuation pulses. To make the phase-change material amorphous, 
a fast-speed high-amplitude RESET pulse is applied to raise the 
temperature above its melting temperature (Tmelt). It is then quickly 
cooled and does not recrystallize anymore. A moderate-amplitude 
long-pulse-width SET pulse is used to crystallize the material with a 
pulse-induced temperature between the crystallization temperature 
(Tcrys) and Tmelt. The resistance state can be read with a small-amplitude 
READ pulse, which must not elevate the temperature of the device 
above Tcrys (Fig. 3a).

PCM RF switches with two, three and four terminals have been 
proposed as promising candidates for next-generation RF switching 
components. The HRS/LRS ratio varies from 104 to 106 depending on 
the combination of chalcogenide compounds used92–94. Germanium 
telluride (GeTe)95–98 and antimony telluride (Sb2Te3)93 have relatively low 
ON-state resistance compared with other chalcogenide compounds, 
making them the top candidates for RF switches. Although two-terminal 
devices are heated directly, three- and four-terminal devices can be 
heated either directly or indirectly. In directly heated switches, the joule 
heating current flows through the phase-change materials whereas in 
indirectly heated switches the signal route is isolated from the actuation 
route (Fig. 2c). Hence, indirectly heated four-terminal PCM switches 
are useful for achieving independent actuation and RF paths, similar 
to transistor-based RF switches. However, indirectly heated devices are 
inherently less efficient than directly heated devices because the heat 
needs to propagate from the heater to the PCM through a dielectric 
layer. Hence, the device geometry must be optimized to maximize the 
thermal efficiency together with the RF performance99.

A two-terminal GeTe-based RF switch was shown to have an excel-
lent insertion loss of less than 0.20 dB and isolation of around 30 dB up 
to the X-band100. In this device, the ON-state resistance and OFF-state 
capacitance of 0.07 Ω mm and 20 fF mm–1, respectively, enable a cutoff 
frequency of 80 THz. Moreover, the switch shows the highest power 
handling capacity of 3 W for the shunt and 10 W for the series configu-
ration among the PCM-based switching devices with harmonic power 
suppression of more than 100 dBc (Fig. 3b). Additionally, more than 
1 billion cycling endurance was demonstrated for a chalcogenide-based 
phase-change material four-terminal switch with cutoff frequency 
values of around 25 THz (ref. 75).

The maturity of this technology and the vast material process-
ing knowledge of the semiconductor industry allowed the PCM 
RF switches to become the first industry-ready resistive-memory-
based RF switch75,101. PCM RF switches are already applied to CMOS 
and SiGe BiCMOS processes with endurance and retention of more 
than 109 cycles and 10 years, respectively35,102. Furthermore, power 
handling larger than 35 dBm can be achieved, enabling the applica-
tion of these devices in tunable inductors, redundant switch matrix 
and true-time delay phase shifters78,103–106. Nonetheless, PCM-based 
RF switches have intrinsic limitations on switching speed and energy 
efficiency owing to the slow crystallization time of the PCM, the 
large heat capacitance of the inline phase-change switch structure, 
lateral heat spreading, trade-offs between heat conductivity of 
the layers, and heat sink losses to the substrate107. Once the inherent 
limitations of endurance for reconfigurable systems and monolithic 
integration with standard processes are improved, PCM RF switches 
are likely to transition from prototype laboratories to industry-level 
manufacturing facilities.
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Two-dimensional non-volatile resistive memory
NVRS, that is, the ability to switch between a HRS and a LRS and retain 
the switched state even when the power supply is removed, has been 
observed in various 2D materials, such as graphene oxides, black phos-
phorus, TMDs and hexagonal boron nitrides (hBN)77,108–117. Large leakage 
currents are an issue in the nanoscale scaling in metal-oxide-based 
memory devices with vertical MIM architectures. However, 2D materials 
can overcome the vertical scaling barrier of typical MIM structure NVRS 
devices. Unlike amorphous metal oxide materials, 2D TMD and hBN 
monolayers can shrink the vertical MIM structures to nanoscale levels 
and realize non-volatile switching memory without excess leakage cur-
rent owing to their stable crystalline structures and bandgaps that limit 
leakage currents. In memristive devices based on 2D materials, known 
as atomristors, the switching occurs in an atomically thin nanomate-
rial. Such devices outperform memristors based on other 2D material 
multilayer structures owing to their forming-free characteristic, low 
switching voltage, large ON/OFF ratio, atomically thin switching layer 
and fast switching speed. However, atomristors exhibit low endurance 
(101–102 cycles)77,117,118 with respect to the multilayer 2D material based 
memristors (104–108 cycles)76,119–121.

NVRS in 2D monolayers
2D monolayers are atomically thin sheets of materials that have unique 
properties, such as high electrical conductivity, mechanical strength, 
and flexibility. These properties make 2D monolayers ideal candidates 
for developing next-generation electronic devices, including NVRS 
memory devices. The NVRS mechanism in an Au/MoS2/Au device com-
prising a monolayer MoS2 in a MIM structure is driven by the adsorp-
tion and desorption of Au atoms into intrinsic sulfur vacancy sites77,122 

(Fig. 4a,b). When a forward voltage is applied from 0 to 1.2 V under 
10-mA current compliance, the Au atoms dissociate from the Au elec-
trode and absorb into the sulfur vacancy sites to form conductive points 
between the MoS2 monolayer and Au electrode, switching from HRS to 
LRS. When the forward voltage is swept back to 0 V, the Au atoms remain 
bound at the vacancy sites, indicating that the device remains in LRS. 
Conversely, when the reverse bias is applied from 0 to –1.5 V without 
current compliance, the Au atoms desorb from the vacancy sites and 
return to the electrode, returning the device to a HRS. When the reverse 
voltage is swept from –1.5 to 0 V, the device remains in the HRS77,122,123.

The variance in switching characteristics between devices could be 
caused by multiple factors, including material qualities, manufactur-
ing methods, and structural variations. Notably, atomristors exhibit 
an electroforming-free feature, in which the NVRS operation starts 
with a soft dielectric breakdown to generate a conductive filament, 
which is essential for metal-oxide memristors. The metal-oxide elec-
troforming process can be avoided by decreasing the thickness to the 
few-nanometre regime; however, the decreased thickness often results 
in trap-assisted tunnelling with a high leakage current. Atomristors 
produce sharp interfaces and clean tunnel barriers, demonstrating 
their superiority over thin amorphous metal oxides by achieving an 
ON/OFF ratio greater than 104 (ref. 124). Such properties are not exclu-
sive to MoS2; similar resistive switching results have been observed in 
other monolayer TMDs (WS2, ReS2, MoSe2, WSe2, ReSe2) and hBN. These 
results suggest that NVRS is a universal phenomenon in non-metallic 
2D monolayers122.

In addition to DC operation, pulse measurements can be used 
to apply a voltage at nanosecond timescales to avoid overheating or 
overstressing the device under test (Fig. 4c). In the case of a monolayer 
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MoS2 memristor, the equivalent switching energy of 50 pJ is orders of 
magnitude lower than that of modern PCM RF switches5,7.

Two-dimensional RF switches
High-performance analogue and RF switches have gained inter-
est as fundamental components in reconfigurable radio systems6. 
An ideal RF switch consumes zero static power and a finite amount 
of dynamic power during switching. Non-volatile switches based 
on ReRAM, CBRAM, PCM and 2D memristors have been developed 
to create energy-efficient switches5,14,73,76,125,126. For these memory 
devices to be used as RF switches, they should have low ON-state 
resistance (Ron < 10 Ω), and low OFF-state capacitance (Coff < 10 fF) to 
attain a high cutoff frequency in the THz range. Monolayer MoS2 films 
were used to fabricate 2D RF switches that operate at up to 480 GHz 
with an experimental data rate of 100 Gbit/s which corresponds to 

IEEE 6G data communication standards. Additionally, hBN switches 
with an experimental data rate of 8.5 Gbit/s for 5G bands have been 
demonstrated127,128. In terms of energy consumption, switching speed 
and operating voltages, these analogue switches based on 2D mate-
rial outperform other emerging RF switches such as ReRAM and PCM 
(Supplementary Table 1).

Device fabrication and structure
Similar to other non-volatile RF switch technologies such as ReRAM, 
CBRAM and PCM, 2D RF switches also have a vertical MIM structure and 
consist of two metal electrodes with a 2D material in between (Fig. 2d). 
RF switches based on 2D materials can be fabricated on a 300-μm-thick 
chemical vapour deposited diamond substrate with a root-mean-square 
surface roughness of less than 0.8 nm (ref. 76). Diamond substrates 
are preferred to silicon or SiO2/Si substrates because they have a high 
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Fig. 4 | Structures and characteristics of 2D radiofrequency switches. 
a, A transmission electron microscopy cross-section image of the atomically 
sharp and clear monolayer interface of Au/MoS2/Au. b, Representative measured 
current–voltage curve of bipolar resistive switching behaviour in a 2 × 2 μm2 
lateral area monolayer MoS2 crossbar device. Step 1: Switch the device from 
the high-resistance state (HRS) to the low-resistance state (LRS) by applying 
a voltage from 0 to 1.2 V. The current will increase to the compliance current 
(10 mA). Step 2: Maintain the device in the LRS. Sweep the voltage from 1.0 V to 
0 V. Step 3: Reset the device from the LRS to the HRS by sweeping the voltage 
from 0 V to -1.5 V. Step 4: Maintain the device in the HRS. Sweep the voltage from 
−1.5 V to 0 V. c, Applying a 500-ps, 5-V SET pulse to a monolayer MoS2 memristor
measures the voltage (red) and current (blue) through the device as it switches 
from the OFF to the ON state. d, A scanning electron microscopy image of a
MoS2 radiofrequency (RF) switch. The dashed box indicates the vertical metal–
insulator–metal structure with an overlap area of 0.5 × 0.5 μm2. The inset shows

an optical image of a ground–signal–ground coplanar waveguide layout. BE and 
TE represent bottom electrode and top electrode, respectively. RFin and RFout are 
the input and output ports of an RF circuit, respectively. e,f, Scattering parameter 
(S-parameter) measured and modelled in both the (e) ON (insertion loss) and (f) 
OFF (isolation) states of an RF switch based on a 0.15 × 0.2 μm2 monolayer MoS2 
atomristor. Insertion loss is a measure of how much the signal is attenuated as 
it passes through a component; isolation is a measure of how much coupling 
there is between two ports of a network. Different colours indicate the different 
measurement frequency ranges: 0.25–110.00 GHz (yellow), 140–220 GHz 
(red), 220–325 GHz (blue) and 325–480 GHz (cyan). The grey lines show the 
S-parameters of the extracted equivalent lumped element circuit model. Parts a
and b reproduced with permission from ref. 77, American Chemical Society.
Parts c, e and f reproduced from ref. 127, Springer Nature. Part d reproduced from
ref. 76, Springer Nature.
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thermal conductivity, which enables heat to dissipate, preventing 
overheating on the metal feedlines during DC and RF measurements 
for reliable operation129. Electron beam lithography followed by  
2-nm Cr/150-nm Au metal deposition has been used to pattern the 
top and bottom electrodes on a diamond substrate. The 2D atomic
layers can then be placed on the bottom electrode using either the 
poly(methyl methacrylate)-assisted wet transfer method or the poly-
dimethylsiloxane stamp transfer method117,130–132. Using the described 
fabrication process, an MoS2 RF switch was made with a ground–signal– 
ground CPW design and a device overlap area of 0.5 × 0.5 μm2 in a
vertical MIM structure76 (Fig. 4d).

High-frequency performance of 2D RF switches
The high-frequency S-parameters, a set of parameters that character-
ize the performance of RF and microwave devices, can be measured 
using a vector network analyser. On-wafer calibrations are needed 
to remove the extrinsic influences of the measurement wiring and 
probe stations, and therefore to obtain precise results. Intrinsic 
S-parameters of RF switches can then be acquired using de-embedding 
methods to remove probe–pad and interconnect resistances on the 
same substrate133. A monolayer MoS2 switch was shown to exhibit 
a small insertion loss in the ON-state (Fig. 4e) and isolation below 
15 dB in the OFF-state at frequencies up to 480 GHz (Fig. 4f). Three 
performance parameters, Ron, Coff and FCO, can be calculated with an
equivalent lumped element circuit model18,70. After de-embedding
the S-parameters to remove the effects of the test fixture, the intrinsic 
Ron and Coff values were extracted from the de-embedded S-parameters
in the ON and OFF states. The MoS2 RF switches were found to exhibit 
higher cutoff frequencies (70 THz) than other emerging RF switch 
technologies such as solid-state, MEMS and PCM switches.

MIMO, reliability and scaling of 2D RF switches
To achieve multiple-input and multiple-output (MIMO) circuit appli-
cations in ubiquitous systems operating at RF and 5G frequencies, 
MoS2-based single-pole–double-throw (SPDT) switches have been 
developed134. In the DC-50 GHz bandwidth, SPDT switches achieved 
insertion losses below 2 dB and isolation over 10 dB with a compliance 
current of 10 mA and overlap device areas of 1 × 1 μm2 at high frequen-
cies. The extracted Ron and Coff values for two switches are 13.5 Ω, 20 Ω 
and 6.5 fF, 6 fF, respectively, indicating that they can be used to imple-
ment a MIMO system134 (Fig. 5a). To achieve practical applications with 
stability, retention performance should be considered, as the device 
must maintain its states without volatility. S-parameter measurements 
show that typical 2D RF switches exhibit stable ON and OFF states over 
3 months at room temperature in air126 (Fig. 5b).

In traditional solid-state, PCM and MEMS RF switches, the area 
scaling limits insertion loss for isolation because Coff increases while Ron 
decreases with the increasing overlap area. However, the isolation of RF 
switches based on 2D materials can be increased without increasing loss, 
because Ron is area-independent and Coff is proportional to the overlap 
area76. For 2D RF switches, electromagnetic simulation results of the 
correlation of Coff to the MIM overlap area (Fig. 5c) exhibit an anticipated 
parallel-plate capacitance dependency in large overlap areas and an unex-
pected saturation (~1 fF) for smaller overlap areas, which limits the design 
parameters135. Coff saturation can be explained using the CPW structure, 

in which the overlap area can be precisely adjusted through lithography, 
while the parasitic capacitance remains constant for a given Coff.

In addition, it is crucial to address the thermal heat generation 
in high-power RF devices. A finite element analysis (FEA) simulation 

can provide the temperature distribution in the heated area of RF 
switches built on SiO2/Si, Si and diamond substrates and the depend-
ence of output powers on input RF signal powers126 (Fig. 5d). Diamond 
has a higher thermal conductivity than SiO2/Si and Si substrates and 
thus could be used as a potential heat sink. The surface-area average 
temperatures obtained using electrothermal simulations are com-
parable to those obtained in thermal measurements, which suggests 
electrothermal simulations could be  a useful tool for thermal man-
agement in the system126 (Fig. 5e). High switch reliability is critical 
for high-signal-power applications such as transmitters, since high 
signal power can induce signal distortion and losses. Therefore, the 
simulation platforms can help examine or optimize a variaty of device 
topologies and emerging RF switches for thermal management.

Power handling and linearity performance
The highest power a switch can transmit in the ON-state while main-
taining excellent isolation in the OFF-state is referred to as RF power 
handling. In the ON-state, the output power of both MoS2 and hBN 
RF switches increases linearly with input RF signal power, with little 
signal losses126. Because atomristors have a low actuation voltage, RF 
power-induced adjustable self-switching is an attractive application 
for a tunable attenuator. In the OFF state, the output power exhibits 
large losses and a linear relationship with input power before rapidly 
losing isolation owing to self-bias from the high-power RF signal, which 
causes ‘self-switching’ from the OFF to the ON state. Self-switching in 
hBN RF switches occurs at 20 dBm, which is close to the DC switching 
voltage when feedline losses are considered126.

Intermodulation distortion is an important metric for evaluating 
the nonlinearity of high-frequency devices. High RF input power can 
cause self-heating in devices, affecting their electrical properties, 
resulting in nonlinearity owing to fluctuations in the ON-state resist-
ance. A vector network analyser is used to generate and inject the two 
input tones (f1 = 2.365 GHz and f2 = 2.415 GHz) with a power sweep from 
–30 to +10 dBm. The basic signal and third-order intermodulation 
product show slopes of 1 and 3, respectively, indicating that MoS2 RF 
switches exhibit good linearity126,135 (Fig. 5f).

Applications of non-volatile RF switch technology
Non-volatile RF switch technology is an emerging technology that has 
the potential to advance a wide range of applications, from mobile 
communication systems to satellite communication systems to 
radar systems. Non-volatile RF switches are able to retain their state 
even after power is removed, making them ideal for applications 
where reconfigurability and low power consumption are important 
considerations.

RF switches for 6G data communications
The rapid advances in connectivity systems and wireless commu-
nication leads to an urgent need to increase data rates to meet the 
ever-growing demand. Edholm’s bandwidth law postulates that 
the bandwidth of telecommunications networks doubles every 
18 months136. Since the early 2000s, wireless data traffic has grown 
at an exponential rate, and it is predicted that wireless data rates will 
be able to compete with wired internet by 2030 (refs. 4,137) (Fig. 6a). 
RF switches are essential components for 6G data communication. 
Additionally, they can address the demanding connectivity require-
ments of augmented reality (AR) and virtual reality (VR) applications by 
enabling ultrahigh data rates, low latency, massive device connectivity, 
beam-forming and MIMO, high energy efficiency, millimetre-wave 
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communication, seamless handovers and edge computing integration. 
These capabilities will make AR and VR experiences more immersive, 
interactive and responsive1–3.

Baud rate is the unit of measurement for the symbol rate of a digital 
signal, which is the number of symbols transmitted per second. High 
baud rate, high spectral efficiency and sophisticated modulations 
are necessary for high-bandwidth data transmission and reception 
performance. The functionality of the MoS2 switch has been verified 

with various modulation schemes, amplitude phase-shift keying with 
16 symbols (APSK16); quadrature phase-shift keying (QPSK) for 10 and 
25 GBaud (20 and 50 Gbit/s, respectively); and quadrature amplitude 
modulation (QAM) with 16, 32 and 64 symbols (QAM16, QAM32 and 
QAM64, respectively). The evolution of signal-to-noise ratio (SNR) for 
various modulation schemes and data rates shows that more complex 
modulation schemes can be used to achieve higher data rates at a given 
SNR (Fig. 6b). The data rate for QAM16 achieved 100 Gbit/s, which 
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Fig. 5 | Multiple-input and multiple-output, retention, scaling and thermal 
properties of 2D radiofrequency switches. a, S-parameters are a set of 
scattering parameters that describe the electrical behaviour of linear electrical 
networks at their ports. De-embedded S21 and S31 represent the S-parameters of 
a single-pole–double-throw (SPDT) 1 × 1 μm2 switch from port 1 to ports 2 and 3, 
respectively. The inset illustration shows that the SPDT device effectively blocks 
the signal for the OFF-state port and transmits it through the ON-state port. The 
measured S-parameters confirm that the device can be used for a multiple-input 
and multiple-output (MIMO) system. BE and TE denote the bottom electrode and 
top electrode, respectively. b, Comparing the initial S-parameter of hexagonal 
boron nitride (hBN) monolayer-based RF switch (blue line) with the S-parameter 
measured 3 months later (red dashed line) confirms the stability of the device. 
The upper two lines indicate the insertion loss in the ON-state, and the lower 
two lines indicate the isolation in the OFF-state. c, The OFF-state capacitances of 
the parallel-plate model (red line) of RF switch agree well with the results of the 
3D electromagnetic simulation (blue squares) for large overlap areas. However, 
for small areas, parasitic and edge capacitances begin to dominate, resulting in 
a scale-invariant capacitance. d, The simulated hotspot temperature of an RF 
switch on a 300-nm SiO2/bulk Si (red curve), bulk Si (yellow curve) or diamond 
(blue curve) substrate. This simulation shows that diamond substrates have 
better heat sinking capabilities than SiO2/Si and bulk Si, owing to diamond’s high 

thermal conductivity, κ. e, A simulation of the temperature of hBN RF switch at 
an input RF power of 29.3 dBm, showing that a high-temperature hotspot occurs 
near the vertical metal–insulator–metal (MIM) structure. The inset shows a 
side view of the hBN monolayer-based RF switch. f, Intermodulation distortion 
(IMD) is a type of distortion that occurs when two or more signals are mixed 
together, causing interference and reduced signal quality. IMD measurement was 
conducted to assess the linearity of a monolayer MoS2 RF switch in the ON-state 
(f1 = 2.365 GHz; f2 = 2.415 GHz; 2f2 – f1 = 2.465 GHz). f1 and f2 are the fundamental 
frequencies of the two input signals. 2f2 – f1 is the third-order intermodulation 
product (IM3) frequency. Based on the two fundamental frequencies (f1 and f2) 
with the same input RF power, the output power signal contains the fundamental, 
Pout(f1), and third-harmonic (2f2 – f1) frequencies, Pout(2f2 – f1). The red and 
blue solid lines are visual guidelines for IMD extrapolation. The cross-section 
point represents the input intercept (IIP3) and output intercept (OIP3) points. 
The ON-state IMD graph of the fundamental frequency (f1) and third-order 
intermodulation (2f2 – f1) signal shows 31 dBm third-order IIP3 and 30 dBm 
third-order OIP3. Part a reproduced with permission from ref. 134, IEEE.  
Parts b,d and e reproduced from ref. 126, copyright 2020, Springer Nature.  
Part c reproduced with permission from ref. 135, IEEE. Part f reproduced  
from ref. 127, Springer Nature.
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meets the aim of the IEEE 802.15.3d release for 6G networks operating 
in the 300 GHz range. Constellation diagrams and eye diagrams of 
MoS2 devices show negligible distortions under various modulation 
schemes, indicating high-quality signal transmission (Fig. 6c). The 
MoS2 switch handled high-level QAM64 modulation, which is a pro-
posed modulation technique in the IEEE 802.15.3d standard for future 
THz communication. Following the high-data-rate characterizations 

with in-phase/quadrature (I/Q) modulations, real-time high-data-rate 

video streaming was investigated to ensure that the switch can handle 
real-time data streams encoded in the THz bands for 6G applications127.

RF switches for RF front-end systems
With the rising use of mobile devices, demand is growing for a wireless 
communication ecosystem to support a broader range of RF standards, 
including 5G, 6G and satellite communications. To this end, cognitive 
radio systems have been explored as a potential solution. These systems 
constantly sense the idle frequency ranges, and then dynamically recon-
figure the transceiver to operate in the white spaces of the frequency 
spectrum. In such systems, isolation between circuit components is 
important because the operation must be unaffected by other compo-
nents, as signal interference can corrupt the desired signal, increase 
bit error rate or cause interruptions in service. High-performance RF 
switches are key components for reconfigurable radio systems that 
enable customized RF functions for numerous frequency bands as 
well as the coexistence of multiple wireless communication stand-
ards (Fig. 7a). Thus, with such architectures, blocks can be reused and 
unnecessary components removed, enabling increased flexibility while 
substantially decreasing system costs, development time, form factor 
and wireless front-end complexity. High-performance RF switches 
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Fig. 6 | Data communication properties of 2D radiofrequency switches. 
a, Outlook for the data rate of wireless local area networks (LANs) and cellular 
networks. The yellow band at 100 Gbit/s complies with IEEE 802.15.3d, the IEEE 
6G standard for high-data-rate wireless multimedia networks. Wireless LAN 
communication standards (IEEE 802.11, 802.11b, 802.11a/g, 802.11n, 802.11ad, 
802.11ax, and 802.11ay) and cellular communication standards (GSM, GPRS, 
3G R99/EDGE, 3G, HSPA, LTE, LTE Advanced, 5G P1, 5G P3) define the frequency 
bands, modulation schemes and data rates for these communication systems. 
Each subsequent generation of standards typically offers improved data rate, 
capacity, and spectral efficiency over the previous one. b, The signal-to-noise 
ratio (SNR) versus data rate plot shows how much data can be transmitted over a 
channel with a given SNR. These plots are important for designing and optimizing 
data communication systems. The measured SNR of monolayer MoS2 RF switches 
showing good signal quality for various data rates and modulation schemes. 
Data rate is the speed at which data is transmitted over a communication channel. 
Modulation scheme is the method used to encode digital data onto a physical 
signal. The data rate target of the 6G standard (IEEE 802.15.3d) is indicated by 
the yellow band at 100 Gbit/s. THRU, ON and OFF represent measurements of the 
metal line, the ON-state and the OFF-state of the MoS2 RF switch, respectively. 
Quadrature phase-shift keying (QPSK) is a digital modulation scheme that uses 
four phase shifts to represent two bits of data per symbol. Quadrature amplitude 
modulation (QAM) is a digital modulation scheme that uses both amplitude and 
phase modulation to represent data. QAM is more efficient than QPSK, but it is 
also more complex and more susceptible to noise. The green and red dashed lines 
are visual guides that connect QPSK and QAM16 points, respectively, showing a 
decreasing SNR trend with increasing data rate. c, A constellation diagram is 
a graphical representation of a modulated signal, showing its amplitude and 
phase at different symbol times. An eye diagram is a graphical representation of a 
modulated signal synchronized to the symbol clock, showing its timing jitter and 
amplitude distortion. Both constellation diagrams and eye diagrams can be used 
to diagnose problems with a communication system, evaluate its performance 
and design new communication systems. Left, representative constellation 
diagrams for MoS2 devices with 100, 50 and 60 Gbit/s data rates with QAM16, 
QAM32 and QAM64 modulation methods at ON-state. Right, the corresponding 
eye diagrams with the blue spectra indicating the eye-crossing section. Both 
constellation diagrams and eye diagrams demonstrate that successful data 
modulation is achieved on 2D RF switches. Part b reproduced from ref. 127,  
Springer Nature. Part c reproduced with permission from ref. 128, IEEE.
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based on resistive switching devices could be used in applications such 
as tunable inductors, capacitors, filters, attenuators, antennas, phase 
shifters, switched oscillators and amplifiers (Fig. 7).

To exploit this possibility, RF switches that are compatible with 
standard CMOS processes with a small footprint, good transmis-
sion performance, low power consumption, and low actuation volt-
age are required. 2D RF switches can be readily fabricated on any 

substrate; therefore, they can be integrated with Si CMOS technology 
using three-dimensional monolithic microwave integrated circuit 
(3D-MMIC) structures or through-silicon vias to increase functionality 
density138–141. Placing RF and logic devices on the same layer can make 
them susceptible to coupling noise, a type of electrical noise that can 
interfere with the desired signal and degrade the performance of the 
system. Separated layer integration can overcome this problem and 
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increase design flexibility and power efficiency24,142. Furthermore, 
reducing the length of the interconnects between layers reduces the 
parasitic effects of capacitance and inductance and the possibility 
of signal loss or interference, as well as reducing electromagnetic 
interference issues because there are fewer current loops142. These 
more-than-Moore 3D-MMIC devices could combine logic, memory, 
sensors, antennas, analogue and RF circuits from several front-end 
manufacturing modules into a single system using heterogeneous 
integration (Fig. 7c).

Tunable inductors. Tunable inductors are versatile components that 
offer more flexibility and control in circuit design and can be used 
to implement a wider range of circuit functions. They are used in a 
variety of applications, including RF filters, tunable oscillators and 
impedance matching circuits. A wire loop and a cross layer are used 
in RF inductors to give access to the second electrode; therefore, 2D 
memristor-based RF switches could be placed between the two layers 
to change the effective length of inductors. This approach was verified 
with a circuit simulation that demonstrated that a CBRAM switch can 
function as a switching channel to change the number of loops N of an 
inductor, hence changing its inductance143 (Fig. 7d).

Switched filter banks. RF filters are electronic devices that pass signals 
within a certain frequency range and attenuate signals outside that 
range, and are used in a wide variety of applications, including com-
munication systems, radar systems, and test and measurement equip-
ment. A switched filter bank is made up of single-pole multiple-throw 
(SPNT) input and output RF switches, as well as a set of filters for each 
channel (Fig. 7b). By integrating a filter and a switching matrix in a single 
module, circuit transitions are eliminated, allowing for better matching 
with improved insertion loss, flatness, voltage standing wave ratio and 
overall performance. Using a switched filter bank in an MMIC based on 
2D materials instead of multiple filters can decrease the weight, cost 
and overall size of filter systems, making them suitable for use in mobile 
phones, drones, aeroplanes and satellites.

Switched antenna for phased arrays. High-frequency signals are 
highly directional but vulnerable to noise. The MIMO approach has 
been developed to overcome this limitation, by using fixed arrays of 
phased antennas to control the direction of each signal by adjusting the 
time delays and phase differences. A key antenna selection technique 
involves sequentially turning on and off antennas in a large array to 
transmit signals with precise time delays.

To fabricate phased-array antenna systems with both switched- 
beam and beam-steering characteristics, 2D RF switches can be  
integrated in analogue phase shifters and switched-line to adjust the 
phase delay angles between the array antennas144,145 (Fig. 7e). The beam- 
forming capability of this system can be used to produce a highly 
directed radiation pattern in the direction of a mobile device, improving 
the channel capacity and receiver SNR.

Multiband low-noise amplifiers. LNAs are crucial to improving the 
overall performance of adaptive systems because they are the first 
active stage after the antenna in a radio transceiver. LNAs are made up 
of many switchable amplifying transistors, capacitors and/or inductors 
to achieve a low noise figure (NF), high gain and good input matching 
over a wide range of frequency bands146.

A dual-band LNA has been demonstrated with a four-terminal indi-
rectly heated PCM RF switch with 0.13-m CMOS technology147. The LNA 
is composed of two common sources that have source degeneration 
and are switched by a PCM RF switch (Fig. 7f). For 3 and 5 GHz, the 
LNA exhibits low NF (2.85 and 2.86 dB) and high gain (19.5 and 20 dB). 
However, when the switch is used over a single LNA, the gain is reduced 
by less than 2 dB and the NF is reduced by 1 dB. This shows that the RF 
switch can tune the LNA very well to meet the application needs.

Programmable voltage-controlled oscillator. A tunable 
voltage-controlled oscillator (VCO) is essential for an RF front-end 
because it allows for a wide range of carrier frequencies, which is 
critical for RF front-ends that operate in multiple frequency bands. 
It is used as a local oscillator in frequency synthesizers to generate 

Fig. 7 | Examples of system-level applications of radiofrequency switches. 
a, High-performance radiofrequency (RF) switches can be used to reconfigure 
the connection between various front-end blocks in cognitive radio systems. 
As shown in the top blue figures, the antennas monitor the idle band, and the filter 
is selected by switching, depending on the operating frequency. The signal is 
amplified by a low-noise amplifier (LNA) to reduce received signal noise. Then, the 
mixers change the received frequency so that the signal can be processed by  
the baseband processor. Conversely, the bottom red figures show that the power  
amplifier (PA) amplifies the magnitude of the transmitting signal, allowing it to 
reach a greater distance. The filter is selected by switching to transmit the signal 
in the idle band. b, A switched filter bank is a device that uses switches to select 
between multiple filters, allowing a single device to perform multiple filtering 
operations. The block diagram shows a switched filter bank with single-pole–
four-throw (SP4T) switches. c, Three-dimensional monolithic microwave 
integrated circuits (3D-MMICs) can be heterogeneously integrated with vertical 
interconnects, enabling the monolithic integration of emerging RF components, 
such as 2D RF switches, transistors, and inductors, onto complementary metal–
oxide–semiconductor (CMOS) logic baseband processors, which are composed 
of p-channel metal–oxide–semiconductor (PMOS) and n-channel metal–oxide–
semiconductor (NMOS) transistors. d, The structure of a tunable spiral inductor 
consists of a regular via and a tunable conductive-bridge random-access memory 
(CBRAM) via. The regular via is always connected to the RF input signal. When the 

switching via is turned off, the signal flows through the regular via, resulting in 
a longer total length and more turns. On the other hand, when the switching via 
is turned on, the signal flows through it, resulting in a shorter total length and 
fewer turns. e, Phased-array antenna architecture with high-speed switches and 
programmable logic circuits can enable beam steering by changing the phase 
of the antenna. The desired phase can be controlled by adjusting the phase 
shift of each antenna element. N and K are arbitrary integers that depend on the 
desired antenna system. f, Schematic of a dual-band LNA using phase-change 
memory (PCM) RF switches. This single LNA can resonate at both 3 GHz and 
5 GHz. When the PCM switch is ON, the LNA operates at 3 GHz due to the parallel 
capacitance of the first and second cascode stages. When the PCM switch is OFF, 
the LNA operates at 5 GHz as the second cascode stage is removed. RF IN and RF 
OUT denote the RF input and output signals, respectively. M1, M2, M3 and M4 
represent transistors that constitute two cascode legs. Ibias, Vbias1, Vbias2 and Vbias3 
denote the supplied direct current and voltage for RF biasing. VDD_LNA and VDD_
BUFFER denote the supplied voltage for LNA and buffer operation, respectively. 
k denotes the coupling factor of the XFMR (transformer). Ls1 and Ls2 represent 
inductors used to implement the high-k XFMR. C1, C2 and C3 are capacitors in 
the inductor–capacitor tank load, which enable band selection. Lgate and Ldrain 
represent inductors for conjugate matching, connected to the gate and drain, 
respectively. Part e reproduced from ref. 145, Springer Nature. Part f reproduced 
with permission from ref. 147, IEEE.

https://doi.org/10.1038/s44287-023-00001-w 11



modulated signals using local carriers, which influences the overall 
performance of the radio. The key design challenges are tuning the 
oscillation frequency range, phase noise and output power level148–150.

An inductor–capacitor (LC) cross-coupled VCO can be built using  
tunable inductors based on non-volatile resistive RF switches. 
Using 0.13-m CMOS technology and a PCM RF switch-based switch-
able inductor, VCOs were developed in two modes: series-connected 
(SC) and coupled-controlled (CC)151. The SC topology uses a PCM RF 
switch to bypass a part of the inductor, allowing the VCO to detect 
a change in inductance. In contrast, the CC topology makes use of a 
two-winding inductor. The SC (CC) topology achieves broad tuning 
ranges for OFF/ON-states of 2.89–4.23 (4.93–7.79) GHz and 4.80–8.53 
(5.28–10.20) GHz.

Conclusions and outlook
Although substantial advances in the development of 2D RF switches 
have been made, several challenges must be addressed to advance 
the design of more efficient switches. First, the endurance of 2D RF 
switches should be increased to ensure stable device functioning 
in practical communication and connectivity systems. Second, RF 
switches must handle higher power levels for 6G, radar and connectivity 
systems, while being compatible with other high-power components 
without causing distortion or noise. Integrated power amplifiers and 
high-power immune RF switches are a suitable solution for cutting-edge 
practical RF front-end systems by providing wider bands and band com-
binations while enhancing power efficiency and chip density. However, 
contemporary 2D RF switches only have linearity up to 0.1 W, which 
is 100 times smaller than the linearity range of conventional volatile 
PIN- and FET-based switches. Finally, 2D material synthesis methods 
need further progress in wafer-scale reproducibility and uniformity, 
coupled with transfer integration in the back-end-of-the-line of indus-
trial semiconductor technology for circuit design and chip realization. 
Alternatively, the direct growth of 2D materials on industrial chip wafers 
might also be effective, but, for this purpose, it is important to ensure 
a low synthesis temperature compatible with back-end-of-the-line 
processes.

Next-generation wireless communication based on 6G technolo-
gies will require low latency, high bandwidth, high THz operating 
frequencies (carrier frequencies around 300 GHz) and complex modu-
lation techniques. As these technologies continue to evolve, the seam-
less integration of 6G connectivity and RF switching technologies will 
be crucial for realizing their full potential in gaming, entertainment, 
education, commerce, training and beyond. As a result, switches need 
further improvement to satisfy 6G frequency and data-rate criteria with 
zero static power dissipation. RF switches based on 2D materials can 
enable the expansion of their applications for future wireless commu-
nication and connection systems spanning from mobile to aerospace, 
automotive, medical, infrastructure, AR and VR.
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